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Summary

Count data are omnipresent in many applied fields, often with overdispersion. With

mixtures of Poisson distributions representing an elegant and appealing modelling

strategy, we focus here on how the tail behaviour of the mixing distribution is related

to the tail of the resulting Poisson mixture. We define five sets of mixing distribu-

tions, and we identify for each case whenever the Poisson mixture is in, close to or

far from a domain of attraction of maxima. We also characterize how the Poisson

mixture behaves similarly to a standard Poisson distribution when the mixing distri-

bution has a finite support. Finally, we study, both analytically and numerically, how

goodness-of-fit can be assessed with the inspection of tail behaviour.
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1 | INTRODUCTION

Count data are classically observed in many applied fields such as in actuarial science when evaluating risk and the pricing of insurance contracts

(e.g., Bartoszewicz, 2005), in genetics to model the number of genes involved in phenotype variability (e.g., Anders & Huber, 2010) or in ecology

to model species abundance (e.g., Wenger & Freeman, 2008). While Poisson models and regression are well-established choices for these type of

data, they are not suitable for overdispersed data. To overcome such limitations, the use of Poisson mixture models has been proposed. This

assumes the Poisson's intensity is no longer an unknown fixed value but a positive random variable. A variety of mixing distributions has been

already proposed (Karlis & Xekalaki, 2005), and classical examples include the Gamma distribution (Greenwood & Yule, 1920), the lognormal

(Bulmer, 1974) and the Bernoulli (Lambert, 1992). As demonstrated by Feller (1943), Poisson mixtures are uniquely identifiable by the mixing dis-

tribution on the Poisson parameter λ. Therefore, it suffices to take into account the behaviour of the mixing distribution when it comes to

adjusting count data with a Poisson mixture model. In particular, the mixing distribution should reflect the tail behaviour of the count data.

The field of extreme value theory allows to analyse such a behaviour through the distribution of maxima. Precisely, the tail behaviour of a ran-

dom variable can be characterized by three domains of attraction (Resnick, 1987): Weibull, Gumbel and Fréchet. Most familiar continuous distri-

butions can be associated to one of these domain of attraction. For discrete distributions, Anderson (1970) identified three different cases. A

sample drawn from a discrete distribution is: (i) in a domain of attraction, (ii) “close” to the Gumbel domain of attraction, or (iii) drastically fails to

belong to one such that their maxima oscillates between two increasing integers as the sample size grows to infinity. Perline (1998) provided con-

ditions on the mixing distribution such that the Poisson mixture remains in the Fréchet or Gumbel domain of attraction, that is, case (i). However,
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they did not report on types of distributions on λ causing the Poisson mixture to satisfy case (ii) or (iii). This article aims to complement their work

by identifying conditions on the mixing distribution which allow the Poisson mixture to be associated to the two latter cases. Moreover, we dem-

onstrate that Perline (1998) condition for the Fréchet domain of attraction is not necessary in order for the Poisson mixture to remain in this

domain.

This paper is organized as follows. Section 2 presents the extreme value theory in the Poisson mixture context and different families of mixing

distributions. Using these set of distributions, we identify when the Poisson mixture is in, close to, or far from a domain of attraction. Moreover,

we demonstrate that Poisson mixtures satisfying the latter case behave similarly to a standard Poisson distribution. In Section 3, we inspect how

those three situations can affect the goodness-of-fit when it comes to adjusting count data with a Poisson mixture. Moreover, we explore

how one can identify which type of mixing distribution can be adequate by using the generalized Pareto distribution on the excesses. We also

study how the closeness to the Gumbel domain of attraction has an impact on identifying such a mixing distribution. Finally, we provide an

example where the maxima of a Poisson mixture alternates between two values.

2 | POISSON MIXTURE TAIL BEHAVIOUR

In this section, we present notations and the family of mixing distributions that is studied in this paper. Moreover, preliminary results in extreme

value theory are presented and we describe maximum domain of attraction restrictions for discrete distributions. Following this, we elaborate on

mixing distributions that allow the Poisson mixture to be in or near a domain of attraction or to drastically fail to belong in one. Finally, for a

Poisson mixture with a finite mixing distribution, we will prove that the asymptotic behaviour of its probability mass function behaves similarly to

that of a Poisson distribution.

2.1 | Theoretical foundations

In the following, for a Poisson mixture random variable X, that is, Xjλ�PoissonðλÞ with λ random, F, F and f will denote, respectively, the cumula-

tive distribution function (cdf), the survival function and the probability density function (pdf) for the mixing λ. Similarly, FM, FM and PM will

denote, respectively, the cdf, the survival function and the probability mass function (pmf) of the resulting Poisson mixture X. Moreover, in this

paper, we restrict the mixing distributions on λ to those with a support equal to ð0,x0Þ for x0 �ℝþ [f∞g. Finally, we require the notion of a slowly

varying function CðxÞ on ℝþ, defined by the property: for every t�ℝþ, CðtxÞ�CðxÞ, where gðxÞ� hðxÞ means that limx!∞
gðxÞ
hðxÞ ¼1 for functions g

and h.

The tail behaviour of the Poisson mixture can be studied using extreme value theory. Such a statistical approach analyses how the maxima of

FM stabilizes asymptotically. For a general distribution G, the theory says that G belongs to a domain of attraction if there exist two normalizing

sequences an >0 and bn such that GnðanxþbnÞ converges to a nondegenerate distribution when n tends to infinity (Resnick, 1987). Such a non-

degenerate distribution can only be the generalized extreme value distribution given by

lim
n!∞

GnðanxþbnÞ¼ exp �ð1þ γxÞ�1=γ
h i

for 1þ γx>0 with γ≠0;

exp �e�x½ � for x�ℝ with γ¼0:

(
ð1Þ

The three possible domains of attraction are named Weibull, Gumbel and Fréchet for γ <0, γ¼0 and γ > 0, respectively, and will be denoted

by D�, D0 and Dþ. Accordingly, we will write G�D where D is one of the three domains. Necessary and sufficient conditions for G to be in a

domain of attraction have been established by Gnedenko (1943). While most common continuous distributions can be associated to a domain of

attraction, this is not always the case for discrete random variables. Indeed, a necessary condition for a discrete distribution G to be in a domain

of attraction is the long-tailed property (Anderson, 1970) defined by

Gðnþ1Þ�GðnÞ: ð2Þ

Well-known discrete distributions, such as Poisson, geometric and negative binomial, do not satisfy the above property. However, Anderson

(1970) and Shimura (2012) showed that if a discrete distribution verifies

Gðnþ1Þ� LGðnÞ, ð3Þ
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for L� ð0,1Þ, then G is, in a sense, “close” to the Gumbel domain. More precisely, Shimura (2012) showed that property (3) implies that G is the

discretization of a unique continuous distribution belonging to D0. On the other hand, Anderson (1970) showed that there exist a sequence bn

and α>0 such that

lim sup
n!∞

GnðxþbnÞ≤ exp �e�αxð Þ

lim inf
n!∞

GnðxþbnÞ ≥ exp �e�αðx�1Þ
� �

if and only if Gðnþ1Þ� e�αGðnÞ: Therefore, the supremum and infimum limits of GnðxþbnÞ are bounded by two Gumbel distributions under con-

dition (3). The geometric and negative binomial distributions are two such examples. Finally, if the discrete distribution is a Poisson, or more gen-

erally such that

lim
n!∞

Gðnþ1Þ
GðnÞ ¼0, ð4Þ

then no sequence bn can be found such that the the supremum and infimum limits of GnðxþbnÞ are bounded by two different Gumbel distribu-

tions. For this case, Anderson (1970) showed that for Yi �iid G, there exists a sequence of integers In such that

lim
n!∞

P max
1≤ i≤ n

Yi ¼ In or Inþ1

� �
¼1 ð5Þ

if and only if (4) is satisfied. Therefore, the maximum of such discrete distribution oscillates between two integers asymptotically.

2.2 | Poisson mixtures categories

Since Poisson mixture distributions are discrete, they are constrained to the long-tailed property (2) in order to have a domain of attraction.

Otherwise, they may be close to the Gumbel domain or with a maximum alternating between two integers. Since a Poisson mixture is uniquely

identifiable by the distribution on λ (Feller, 1943), it follows that its tail behaviour depends on the latter. Therefore, we seek to identify what

conditions on the distribution of λ allow the Poisson mixture distributions to satisfy one of the three equations (2), (3) or (4). In the following, we

will establish that Poisson mixtures with F in Dþ or D� will satisfy Equations (2) and (4), respectively, but for mixing distributions in D0, the

Poisson mixture may satisfy one of the three limits depending on their behaviour. We require the following definitions and notations.

Definition 1. A distribution F has an exponential tail if for all k�ℝ, there is a β >0 such that for x!∞

FðxþkÞ� e�βkFðxÞ: ð6Þ

Definition 2. A distribution F satisfies the Gumbel hazard condition if its density f has a negative derivative for all x in some left

neighborhood of fþ∞g, limx!∞
d
dx

1�FðxÞ
fðxÞ

h i
¼0 (the 3rd Von Mises Condition) and limx!∞

xδfðxÞ
1�FðxÞ ¼0 for some δ≥ 1

2.

Using Definitions 1 and 2, we focus on three distinct subsets of D0. First, distributions satisfying one of these definitions are in the Gumbel

domain of attraction; see Shimura (2012) and Resnick (1987). Second, some distributions with finite tail are in D0 (e.g., Gnedenko, (1943)). Based

on these three cases, let DE
0, DH

0 and DF
0 denote, respectively, the classes of F�D0 satisfying Definition 1, Definition 2 and with finite tail. These

subsets of D0 are disjoint by the following proposition.

Proposition 1. The sets DE
0, DH

0 and DF
0 are disjoint.

Proof. Since DE
0 and DH

0 represent distributions with an infinite tail, they are both disjoint from DF
0 . To establish that DE

0 and DH
0 are

disjoint, we first note that for any distribution F�DH
0 , the density must exist and it must be ultimately decreasing by Definition 2.

Therefore, if F�DE
0 and these conditions are not satisfied, then F =2DH

0 . Finally, suppose F�DE
0, its density exists and is ultimately

monotone. It is sufficient to show that the condition on the hazard rate function in Definition 2 is not satisfied for such a
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distribution. As noticed in Cline (1986), F has an exponential tail if and only if FðlnxÞ¼CðxÞx�β for some β >0 and slowly varying

function C. By the monotone density theorem presented in Theorem 1.7.2. in Bingham et al. (1987), we then have fðxÞ�CðexÞβe�βx.

Using these properties, one has for all δ>0 that

lim
x!∞

xδfðxÞ
FðxÞ ¼ lim

x!∞

xδfðxÞ
CðexÞe�βx

¼ β lim
x!∞

xδ ¼∞,

showing that the Gumbel hazard condition (Definition 2) is not satisfied. □

Although these subsets are disjoint, they do not form a partition of D0. Indeed, the Weibull distribution with cdf FðxÞ¼1�e�
x
βð Þα is neither in

DH
0 or DE

0 when α =2 ð0,1=2Þ[f1g. This distribution belongs to a broader subset of D0 named Weibull tail, which intersects with DH
0 and DE

0; see

Gardes and Girard (2013) for more details. We now discriminate between properties (2), (3) or (4) with respect to the domain of attraction of λ.

Theorem 1. Let FM be a Poisson mixture with λ distributed according to a cdf F and supported on ð0,x0Þ with x0 �ℝþ [f∞g. Then for

any integer k ≥1, there is a β >0 such that

lim
n!∞

FMðnþkÞ
FMðnÞ

¼
1 if F �Dþ[DH

0 ,

ð1þβÞ�k if F �DE
0,

0 if F �D�[DF
0 :

8><
>:

Proof. (A) limn!∞
FMðnþkÞ
FMðnÞ

¼1: The result for DH
0 is directly established by Perline (1998). For F �Dþ, a necessary and sufficient con-

dition is that FðxÞ¼CðxÞx�α with α>0 (Gnedenko, 1943). In fact, CðxÞ must be locally bounded since F is bounded. As

presented in Karlis and Xekalaki (2005), the survival function of the mixture is given by

FMðxÞ¼ ð
∞

0

λbxce�λ

bxc! ð1�FðλÞÞdλ¼Γðbxc�αþ1Þ
Γðbxcþ1Þ ð

∞

0

λbxc�αe�λ

Γðbxc�αþ1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
gðx,λÞ

CðλÞdλ

for x such that bxc�α>0. By the definition of the Gamma function, Ð∞0 gðx,λÞdλ¼1, and then for 0≤ a< b≤∞, ϕ� ð�1,1Þ, and
Stirling's formula, we have

ð

b

a

λϕgðx,λÞdλ≤ ð

∞

0

λϕgðx,λÞdλ¼Γðbxc�αþϕþ1Þ
Γðbxc�αþ1Þ � bxcϕ:

By Theorem 4.1.4 in Bingham et al. (1987), we can conclude that FM is such that

FMðxÞ�CðbxcÞΓðbxc�αþ1Þ
Γðbxcþ1Þ �CðbxcÞbxc�α:

Furthermore, since bxc� x, CðbxcÞ�CðxÞ using the Karamata representation of C (Resnick, 1987). Therefore, FM �Dþ and

FMðnþkÞ� FMðnÞ.
(B) limn!∞

FMðnþkÞ
FMðnÞ

¼ ð1þβÞ�k : Since F has an exponential tail, then FðxÞ¼CðexÞe�βx for some β >0. Using a similar argument as in

Theorem 4.1.4 in Bingham et al. (1987), we can prove that

FMðnÞ� CðenÞ
ð1þβÞnþ1

:

Therefore,

4 of 12 VALIQUETTE ET AL.
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lim
n!∞

1�FMðnþkÞ
1�FMðnÞ ¼ ð1þβÞ�k lim

n!∞

CðenþkÞ
CðenÞ ¼ ð1þβÞ�k:

(C) limn!∞
FMðnþkÞ
FMðnÞ

¼0: Because FMðnÞ¼ Ðx00 λne�λ

n! ð1�FðλÞÞdλ, the result as above follows since

FMðnþkÞ
FMðnÞ

¼ 1Qk
i¼1ðnþ iÞ

ð

x0

0
λnþke�λð1�FðλÞÞdλ

ð

x0

0
λne�λð1�FðλÞÞdλ

≤
xk0Qk

i¼1ðnþ iÞ
!0 when n!∞:

□

Theorem 1 establishes that if F�Dþ, then FM �Dþ, which improves the result of Perline (1998). Indeed, Perline's proof requires the 1st Von

Mises condition (Resnick, 1987) to prove a similar result. By relaxing such a condition, we proved that any mixing distributions in Dþ allows the

Poisson mixture to remain in this domain of attraction. Analogous to this property, Shimura (2012) showed that any discretization of a continuous

distribution in Dþ preserves the domain of attraction. Considering the Poisson mixture as a discretization operator, we obtain another example

where the Fréchet domain of attraction is preserved. A broad set of mixing distributions in Dþ can be found, for example, the Fréchet, folded-

Cauchy, Beta type II, inverse-Gamma, or the Gamma/Beta type II mixture (Irwin, 1968). Unfortunately, examples are scarce for distributions in

DH
0 . Indeed the asymptotic behaviour of the hazard rate function in Definition 2 is quite restrictive. Examples include the lognormal, the

Benktander type I and II (Kleiber & Kotz, 2003), and the Weibull distributions, with further restrictions on the parameters for the latter two cases.

These type of distributions do not encompass cases like the Gamma, even though the associated mixing distribution belongs to D0, because it

does not satisfy the additional condition on the hazard rate function. The class DE
0 allows to describe such a mixing distribution. It includes a broad

class of elements among others Gamma, Gamma/Gompertz, exponential, exponential logarithmic, inverse-Gaussian and the generalized inverse-

Gaussian. As previously mentioned these distributions are in the Gumbel domain of attraction but, from Theorem 1, the resulting Poisson mixtures

do not belong to any domain of attraction. However, we can quantify how close such Poisson mixtures are to the Gumbel domain of attraction.

Indeed, if β!0 then 1�FMðnþ1Þ
1�FMðnÞ !1, i.e. it approaches a long-tailed distribution. Finally, when F has a finite tail, that is, F �D�[DF

0 , the Poisson

mixture cannot be close to any domain of attraction by Theorem 1.

2.3 | Asymptotic behaviour for F �D�

To shed light on why the last limit in Theorem 1 is null, we complete this section by studying the asymptotic behaviour of the pmf PM when F is in

D�. Willmot (1990) studied such a behaviour when the Poisson mixture has a mixing distribution with a particular exponential tail. This result is

presented in the following proposition.

Proposition 2 (Willmot, [1990]). Let FM be a Poisson mixture with λ distributed according to a distribution F such that its density is

fðxÞ�CðxÞxαe�βx,

where C is a locally bounded and slowly varying function on ℝþ, and for some α�ℝ and β >0. Then the pmf PM is such that

PMðnÞ�CðnÞnαð1þβÞ�ðnþαþ1Þ:

Proposition 2 indicates that when the density f behaves similarly to a Gamma distribution, then the pmf PM behaves like a negative binomial

pmf multiplied by a regular varying function. As previously mentioned, the negative binomial is an example of a distribution where Equation (3) is

satisfied. This provides additional clarification on why the limit associated with an exponential tail in Theorem 1 converges to a value between

0 and 1. In the following theorem, a similar conclusion is presented when F�D�.

VALIQUETTE ET AL. 5 of 12
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Theorem 2. Let FM be a Poisson mixture with λ distributed according to a distribution F�D�. Then there exists an α>0 such that

FMðnÞ�Γðαþ1ÞCðnÞn�α xnþ1
0

ðnþ1Þ!e
�x0

� �
:

Proof. Using the integral representation of FM, we have

FMðnÞ¼ ð

x0

0

λne�λ

n!
ð1�FðλÞÞdλ¼ xnþ1

0

n! ð

∞

0

λn

ðλþ1Þnþ2
e�

x0λ
λþ1 1�F

x0λ
λþ1

� �� �
dλ

where the transformation λ 7! λ
x0�λ has been applied. By adapting the necessary and sufficient condition for the Weibull domain of

attraction (Gnedenko, 1943), which is F�D� if and only if x0 <∞ and 1�F x0x
xþ1

� �
¼CðxÞx�α for C a locally bounded function and

slowly varying and α>0, we obtain

FMðnÞ¼ xnþ1
0

n! ð

∞

0

λn�α

ðλþ1Þnþ2
CðλÞe�x0λ

λþ1dλ

then using the fact that the Beta function is such that

Bða,bÞ¼ ð

∞

0

ta�1

ðtþ1Þaþb
dt,

a similar argument as in Theorem 1 provides that

FMðnÞ � xnþ1
0

n!
Bðn�αþ1,αþ1ÞCðnÞe�x0n

nþ1

� xnþ1
0 e�x0

n!
CðnÞΓðn�αþ1ÞΓðαþ1Þ

Γðnþ2Þ

�Γðαþ1ÞCðnÞn�α xnþ1
0 e�x0

ðnþ1Þ!
� �

:

□

With the asymptotic behaviour in Theorem 2, a similar result can be established for PM.

Corollary 1. Let FM be a Poisson mixture with λ distributed according to a cdf F �D�. Then the pmf PM is such that

PMðnÞ�Γðαþ1ÞCðnÞn�α xn0
n!
e�x0

� �
:

Proof. Since PMðnÞ¼ FMðn�1Þ�FMðnÞ, then

lim
n!∞

PMðnÞ
Γðαþ1ÞCðnÞn�α xn

0
n! e

�x0
� �¼ lim

n!∞

Cðn�1Þðn�1Þ�α

CðnÞn�α
� lim

n!∞

x0
nþ1

¼1:

□

This result provides a fresh perspective on why the limit in Theorem 1 converges to 0 for a mixing distribution with a finite support. Indeed,

as previously mentioned, the Poisson distribution is an example such that the limit (4) is satisfied. From Theorem 2 and Corollary 1, FM and PM

behave like a Poisson distribution with mean x0 multiplied by a regular varying function. Intuitively, the mixing distribution does not put weight

everywhere on ℝþ, so the tail of FM cannot satisfy Equation (2).

6 of 12 VALIQUETTE ET AL.
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3 | NUMERICAL STUDY

This section illustrates the practical implications of the theoretical results previously obtained. In particular, we highlight how the mixing distribu-

tion impacts the adjustment, how the statistical evaluation of tail distributions of count data may help to select a mixing distribution, and how the

maxima of Poisson mixtures with finite mixing distribution behave asymptotically.

3.1 | Impact of mixing distribution choice on goodness of fit

To illustrate how the tail behaviour of λ affects the model adjustment, we simulated 100 samples of different Poisson mixtures with size n¼250

using the (i) Fréchet ðα,βÞ, (ii) lognormalðμ,σÞ, (iii) Gammaðα,βÞ and (iv) Uniformð0,x0Þ distributions on λ with densities

(i) fðxÞ¼ α
x

x
β

� ��α
e�

x
βð Þ�α

, α>0, β >0;

(ii) fðxÞ¼ 1
xσ

ffiffiffiffi
2π

p e�
ðlnx�μÞ2

2σ2 μ�ℝ, σ >0;

(iii) fðxÞ¼ βα

ΓðαÞx
α�1e�βx, α> 0, β >0;

(iv) fðxÞ¼ 1ð0,x0 ÞðxÞ
x0

,

each one being a representative of four out of five type of mixing distributions we encountered. Respectively, they are representative of ele-

ments in Dþ, DH
0 , DE

0 and in D�. Moreover, the parameter γ from Equation (1) associated to (i) and (iv) are, respectively, γ¼1=α, γ¼�1 and γ¼0

for (ii) and (iii). For each sample, the Poisson mixture is fitted with the same four distributions and the best model is kept using a Bayesian frame-

work. This is done using the language R (R Core Team, 2021) and the rstan (Stan Development Team, 2020) package to estimate the hyper-

parameters by MCMC. The best model is then kept using the highest posterior model probability. Those probabilities are approximated using the

bridge sampling computational technique (Meng & Wong, 1996) and the dedicated R package Bridgesampling (Gronau et al., 2020). All results

are based on the following priors: a Gammað1,1Þ distribution for positive parameters and a Normalð0,1Þ for real parameters. Moreover, we simu-

lated for each sample four MCMCs with 10,000 iterations each in order to ensure reasonable convergence for parameter estimation and for the

posterior model probabilities. Results are presented in Table 1.

The Poisson–Fréchet mixtures stand out the most since their tail is heavier than any other of the distributions. The only competing model

seems to be the Poisson-lognormal, which has a heavier tail than an exponential type distribution, but lighter than the Fréchet. The variance also

influences what model is selected. Indeed, for example, the lognormal(0,1) has a lower variance compared to the lognormal(1,1). In the former mix-

ture, the Gamma seems to be able to compete against the lognormal, which is not the case for the latter. Interestingly, the Fréchet mixing distribu-

tion is selected sparingly for lognormal data even when the variance gets larger. This fact remains true for the rest of Table 1 since the Fréchet

distribution has a much heavier tail. By Theorem 1, we know that the Gamma distribution can get close to the Gumbel domain of attraction. From

Table 1, we see that the lognormal is a significant competitor for both simulations, which reflects the closeness to D0. However, when the rate

parameter is equal to 2, the mean and variance decrease and the uniform becomes another chosen option. This can be explained by the fact that
FMðnþ1Þ
FMðnÞ

is closer to 0 when n grows to infinity. Finally, since the uniform has a finite tail, only the Gamma can compete and, again, larger the vari-

ance the less the Gamma is selected. Based on each case, we see a diagonal effect from the heavier tail to the finite tail.

TABLE 1 Selected model frequencies for each Poisson mixture simulation, with the highest frequency in bold.

Mixing class Mixing distribution Fréchet Lognormal Gamma Uniform

Dþ Fréchet (1,1) 89 11 0 0

Fréchet (2,1) 80 18 2 0

DH
0

Lognormal (1,1) 5 89 6 0

Lognormal (0,1) 9 69 23 0

DE
0

Gamma (2,1) 1 22 73 4

Gamma (2,2) 1 23 54 22

D� Uniform (0,10) 0 0 26 74

Uniform (0,5) 0 1 38 61
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3.2 | Identifying the domain of attraction

In order to identify what domain of attraction a random variable belongs to, one can use the peaks-over-threshold (POT) method (Coles, 2001).

This technique involves the distribution of the excesses defined by Y�ujY > u, for a suitable choice of u. Pickands (1975) and Balkema and de

Haan (1974) showed that Y belongs to a domain of attraction if and only if the distribution of the excesses converges weakly to a generalized

Pareto distribution (GPD) as u tends to the right endpoint of the distribution of Y. In such cases, the corresponding cdf is given by

Hγ,σðyÞ¼
1� 1þ γ yσ

� 	�1 ⁄ γ
if γ≠0,

1� exp �y
σ

� �
γ¼0,

8<
: ð7Þ

with support ℝþ if γ ≥0 or 0;� σ
γ

h i
if γ <0, where γ �ℝ and σ >0 are, respectively, shape and scale parameters. Moreover, the γ parameter is the

same as in Equation (1). Therefore, fitting a GPD to the excesses of a sample can inform us on the domain of attraction the underlying distribution

belongs to. Better yet, excesses of count data can inform us whether or not a Poisson mixture distribution belongs to a known domain of attrac-

tion and, if so, which one. Therefore, analysing the discrete excesses can indicate what type of mixing distribution generates the Poisson mixture.

Indeed, by Theorem 1, if the discrete excesses belong to a domain of attraction, then a mixing distribution F should be in Dþ [DH
0 . Otherwise, F

should either have an exponential or finite tail.

From a practical point of view, the study of discrete excesses may justify a choice of model. For example, one may hesitate between adjusting

a Poisson-lognormal or a negative binomial for their count data. In order to study how useful the discrete excesses can be, various Poisson mix-

tures have been simulated. Here, we fixed the sample size to n¼1000, the threshold u to be the 95th or 97.5th empirical quantiles, and simulated

1000 samples for each mixing distribution. For each sample, the discrete excesses are extracted, and the evd R package (Stephenson, 2002) is

used to estimate the GPD parameters by maximum likelihood. Based on these estimations, the modified Anderson Darling test for the goodness-

of-fit is applied. Finally, for the samples such that the GPD appears to be adequate, we test H0 : γ¼0 versus H1 : γ≠0. To do so, we fit these two

models, evaluate the corresponding log likelihoods L1 and L0, and conclude with the deviance statistic D¼2 L1�L0ð Þ which follows approxi-

mately a χ21 distribution under suitable conditions (Coles, 2001). Results are presented in Table 2.

First, we notice that even if the Fréchet and lognormal distributions are in Dþ and DH
0 respectively, the Fréchet(2,1) and lognormal(0,1) cases

lead to a high rejection rate for the 95th quantile threshold. However, when both cases are simulated with a threshold u equal to the 97.5th

quantile, the rate of GPD rejection diminishes. Therefore, it seems that the threshold choice has a great impact. Moreover, when u is the 97.5th

quantile, the estimation of γ is not significantly different to 0 for 79% of the samples of the lognormal(0,1). However, 61.5 % of the samples of

TABLE 2 Average number of excesses, rejection rate for the GPD, and nonrejection rate of H0 : γ¼0 with n¼1000 and u¼95th or 97:5th
empirical quantile.

Mixing class Mixing distribution u Average number of access GPD rejection Test γ¼ 0 not rejected

Dþ 95 48.727 0.069 0.014

Fréchet (1,1) 97.5 24.685 0.051 0.158

95 41.915 0.777 0.170

Fréchet (2,1) 97.5 21.746 0.177 0.615

DH
0

95 46.750 0.126 0.720

Lognormal (1,1) 97.5 23.644 0.037 0.845

95 41.914 0.697 0.257

Lognormal (0,1) 97.5 21.685 0.142 0.790

DE
0

95 36.200 0.704 0.045

Gamma (2,1) 97.5 18.876 0.245 0.502

95 38.015 0.833 0.052

Gamma (2,2) 97.5 16.988 0.392 0.311

D� 95 39.124 0.641 0.028

Uniform (0,10) 97.5 18.999 0.296 0.390

95 35.161 0.679 0.059

Uniform (0,5) 97.5 18.087 0.369 0.255
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the Fréchet are also significantly null. Second, as noted by Hitz et al. (2017), the discrete excesses need a certain amount of variability in order to

have a smooth adjustment to the GPD. Since the lognormal(1,1) has a greater variance and the Fréchet(1,1) doesn't have a finite expectation, this

explains why these cases are well adjusted to the GPD. Finally, both Gamma and uniform cases have GPD rejection rates as expected. Interest-

ingly, the uniform distribution is rejected at a lesser rate then the Gamma. Again, this can be explained by the greater variance for the uniform

than the Gamma simulations.

Also, the Gamma(2,1) leads to a lower rate of rejection than the Gamma(2,2), which is reasonable since the former is closer to D0 than the lat-

ter by Theorem 1. Indeed, if the limit in Theorem 1ð1þβÞ�1 approaches 0, the GPD rejection rate for the Poisson mixtures should increase.

Inversely, the rejection rate should decrease when ð1þβÞ�1 approaches 1. To further analyse this, we simulated Poisson mixtures with a

Gamma(2, β) mixing density and let the parameter β vary from 0.1 to 8, the quantity ð1þβÞ�1 thus varying between 1/9 and 10/11. For each

value of β, we simulated 500 samples of size n¼1000 from the Poisson mixture, fix the threshold u to the 95th empirical quantile, and calculate

the proportion of samples where the GPD is rejected with type I error α¼0:05. Results are presented in Figure 1. We can see that indeed the

proportion decreases when ð1þβÞ�1 moves towards 1. Between 0 and 0.5, the rejection proportion oscillates between 0.5 and 1. This can be

explained by the fact that the number of discrete excesses also oscillates when β increases, which affects the power of the test.

To adjust for the problems related to the discreteness of the excesses, it would be interesting to transform them into continuous variables.

As demonstrated by Shimura (2012), a Poisson mixture with F�DH
0 is a random variable that originates from an unique continuous distribution in

D0 that has been discretized. If one can identify such a continuous distribution associated to the discrete excesses when the GPD is rejected, then

it would be reasonable to use an exponential tail mixing distribution. A jittering technique consisting of adding random noise to data has been pro-

posed for different discrete contexts (Coeurjolly & Trépanier, 2020; Nagler, 2018). A plausible approach would be a jittering for the GPD test in

order to adequately identify the type of mixing distribution associated to the discrete excesses.

3.3 | Maxima for poisson mixtures with finite tail mixing distribution

By Theorem 1, if F has bounded support ð0,x0Þ, then the Poisson mixture is short tailed, that is, FMðnþ1Þ
FMðnÞ

!0 as n!∞. Therefore, according to

Anderson (1970), there exists a sequence of integers In such that Equation (5) is satisfied. Moreover, by Corollary 1, the pmf PM asymptotically

behaves like a Poisson distribution and, as mentioned, the Poisson is the primary example where its maximum oscillates between two integers.

Kimber (1983) and Briggs et al. (2009) study how the sequence In can be approximated for the Poisson distribution and showed that it grows

slowly when n!∞. Since PM behaves like the Poisson when F is in D�, the sequence In should also grow slowly. To visualize this behaviour, we

simulated Poisson mixtures with λ� x0Betaðα,βÞ. We fixed α¼2, x0 ¼5, and for n� f10, 102, 103, 104g, we simulated 10,000 samples of FM with

size n and recorded the maximum for each sample. With these maxima, we calculated the empirical probabilities, and repeated for

β� f1=4, 1=2, 1, 2g. Figure 2 reports on the empirical and theoretical pmf of the simulations and the maxima of n Poisson variables with mean x0

respectively.

F IGURE 1 Proportion of Gamma(2, β) Poisson mixture samples (size n¼1000) where the GPD has been rejected (α¼0:05) for the excesses
(u¼ 95th empirical quantile) as a function of ð1þβÞ�1.

VALIQUETTE ET AL. 9 of 12

 20491573, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.622 by C

IR
A

D
 - D

G
D

R
S - D

IST
, W

iley O
nline L

ibrary on [26/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Interestingly, the greater β becomes, the slower the sequence In increases. Indeed, when β¼1=4, the probability distribution of the maxima

looks similar to that of a Poisson(x0). For β¼2, the distribution for the Poisson mixture drastically shifts to the left. This can be explained using

Corollary 1. Indeed, we can show that PM here is such that

PMðnÞ�ΓðαþβÞ
ΓðαÞ n�β xn0e

�x0

n!

� �
,

and when β approaches 0, then only the pmf of the Poisson(x0) remains. From another point of view, the density of the x0Betaðα,βÞ approaches a
Dirac on x0, so the Poisson mixture approaches a simple Poisson distribution.

4 | CONCLUSION AND OUTLOOK

Overdispersed count data are commonly observed in many applied fields, and Poisson mixtures are appealing to model such data. However, the

choice of the appropriate mixing distribution is a difficult task relying mainly on empirical approaches related to modellers subjectivity or on inten-

sive computational techniques combined with goodness-of-fit test or information criteria. In this paper, we showed that such a choice should

respect the relation between the tail behaviour of λ and the discrete data. Indeed, if a distribution F is in the Fréchet domain of attraction or sat-

isfies the Gumbel hazard condition given by Definition 2, then the discrete data should be in the same domain of attraction. Otherwise, an expo-

nential or a finite tail should be chosen. Moreover, Theorem 1 established that Poisson mixtures with F�D0 need to be separated into three

subsets: DE
0, DH

0 and DF
0 . Both subsets DE

0 and DH
0 have distributions belonging to a larger subset named Weibull tail (Gardes & Girard, 2013). It

would be interesting to generalize Theorem 1 with this family of mixing distributions.

To identify whether the data distribution comes from a domain of attraction or not, we have studied the discrete excesses and their adjust-

ment by the GPD. Some difficulties occurred due to the discrete nature of the data. Solutions that could be explored are the use of techniques like

the jittering or the use of discrete analogues of the GPD like the discrete generalized Pareto or the generalized Zipf distribution presented in Hitz

et al. (2017). These approaches should help identify whether λ has an exponential tail or not. However, one could consider testing whether or not

the distribution on λ has a bounded support. To elaborate such a test, an interesting avenue would be to use Theorem 2 and Corollary 1, which

state that the Poisson mixture with a finite mixing distribution should behave similarly to a Poisson with mean x0.

In the field of extreme value theory, our Theorem 2 and the result of Willmot (1990) in Proposition 2 may provide an approach to finding nor-

malizing sequences such that the Poisson mixture belongs to a domain of attraction. Indeed, Anderson et al. (1997) showed that if Poisson's mean

λ depends on the sample size and increases with a certain rate, then it is possible to find normalizing sequences an and bn such that the distribu-

tion is in the Gumbel domain of attraction. If λ does not depend on the sample size, then no such sequence can be found. A similar result has been

proved by Nadarajah and Mitov (2002) for the negative binomial when α is fixed and β approaches 0. Since Theorem 2 and Proposition 2 showed

that Poisson mixtures with finite or exponential tail mixing distribution resemble the Poisson or the negative binomial, respectively, one could

F IGURE 2 Maximum distributions of Poisson mixture with λ� x0Betað2,βÞ (black) and Poissonðx0Þ (red) with x0 ¼5, β� f1=4, 1=2, 1, 2g and
n� f10, 102, 103, 104g.
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exploit these asymptotic properties to generalize the results of Anderson et al. (1997) and Nadarajah and Mitov (2002) with various Poisson mix-

tures like the Poisson-inverse-Gaussian or Poisson-Beta. Similarly, generalizing the results of Kimber (1983) and Briggs et al. (2009) concerning

the sequence In for the maxima of Poisson random variables should also be explored.
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