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 General context 
Food demand is expected to increase between 45% and 51% by 2050 (van Dijk et al. 2021) as a 

consequence of the estimated world population growth, which should reach ~9 billion people in 2050 

(UN 2019). Combined with an increased share of animal product in the diet resulting from greater 

incomes to a part of the world, the demand for crop and grass could even increase by up to 165% by 

2100 (Bijl et al. 2017). 

Two-thirds of caloric intake (Kromdijk and Long 2016) of the world population are covered by only four 

food crops: rice (Oryza sativa L.), wheat (Triticum sp.), maize (Zea mays L.) and soybean (Glycine max 

(L.) Merr.). So far, the combined production and stocks of these essential crops covered the world 

demand (FAO 2021), but future needs are not sure to be met (Ray et al. 2013). Increase in total 

production for almost all staple crops, with the exception soybean in developing countries, have been 

driven mainly by yield growth rather than surface increase (Fischer, Byerlee, and Edmeades 2009) 

(Figure 1-1). In the last 40 years, agricultural land has increased by 5% (Stehfest et al. 2019, data from 

FAOSTAT) and is expected to represent about 107.3% of the 2007/2009 reference surface by 2050 

(Alexandratos and Bruinsma 2012). This value already includes the future loss of arable land for 

urbanization, soil degradation and conversion to forestry of protected area. If surface increase has 

participated in increase in production, it has never been and will not be the sole driver of production 

increase in the future. 

From 1990 to 2010, the rate of yearly yield gain, relative to 2010 reference yields, was about 1% for 

wheat, rice and soybean and 1.5% for maize worldwide (Fischer, Byerlee, and Edmeades 2014). Part of 

this increase in yield was due to closing the yield gap which is the difference between the on-farm yield 

(FY) and the maximum potential yield (PY) for a cultivar in its target environment, with optimal 

Figure 1-1: Decomposition of total production growth (2011-20 and 2021-30) into growth in land use, land intensification 
through growth in multi-cropped land, and growth in yields. It covers the following crops: cotton, maize, other coarse grains, 
other oilseeds, pulses, rice, roots and tubers, soybean, sugar beet, sugarcane, wheat and palm oil. (OECD and FAO 2021) 
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agronomic practice and no biotic stress. Since the 1990s, the yield gap has been reduced at a rate of 

0.5% per year on average thanks to change in agricultural practices, switching to irrigation being among 

them (Fischer, Byerlee, and Edmeades 2014). However, the gap fluctuates across the years as it 

depends on the price the farmers are expecting for their crops. They will invest more in the inputs than 

allow them to close this gap only if they expect a return on investment. Closing the yield gap still has 

enormous potential to improve food security as it represents e.g. for rice in developing countries, 

between >50% to >120% of the currently achieved FY. Large yield gaps are mostly encountered in 

developing countries. This situation is caused by the socio-economic conditions and absence of 

infrastructure that might not evolve quickly (Fischer, Byerlee, and Edmeades 2014). History shows that 

farmers are keener to change cultivars than agriculture practices (Fischer, Byerlee, and Edmeades 

2014). Hence, increasing the FY by increasing PY could mitigate food scarcity and give farmers time to 

adopt improved agriculture practices. 

The PY of a variety is measured for its target environment. Changes in the environment will make old 

cultivars obsolete for new conditions and the PY could drop if new, adapted cultivars are not provided 

fast. Future yields are expected to be severely impacted by the increase in atmospheric CO2 and the 

resulting climate change (IPCC 2022). The experts’ report on climate change states that the higher 

temperature, change in rainfall patterns, and higher frequency of extreme events would put crop yield 

under even more pressure. 

Plant breeders have the task to constantly develop cultivar with higher PY. The annual yield increases 

have been so far around 0.5% to 0.8% for rice wheat and soybean and 1.1% for maize but it is not 

expected to be sufficient to cover the increase in demand (Figure 1-2). Worst still, lower rates have 

been observed in the last 20 years (Fischer, Byerlee, and Edmeades 2014). Not only will crop breeding 

have to provide higher yielding cultivars but also products corresponding to the ideotypes that would 

Figure 1-2: Global projections for 
yields. Observed area-weighted 
global yield 1961–2008 shown using 
closed circles and projections to 
2050 using solid lines for maize, rice, 
wheat, and soybean. Shading shows 
the 90% confidence region derived 
from 99 bootstrapped samples. The 
dashed line shows the trend of the 
2.4% yield improvement required 
each year to double production in 
these crops by 2050 without bringing 
additional land under cultivation 
starting in the base year of 2008. 
(Ray et al. 2013) 
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be adapted to new agricultural practices and new environmental conditions, not to mention new 

market demands. Breeding is, however, a lengthy endeavour. For annual crops it takes about 8 to 12 

years between the cross and release of a new cultivar. To continue contributing to food security and 

to rapidly respond to the yet unknown challenges, plant breeding needs to improve its practice to 

enhance genetic gain and eventually accelerate the rate at which it provides adapted new cultivars. 

 Plant breeding 
The role of a plant breeder is, as said by Bernardo (2008) (citing Dudley and Moll (1969)): “(i) to create 

genetic variation mainly by crossing good by good, (ii) select the best progenies in the cross, and (iii) 

synthesize the best progenies into a new and improved cultivar”. 

Plant breeding is the science of creating plants that fit human needs. It has been practiced intuitively 

since the dawn of agriculture 10,000 years ago, beginning with the unconscious domestication of 

species responsive to domestication and gradually evolved to an empirical science until the founding 

of the genetics as a research field. The discovery of Mendel’s work at the beginning of the 20th century 

and the later foundation of quantitative genetics (Fisher 1919) have given the theoretical foundation 

to what has been successfully practiced for millennia already. 

Besides the adaptative traits for cultivation, the required attributes that the selected crops needed to 

bear have evolved over the time following agricultural practices and societal requirements. Yield was 

and will stay central for every crop but the ideotype targeted to reach the highest yield did change 

over time. The ideotypes allowing the highest yields under animal- powered agriculture are not the 

same as the one adapted to mechanized agriculture. Similarly, different ideotypes are necessary for 

low input or high input agriculture. Finally, the environmental conditions in which the crop is grown 

are central. 

Plant breeding can be seen from two angles: (i) the type of cultivar expected in farmers’ field and (ii) 

the best methodology available to create the end product. The cultivar is the product that the farmers 

will acquire or purchase and grow in their fields (Table 1-1). To be released as a new variety, a cultivar 

must show uniformity, stability across the year, distinctiveness from existing cultivar as well as provide 

novelty. The methodology to develop the new cultivar is the choice of the breeder. It will be defined 

mostly by the type of end product required and the reproductive system of the species under selection. 

If we consider vascular plants, there are two sexual reproductive system: allogamy (open-pollination) 

and autogamy (self-pollination). While most wild species are allogamous (Zohary 2001) only a few 

important cereal crops such as maize (monoecious), pearl millet (Pennisetum glaucum (L.) R. Br.) 

(protogynous) or rye (Secale cereal L.) (self-incompatible) are spontaneous or obligate outcrossers. On 

another and while autogamy is relatively rare in the wild, most crops, such as wheat, rice, barley 
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(Hordeum vulgare L.), oat (Avena sativa L.) to only name a few, are autogamous species. In practice 

most plant will show both reproductive system but with a strong preference toward one. 

Part of the breeders’ work is two tweak those reproductive systems in one or another direction to get 

crosses from autogamous plants or to self the allogamous ones, to synthetize the expected improved 

cultivar type. Nucleic male sterility genes (ms-genes) are one of the genetic tools available to control 

autogamy (Rao, Devi, and Arundhati 1990). It can be used to facilitate large scale recombination and 

help make populations of intermating individuals and make an autogamous species behave like an 

allogamous one. The management of the breeding will depend on the degree of dominance of the 

male sterile allele. Essentially, one needs to ensure that the population under selection segregate for 

the ms-gene to have both male fertile and male sterile plants within a segregating progeny. As the 

male sterile plant does not produce fertile pollen, it will behave as allogamous plants. By harvesting 

their seeds, one can ensure offspring will be from a cross (F1 or S0). This type of gene exists in rice, 

sorghum and wheat. I will later discuss more in depth for in the case of an ms-gene in rice. 

1.2.1 Breeding methods 
Depending on the cultivar, different breeding approaches may be used. In the next sections, I will 

describe three common approaches that are relevant to this work.  

1.2.1.1 Mass selection 
Mass selection is the most straightforward selection method. First a population segregating for the 

traits of interest is either chosen (natural population, landraces, …) or created by crossing parents 

relevant for the breeding objectives. Then single plants are compared to each other in the population. 

If the goal is to find some good material to develop an improved population the breeder looks for 

above average plants. It can however also be used to purify an existing population or lines and here 

the goal will be to root out the out-of-type plants. Once the plants are selected, their seeds are bulked 

to produce a new population. For autogamous species, the population will progressively become more 

homozygous and mass selection can be a rapid and inexpensive method for increasing the frequency 

of desired genotypes in the population (Fehr, Fehr, and Jessen 1991). For the allogamous species mass 

selection can also be applied but in the context of recurrent selection (see below). This type of selection 

is mostly adapted for high heritability traits such as qualitative disease resistance (Fehr, Fehr, and 

Jessen 1991). It is also used in evolutionary plant breeding to discard unfit plants from various 

progenies families (Merrick et al., 2020).  
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Table 1-1: Non-exhaustive list of cultivar types and their main characteristics 

* CMS cytoplasmic male sterility; GMS genic male sterility in (Abbas et al. 2021) 
** apomictic rice in development (Guiderdoni 2021) 
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1.2.1.2 Pedigree selection 
Pedigree selection is a more sophisticated approach to selection. The starting point will also be a 

population with some diversity (normally a F2 from a bi-parental cross but it can come from a 

population breeding scheme). The first step will be similar to mass selection as plants will be compared 

to each other in the base population. Then, at each following generation the progeny of each selected 

plant is planted and the genealogy of the families is recorded. Selection is then made among the 

families (offspring from the same plant) but also within families, always keeping track of which plant 

comes from which family. As the performance of the ancestor is known, the selection can be made on 

the actual performance observed in field but also relative to the family performance in the former 

generations. As the genetic relationship of lines is known this information can be used to maximize the 

genetic variability among the final set of material retained as best candidates for variety release (Fehr, 

Fehr, and Jessen 1991). 

The advantage of the methods is that it discards inferior lines before complete fixation. However, for 

low heritability traits, selection has to be performed in more advanced generation when the lines 

become more homozygous (Collard and Mackill 2008). 

1.2.1.3 Single seed descent 
While pedigree breeding allows eventual accurate selection, it is labour intensive as well as time 

consuming. As each generation requires evaluation and selection with a thorough record of each 

selected plant, it must be conducted in conditions representing the target environment and the 

recurrency of the phenotyping is limited to the growth season. Additionally, selection in the early 

generations is done on segregating material. Hence much work might be invested in families that could 

be rejected in later generations. Single seed descent (SSD) is an attempt at tackling those issues in 

pedigree breeding. It rapidly advances large populations to a fixed homozygous state, where the 

evaluations are more accurate while keeping the workload low. To enable this, the generation 

advances are done through selfing and only a single seed is kept per family (sometimes increased to 

multiple seeds) from F2 up to the generation where homozygosity is deemed sufficient (F6 or F7) (Fehr, 

Fehr, and Jessen 1991). This leads to rapid inbreeding with minimal work. 

Using a single seed for each generation advance strongly reduces the workload. The populations of F2 

plants derived from a cross (F1) must however be large enough that, even after four or five events of 

Mendelian sampling (the generation advances), all possible genotypes with the parental alleles 

(recombinant inbred lines or RILs) are still present in the population and selection can be realized on 

them. 



Chapter 1 : Plant breeding 
 

8 

1.2.1.4 Recurrent selection 
When mass selection is practiced on autogamous species, the genotypes will increasingly become 

homozygous (if we set aside the small spontaneous outcrossing). When the same process is done on 

allogamous species, the frequency of favourable allele increases in the breeding population and so 

does its mean, but new genotypes will be produced at each generation. Recurrent selection (RS) as 

named by Hull (1946) is a cyclic method to improve population means for the traits under selection. 

Although any selection scheme can be seen as “recurrent” since new elite cultivars are eventually 

crossed together, RS specifically describes a breeding scheme that improves a population by short-

term cycles of selection (Fehr, Fehr, and Jessen 1991). The increase in population mean is done by 

selecting the best individuals or families as they should carry more favourable alleles for a given trait. 

This will, over the cycles, increase the frequencies of the favourable allele and thus increase the 

probability of assembling the ideal genotype or at least superior genotypes (Gallais 2011). 

Different methods are used to select the recombining unit. Mass selection is the simplest method and 

consists of comparing single plants within the whole population. Again, this is adapted to high 

heritability traits. If one wants to make repeated measures to evaluate the candidate materials (plants 

either selected on high heritability trait or randomly selected), as required for estimating quantitative 

traits, or to test the performance under multiple environments, advance generation might be 

necessary to increase the number of plants that can be observed. Different schemes exist for progeny 

testing, as the progenies can be generated by selfing or controlled crosses to obtain half-sibs or full-

sibs families Considering the generation advance is done by selfing we will also get increasingly 

homogeneous material. A good review of the schemes and and their practical application on rice was 

done by Châtel and Guimarães (1997). 

As mentioned earlier, many other plant breeding methods exist for cultivar development (hybrid 

development, backcross breeding …) but will not be presented in this short introduction. 

1.2.2 Assessment of a breeding program 
A plant breeding program can be assessed in several ways. Its commercial success is easily assessed by 

the number of successful varieties deployed and/or the royalties they generate. This is clearly 

important as it shows the adequacy of the product targeting and the adequacy of the available 

breeding populations to select for those targets. It says little, however, on the actual improvement of 

the breeding population and on the long-term trends. This success depends not only on the intrinsic 

quality of the variety but also on its competitiveness on the market. Another possibility is to measure 

the realized genetic gain, also named response to selection as progress in population mean may not 

be positive (e.g. plant height or cycle length) and is the change in population mean over the time. If 

records of population mean are often present in breeding program archive, a good measure of the 
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genetic gain remains challenging. Indeed, the evolution of the populations will be confounded with 

potential long-term climatic trend or changes in agronomic practices. Yet, corrections through 

statistical models are possible, if genetic connectivity between years exists (Rutkoski 2019). Given the 

suitable data are available several methods exist to measure the realized genetic gain but with limited 

accuracy (Rutkoski 2019). 

1.2.3 The breeder’s equation: a guide for program improvement 
The measure of realized gain is important for the assessment of the past years but one might want to 

know how the current program will perform in the next years. The breeder’s equation (Lush 1937) 

allows one to predict the genetic gain from one generation of selection based on the characteristics of 

the population under selection. The equation can take different forms depending on the estimators 

used and if the selection is applied on one or both of the parents, a common one is:  

 ∆𝐺𝑡 =
𝑘𝑟𝑥𝑔σ𝑔

𝐿
 Eq. 1-1 

where ∆𝐺𝑡, the genetic gain, is a function of the selection intensity which is the standardized selection 

differential S divided by the additive genetic variance of the estimated breeding values 𝜎𝑥 or 𝑘 = 𝑆 𝜎𝑥⁄ , 

 𝑟𝑥𝑔  the correlation between the true breeding value and the estimator used and 𝜎𝑔  the standard 

deviation of the additive variance. It shows that the genetic progress depends on the selective pressure 

put on the population (𝑘), the accuracy with which the breeding value is estimated (𝑟𝑥𝑔 ) and the 

available variability in the population (𝜎𝑔) and 𝐿 the length of a breeding cycle. The estimation of the 

genetic gain over several cycles implies that the additive variance stays constant. The assumption at 

the base of the breeder’s equation makes the actual values it returns potentially imprecise and have 

been experimentally shown as such (Rutkoski 2019). It is however still an important tool to understand 

the factors influencing genetic gain and to plan the improvement of a breeding cycle. 

To accelerate genetic gain means to increase ∆𝐺𝑡 . This can be done by increasing the selection 

differential that will depend on the percentage of top (or bottom) selected in the evaluated population 

and the distribution of the additive effects of the evaluated population. By convenience it is assumed 

as standard normally distributed. To reduce this percentage the number of selected units can be 

decreased or the total size of the population can be increased. The population is generally at the 

maximum size the program permit if we consider classic phenotyping but reducing the top percentage 

carries the risk of genetic drift and fast loss of diversity. The 𝑟𝑥𝑔  stands for the correlation between the 

estimates used for selection and the true breeding value. Obviously, higher correlation leads to higher 

selection gain. It can be expressed in variance covariance as 𝑟𝑥𝑔 = σ𝑥𝑔/σ𝑥σ𝑔. One way to increase the 

correlation is to increase the accuracy of the phenotyping which depends on good field practices. More 

replicates will increase the accuracy as well as more sophisticated field design, notably those allowing 
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the use of spatial modelling of the error. More replicates should lead to higher accuracy and higher 

genetic gain but, as for the phenotyping of a larger population, it requires resources the program might 

not have. The next parameter that can be increased is the additive genetic variance σ𝑔  to introgress 

new material in the breeding populations but is tricky as new material might also reduce the 

population mean. The last term to influence the genetic gain is the length of the cycle. Here, less is 

better as shorter breeding cycles increase the genetic gain. 

The rate of genetic gain still has a maximum because even with the optimal scheme, genetic gain is 

bound to the biology of the species. A plant requires a minimum space to grow which will limit the size 

of the population and the explored variability. The time necessary to grow them will also limit the 

reduction of the cycle length.  

1.2.1 Simulation as an optimization tool 
Experimentally testing new breeding schemes is in many cases not feasible as running various schemes 

simply to see which one performs the best requires too many resources, including a lot of time and a 

sufficiently large population to generate generalizable results. Real data are also affected by partly 

unknown processes, such as environment effects limiting the understanding of the causality. Finally, 

phenotypic data generated from field observations cannot represent the whole range of possible 

environmental conditions that might be relevant for the program.  

Simulation has long been a tool for plant breeding and quantitative genetics. Its complexity and power 

increased with the power of available computers. From initial simple deterministic models, simulations 

are now using in many cases a stochastic approach. In deterministic simulation, the outputs are entirely 

defined by the input variables and the same output will be obtained for the same input. It is based on 

some mathematical equation that reflects reality. Typically, breeding scheme optimization this is the 

breeder’s equation that lies at the core of the model as in (Atlin and Econopouly 2022). 

Instead of using fixed input values, a stochastic simulation introduces uncertainty by sampling input 

values from probability distribution function that represent stochastic processes. The user can then fix 

the parameters of the distributions, but different values will be sample each time that the simulation 

is run. In the context of breeding scheme simulation, those stochastic processes are e.g. the probability 

of an allele to be inherited, the probability of a plant to be sampled or the distribution of the random 

error during phenotyping just to name a few. By choosing the distribution function parameters 

correctly, simulations can deliver valuable data on the long-term performance of specific breeding 

schemes under specific conditions and help decision making. 

In the last decade, much stochastic simulation software has been developed specifically for breeding 

scheme optimization (e.g. ADAM-plant (Liu et al. 2019), AlphaSimR (Gaynor, Gorjanc, and Hickey 2021), 

BSL (Yabe, Iwata, and Jannink 2017), HaploSim (Coster and Bastiaansen 2010), MoBPS (Pook, Schlather, 
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and Simianer 2020), QU-Gene (Podlich and Cooper 1998), …). They all accommodate easily diploid 

organisms, additive and dominance effects and in most cases epistasis, however with varying levels of 

simplification. For integrating genomic information, they allow simulation of SNP but, to my knowledge, 

no other types of markers. These softwares differentiate themselves by their simplicity of usage and 

resources needed, some being very demanding in terms of RAM and CPU time. 

For its simplicity, adequacy, on-the-team experience, and the large community of users, AlphaSimR 

was chosen for the simulation experiment of this thesis. 

1.2.1.1 AlphaSimR 
AlphaSimR (ASR) (Gaynor, Gorjanc, and Hickey 2021) is an R package specifically developed for 

stochastic simulation of breeding program. It consists of a collection of R functions that allows the 

users to script a simulation that can represent most breeding programs. It can handle diploids but also 

autopolyploid species. ASR combines the Markovian Coalescent Simulator (MaCS Chen et al 2009) for 

backward in time simulations when it generates founder haploids to meet users’ defined population 

characteristics and the genedrop method is used for forward in time simulation when new haplotypes 

are generated. 

 Genomics assisted plant breeding 

1.3.1 Molecular marker in plant breeding 
The first technology to identify polymorphism on the nuclear DNA of an organism appeared in the 

1970s (Grodzicker et al. 1974). With the increase of identified polymorphisms, reduction of the cost 

and simplification of the technology, molecular markers have taken an increasingly central place in 

geneticists’ and breeders’ work. The first record of marker-assisted breeding was in the early 1980s 

with isozyme makers (ref in (Yunbi Xu and Crouch 2008) to speed up the introgression of monogenic 

traits in tomato. Then the era of marker assisted selection (MAS) in plant breeding started.  

The classical use of MAS is based on previous knowledge of which genomic regions control the trait of 

interest. Either biparental or multiparent populations are developed (for linkage mapping analysis) or 

a collection of diverse germplasm is assembled (for association mapping studies), genotyped and 

phenotyped for the trait of interest. Marker(s) statistically associated with a change in phenotype can 

then be identified as genetically closed to a quantitative trait locus (QTL). Following the first discovery, 

confirmation, validation, and sometimes a step of fine mapping or gene cloning are conducted before 

the marker can be used. Once a marker is proven to be tightly linked to QTL, it can be used to trace an 

allele on the genome responsible for the trait of interest (Collard and Mackill 2008). Once associated 

molecular markers are available (either the markers detected in the mapping or by designing new 

markers in the candidate region (e.g. KASP for Kompetitive Allele Specific PCR) individuals with the 
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favourable allele can be selected without the need of phenotyping. MAS proved to be especially useful 

for qualitative traits observed late in the life cycle or those that are expensive to measure. 

Molecular markers were successfully used for introgression in different crops (see review in (Bernardo 

2016) and (Hasan et al. 2021)). However, despite the large amount of marker-trait association (~10,000 

recorded in 2008, definitely more today), their use in breeding program seems to have remained 

limited (Bernardo 2008). There are several reasons for this, as the list of prerequisites for and 

constraints to applying MAS is long (Bernardo 2008; G.-L. Jiang 2013). Some of the important reason 

why MAS stayed anecdotic in plant breeding are: 

1. QTL effects, especially when many minor QTLs are involved, are not consistent across the 

populations (genetic background effect) or environments (QTL x environment interaction) 

2. Even for traits controlled by several major QTLs, a rapid pyramiding comes complicated as the 

probability to have favourable alleles for all QTLs targeted drops as the number of QTLs 

increase 

3. QTL detection and association studies work well to identify major QTLs but most trait are 

controlled by many minor and the size of the population needed to detecte them are often 

prohibitive 

Many economically important traits, foremost yield, are polygenic in nature and hence are not well 

suited for MAS limited to associated markers. Because of the rapid and cost-effective genotyping 

offering thousands of SNP markers, another method has been suggested to use allelic information not 

to identify and trace specific QTLs but to predict the expected phenotype considering genome wide 

makers. This method is known as genomic selection or genomic prediction (GP). 

1.3.1 The concept of genomic prediction 
Genomic prediction gained its fame with the article by Meuwissen et al. (2001) who. for the first time, 

predicted genomic estimated breeding value (GEBV) based on dense genome wide marker data. Older 

publications had however previously tested the concept (Bernardo 1994; Whittaker, Thompson, and 

Denham 2000). 

The concept of GP is simple: train a statistical model with genotypic and phenotypic information from 

a reference population and then use the model to predict the performance of selection candidates 

based only on their genotypes. The rationale is that, assuming enough markers would be used to cover 

the genome, one or several will likely be in linkage disequilibrium with the QTLs of interest (Hayes, 

Visscher, and Goddard 2009). If we can estimate the effect that those markers have on the phenotype, 

we should be able, once those estimates are obtained, to predict phenotypes only based on genotype. 
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Studies on GP in the last decade have shown much potential and have been widely adopted by animal 

and plant breeding program alike to improve genetic gain. 

1.3.2 Evaluation of prediction model 
As with any other mathematical models, GP models need to be tested for the reliability of their 

inference and/or prediction. Predictive mathematical models are chosen based on their ability to 

minimize the error of prediction (Schrauf, de los Campos, and Munilla 2021). In general, a metric such 

as the means square error is used to select the best model. Any bias or scaling introduced by the model 

will increase the error. However, breeding bases its choice on ranking which is not affected by either 

of them. For this reason, the field of GP almost exclusively evaluates the models on their predictive 

accuracy (sometimes also predictive ability) which is the Pearson correlation between (GEBV) and 

observations (P) and which is less restrictive than a metric including bias and scaling. The correlation 

is used as such or is divided by the square root of the heritability as 
cor(𝐺𝐸𝐵𝑉,𝑃)

√𝐻2
= cor(𝐺𝐸𝐵𝑉, 𝑇𝐵𝑉). 

The rationale behind it is well explained by Lorenz et al. (2011) but briefly the goal is to measure the 

model on its ability to predict the true breeding value (TBV) behind the observed P. 

GP models or calibrations (combination of model and input data) are commonly tested by cross 

validation (CV). Considering one has a dataset including individuals with all the phenotypic data and all 

the genotypic data. This set will be partitioned into the training set (TS) and the validation set (VS). The 

effects of the model parameters; i.e., the marker effects, are estimated using the complete information 

of the TS. Then, those estimated effects are applied on the TS parameter values, the genotypes, to 

obtain a prediction. The correlation between those predictions and the observed “real” values are 

computed. 

Two primary methods exist to partition the data in TS and VS. The first one is the k-fold cross validation. 

It starts by equally and randomly distributing the individuals in k folds (e.g. k=5). Then k-1 folds are 

used as TS and the last fold as VS. This is repeated k-times so each individual is predicted once. The 

random sampling in k fold can be repeated as many times as necessary. The second approach is much 

simpler: x% of the dataset is used as TS and the remaining 100-x% are used as VS. Again, this is repeated 

as many times as necessary. Under the fully random approach it is unsure whether each individual is 

at least once in the VS. The two methods however do not show great difference in the final model 

selection (Cao T-V, personal communication). 

When phenotypic data comes from a single environment the partitioning is straight forward and as 

described before. When the experimental design integrates more components such as different 

environments of phenotyping or in the case of hybrid breeding different tester used in which 

environment (Basnet et al. 2019) more complex CV schemes need to be developed to test the 

prediction scenarios we are interested in. The common nomenclature CV1 and CV2 was introduced by 
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Burgueño (2012) and was later extended to CV0 and CV00 (Jarquín et al. 2017a) (Figure 1-3). CV1 

represents the case where new individuals with only the genotype are predicted for already known 

environments. CV2 represents a case where some individuals are phenotyped only in a subset of the 

environments composing the experimental design and predicted in the remaining one. The proportion 

of genotypes that are phenotyped in several environments, sometimes called the overlap, can be 

played with, and can have an effect of the accuracy depending on the models used (Jarquín et al. 2020). 

CV0 represents a case where some individuals were phenotyped in several environment and their 

GEBV are predicted in an unknown environment. Finally, CV00 is the case where we predict new 

individuals in new environments based on calibration made on other individuals in other environments. 

Apart from CV, genomic prediction models can be evaluated on external population (external 

validation). This can be used to test a model explicitly calibrated to predict a defined population 

(validation population or breeding population). For example, if a model is calibrated with parental lines 

to predict the offspring or when a population at generation t is used in the calibration to predict the 

population at a later generation t+n. 

1.3.3 Factors influencing prediction 
The prediction accuracy of the GP models is influenced by different parameters. The predicted trait, 

by its number of QTLs involved in its expression, influences the potential accuracy (Daetwyler et al. 

2010). The level of dominance and epistasis is also relevant for the accuracy of the precision as most 

of the models aim to capture only the additive component (Meuwissen, Hayes, and Goddard 2001; 

VanRaden 2008; de los Campos et al. 2013). Another parameter linked with the characteristic of the 

trait and strongly influencing accuracy is the heritability. It quantifies the amount of genetic variability 

Figure 1-3: Schematic representation of 
four CV approaches CV1, CV2, CV0 and 
CV00 as presented in Burgueño (2012) 
and Jarquín (2017). Each line 
represents a genotype within the 
experimental design and each column 
within their respective CV approach an 
environment included in the design. A 
solid green circle means that the 
genotype x environment combination 
has a phenotype while, a white circle 
means that no phenotype is available 
and that the value will be predicted. 
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within the population and if heritability is low so is genetic variability. GP is expected to perform poorly 

(like any selection) when the genetic variability for the trait under selection is exhausted. 

Heritability is also a metric for estimating the quality of the phenotyping (repeatability). Following the 

adage “garbage in, garbage out”, the quality of the phenotyping has also an effect of the accuracy. 

The presence of outliers as well as the suitability of field experiment design have been explored and 

proven strongly influential (Ould Estaghvirou, Ogutu, and Piepho 2014; Bernal-Vasquez et al. 2014). 

The technology used to molecularly characterize the population seems to have little impact on the 

precision (Elbasyoni et al. 2018) and, considering a widespread, validated technology is chosen (e.g. 

Genotyping-by-sequencing (Elshire et al. 2011), SNP-array), the price is probably the main argument 

for the choice here. One central parameter regarding the potential influence of the genotypic data in 

the prediction is the marker density. If the genotyping is sufficiently dense, the markers should be able 

to capture a large part of the genetic variance (Yang et al. 2010). Sufficient density will however be 

defined by the extent of the LD in the working population but also the distribution of the markers 

across the genome (Lorenz et al. 2011). While a minimum number of markers is required, gains in 

accuracy tend to stagnate above a certain threshold at which point denser genotyping will be 

unnecessary. The different marker treatments have also been tested for their impact on accuracy. The 

levels of missing data, the minimum minor allele frequency, the maximum LD tolerated between to 

marker or the imputation method (Grenier et al. 2015). 

An essential factor to ensure accuracy of the GP model is an appropriate calibration set. It was simply 

put by Edwards et al. (2019) “small numbers of close relatives and very large numbers of distant 

relatives are expected to enable predictions with higher accuracy”. In practice this means that adding 

a relatively small number of close relatives in the calibration set can improve the accuracy more than 

strongly increasing the size of the calibration set with distant genotypes (Edwards et al. 2019). GP 

works best when calibration and prediction sets are within a biparental family (Hickey et al. 2014). It 

still works with more distant individuals, but calibration set and prediction set must be sufficiently 

related to ensure useful levels of accuracy and a denser genotyping will be necessary (Lorenz and Smith 

2015; Albrecht et al. 2011; Edwards et al. 2019). Finally, the calibration set also needs to be informative 

and capture as much as possible the genetic variability of the population on which GP is applied (Guo 

et al. 2014). The presence of structure within the population is also important for the accuracy of the 

prediction (Pszczola et al. 2012; Guo et al. 2014).  

Finally, since the birth of GP, the type of mathematical model/statistical approach used to capture the 

markers effect have been heavily discussed (Onogi et al. 2015a). Some should be adapted to strongly 

polygenic traits while others should deal better with trait controlled by few major QTLs and many 

minor ones. It turns out that there is so far no single right answer and that the best performing model 

will depend on the trait predicted, the population, the signal to noise ratio and many other 



Chapter 1 : Genomics assisted plant breeding 
 

16 

uncontrolled parameters. The best approach still is to try several options but keep in mind that GBLUP 

is rarely a bad idea (personal observation). The literature abounds with reviews on the multiple model 

existing. Here are a few I found helpful: (de los Campos et al. 2013; Gianola 2013; Cuevas et al. 2018). 
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1.3.4 Prediction methods 
The basic GP model can be formulated as follow:  

 Y = 𝑍β + ε Eq. 1-2 

where Y is a vector of n phenotypes, 𝑍 a matrix of marker genotypes of n rows and p columns, β is the 

vector of p marker effects and ε the residuals of the model. This could be solved with an OLS (ordinary 

least square) method if the model did not suffer from the large-p small-n problem. This means that 

there are many more parameters p to predict, i.e. markers effects, than there are n data points. Indeed, 

the markers can easily be counted in tenths of thousands while the phenotypes are normally much 

lower. As clearly explained in Gianola (2013), the maximum-likelihood estimator of our model is β̂ =

(𝑋’𝑋)−1𝑋’𝑌. However, (𝑋’𝑋) is singular as soon as p>n and there is an infinity of solutions for our 

estimator. The dimensionality problem is normally combined with a strong expected multicollinearity 

within the markers used, as several adjacent markers can be in high LD hence highly correlated. To 

address that kind of ill-posed model, several statistical approaches are available. 

1.3.4.1 Penalized methods 
The first type of approach is based on variable selection, shrinkage of estimates or a combination of 

both and includes the following GP method. 

The most common penalized method is the random regression (RR) BLUP, sometimes called SNP-BLUP, 

and is based on ridge regression (Whittaker, Thompson, and Denham 2000). Under this method the 

estimator becomes β̂ = (𝑍’𝑍 + 𝜆𝐼𝑝)
−1

𝑍’y , where the penalization 𝜆  is λ =
𝜎𝑒

2

𝜎𝑎0
2  with 𝜎𝑒

2  being the 

residual error variance and 𝜎𝑎0
2  the marker variance and 𝐼𝑝  is an identity matrix of order p. 

LASSO for Least Absolute Shrinkage and Selection Operation (Tibshirani 1996) is another common 

penalized method. LASSO do not have a simple solution like RR-BLUP (or OLS) but instead it relies on 

iterative algorithm (Friedman, Hastie, and Tibshirani 2010). Compared to RR-BLUP, LASSO has the 

advantage of shrinking the estimates as well as performing variable selection by putting the effects of 

some β̂ at zero. However, one limitation is that it will only select n markers within the p available. 

Finally, the elastic net combines the penalization used in ridge-regression and in LASSO. It seems to 

perform better than LASSO at selecting variable for p>>n problem but still performs shrinkage as a 

ridge regression (Zou and Hastie 2005). Similarly to the LASSO, it also relies on an iterative algorithm 

to find the solution. 

1.3.4.2 Bayesian methods 
As previously mentioned, in case of p>>n the Y = 𝑍β + ε model cannot be solved by methods relying 

on maximum likelihood however we can still use methods relying on Bayesian inference. They belong 

to the first method used for GP and were already tested by Meuwissen et al. (2001). 
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The Bayesian approach estimates values for β̂ as follows. First, let us give the standard Bayesian linear 

model used in GP: 

 𝑝(𝜇, β, 𝜎2|y, ω) ∝ 𝑝(y|𝜇, β, 𝜎2)𝑝(𝜇, β, 𝜎2|𝜔)  Eq. 1-3 

𝑝(𝜇, β, 𝜎2|y, ω) is the posterior distribution, i.e. the solution, for 𝜇 the population mean, β the vector 

of marker effects and 𝜎2 the residual variance conditioned on y the vector of phenotypic data, and ω 

some hyperparameter(s) of the selected prior. The problem is solved to be proportional (∝) to the 

product of the likelihood function 𝑝(y|𝜇, β, 𝜎2) , 𝜇, β, 𝜎2  conditioned on the data y  and the prior 

distribution 𝑝(𝜇, β, 𝜎2|𝜔)  the same 𝜇, β, 𝜎2  conditioned on the hyperparameter(s). By expending 

𝑝(𝜇, 𝛽, 𝜎2|𝜔) ∝ ∏ 𝑝(𝛽𝑖|𝜔)𝑝(𝜎2)
𝑝
𝑖=1  one can see that the 𝛽𝑖  marker effect is assigned some 

informative prior 𝑝(𝛽𝑖|𝜔) conditionned on the hyperparameter, and the residual variance is assigned 

another prior (by convention a scale-inverse-chi-square distribution (de los Campos et al. 2013)). 

Considering the appropriate prior are used, the Bayesian method will spontaneously introduce 

regularization (Gianola 2013). 

The choice of the prior 𝑝(𝛽𝑖|𝜔) is defined by the a priori expected distribution for the marker effects 

to be sampled from, hence what kind of shrinkage is performed on the marker effects or if a 

combination of variable selection and shrinkage is performed. Various priors have been tested and 

composed the famous Bayesian alphabet: BayesA and BayesB (Meuwissen, Hayes, and Goddard 2001), 

BayesC (Habier et al. 2011), BayesCπ (Habier et al. 2011), Bayesian Lasso (Park and Casella 2008), … 

the list being not exhaustive and still growing. A review on the cited method as well as on some 

additional letters of the alphabet has been done by Gianola (2013). 

1.3.4.3 Kernel method 
A third common approach to solve the p>>n problem is based on the so-called “kernel trick”. In the 

context of quantitative genetics, the kernels are functions that allow to compute the distance 

between genotypes based on the genetic information. Instead of solving equation 1-2, the kernel 

method aims to solve the following equation: 

 Y = Wu + ε Eq. 1-4 
Y being again the vector of phenotypes, W being the design matrix for the genotypes and u the 

genotype effect with distribution 𝑢~𝑁(0, Gσ𝑢
2 ). The marker information is used by the kernel to 

compute the variance-covariance matrix G.  

The first one to use this approach was Bernardo (1994) with RFLP markers on maize. Later VanRaden 

(2008) introduced the linear kernel method GBLUP. He suggested several methods to compute the 

realized relationship matrix 𝐺 the most used being: 

 𝐺 =
(𝑀 − 2(𝑝𝑗 − 0.5))(𝑀 − 2(𝑝𝑗 − 0.5))′

2 ∑ 𝑝𝑗(1 − 𝑝𝑗)
 Eq. 1-5 
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with M as the genotypic matrix with i individuals and j markers with element 𝑚𝑖𝑗 ∈ {0,1,2} and 𝑝𝑗 

being the allele frequency of the jth marker for the complementary allele. 

Another common kernel method is known as RKHS (Gianola and van Kaam 2008) and uses the 

following Gaussian kernel: 

 𝐺 = 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 [−
‖𝑥𝑖 − 𝑥𝑗‖

2

ℎ
] Eq. 1-6 

‖∙‖  refers to the norm in the Euclidian space for the genotypes 𝑥𝑖  and 𝑥𝑗  and ℎ  is a bandwidth 

parameter. Several methods to compute the bandwidth are described in Cuevas et al. (2016). The 

advantage of the Gaussian kernel is that it can model every epistatic interaction of any order (Jiang 

and Reif 2015). The kernel method has also been used to integrate dominance effects in prediction 

model (Su et al. 2012; Vitezica, Varona, and Legarra 2013; Morais Júnior et al. 2017). 

The kernel method shows its greatest potential in modelling multiple environments design. Once the 

matrix 𝐺 is obtained it can be combined with other matrices to model genotype by environment (GxE) 

interactions. It was first used for GP by Burgueño (2012). The design matrix W (Eq. 1-4) would identify 

observation Y from multiple environments. An environment variance-covariance matrix Σ would be 

estimated and then the complete variance-covariance 𝑀 = Σ ⊗ 𝐺 , ⊗  denoting the Kronecker 

product and 𝑢 , would be distributed as 𝑢 ∼ 𝑁(0, 𝑀). Here the covariance between environment 

would only be estimated on the data. Another approach was also suggested. Rather than using Eq. 1-4, 

the model was extended to contain multiple terms: a common genetic effect and an environment 

specific effect: 

 Y = 𝑊𝑔𝑢𝑔 + 𝑊𝑒𝑢𝑒 + 𝜀 Eq. 1-7 

Here 𝑊𝑔 is a design matrix for the genotypes, 𝑢𝑔  the vector of genotypic effect with a distribution 𝑢𝑔 ∼

𝑁(0, 𝐺𝜎𝑔
2), 𝑊𝑒  the design matrix for the environment specific genotype and 𝑢𝑒  the environment 

specific genotype effects with distribution 𝑢𝑒~𝑁 (0, [

σ𝑒1
2 𝐺 0 0

0 σ𝑒2
2 𝐺 0

0 0 σ𝑒3
2 𝐺

]) , as an example with 

three environment. 

Those mixed models can all be solved either in a frequentist or Bayesian approach. 

1.3.4.4 Machine learning 
Some deep learning approaches have also been applied to predict phenotypes on genetic information 

(Montesinos-López et al. 2021). They are a research field in statistics by themselves and were not 

addressed during my thesis. Some reviews of different methods on their comparative performances 

with classical statistical methods has been made. The general conclusion, so far, is that despite their 

great potential the data set used in plant breeding are still too small and sometimes not of adequate 

quality to harness the full potential of those tools (Montesinos-López et al. 2021; Azodi et al. 2019). 
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1.3.5 Program improvement through GP 
Depending on how it is used, GP can address all parameters of the breeder’s equation (Hickey et al. 

2017). In plant breeding the selection intensity (k) is often limited by the size of the population that 

the budget allows to phenotype. Considering genotyping is cheaper than phenotyping, this size limit 

can be move upward and a greater population screened will allow a higher selection intensity.  

Genomic prediction can also be used for a more accurate evaluation of the tested material. The use of 

a genomic relationship matrix (GRM) can be used instead of the historically used relationship matrix 

based on the pedigree. This will help the adjustment of the model and return more accurate 

predictions of the true breeding values than the phenotype alone or the phenotype and a relationship 

matrix based on pedigree would have done. 

The use of GP can accelerate and improve the introduction of new material in the breeding program 

helping maintain good additive variance in the breeding population (Gorjanc et al. 2016; Allier et al. 

2020). 

Finally, the breeding cycle length (L) can also be greatly shortened with the help of the GP. It allows to 

bypass the lengthy phenotypic evaluation step and directly select and cross superior material to start 

a new generation. It also permits the prediction of the value of the most recent material from field 

data and genotypes collected on previous generations (forward prediction). This use is especially 

visible in population improvement through recurrent selection where success is linked to the amount 

of recombination per time. 

 Rice 

1.4.1 Origin and taxonomy 
Rice (Oryza sativa L.) is a cereal crop belonging to the 

Poaceae family. The genus Oryza appeared around 

15 million years ago (Stein et al., 2018). It contains 25 

wild species and two cultivated ones: Oryza 

glaberrima and O. sativa. The O. sativa specie also 

known as Asian rice has been classified in five varietal 

group (Glaszmann 2008). This classification has since 

been extended and completed (Wang et al. 2018) 

confirming the grouping while expending it (and 

calling the groups “subpopulation”). The main 

subpopulations in terms of economic importance are 

the indica, tropical japonica, subtropical and 

temperate japonica. Indica is the subpopulation that Figure 1-4: Subpopulations of O. sativa adapted from 
(Wing, Purugganan, and Zhang 2018) 

 



Chapter 1 : Rice 
 

21 

shows the most diversity which is related to its wider range of cultivation. It is grown essentially in 

optimal environmental condition, both in terms of water and sun. The different japonica 

subpopulations are closely related to each other and less diverse, restricted to specific cultivation areas. 

The tropical japonicas subpopulation s is more adapted to grow in area constrained by abiotic stress 

(water deficit, low soil fertility) while the temperate japonica one is more often encountered in 

subtropical and temperate zones under irrigated cropping systems. The circum-Basmati subpopulation 

is closely related to the Japonica one. It is essentially found in the Indian subcontinent and known 

particularly for their aromatic flavoured grain. The circum-Aus subpopulaitons are close relatives to 

Indica-type rice from the Ganges delta region. They are very diverse and are a known source of 

tolerance genes for various abiotic stresses (Casartelli et al. 2018). 

1.4.2 Rice morphology 
Rice is an annual herbaceous plant with plant height of <1 m to up to 5 m for some floating rices. Its 

life cycle can be summarized in three phases. The first phase between germination and tillering called 

the vegetative phase lasts between 50 and 100 days after sowing and is about half of the life cycle. The 

reproductive phase follows and starts with panicle initiation up to the end of flowering this will last 25 

to 30 additional days. The panicle carries up to 400 spikelets each of them being only one floret giving 

one seed if fecundated (Figure 1-5). Rice is a mostly autogamous plant (0-6.8 % of allogamy) 

(Sahadevan and Namboodiri 1963) with selfing insured by cleistogamy. The last phase is ripening and 

Figure 1-5: Morphology of the rice panicle and the spickelet (GRiSP 2013) 
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runs from fertilization to maturity of the grain. It lasts 

about 30 days. The length of the phase depends on the 

cultivar as it is a selection target. It depends also on the 

accumulation of degree days, a growth season being 

longer under temperate climate than under a tropical 

one. If rice is mainly cultivated as an annual crop, it can 

behave as a perennial as long as the meristem is 

preserved. This is called ratooning (GRiSP 2013). 

The main parts of the rice grain are the endosperm, surrounded by the bran and the germ and 

encapsulated in the husk (or hull) composed of the palea and lemma (Figure 1-7). Rice is harvested 

with the husk as so-called “paddy-rice”. A grain of paddy rice weighs between 10 and 45 milligrams 

from which about 20% is the inedible husk. The husk is removed post-harvest in fix mills to obtain the 

brown rice. It is usually further processed before consumption, going through a step of polishing 

removing the bran and the germ to get the ubiquitous white polished rice (GRiSP 2013). Under this 

form, the rice kernel resumes in 69% starchy endosperm which is the source of carbohydrates (90% of 

the milled grain), some micronutrient, a few proteins (6-7% of milled grain) and a very reduced fraction 

of mineral and vitamins, and traces of antioxidants (Luh 1991). 

Although I described the main morphological characteristics of rice, large variability exists in the 

species, mainly reflecting the subpopulation division previously described. To only illustrate these 

differences in the two main subspecies (indica and tropical japonica), the Figure 1-6 highlight strong 

difference in tillering ability, plant height root depth and density. These characteristics will later be 

commented in terms of adaptability of these two groups to the ecosystems where rice is grown.  

1.4.3 Rice genetics 
Rice is a diploid species with 12 chromosomes. With a genome size of ~ 390 Mb (Zhou et al., 2020) it 

is the smallest of all domesticated cereals. Its small 

genome, a great genomic synteny to other cereals as well 

as its cultural importance for the world has made it the 

model cereal. Rice was the first crop genome to be 

sequenced (International Rice Genome Sequencing 

Project and Sasaki 2005). Since then, a great part of the 

rice genetic resource has been sequenced and made 

available to all the scientific community (The 3,000 rice 

genomes project, 2014) and 12 new references genomes 

were built and made available to account for the large 

Figure 1-6: Representation of the morphological 
differences between improved indica and tropical 
japonica rice 

Figure 1-7: Morphology of the rice grain  
(GRiSP 2013) 
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diversity existing in the species (Zhou et al., 2020). As of today, about 56,000 loci were annotated and 

reported in database (http://rice.uga.edu, 2022.). Consequently, rice has benefited from a large 

community of scientists at the origin of great advances in the domain of genetic characterisation and 

exploitation. 

1.4.4 Rice as a major crop 

1.4.4.1 Culture 
Oryza sativa is a very diverse species. It is the most important crop in terms of cultivated area with 

production zones spread from 53° North in the Amur River valley to 40° South in central Argentina. 

This range of latitude represents climate as diverse as wet-tropical and continental. Often rice 

cultivation is practiced over more than one season, up to three per year, under tropical climate. It is 

also cultivated under a variety of cropping systems which are often classified by the type of irrigation 

used (Figure 1-8). 

Most of the rice cultivated area is irrigated. As long as there is a source of water, this is a very reliable 

cropping system with stable yield. The second most common cropping system is rainfed lowland 

followed by rainfed upland. While rainfed lowland is expected to be submerged for a certain time when 

precipitation arrives, owing to bunded field preparation, upland rice is grown without submersion 

generally on levelled or sloping unbended fields. These cropping systems are more prone to water-

stress as they rely on sufficient precipitation at the right time. As they rely on seasonal rainfalls, only 

one harvest per year is possible. The last cropping system is flood-prone or floating rice. This system is 

encountered in low-lying coastal area such as river deltas where the plants are expected to be 

submerge by at least 100 cm of water for more than 10 consecutive days. In lowland, irrigated and 

flood-prone condition rice can be either direct seeded on dry or wet soil or first grown in nurseries to 

by later transplanted in puddled field. Under upland conditions it is direct seeded or seeded in tilled 

land. 

1.4.4.2 Economic importance 
Rice is the 3rd most important crop in term of cultivated area with a total of 164 million ha in 2020 

behind maize and wheat with 202 and 219 million ha, respectively (FAOSTAT, 2022). The crop is grown 

by more than 144 million farmers in more than 100 countries (CGIAR, 2013). In terms of consumption, 

it was the most important food crop in 2019 with 80.54kg/capita/year across the world against 64.94 

Type Surface [million ha] Average yield [t/ha] Total production [%] 

Upland 15 1 4 

Rainfed lowland 52 2.3 19 

Irrigated 93 3-9 75 

Flood-prone 11 1.5 2 

 

Table 1-2: Rice production and yield by irrigation system (GRiSP 2013) 
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for wheat (FAOSTAT, 2022) however with great disparities. In four countries (Bangladesh, Cambodia, 

Laos, and Vietnam) it is more than 200kg of rice that are consumed per capita per year. It covers 19% 

of the daily calories requirement and is considered a staple crop for billions of people especially in 

developing countries (OECD and FAO 2021). For this reason, it plays a central role in food security. As 

staple food, rice can also be effectively used to bring essential mineral micronutrients to people whose 

dietary diversity is low. Biofortification (the targeted increase in micronutrients within the consumed 

part of a crop) of rice has for this reason being actively researched (Bouis and Salzman 2017) in the last 

two decades to notably fight zinc deficiency (Kiran et al. 2022). 

 Optimization of a breeding scheme: the case of the CIAT-Cirad 

upland rice breeding program 

1.5.1 Historic of the program 
The involvement of Cirad in an international partnership for rice improvement in Latin America started 

in the 80ies, through a joint project with Embrapa Rice and Beans in Goiana (Brazil) in 1981 then with 

CIAT in 1992 (Châtel and Guimarães 1997). While the first phase aimed at enriching the Brazilian 

breeding program with genetic resources developed in Africa (through the IRAT, the former Cirad), the 

Figure 1-8: Rice irrigation system from (Halwart, Gupta, and WorldFish Center 2004) 
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second phase to foster and strengthen the breeding activities for the Latin America’s upland 

ecosystems (Châtel et al. 1995). Since 1996, the CIAT-Cirad rice breeding program at CIAT has focused 

on broadening the genetic base of rice breeding populations. The strategy was to generate segregating 

material based on the development and improvement broad genetic base synthetic population using 

recurrent selection. 

The first breeding population developed for upland conditions was synthesized with 26 elite donors of 

the tropical japonica group, specifically adapted to the tropical upland from Asia, Africa, Latin America 

and the Caribbean (LAC). Their recombination was facilitated with the use of an indica rice mutant 

bearing the nuclear male sterility gene (ms) (Singh and Ikehashi 1981). The first rice synthetic upland 

rice population was then generated with IR36-ms (Taillebois and Guimarães 1989). Since then, the 

population was improved through recurrent selection, enriched with additional elite breeding lines 

and cultivars and today various populations of upland rice are available and exploited in the program 

(Martinez et al. 2014). 

1.5.2 Rice in LAC 
Rice arrived in the New World shortly after the arrival of the first Europeans. It was only in the 20th 

century that rice consumption per capita gained in importance in Latin America and the Caribbean , 

increasing from 10 to 30kg (Calvert et al. 2006). The trend persisted in countries like Panama, Guyana 

and Surinam where annual consumption in 2019 was above 100kg per capita per year (FAOSTAT). 

While most countries are consuming their internally produced rice, imports represent an important 

fraction of the rice consumed in many countries, raising the issue of self-sufficiency in countries where 

rice accounts for part of people’s diets. 

In the LAC region, rice production is defined according to the availability of irrigation systems and 

environmental conditions. While some countries only have a very reduced portion of the rice cultivated 

area under irrigation (8% in Bolivia), others are almost exclusively growing rice under irrigated systems 

(Argentina, Chile, Paraguay and Uruguay) (Rice Atlas in (Andrade et al. 2021)). Of the rice growing areas 

in LAC, rainfed systems represent less than half the total area, with 1.1 million ha (Rice Atlas for the 16 

countries where data was available, CIAT access). As seen in Figure 1-8, the rainfed systems that only 

depend on the rainfall pattern can be separated in two ecosystems; the lowland where rice has enough 

water during its entire cycle, and the upland where hydric deficits are often present during the crop 

cycle. The uplands are often associated with low soil fertility or challenging soil properties such as 

aluminium toxicity and acidity.  

The savannah ecosystems are those on which the CIAT-Cirad breeding program has focused since its 

inception. This ecosystem is characterized by high aluminium toxicity (> 70% saturation), soil acidity 

(pH~4) and frequent drought spells during the crop cycles. The uplands and particularly the savannah 
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of Colombia or cerrados in Brazil, are ecosystems that offer great potential to grow rice under rainfed 

conditions and in crop rotation systems with other species such as soybeans or forage grass. Such areas 

are often said to have potential for providing rice to the rest of the world (A. Castro, personal 

communication). 

1.5.3 The breeding objectives 

The main objective of the CIAT-Cirad rice breeding program is to develop germplasm highly adapted 

to the upland ecosystems. Tropical japonica rice, which is the best subspecies for this ecosystem due 

to its tolerance to drought stress, was the germplasm of choice for developing such cultivars. 

The specific objectives of the program are to develop highly productive rice adapted to rainfed 

conditions, with earliness to escape potential drought and enable rotation, resistance to the main 

biotic stress prevailing in these ecosystems, notably blast fungus (Magnaporthe oryzae), and with 

nutrient dense grain, in particular zinc, to improved nutrition for the millions suffering from 

malnutrition. 

1.5.4 Developing a RS population using ms-gene 
For rice population, two types of populations can be developed using the ms-gene: monocytoplasmic 

population and polycytoplasmic population. The development of the two types differs at the 

“sterilization” step, the introduction of the ms-gene in the genetical background of interest (Châtel 

and Guimarães 1997). 

For a monocytoplasmic population, elites are crossed with an ms-carrying genotype. To ensure that 

the offspring carry the ms-allele, the sterilizing genotype must be homozygous and thus can only be 

the mother in the cross. The seeds will all be produced by the sterilizing genotype that will be the only 

source of cytoplasm, hence monocytoplasmic. In this case, 50% of the genetic variability in the 

population is from the ms-source.  

Polycytoplasmic populations are made to reduce the genetic contribution of the ms-source as well as 

to diversify the cytoplasm origin. The offspring of the first ms-source x Elite are backcrossed with the 

Elite parent. With one backcross the genetic contribution of ms-source is reduced to 25% of the 

variability, ensuring that the cytoplasm of the parent can be mixed. 

After the first cross (monocytoplasmic) or the backcross (polycytoplasmic), the plants are selfed and 

the next generation are recombined. After recombination, only sterile plants are harvested and the 

seeds, that are either of genotypes [Ms:ms] or [ms:ms], are the starting population of the recurrent 

selection. 

Some other, more sophisticated methods have been applied to synthetize populations. For example, 

to synthetize the CNA-IRAT 5 population, first IR36 [ms:ms] was crossed to Palawan and the F1 selfed 
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to an F2. The F2 was then used as an ms-donor and crossed to 26 varieties (Taillebois and Guimarães 

1989). 

1.5.5 The breeding scheme 
The program uses a breeding scheme composed of two parts: a population improvement based on RS 

and a product development part using the diversity from the population and selecting progenies by 

pedigree breeding (Figure 1-9). 

As seen in chapter 1.2.1, RS is the cyclic (i) evaluation of progeny families from a breeding population, 

(ii) selection of its best performing families and (iii) recombination of the selected entries to generate 

an improved version of the population. The RS relies on large numbers of crosses among a large 

number of parental lines and can thus be labour intensive for species requiring manual castration like 

rice. To facilitate outcrossing in the field, populations segregating for the IR36 male sterility gene can 

be used. The individuals homozygous for the recessive allele [ms:ms] produce sterile pollen and any 

seeds carried by those plants are the results of an outcross. The remaining genotypes [Ms:-] will 

produce fertile pollen and carry seeds that are the results of a selfing. By selecting for or against male 

sterility, outcross or selfed progeny can be targeted. 

In the first season, a population of about 3000 S0:1 individuals, with 25% sterile [ms:ms] plants, are 

sown together. Under those conditions, the fertile genotypes play the role of males and the sterile 

genotypes of females which will be crossed with neighbouring males. Those sterile plants will carry S0 

seeds and will be harvested at the end of the season. The S nomenclature describes the generation of 

selfing of the observed individual/lines, e.g. a S0 plant represents an individual plant that went through 

0 generations of selfing (i.e., a plant coming from a cross), while S0:1 represents a family derived from 

the original cross (S0) but after one generation of selfing and bulking. 

During the second season, ~3000 S0 plants are grown again in a single plot. At the end of the crop cycle, 

a manageable number of fertile [Ms:ms] plants (~200) carrying S0:1 seeds are harvested. Those seeds 

are the result of selfing. For each of these families, some S0:1 seeds are stored for later crossing (if 

selected upon progeny testing) while the rest is used for generation advance and progeny testing. 

Those steps occur preferably under a controlled environment to maximize success. For progeny testing, 

fertile S0:1 plants are harvested in bulk to get S0:2 seeds. Then, the same procedure is used to get S0:3 

seeds from S0:2 plants. The evaluation of the S0 is done on either their S0:2 or on their S0:2 and S0:3 derived 

progenies following the same experimental design in two different environments. The phenotypes 

measured at the S0:2 (or S0:2 and S0:3) are thus the progeny mean representative of the individual S0 

plants extracted from the population. The best families are selected and their S0:1 seeds that were set 

aside in storage are used to recombine and synthesize the improved population. The whole process of 
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generation advance and phenotyping at two generation in two environments takes three years, which 

brings the length of one breeding cycle to four years. 

The best candidates selected for the population improvement scheme are also the base material for 

the pedigree breeding. Further genetic fixation is required to develop an inbred cultivar. Selfing and 

bulk harvest are performed for two or more generations to fix the genotypes. Then a few cycles of 

pedigree breeding are conducted to select the best individuals within the best families.  

After fixed elite lines are developed, a seed multiplication step is applied to produce the seed quantity 

necessary for the several rounds of yield testing at the end of which candidate varieties are selected. 

The generation advancement and phenotyping work is time consuming and slows down the population 

improvement part of the program. It takes up to two to three grow-out seasons to select the families 

for recombination while the recombination is performed with the seed collected on fertile S0 plants. 

To increase the number of recombinations per unit time, efforts have been made to replace the 

progeny testing with genomic prediction on S0 genotypes and decouple the recombination from the 

phenotyping. 

Figure 1-9: Schematic description of the CIAT-Cirad upland rice breeding scheme 
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 Objectives: improvement of the breeding scheme 
We have seen that the current breeding scheme has some potential for improvement. The RS part of 

the scheme lasts four years (including the establishment of the population with S0 plants) under the 

current progeny testing scheme but the material is ready for recycling at the end of the first year. This 

is suboptimal as we have seen that RS shows a greater potential when the number of crossing events 

is increased in time (Gorjanc, Gaynor, and Hickey 2018). Presently, the three additional years are for 

evaluation and are not necessary to prepare the material for the crossing step. With a tool like GP 

available, there is now the opportunity to dissociate timewise phenotyping and the actual selection. 

The first objective of my thesis was to test the potential of early GP on the material generated by the 

CIAT-Cirad RS-scheme. This is addressed in chapter 2. Different CV-schemes were used to test the 

predictive ability of the data from the two available generations, S0:2 and S0:3. Multi-environment 

calibrations were also tested through CV to evaluate the benefit of including the two sites currently 

used by the program. This experiment gave us the opportunity to see that the material available for 

GP in the CIAT-Cirad breeding program is adapted for performing GP based RS. While the CV were 

realised within generations, our goal is to use GP to predict the line ability of S0 plants (Gallais 1979) 

and not S0 at a specifically the generations S0:2 or S0:3. For this reason, we designed another experiment 

relying on S0:4 phenotypes as references. 

The second objective, addressed in chapter 3, was to predict a more advanced generation, S0:4, with 

calibration realized on earlier phenotyping of different genotypes. This objective aimed to test the 

calibration/validation performed with multiple generations of progenies. Here again, we tested if 

calibration could utilize data from the two available sites. The complexity was however increased by 

testing calibration that would confound generation and site effects but could reduce the phenotyping 

to one year. We also extended our understanding on the GxE dynamic by testing different predictive 

models with different assumptions on the GxE variance structure. Finally, we tested methods to select 

the calibration set in an attempt to maximize the utility of the phenotyping in S0:3.  

Once we validated that progeny testing at early generation is appropriate to predict breeding values 

of S0, to implement the change and apply genomic selection on S0 plants, we needed to also check the 

predictive ability of our approach when calibration and predicted material would not come from the 

same cycle of RS. The third and last objective was then to evaluate the long-term effect of the forward 

GP for the selection of S0 families in RS. This will be presented in chapter 4. As no realistic approach in 

field existed to validate prediction across generations, this objective was addressed through stochastic 

simulations. This was also the opportunity to not limit our reference set to S0:4 as before but to 

effectively compare the predictions to S0 derived double haploid. We also took advantage of the 
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simulations to compare two calibration schemes based on different approaches to the phenotyping. 

Finally, the selection process was realized on an index using the phenotypic recorded obtained from 

different traits. 

I will finish this work by summarizing the results, discussing the limitations and making some 

recommendations on the evolution of the CIAT-Cirad breeding program and on future direction for the 

research. 
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la thèse. Ça a été l’occasion de découvrir les données phénotypiques, de faire les premières statistiques 

exploratives ainsi que de traiter les données aberrantes. Grâce à cet article j’ai également pour la 

première fois manipulé des données génotypiques et réalisé les différentes étapes de contrôle qualité 

afin que les génotypes soient prêts pour de la prédiction. 

Une fois tout ce travail préparatif terminé, j’ai finalement réalisé mes premières prédictions 
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sans avoir le temps d’en comparer les résultats. 
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identité graphique unique tout au long du document de thèse plutôt que d’y coller l’article tel qu’il a 

été publié en ligne. 
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 Abstract 
Population breeding through recurrent selection is based on the repetition of evaluation and 

recombination among best-selected individuals. In this type of breeding strategy, early evaluation of 

selection candidates combined with genomic prediction could substantially shorten the breeding cycle 

length, thus increasing the rate of genetic gain. The objective of this study was to optimize early 

genomic prediction in an upland rice (Oryza sativa L.) synthetic population improved through recurrent 

selection via shuttle breeding in two sites. To this end, we used genomic prediction on 334 S0 

genotypes evaluated with early generation progeny testing (S0:2 and S0:3) across two sites. Four traits 

were measured (plant height, days to flowering, grain yield, and grain zinc concentration) and the 

predictive ability was assessed for the target site. For days to flowering and plant height, which 

correlate well among sites (0.51–0.62), an increase of up to 0.4 in predictive ability was observed when 

the model was trained using the two sites. For grain zinc concentration, adding the phenotype of the 

predicted lines in the nontarget site to the model improved the predictive ability (0.51 with two-site 

and 0.31 with single-site model), whereas for grain yield the gain was less (0.42 with two-site and 0.35 

with single-site calibration). Through these results, we found a good opportunity to optimize the 

genomic recurrent selection scheme and maximize the use of resources by performing early progeny 

testing in two sites for traits with best expression and/or relevance in each specific environment. 

Keywords: rice; recurrent selection; genomic prediction; GxE; grain zinc concentration 
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 Introduction 
Population improvement strategies are recognized as methods to exploit the genetic diversity of a crop 

and enrich the genetic basis of breeding programs. In rice, population breeding through recurrent 

selection (RS) was suggested as a valuable option in countering the decline in genetic diversity among 

the improved rice germplasm from Latin America and the Caribbean (LAC) (Cuevas-Pérez et al. 1992; 

Guimarães et al. 1996). RS in rice started in South America in 1985 (Taillebois and Guimarães 1989) 

and later spread to most of the continent through a Food and Agriculture Organization funded initiative 

(Châtel et al. 2005; Martínez et al. 2015). In the region, RS was applied to rice synthetic populations, 

each composed of several elite materials, carefully chosen as founders, which had intercrossed for 

various generations (Guimarães 2005). Following recurrent cycles of selection and recombination, 

several thousand S0 plants (S being used here to define the number of selfing cycles) are available for 

use in the breeding program either as new parents for population improvement or as S0 progenies for 

variety development. The particularity of RS breeding in rice as performed in various countries in LAC 

is that it uses a recessive nuclear male sterility (ms) gene to facilitate outcrossing (reviewed in Frouin 

et al. 2014). This gene allows random recombination among a large number of parental plants at each 

cycle. Different ways are used to improve populations carrying the ms gene (Châtel and Guimarães 

1997). The most common practice is to evaluate a moderate number (200-300) of candidates randomly 

drawn from the synthetic population. The evaluation of the candidates is then performed through 

progeny testing, with more or less fixed families (S0:2, S0:3 or S0:4 depending on the trait and required 

experimental design, obtained through several cycles of inbreeding and bulk harvest). Subsequently, 

parental lines are selected to be used for the next recombination cycle. Among others, two 

compromises have to be made that have a direct impact on the genetic gain achieved by the RS 

breeding scheme: (i) the number of candidate units evaluated through progeny testing with direct 

impact on the selection intensity and; (ii) the required degree of fixation of those progenies prior to 

phenotyping, which would affect the breeding cycle length and influence the precision of genetic 

variance estimates. 

Since its introduction by Meuwissen et al. (2001), genomic prediction (GP) has been widely adopted 

by animal and plant breeders alike. By allowing rapid selection of superior genotypes and accelerating 

the breeding cycle, GP has shown great potential since the advent of this new breeding paradigm in 

crop species in 2007 (Bernardo and Yu 2007). The value of GP in the context of RS is fairly evident as 

the selection based on genomic estimated breeding value (GEBV) can be applied to a very large 

population of genotyped entries through the calibration of a prediction model performed on a reduced 

set of training units. Furthermore, the average progeny phenotypic values associated with the genomic 

matrix of the respective S0 individuals could allow a more precise estimate of the genetic variation in 

the case of early generation segregating candidate units. GP was simulated on multiparent populations 
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(Guo et al. 2011; Heffner et al. 2011; Bian and Holland 2017; Allier et al. 2019) directly related or not 

to a breeding program to assess the potential use of GP in genetic improvement through RS. However, 

few simulation studies have assessed the potential value of GP for crop synthetic populations (Müller 

et al. 2017; Schopp et al. 2017; Müller et al. 2018). Theoretically and through simulation approaches, 

recurrent genomic selection has the particular advantage of managing both the genetic gain and the 

maintenance of genetic diversity in the breeding program (Gorjanc et al. 2018; Allier et al. 2020). In a 

simulated wheat breeding program, the inclusion of a step of population improvement with rapid 

recycling of early material proved to be greatly superior in terms of genetic gain compared to a 

program relying solely on biparental crosses between elite material to generate diversity (Gaynor et 

al. 2017). Similarly, recurrent genomic selection in soybean (Ramasubramanian and Beavis, 2020) and 

maize (Zhang et al. 2017) showed the long-term potential of RS combined with GP. GP has already 

been applied to material from RS for rice in single (Grenier et al. 2015; Morais Júnior et al. 2017) and 

multi-environment contexts (Morais Júnior et al. 2018). In these studies, the results showed relatively 

good predictive ability (PA) for various simple and complex traits such as plant height, flowering date 

and grain yield. In both cases, however, the calibrations were based on material that underwent some 

degrees of fixation through plant selection and a few cycles of selfing. A significant jump in efficiency 

in these schemes is expected by calibrating on early generation candidates from S0 progenies to save 

time in building the models and to accelerate the recycling of the selected germplasm.  

GP integrating genotype by environment interaction (GxE) has proven successful, showing greater PA 

than the single environment prediction, provided environments are positively correlated. An approach 

to multi-environment GP was proposed and applied by Burgueño et al. (2012) where the authors 

modelled the environment and genotype covariance structure and used it within a mixed model 

framework. Later, GxE was incorporated in a GP model by separately capturing the main marker effect, 

common to all environments, and an environment-specific marker effect (Lopez-Cruz et al. 2015). This 

method is easy to implement and showed good results for wheat breeding under multiple 

environmental conditions. Additionally, it has the advantage that it enables working with different 

genotype covariance structures. Genotype covariances based on either a linear kernel (GxE GBLUP) or 

a Gaussian kernel (GxE RKHS) have been tested, and the Gaussian kernel allows a more flexible 

structure than the linear kernel and potentially better prediction (Cuevas et al. 2016). To optimize 

calibration with the multi-environment data, various strategies of genome-based models including GxE 

were proposed (Jarquin et al. 2020). The authors compared different partitioning of the calibration 

sets among the multiple sites where the population was tested, with different degree of overlapping 

of the genotypes between environments. Sparse testing designs in which subset of the genotypes are 

tested in each location was presented as a method to reduce the experimental effort and optimize the 

use of breeding program resources. 
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The current study was conducted in the context of a collaborative rice breeding program between CIAT 

(International Center for Tropical Agriculture, member of the CGIAR centers) and Cirad (French 

Agricultural Research Centre for International Development). The CIAT-Cirad rice breeding program 

has historically conducted population development and improvement through RS. Its current RS 

program based on progeny testing is conducted in two locations; at CIAT-HQ in Palmira, where rice is 

cultivated all year round under irrigated conditions, and in Santa Rosa, an experimental site where rice 

is grown under rainfed conditions during the main cropping season. While aiming to implement early 

GP in our RS scheme, we were also interested in making optimal use of all the data gathered in both 

locations (target and not target) for the breeding program. The main objective was to evaluate the PA 

of the GP model including the GxE interaction to obtain reliable estimates of the breeding value of 

selection candidates in the target site. 

 Material and methods 

2.3.1 Development of PCT27 population 
The genetic material used in this study belongs to the tropical japonica group of rice (Oryza sativa L.). 

Several synthetic populations developed in the CIAT-Cirad rice breeding program were improved for 

adaptation to upland ecosystems and acid soils. In 2015, Grenier et al. (2015) used a training set 

defined with 348 S2:4 lines derived from four populations to study the potential of GP in an RS scheme. 

Of the 348 families at the S2 generation, marker-assisted-selection for the ms gene (Frouin et al. 2014) 

helped to select [ms:Ms] male fertile plants in 35 randomly sampled families. One single plant per 

family was selfed, and the seeds of each of 35 plants were mixed in equal proportion to generate a 

candidate population hereafter referred to as PCT27 (Figure 2-1). Two recombination cycles were 

performed at CIAT-HQ in Palmira under irrigated conditions in a bundled field isolated from other rice 

experimental plots by at least 50 m to avoid pollen contamination and without any selection pressure. 

At each cycle, a population of about 3,000 plants was established with male sterile and male fertile 

plants randomly distributed within the plot. The recombining units were then collected by harvesting 

male sterile plants pollinated by any male fertile plants in the vicinity. At the third cycle of 

recombination, 334 S0 fertile plants were randomly extracted from the population to constitute our 

reference population. All entries were advanced to the S0:2 and then S0:3 generation by bulk harvesting 

seeds from 15 to 20 male fertile plants per line per generation. Additionally, 50 temporal checks from 

the same population were also advanced by bulk method to the generations S0:2 and S0:3 and were used 

to test the generation effect and the year effect within the site. The terms line and genotype were 

used indifferently in this work to refer to the S0 plants and their bulked offspring at S0:2 or S0:3 if specified. 

either generation. 
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2.3.2 Genotyping 
Leaf tissues were sampled on the 334 S0 plants and DNA extraction was performed as in Grenier et al. 

2015. Genotyping was done by genotyping-by-sequencing (GBS) approach (Elshire et al. 2011). The 

detailed method is described in  Appendix 1 and the genetic characterization of the population can be 

seen in supplementary Tables and Figures. As a result of the genotyping and subsequent genetic 

analysis, the population was characterized by 9,928 SNP markers fairly well distributed among the 12 

rice chromosomes (STable 2-2, SFig 2-1). The MAF distribution among the 334 S0 reflects a population 

Figure 2-1: Process followed for the development of the PCT27 population. Populations PCT4-C0, PCT4-C1, PCT4-C2 and PCT4-

C3 were described in Grenier et al. (2015). Each population contains about 3,000 plants with half male fertile plants (⚥) that 

can be selfed and half male sterile plants (♀). “SSD” is the single descend method of generation advance applied to 100 male 
fertile plants per population.⊗ indicates the selfing process. The “MAS” (marker-assisted selection) process was performed 
for the selection of S2 plants based on genotypic profile at the ms gene. Genotyped plants are symbolized as + for plants with 
the [ms:ms] genotype, ⊕ for the [ms:Ms] genotype and ⊙ for the [Ms:Ms] genotype. “rec” are recombination cycles 
performed by harvesting all male sterile plants from the population without any selection pressure. For PCT27—&rec#1 this 
first recombination cycle was done among the progenies of 35 families randomly extracted among the four populations 
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where rare alleles were not depleted, which fits well with long-term objectives of a population 

breeding program (SFig 2-2). The degree of allelic fixation varied greatly between the genotypes but 

remained relatively low for individuals at the S0 generation (STable 2-2). Considering the rather large 

average LD (STable 2-4) and the slow LD decay observed (SFig 2-3), the average marker density (1 SNP 

every 40 kb) was considered good enough to allow the capture of all linked QTLs with the SNP matrix 

in hand. The whole population was characterized, with a total absence of structure, which provides a 

good base for setting up a GP scheme through CV (SFig 2-4). 

2.3.3 Field trial and phenotyping 
Field phenotyping was performed at two locations in Colombia. One site was an experimental field at 

CIAT-HQ in Palmira (PAL) located in the Valle del Cauca, Colombia (3.50° N - 76.35° W, 1000 masl). At 

this location, rice evaluation trials are conducted under irrigated conditions and can be performed all 

year round due to favourable environmental conditions and good water availability that enable the 

irrigation scheme throughout the crop cycle. As it is not a rice prone area, no severe disease pressure 

is naturally present, and the rice crop usually expresses its full potential. On the other hand, Santa Rosa 

(SRO) is an experimental site, owned by the Colombian National Federation of rice growers (Fedearroz) 

located in the Oriental plains of Colombia, in the department of Meta, Colombia (4.03° N - 73.48° W, 

300 masl). At this site, the rice crop is established through direct seeding and the trials are conducted 

under rainfed conditions during the main cropping season, between May and September. The 

predominance of rice cultivation in this area, the climatic conditions of hot and humid summers during 

the main growing season and the natural occurrence of various strains of pathogens (bacterial, fungal 

or viral) make this site a hot spot for disease screening. 

Four trials were conducted during two consecutive years, 2017 and 2018, using different semesters for 

each location. Field trials were established in PAL on 04/12/2017 and 10/12/2018 and in SRO on 

12/05/2017 and 30/05/2018. At each site, the experimental design followed a lattice with 16 blocks 

and three repetitions. The 50 temporal check lines (only S0:2 in the 2017 trials and S0:2 and S0:3 lines in 

the 2018 trials) were randomly distributed across the design within each repetition of the two sites 

and two-year trials. In PAL, the trials were established after transplanting 3-week-old seedlings in a 

bundled field. The plot size was two rows of 17 plants with 25 cm between plants and between rows. 

Fertilizer application followed a split application with NPK nutrients added at 25 and 35 days after 

transplanting. Irrigation was maintained continuously in order to ensure a 25 cm layer of water in the 

field until a week prior to the crop maturation period. In SRO, the trials were established by direct 

sowing of two 4 m-long rows, spaced by 26 cm at a density of 1 gram of seed per linear meter. Split 

fertilizer application was performed according to the recommended application for growing tropical 
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japonica rice in upland soil conditions. Phytosanitary treatment was applied in SRO to prevent blast 

outbreaks. For all four trials, a similar design was applied, but with a different randomization. 

Four traits were measured following the IRRI Standard Evaluation System (IRRI 2013) on the whole 

training population including the 50 temporal checks. Flowering date (FL) was expressed as the number 

of days after crop establishment – being either the date after either transplantation (PAL) or sowing 

(SRO) – when 50% of the plants within a plot reached anthesis. Plant height (PH) was calculated as the 

average height measured in centimetres of five plants with their panicle extended. Grain yield (YLD) 

was obtained by weighing the grains collected within each plot after discarding the plants at the start 

and end of each plot. For each harvested plot, percent humidity was measured and used to correct the 

weight of collected grains, expressed in grams per plot, for a relative humidity of 14%. The YLD value 

was neither adjusted for the plot size nor for the count of fertile plants. The grain zinc concentration 

(ZN), expressed in parts per million (ppm), was measured on a subsample of collected grains polished 

in Teflon equipment, using energy dispersive X-ray fluorescence spectrometry (X-supreme 8000, 

Oxford Instrument, Shanghai, CN) available at the CIAT-HQ Nutritional Laboratory. The exact same 

procedure was used for generation S0:2 in 2017 and generation S0:3 in 2018. 

The 50 temporal checks were phenotyped as S0:2 in 2017 and as S0:2 and S0:3 in 2018. This allowed 

measurement of the non-confounded year within site effect on the S0:2 and the generation effect in 

2018 by analysing the data from the S0:2 and S0:3 lines as presented in Appendix 2. 

2.3.4 Statistical models for genomic prediction 
Raw data were visually explored for outliers as described in Appendix 3. Based on clean data, Pearson’s 

correlation between phenotypic BLUPs obtained in PAL and SRO was computed for generations S0:2 

and S0:3 using the 334 S0 families phenotyped in both generations. 

All the models were estimated using ASReml-R v3.0 (Butler et al. 2007). GP was done independently in 

each generation. For single-site calibration, the following model was used 

𝑌𝑖𝑗𝑘 = 𝜇 + 𝑟𝑖 +  𝑏(𝑟)𝑖𝑗 + 𝑔𝑘 + 𝜀𝑖𝑗𝑘         (Model 1) 

The fixed effects were the intercept 𝜇 and the replicate effect 𝑟𝑖. The random part was composed of 

the block effect 𝑏𝑖𝑗  nested in replicate with distribution 𝑏~N(0, 𝐼σ𝑏
2), the genotype effect 𝑔𝑘  that 

represents the progeny means with distribution 𝑔~N(0, 𝑀σ𝑔
2) and the residual εijk with ε~N(0, 𝐼σε

2).  

The variance σ𝑏
2  is associated with the blocks, while σ𝑔

2  and σε
2 are the genotypic and error variances, 

respectively. The two variance-covariance matrices used are 𝐼  for the identity matrix and 𝑀 

representing the genotype variance-covariance computed according to either of the two prediction 

methods described below. 

For the two-site approach the following model was used 
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𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝑠𝑖 + 𝑟(𝑠)𝑖𝑗 +  𝑏(𝑟(𝑠))
𝑖𝑗𝑘

+ 𝑔𝑙 + 𝑔𝑠𝑖𝑙 + 𝜀𝑖𝑗𝑘𝑙      (Model 2) 

The fixed effects were the same as for Model 1, with an additional fixed site effect 𝑠𝑖. The random part 

of Model 1 was completed with the genotype (progeny means) by site interaction 𝑔𝑠𝑖𝑙  with 

distribution 𝑔𝑠~N (0, [
𝑀𝑃𝐴𝐿

   σ𝑔𝑠𝑃𝐴𝐿
2                  0

0                   𝑀𝑆𝑅𝑂
   σ𝑔𝑠𝑆𝑅𝑂

2 ])  and the residual εijkl  with distribution 

ε~N (0, I ⨂ [
σε𝑃𝐴𝐿

2       0

0       σε𝑆𝑅𝑂
2 ]]). 

In addition to the three variances described in Model 1, Model 2 includes two site-specific genotype 

by site interaction variances σ𝑔𝑠𝑃𝐴𝐿
2  and σ𝑔𝑠𝑆𝑅𝑂

2  as well as two site-specific error variances σε𝑃𝐴𝐿
2  and 

σε𝑆𝑅𝑂
2 . The error variance-covariance is modeled by the Kronecker product of the identity matrix and 

the variances matrix. 

To compute the variance structure (M) for the genotype effect and genotype by site interaction 

(𝑀𝑃𝐴𝐿 , 𝑀𝑆𝑅𝑂 ), two different kernels were used. In the first approach, GBLUP, 𝑀 = 𝑀𝑃𝐴𝐿 = 𝑀𝑆𝑅𝑂 , 

where M was based on the linear kernel M =
𝑋𝑋`

𝑁
 (Lopez-Cruz et al. 2015), a proportional of the matrix 

proposed by VanRaden (2008) was used, with X being the genomic data with genotypes coded as -1, 

0, 1 and N the number of markers. The second approach, RKHS, was based on the reproducing kernel 

Hilbert space approach by Gianola and van Kaam (2008). Three different variance-covariance 

structures were computed: one for the complete data (M0) and one for each site independently 

(MPAL , MSRO),  all based on the Gaussian kernel 𝐾𝑒(𝑥𝑚𝑒 , 𝑥𝑛𝑒) = exp(−ℎ𝑖 ∥ 𝑥𝑚𝑒 − 𝑥𝑛𝑒 ∥2) , for 

𝑥𝑚𝑒 , 𝑥𝑛𝑒  being two marker genotype vectors and (𝑚, 𝑛) ∈ {1, … , 𝑁}2. The bandwidth h controls the 

decay rate of the correlation between the lines, smaller h giving a sharper correlogram. We computed 

h with the method proposed by Pérez-Elizalde et al. (2015) and the provided R function marg.fun. A 

gamma prior distribution for h was used, the shape parameter was set at 3 and the scale parameter 

set at 1.5. Three different bandwidth parameters were computed as the method relies partially on 

phenotypes, and hence yields different kernels depending on the site. New bandwidth parameters 

were estimated at each cross-validation (CV) cycle based on the BLUP adjusted phenotypes of the 

sampled training set, as in Pérez-Elizalde et al. (2015). For both methods, the genotypic information 

was based on 9,928. 

Models 1 and 2 with identity matrix as variance-covariance matrices were used to compute broad 

sense heritability. H2 at trial level (generation within site) was used as a measure for repeatability and 

computed using the formula: 

𝐻2 =
𝜎𝑔

2

𝜎𝑔
2 + 

𝜎𝜀
2

𝑁𝑅

 (Eq. 1), 
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2.3.5 Cross-validation schemes for evaluating predictive ability 
Several CV schemes were used with different partitioning of the population among the two sites 

(Figure 2-2, STable 2-3).  

In the first instance, only phenotypic data from the target site of selection SRO was considered (Figure 

2-2). In that scenario, predictions were obtained based on Model 1 with a calibration based on a single 

site (SINSRO). Various calibration set sizes (s) were tested, s  {25, 50, 100, 200}. 

For the two-site CV procedures, Model 2 was used. Calibrations were constructed with either a 

balanced (BAL) or imbalanced (IMB) representation of both sites. BAL1 represents a calibration method 

where both sites were represented by an equal number of phenotyped S0 families. Sets of “s” S0 were 

selected and their phenotypes in both sites were used for the training (Figure 2-2). This corresponds 

to a CV1 in Burgueño (2012). For BAL2, “s” refers to the number of S0 families observed in SRO and in 

PAL, however, only a fraction of the families was observed in both sites (i.e., the overlap), the 

remaining families being observed in only one of them. An overlap of 50% of the total number families 

included in the calibration was targeted. For “s” S0 families observed in both sites, the total number of 

S0 families was then 
3

2
 s. For the imbalanced (IMB) scenario, the whole population was phenotyped in 

PAL and only a fraction of size “s” was phenotyped in SRO (Figure 2-2).  

Figure 2-2: The four scenarios of cross-validations to evaluate the prediction accuracy in Santa Rosa (SRO). The first 
scenario (SINSRO) uses phenotypic information from a single site, while the three others include Palmira (PAL) phenotypes 
in two-site models. In the latter case, the level of information between locations is either balanced (BAL) or imbalanced 
(IMB). The grey area represents the genotypes included in the training set with a varying size “s” to calibrate the model 
and the green area represents the validation set fixed to 100 genotypes. 
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The same CV procedures were applied to each generation and with both GP models (GBLUP and RKHS). 

The GEBVs in SRO were obtained for the S0 included in the validation set, defined as the set for which 

no phenotype at SRO was recorded. In each scenario, 100 alternative samplings were performed for 

which the PA was measured as cor(�̂�, 𝐺𝐸𝐵𝑉). The reference �̂� was obtained with the complete SRO 

phenotypes using Model 1 and 𝑀 = 𝐼 , 𝐼  being an identity matrix and computed as �̂�𝑘 = 𝜇 + 𝑔𝑘 . 

GEBVs were obtained with the models including molecular information as �̂�𝑘 = 𝜇 + 𝑔𝑘 for SINSRO or 

�̂�𝑆𝑅𝑂,𝑙 = 𝜇 + 𝑠𝑆𝑅𝑂 + 𝑔𝑙  for the other predictions (BAL1, BAL2, and IMB). For each scenario, the mean 

and the standard deviation of PA were computer on the 100 iterations. 

To ensure that the variation in accuracy between the CV procedures was only due to the size 

differences in the training set, the correlations were always computed on the predictions for 100 

genotypes randomly selected from the validation sets. However, for BAL2 with a training set size of 

200, the validation set was reduced to 34 genotypes as those were the only genotypes with no 

phenotypic records that could be used for the validation with this strategy (STable 2-3). The PA was 

still computed, but as the correlation was computed on only 34 points, the results must be considered 

with caution. 

2.3.6 Effects if the calibration parameters on the predictive abilities 
To investigate the response of the PA to the calibration parameters, linear models were fitted to the 

PA obtained from the 100 iterations with each scenario. Depending on the scenario, the independent 

variables were year, GP method, CV scenario, training set size and all their combinations. Proportion 

of variance associated with one or more main effect, errors or interactions were estimated through 

the Eta2, as Eta2 = SSqeffect/SSqtotal, where SSqeffect is the sum of squares for the effect under 

consideration and SSqtotal is the total sum of squares of all effects, errors and interactions in the ANOVA 

study. Throughout the text, this ratio is expressed as a percentage. 

 Results 

2.4.1 Effect of sites and generations on the phenotypic performance 
The phenotypic data were collected in two sites and on the same S0 progeny at two generations. In 

each site, the phenotyping was done in 2017 for 334 families at the S0:2 generation and in 2018 for the 

same 334 families at the S0:3 generation.  

For most traits recorded in the two locations, the mean phenotypic values differed between sites 

(Table 2-1, Figure 2-3). While the differences between sites were moderate for FL and PH, they were 

large for YLD and ZN, with more than 60% change in the 2017 trials. The S0:2 families evaluated in 2017 

had later flowering, shorter plant height, lower yield and higher zinc concentration in SRO than in PAL. 

However, this tendency did not hold for the 2018 trials. The differences between sites in PH were 

greater at the 2018 trials, with taller S0:3 plants in SRO. For each trait, the spread of the data was 
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consistent across site and year with 0.4 to 4 points of difference in the coefficient of variation. The 

highest coefficient of variation was observed for YLD in 2018 (34%), and was higher than in the 2017 

trial (27%). The trait broad sense heritability (H2) at trial level showed large differences between traits 

and across sites and years. This measure of trial repeatability ranged from 0.52 for YLD in the PAL_2017 

trial to 0.96 for FL in SRO_2017. Heritability was systematically higher in SRO than in PAL, and similar 

or slightly increased in the 2018 trials for all traits in all locations, but for FL and YLD measured in SRO. 

As the year and the generation effect were confounded, 50 temporal checks were used to untangle 

the potential effects of generation and year. The significance of the fixed effect and variance 

decomposition among the 50 temporal checks showed that differences were exclusively due to year 

effect and neither a significant generation effect nor a significant genotype by generation interaction 

could be observed (STable 2-5). 

Figure 2-3: Histograms of the raw phenotypic values of the four traits: flowering day (FL), plant height (PH), grain yield per 
plot (YLD) and grain Zn concentration (ZN). The two environments: Palmira (PAL, irrigated) and Santa Rosa (SRO, rainfed) are 
represented. Outliers were discarded as presented in Appendix 2. 
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Table 2-1: Descriptive values of the experiments in all trials (site x generation combinations) with mean, standard error (SE), 
coefficient of variation (Cvar) and broad sense heritability (H2) from Model 1. 

    S0:2 generation in 2017 
Trait a Site Mean SE min max Cvar H2 (SE) 

FL PAL 88.24 0.24 75 102 3.88 0.69 (0.03) 

 SRO 82.17 0.37 61 96 7.93 0.96 (<0.01) 
PH PAL 125.62 0.62 88.4 155.4 7.76 0.61 (0.04) 

 SRO 116.65 0.59 94.2 151.8 6.68 0.79 (0.02) 
YLD PAL 673.85 10.33 237.5 1311.5 24.07 0.52 (0.05) 

 SRO 398.54 9.75 54.3 755.1 27.6 0.75 (0.02) 
ZN PAL 14.3 0.18 8.8 22 14.39 0.71 (0.03) 
  SRO 23.8 0.21 15.9 37.1 12.64 0.81 (0.02) 

    S0:3 generation in 2018 
Trait a Site Mean SE min max Cvar H2 (SE) 

FL PAL 85.7 0.33 68 103 5.04 0.74 (0.02) 

 SRO 90.54 0.36 72 108 5.76 0.78 (0.02) 
PH PAL 119.84 0.55 92.5 142.67 6.71 0.76 (0.02) 

 SRO 97.63 0.53 80.8 128 7.09 0.80 (0.02) 
YLD PAL 387.54 8.3 54.6 901.1 32.23 0.56 (0.04) 

 SRO 191.4 7.37 10.7 461.6 33.91 0.58 (0.04) 
ZN PAL 15.14 0.16 10.05 21.9 12.82 0.75 (0.02) 
  SRO 22.21 0.18 15.3 30.8 11.51 0.81 (0.02) 

a Traits: days to flowering (FL), plant height (PH), grain yield per plot (YLD), grain Zn concentration (ZN)  

For each trait scored in each year, an analysis of the variance components was performed on the 

combined data from both sites using Model 2 (Table 2-2). The proportion of variance explained by the 

genotype effect was greater that of the combined genotype by site interaction effects from both sites 

(GxSPAL and GxSSRO) only for FL in 2018, and PH recoded in both years. As a result, greater heritability 

was observed for these traits/years combination with H2 = 0.57, 0.50 and 0.62 for FL_2018, PH_2017 

and PH_2018, respectively. The lowest genotype contribution to the explanation of variance was 

encountered for YLD, with large interaction effects and error effects associated with a particular site 

for each year, resulting in low H2 in both years (H2 = 0.19 and 0.11 in 2017 and 2018, respectively). For 

ZN, the genotype effect represented a third of the combined GxS interaction variances in both year 

trials, leading to similar and moderate H2 for both years (H2 = 0.38 and 0.40 for 2017 and 2018, 

respectively). The variance decomposition for each trait was coherent with the site correlation 

observed within years (Table 2-3). The highest correlations between SRO and PAL were observed for 

PH (r2 = 0.62) and FL (r2 = 0.62) in 2018. For the same traits in 2017, the correlations were lower (r2 = 

0.55 and 0.51 for FL and PH, respectively). The site correlation was the lowest for YLD in both years (r2 

between 0.13 and 0.20) and intermediate for ZN with comparable values in both years (r2 = 0.41 and 

0.42 in 2017 and 2018, respectively). 
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Table 2-2: Variance decomposition and broad sense heritability (H2) from Model 2 by trait and generation. GxSPAL and 
GxSSRO are the genotype by site interaction variances associated with PAL and SRO, respectively. Bloc stands for the variance 
associated with bloc within replicate within site. ResidualPAL and ResidualSRO are the residual variances associated with PAL 
and SRO, respectively. 

  
Trait a 

Variance 
component 

S0:2 generation in 2017 S0:3 generation in 2018 

Variance proportion H2 (SE) Variance proportion H2 (SE) 

FL Genotype 4.92 0.11 0.25 (0.03) 7.86 0.22 0.57 (0.03) 

 GxSPAL <0.001 <0.001  <0.001 <0.001  
 GxSSRO 26.44 0.62  4.49 0.13  
 Bloc 0.93 0.02  1.89 0.05  
 ResidualPAL 5.59 0.13  9.23 0.26  
 ResidualSRO 4.93 0.12  12.4 0.35  

PH Genotype 21.87 0.17 0.50 (0.04) 22.25 0.26 0.62 (0.03) 

 GxSPAL 7.93 0.06  6.8 0.08  
 GxSSRO 7.95 0.06  3.14 0.04  
 Bloc 5.67 0.05  4.35 0.05  
 ResidualPAL 57.48 0.46  29.9 0.34  
 ResidualSRO 24.16 0.19  20.36 0.23  

YLD Genotype 1796.61 0.05 0.19 (0.05) 498.32 0.03 0.11 (0.05) 

 GxSPAL 4148.64 0.12  3220.8 0.19  
 GxSSRO 3919.93 0.12  540.88 0.03  
 Bloc 1732.23 0.05  1160.68 0.07  
 ResidualPAL 16676.45 0.49  9301.29 0.53  
 ResidualSRO 5768.75 0.17  2674.47 0.15  

ZN Genotype 1.49 0.14 0.38 (0.04) 1.31 0.16 0.40 (0.04) 

 GxSPAL 0.16 0.02  0.27 0.03  
 GxSSRO 3.05 0.29  2.28 0.27  
 Bloc 0.61 0.06  0.44 0.05  
 ResidualPAL 2.02 0.19  1.62 0.19  
  ResidualSRO 3.11 0.30   2.53 0.30   

 

2.4.2 Predictive abilities with calibration using single environment data 
The effects of different parameters used for the calibration of the model were first investigated for the 

PA from the single environment CV in SRO; SINSRO (Figure 2-4). Similar global average PA were achieved 

for all traits combining set sizes, years and GP methods (PA = 0.30, 0.33, 0.27 and 0.24 for FL, PH, YLD 

and ZN, respectively) (STable 2-6). The linear model including all the factors taken individually, their 

first-order interaction and one second-order interaction explained 33 to 59% of the observed variation 

of PA (Table 2-4), indicating that a large proportion of the variability was due to the sampling of the CV 

method. 

a Traits: days to flowering (FL), plant height (PH), grain yield per plot (YLD), grain Zn concentration (ZN) 

Table 2-3: Pearson’s phenotypic 
correlations and p-value for each 
phenotypic trait (BLUPs obtained 
from Model 1) recorded in the two 
sites PAL and SRO within each year of 
field trial. 

a Traits: days to flowering (FL), plant height (PH), grain yield per plot 
(YLD), grain Zn concentration (ZN) 

Trait a S0:2 generation in 2017 S0:3 generation in 2018 

FL 0.554 (<0.001) 0.624 (<0.001) 

PH 0.509 (<0.001) 0.620 (<0.001) 

YLD 0.206 (<0.001) 0.134 (0.014) 

ZN 0.408 (<0.001) 0.424 (<0.001) 
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The training set size accounted for most of the PA variance explained by the model for all the traits. 

The largest training set size greatly improved the PA for all the traits (Eta2 = 22%, 53%, 39% and 33%  

for FL, PH, YLD and ZN, respectively). The year factor described a lower proportion of the total 

explained variance, with a maximum of 11% of the explained variance in PA for FL. For all traits 

 GP model explained only a very limited proportion (<1%) of the variance. For most traits (PH, YLD and 

ZN), the average PA was greater when predictions were performed with the GBLUP model. For this 

reason, the rest of the paper will focus on the results achieved with the GBLUP model. However, the 

results for RKHS can be found in supplementary data (STable 2-7). 

2.4.3 Predictive abilities with calibration using single and two-environment 

data 
Two CV scenarios including SRO and PAL (BAL1, BAL2) were compared to SINSRO including only SRO 

data to investigate the combined effect of the training set composition and its size (Figure 2-5). The 

calibrations were tested in the two different years for their ability to predict line performance in SRO. 

When the two sites were included in the training set, the main source of variation was the number of 

phenotypes from SRO and PAL included in the training set. Comparing the PA associated with the set 

  SINSRO 
Trait a Factor b Eta2 R2 

FL Year 0.105 0.333 

 GP method 0.009  
 Set size 0.215  
 Year:GP method 0.000  
 Year:Set size 0.003  
 GP method:Set size 0.001  
 Year:GP method:Set size 0.001  

PH Year 0.043 0.592 

 GP method 0.000  
 Set size 0.529  
 Year:GP method 0.002  
 Year:Set size 0.017  
 GP method:Set size 0.001  
 Year:GP method:Set size 0.001  

YLD Year 0.004 0.395 

 GP method 0.001  
 Set size 0.386  
 Year:GP method 0.001  
 Year:Set size 0.003  
 GP method:Set size 0.000  
 Year:GP method:Set size 0.001  

ZN Year 0.027 0.358 

 GP method 0.001  
 Set size 0.327  
 Year:GP method 0.000  
 Year:Set size 0.001  
 GP method:Set size 0.001  
 Year:GP method:Set size 0.001  

 

Table 2-4: Analysis by trait of the factors influencing the 
variability of the predictive ability. The results are for 
the CV SINSRO scenario. Eta2 is the proportion of 
variance associated with each effect and R2 is the 
coefficient of determination obtained from a linear 
model applied to the data from the 100 iterations 
(n=1600). 

a Traits: days to flowering (FL), plant height (PH), grain 
yield per plot (YLD), grain Zn concentration (ZN) 
b Factors: Year: 2017 (S0:2), 2018 (S0:3); GP method: 
GBLUP, RKHS; Set size: 25, 50, 100, 200 
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size “s” in the case of BAL1 and BAL2 with the PA obtained with the same “s” in SINSRO allowed us to 

assess the effect due to the addition of phenotypes from PAL to the training set. Globally, across all set 

sizes, PA in the BAL2 scenario was greater for all the traits considered (STable 2-8), with average PA 

ranging from 0.23 for ZN to 0.38 for PH.  

While training set size was the factor explaining most of PA variation (>22%) for all traits, year effect 

had some importance (11%) but only for FL. CV methods on the other hand accounted only for a small 

fraction of the PA variation. The highest gains in PA provided by any two-site CV scenarios compared 

to the single-site model were obtained for the training set size of 50 to predict PH_2017 (PA increase 

of +0.07) using the BAL2 model. 

2.4.4 Two-site calibration as a sparse testing approach  
So far, we have compared single-site prediction with two-site prediction methods to predict the 

phenotype of families that were never observed, based solely on between-family information 

exchange. Another possible approach is to take advantage of the population information by 

phenotyping all the families in one environment other than the one targeted for the prediction. As PAL 

is easier to manage, being free of main rice pathogens and closer to the research institute, we tested 

a scenario with unbalanced representation of the sites in the training sets (IMB), where all 334 families 

phenotyped in PAL and only a subset of a varying set size “s” phenotyped in SRO were considered. 

Figure 2-4: Mean predictive ability (PA) for 
the single-site model in Santa Rosa (SRO) for 
the four traits: flowering day (FL), plant 
height (PH), grain yield per plot (YLD) and 
grain Zn concentration (ZN), scored in two 
years (2017 and 2018). Four training set 
sizes (25, 50, 100 and 200) and two GP 
methods (GBLUP and RKHS) are considered. 
The bars represent the standard deviation. 
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The PA were improved by including the phenotypes of the whole population in PAL in the training set, 

and this was consistently observed for all traits, although to a different extent (Figure 2-6, STable 2-9). 

The largest differences in average PA were observed for FL (SINSRO = 0.29, IMB = 0.56) and PH (SINSRO = 

0.33, IMB = 0.62). However, for both traits the increase of “s” did not yield a much higher PA with the 

IMB method. Average ZN predictions also benefited from PAL information, but less so (SINSRO = 0.24, 

IMB = 0.45). For those three traits, the average PA with the IMB method was rather close to the 

phenotypic correlation between the two sites (dotted line in Figure 2-6). Conversely, for YLD the 

average PA was similar between SINSRO (0.27) and IMB (0.34), with values above the indirect 

phenotypic prediction as represented by the site correlation. The partition of factor effects in the linear 

model revealed that the proportion of variance explained by the CV method depended on the traits 

(7% for YLD compared to ≥50% for all other traits) (Table 2-5). Only for YLD did the set size account for 

a large fraction (32%) of the explained PA variance. The contribution of the year effect to the total PA 

variance was low (≤1%) for YLD and ZN while still contributing to a small portion of the variance for FL 

and PH (10% and 6.5%, respectively). For both traits, average PA was higher in the S0:3 2018 trials.  

Figure 2-5: Mean predictive ability (PA) of 
the GBLUP model to predict phenotypes at 
Santa Rosa (SRO) for the three CV 
scenarios: single-site data in SRO (SINSRO) 
and two-site data with balanced 
information from the two sites (BAL1 and 
BAL2). The results for both years (2017 and 
2018) and the four traits are presented. 
The bars represent the standard deviation. 
The open dot for is for the cross-validation 
obtained from only 34 genotypes. 
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 Discussion 

2.5.1 Evaluation of early generation progenies 
The training population with which we tested the various CV scenarios had the expected characteristics 

for applying GP, both in terms of marker density relative to the specific population LD and total absence 

of structure among the 334 S0 genotypes (Appendix 1 and supplementary tables and figures). 

Our progeny phenotyping method could not capture the within-line variations, as we recorded traits 

as the mean of the evaluated plot (FL, PH) or from the bulked harvested plot (YLD, ZN). For most 

combinations of traits and sites the difference in H2 between the S0:2 and S0:3 progeny testing was 

limited and fell within the confidence interval of each other. However, the H2 of the S0:2 progenies was 

significantly higher for FL and YLD in SRO and was significantly lower for PH in PAL. This lack of 

consistency suggested that changes were driven more by environmental causes than by the degree of 

allelic fixation within the genetic material. This was supported by the temporal checks for which a 

significant year effect could be observed for all traits and sites, while no effect of the generation was 

observed. We concluded that the changes in mean between S0:2 and S0:3 within sites were essentially 

driven by the environment effect. As the phenotypic variance due to generation was minor compared 

to the variance associated with the year, generation advance did not seem to influence the PA. For 

  SINSRO/BAL1/BAL2 SINSRO/IMB 
Trait a Factor b Eta2 R2 Eta2 R2 

FL CV 0.003 0.342 0.619 0.792 

 Year 0.116  0.104  
 Set size 0.215  0.020  
 CV:Year 0.000  0.010  
 CV:Set size 0.002  0.026  
 Year:Set size 0.003  0.000  
 CV:Year:Set size 0.003  0.000  

PH CV 0.009 0.539 0.620 0.853 

 Year 0.019  0.065  
 Set size 0.492  0.094  
 CV:Year 0.001  0.018  
 CV:Set size 0.004  0.050  
 Year:Set size 0.012  0.004  
 CV:Year:Set size 0.002  0.002  

YLD CV 0.004 0.407 0.072 0.404 

 Year 0.009  0.001  
 Set size 0.390  0.319  
 CV:Year 0.000  0.003  
 CV:Set size 0.003  0.006  
 Year:Set size 0.001  0.001  
 CV:Year:Set size 0.001  0.002  

ZN CV 0.004 0.322 0.499 0.630 

 Year 0.020  0.001  
 Set size 0.291  0.096  
 CV:Year 0.000  0.019  
 CV:Set size 0.003  0.015  
 Year:Set size 0.001  0.001  
 CV:Year:Set size 0.003  0.000  

 

Table 2-5: Analysis by trait of the factors 
influencing the variability of PA. The data are 
the PA for the CV scenarios comparing SINSRO, 
BAL1 and BAL2 or SINSRO and IMB. Eta2 is the 
proportion of variance associated with each 
effect and R2 is the coefficient of determination 
obtained from a linear model applied to the 
data from the 100 iterations (n=2400 for the 
model including SINSRO, BAL1 and BAL2 
scenarios and n=1600 for the model including 
SINSRO and IMB scenarios) 

a Traits: days to flowering (FL), plant height 
(PH), grain yield per plot (YLD), grain Zn 
concentration (ZN)  
b Factors: CV: SINSRO, BAL1, BAL2 or IMB; 
Year: 2017 (S0:2), 2018 (S0:3); Set size: 25, 50, 
100, 200 
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time and economic reasons, calibration on S0:2 phenotypes could thus be preferred as it allows a 

reduction of the breeding cycle length and cost.  

2.5.2 Potential of early genomic prediction  
We first tested GP models on the early generation phenotypes collected in a single environment. As 

expected, regardless of the generation, the four traits showed differences in mean PA. FL and PH were 

overall the best predicted traits, followed by ZN and YLD. This was fairly consistent with what is 

reported in the literature where FL and PH generally show high PA in absolute terms and relative to 

yield parameters (Combs and Bernardo 2013; Spindel et al. 2015; Ben Hassen et al. 2017; Ben Hassen 

et al. 2018). However, when comparing with another GP study performed on families derived from 

rice synthetic populations much higher PA for FL was achieved than in Grenier et al. (2015), where 

average PA for FL reached only a maximum of 0.29 for the population of 343 S2:4 lines. Conversely, 

maximum PA for PH (0.46) was comparable to the PA obtained for the 343 S2:4 (0.50) (Grenier et al. 

2015), but lower than the PA obtained for the 174 S1:3 (0.52) (Morais Júnior et al. 2018). The maximum 

PA for YLD (0.39) was slightly higher than the maximum reported for the rice diversity panel of 369 

elite breeding lines evaluated in replicated yield trials (0.30) (Spindel et al. 2015), but lower than that 

reported for the 174 S1:3 lines (0.44) (Morais Júnior et al. 2018), despite an H2 for YLD that was higher 

in our study (H2 = 0.58) than in the two others aforementioned (0.44 in S1:3 lines and 0.32 in the diversity 

panel). Overall, for these commonly reported traits, the PA obtained in our study did not greatly differ 

Figure 2-6: Mean predictive ability (PA) of 
the GBLUP model to predict phenotypes at 
Santa Rosa (SRO) for two CV scenarios: 
single-site data in SRO (SINSRO) and two-site 
data with complete information in Palmira 
and incomplete in target site SRO (IMB). The 
results for both years (2017 and 2018) and 
the four traits are presented. The bars 
represent the standard deviation. Dotted 
blue lines indicate the phenotypic 
correlation between sites. 
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from what was reported for GP in rice diversity panels or synthetic populations (as reviewed in Ahmadi 

et al. 2020).  

Although various studies on maize and spring wheat have proven the effectiveness of the GP-based 

approach for kernel zinc concentration, to our knowledge no study applying GP to rice for grain zinc 

concentration has yet been reported. Grain zinc concentration is a complex trait greatly influenced by 

soil and other associated factors (Jin et al. 2013; Hindu et al. 2018; Velu et al. 2018; Naik et al. 2020), 

so there are great hopes that GP will simplify the process of breeding rice for nutritional quality. On 

average, the PA for ZN in a single environment were low (0.26 and 0.24, for 2017 and 2018, 

respectively). However, the maximum PA in SINSRO reached 0.36 with 200 S0:2 progenies (2017 data and 

RKHS model), which is comparable to the average estimated PA obtained with the 5-fold CV1 model 

applied to the HarvestPlus association mapping panel of 330 wheat lines (PA = 0.36) (Velu et al. 2018). 

2.5.3 Effect of the GP methods on predictive ability 
In the context of single-site analysis, we found that the two prediction methods, GBLUP and RHKS, 

induced some differences in PA only for FL. While GBLUP uses a linear kernel that models only the 

additive effects, RKHS uses a Gaussian kernel that carries the additive effects and the additive-additive 

epistatic effects at every possible order (Jiang and Reif 2015). RKHS has been reported to perform 

better than the linear model in the presence of epistasis (González-Camacho et al. 2012; Jiang and Reif 

2015; Onogi et al. 2015). Epistasis has been reported in FL (Hori et al. 2016), PH (Yu et al. 2002; Shen 

et al. 2014), YLD (Luo et al. 2001; Xing et al. 2002) and ZN (Lu et al. 2008; Norton et al. 2010), however, 

both GP methods performed similarly for the traits we looked at in our population. The phenotypes 

we considered were all progeny means, which represent the breeding value or additive effect of our 

tested S0 (Falconer 1960). Different and opposed epistatic effects can appear in the same family and 

have probably impeded RKHS from capturing them accurately. Limited differences between the two 

GP methods have also been reported in previous studies testing predictions for rice collections of fixed 

accessions (reviewed by Ahmadi et al. 2020) or S1:3 lines extracted from synthetic populations (Morais 

Júnior et al. 2018). Given our phenotypes and considering the PA, GBLUP appeared as the most 

appropriate method in our context of population breeding considering single or two-site phenotyping 

data in our calibration models. 

2.5.4 Prediction of the target environment using the two-site calibration 

model 
Most of the contrasts in phenotypic records observed between the two sites were due in large part to 

the differences in crop establishment, soil conditions, climatic and biotic constraints as well as field 

management. Between irrigated and rainfed conditions, not only yield performance was expected to 

be affected by the environmental conditions, but also the grain zinc concentration, these two traits 
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showing lower correlation between sites. Under flooded conditions, the soil oxygen and redox 

potential will drop and trigger the formation of non-available zinc or its adsorption onto different 

compounds, depending on the soil type (reviewed in Rehman et al. 2012). As PAL is subject to 

continuous flooding, low zinc availability was expected and, consequently, observed ZN was much 

lower than in SRO. 

Knowing the environment effect on the trait expressions and the phenotypic correlation between the 

sites, we tested the potential of GP including two sites with various CV schemes involving several 

factors. Of all the factors tested in the scenarios, the training set size had the most influence on PA. 

Training set size explained most of the differences observed for all the traits. The year of phenotyping 

was best in explaining the PA variations only for FL, which could be related to climatic differences 

and/or small changes in crop establishment date, which both are known to affect crop phenology. The 

CV methods SINSRO, BAL1 and BAL 2, accounted for a small portion of the variance explained by the 

models. In general, the two BAL scenarios showed a limited advantage over SINSRO for all traits. The 

prediction of unobserved genotypes for a specific environment using a two-site model was as precise 

as that obtained with a single-site model. Indeed, the prediction of 𝑔𝑠𝑖𝑆𝑅𝑂  is based on the same 

amount of information as the 𝑔𝑘  from a SINSRO calibration. For this reason, the two-site calibration 

could perform better only if 𝑔𝑘  is more precise and relatively larger (larger associated variance) than 

𝑔𝑠𝑖𝑆𝑅𝑂 , but this is expected only for well-correlated environments. BAL1 and BAL2 differed in the 

number of genotypes repeated over the two sites. In BAL1, 100% of the genotypes included in the 

calibration had phenotypes in both sites (the overlapping proportion), whereas only 50% of the 

included genotypes had phenotypes of both sites in BAL2. The effect of the overlap proportion was 

tested by Jarquín et al. (2020) in a study that assessed the effects of data allocation on the PA of 

genomic-enabled prediction models. With their GxE model (M3 as presented in their article), the use 

of overlapping sets of genotypes improved the precision. In our case, the tendency was the reverse. 

Maintaining similar efforts in phenotyping in both sites while reducing the overlap (BAL1 and BAL2 

with the same “s” progenies) resulted in higher precision in the predictions, but only for a specific case 

of PH_2017 with small training set size of 50 genotypes. For PH, exploring more of the population 

genetic variability within relatively small training set sizes might have had a greater impact thanks to a 

higher phenotypic correlation between sites. 

While neither BAL1 nor BAL2 could greatly improve PA compared to SINSRO, calibrating with the whole 

population phenotyped in PAL and only a subset “s” of the population in SRO for predicting in SRO 

(IMB) generated substantial improvement of PA for all traits. The interest of this sparse testing method 

lies in borrowing information within lines across environments (Lopez-Cruz et al. 2015). However, if 

the phenotypes are not correlated between sites, benefits from the inclusion of both environments 

are expected to be low, as we found with YLD, where less improvement of PA was achieved through 
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IMB than for the other traits. Generally, sparse testing is in most cases more precise than the prediction 

of unobserved genotypes in known environments, regardless of the calibration method used 

(Burgueño et al. 2012; Jarquín et al. 2014; Lopez-Cruz et al. 2015; Ben Hassen et al. 2018; Millet et al. 

2019). However, as the predicted lines must be observed in at least one environment, the burden on 

the phenotyping still remains, but the effort can lead to an increase in PA for traits with strong to 

moderate environment correlation, as was the case for FL, PH and ZN. For ZN, which has only a 

moderate site correlation, the IMB yielded a large gain in PA even with a drastic reduction of the 

phenotyping effort in SRO (from SINSRO_s25 = 0.14 for to IMB_s25 = 0.44 with the 2018 data). Overall, 

the sparse testing provided an improvement in the prediction of ZN in the rice synthetic population, 

with average PA (IMB_s200 = 0.51 with the 2018 data) in the range of those reported for spring wheat 

(Velu et al. 2016) and maize (Mageto et al. 2020).  

2.5.5 Optimization of calibration procedure for GP  
In our study, we tested the calibration of a GP model using phenotypic records gathered from early 

progeny testing in two sites. The potential of using two-site data and sparse testing for the model 

calibration, was considered as a satisfactory measure to predict most traits, even for YLD, despite a 

slightly reduced advantage compared to what was reported for the other traits.  

We have demonstrated that the calibration using phenotypic data collected on progeny testing at two 

successive early generations could deliver relatively good and comparable PA. This opens up 

possibilities for rapid cycling RS, with recycling of parental lines from the genotyping of S0 plants, based 

on the breeding value of the S0. Yet, there is still a need to confirm that the models do predict well the 

performance of more advanced generations for inbred line development. Indeed, the units to derive 

in the pedigree breeding scheme should be selected on the basis of “varietal ability” (Gallais 1979), 

which is the expected value of all lines within a family at fixation. This will be explored in our next study, 

with an external validation of the GP models using a different set of S0 progenies extracted from the 

PCT27 and brought to near fixation. 

We are aware that the optimized scheme we suggest, based on random sampling of the training set, 

genome-wide markers considered as random effects, and random allocation of genotypes to sparse 

testing could be improved further still by considering other criteria known to increase the performance 

of GP. It remains to be seen whether PA can be improved by optimized assembly of the training set as 

performed in various studies (Rincent et al. 2012; Bustos-Korts et al. 2016; Rincent et al. 2017; Akdemir 

and Isidro-Sánchez 2019; Mangin et al. 2019), by inclusion of particular weights for some specific loci 

(Spindel et al. 2016; Bhandari et al. 2019; Frouin et al. 2019) or by use of an efficient method to proceed 

to sparse testing in the context of GxE models (Ahmadi et al. 2020).  



Chapter 2 : Data Availability 
 

61 

Notwithstanding optimization of the calibration to develop efficient prediction models to fit our 

scheme, we ought also to consider the gain of applying GP-aided RS in our rice breeding program. So 

far, only the PA within generations has been tested, starting with the extraction of S0 fertile plants of 

the Cn cycle. Prediction of S0 in Cn+1 would be done with calibration based on data from the previous 

cycle Cn. This has been tested through simulation (Müller et al. 2017; Ramasubramanian et al. 2020) 

and showed that the persistency of PA across cycles could be achieved with the accumulation of data 

from several past cycles. Simulation studies will be performed on our population to optimize the long-

term use of GP-aided RS and define how and when it is best to upgrade the calibration model. The 

simulation will also offer the opportunity to improve the prediction and apply genomic selection while 

maintaining enough genetic diversity for further use of the population. 

 Data Availability 
All supplementary tables, figures and the data used in this study are available at Figshare: 

https://figshare.com/s/4544ab2020c736dc9bb3. 
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  Appendix 

2.10.1  Appendix 1 

2.10.1.1 Genotyping-by-sequencing (“GBS”) and data treatment 
DNA libraries were prepared at the Regional Genotyping Technology Platform (http://www.gptr-lr-

genotypage.com) hosted at Cirad, Montpellier, France. For 949 S0 plants extracted from the PCT27, 

including the 334 considered in the training set, genomic DNA was extracted from the leaf tissues of a 

single S0 plant grown in PAL, using a MATAB lysis buffer (Risterucci et al. 2000) and purified using the 

NucleoMag C-Beads protocol from Macherey-Nagel. Each DNA sample was diluted to 20 ng/μL and 

150 ng was digested separately with two restriction enzymes PstI and MseI. DNA libraries were then 

single-end sequenced in a single-flow cell channel (i.e. 96-plex sequencing) using an Illumina 

HiSeq2000 (Illumina, Inc.) at the Regional Genotyping Platform (http://get.genotoul.fr/) hosted at INRA, 

Toulouse, France.  

The fastq sequences were aligned to the rice reference genome, Os-Nipponbare-Reference-IRGSP-1.0 

(Kawahara et al. 2013) using Bowtie2 with the default parameters (option very sensitive). Non-aligning 

sequences and sequences with multiple positions were discarded. Single-nucleotide polymorphism 

(SNP) calling was performed using the Tassel GBS pipeline v5.2.29 (Glaubitz et al. 2014). The filters 

applied to loci are the missing data (<20%), the depth for each data point (>10), the minor allele 

frequency (>2.5%) and the bi-allelic status of SNPs. To limit the probability of under-calling a 

heterozygous site, the read depth for SNP calling was set to a minimum of 10, so that the probability 

of under-calling a heterozygous site was limited to a theoretical maximum of 0.2% (Swarts et al. 2014). 

Missing data were imputed using Beagle 4.1 embedded in the R package Synbreed v0.11-22 (Wimmer 

et al. 2012). 

After quality control, 9,928 SNPs remained for the genetic characterization of the training set and the 

genomic prediction step. All following analyses were thus performed on the 334 S0 plants, the latter 

used in the GP models. Graphical representation of the SNP distribution across the 12 chromosomes 

was performed using the Synbreed package (Wimmer et al. 2012). LD was calculated by computing the 
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pairwise LD measure r2 as in (Hill and Robertson 1968) with PLINK1.09 using every pair of variants 

within a 50 variants window (Purcell et al. 2007). Non-linear regression modeling was performed using 

the nls function in the statistical package R v3.3.0 (R-Core Team 2017) to represent the LD on each 

chromosome. The effective population size was computed using the linkage disequilibrium method 

(Hill 1981; Waples 2006) with the software NeEstimator V2.01 (Do et al. 2014). Inference of population 

structure was performed using the snmf function from the R package LEA (Frichot et al. 2015). 

Population structure was graphically investigated by first computing Euclidean distances between the 

genotypes and then building a neighbor joining tree. The computation and graphical representation 

were done with DARwin V6.0.021 (Perrier and Jacquemoud-Collet 2006). 

2.10.1.2 Genetic characterization of the population 
The 9,928 SNP markers were fairly well distributed among the 12 rice chromosomes (Figure S1), with 

an average marker density of one SNP every 40 kb ranging from 27.3 kb to 64 kb (Table S1). For half 

the markers, the average distance between the nearest neighbours was 9.9 kb, ranging from 3.1 to 

15.5 kb according to the chromosomes. The distribution of MAF in the population (Table S1, Figure S2) 

followed a beta distribution with beta = 5.45 and alpha = 1.37 showing a great proportion of less 

frequent alleles. Half the loci had an MAF below 15.7%. Across the whole genome, the average 

heterozygosity per locus was 30%, with loci having a minimum of 2.7 to a maximum of 100% 

heterozygous genotypes (Table S1). The 334 S0 genotypes were either relatively fixed (0.08% of 

heterozygous loci) or fairly heterozygous (41% of heterozygous loci), and half the population was 

heterozygous for at least 29% of the loci (Table S1). The effective population size of the PCT27 

measured based on the LD among the 334 S0 was Ne = 40. Pairwise LD in the population across the 12 

chromosomes was rather large with an average r2 of 0.59 for distance between 0 and 25kb (Table S2). 

The LD decreased to 50% of its initial value at a slow rate (300 to 400 kb) (Figure S3). No structure was 

found in the population, as illustrated by the neighbour joining grouping based on similarity distances 

(Figure S4). 

2.10.2  Appendix 2 

2.10.2.1 Analysis of the year and generation effect 
For the 334 S0 families of the PCT27 used in this work, the generation S0:2 was phenotyped in 2017 and 

the generation S0:3 in 2018. To measure the year effect disconnected from the generation effect, 50 

families (temporal checks) from the same PCT27 were observed in 2017 and 2018 as generation S0:2. 

Similarly, to evaluate the extent of the generation effect that would result from inbreeding, the same 

50 temporal checks were observed as S0:2 and S0:3 in 2018. This was done for all traits. An alpha-lattice 

design with eight unbalanced blocks and three replicates was used for each trial.  
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To reduce the block effect resulting from the sampling of temporal checks, each block was enhanced 

with two spatial checks (SC), one plot of IR64 (indica mega variety) and one plot of L23 (tropical 

japonica inbred line from the CIAT-Cirad upland breeding program) and so centred the block value on 

the SC mean value.  

To assess the year effect, the following mixed model was applied by site to the data of the two years 

for the 50 temporal checks at generation S0:2 and the two spatial checks. 

𝑌{𝑖𝑗𝑘𝑙𝑚} = 𝜇 + 𝑦{𝑖} + 𝑟(𝑦){𝑖𝑗} + 𝑆𝐶(𝑦){𝑖𝑘} + 𝑏(𝑟(𝑦))
{𝑖𝑗𝑙}

+ 𝑔{𝑚} + 𝑦𝑔{𝑖𝑚} + 𝜀{𝑖𝑗𝑘𝑙𝑚}, the fixed part of 

the model was composed of the intercept 𝜇 , the year effect 𝑦, the replicate effect 𝑟  and the 𝑆𝐶 

variable, which discriminates the two spatial checks from each other and from the PCT27 lines 𝑘 =

{𝑃𝐶𝑇27, 𝐼𝑅64, 𝐿23}. The random part was composed of the line (genotype) effect g with distribution 

𝑔~(0, 𝐼𝜎𝑔
2) , the line by year interaction 𝑔𝑦  with distribution 𝑦𝑔~(0, 𝐼𝜎𝑦𝑔

2 )  and the error 𝜀  with 

distribution 𝜀~(0, 𝐼𝜎𝜀
2).To assess the generation effect, the following model was applied to the data 

of the 50 temporal checks at generation S0:2 and S0:3 and the two spatial checks in 2018. 

𝑌{𝑖𝑗𝑘𝑙𝑚} = 𝜇 + 𝑟{𝑖} + 𝑏(𝑟){𝑖𝑗} + 𝑆𝐶(𝐺){𝑘𝑙} + 𝑔{𝑚} + 𝐺𝑔{𝑗𝑚} + 𝜀{𝑖𝑗𝑘𝑙𝑚} 

The parameter annotation was the same as for the analysis of the year effect, with additionally 𝐺 as 

the fixed effect of the generation and 𝐺𝑔  as the random interaction between the line and the 

generation with distribution 𝐺𝑔~(0, 𝐼𝜎𝐺𝑔
2 ). 

The results can be seen in supplementary Table S4. 

2.10.3  Appendix 3 

2.10.3.1 Phenotypic data preparation 
In PAL, where the number of plants was known, any single plot with less than 14 established plants 

was identified and the data was removed if it strongly differed from the other two replicates. After this 

first round of cleaning, a mixed model was applied to each trial separately with the intention to discard 

the plot phenotypic scores of progenies with inconsistent records among the repetitions within a site, 

either as a result of poor crop establishment or unexpected problem on the specific plot. Within each 

trial, the plots with a residual in absolute value at more than four standard residuals were labelled as 

outliers and removed. The model used to remove outliers was formulated as follows and was the same 

for each trial:  

𝑌𝑖𝑗𝑘 = 𝜇 + 𝑟𝑖 + 𝑏(𝑟)𝑖𝑗 + 𝑔𝑘 + 𝜀𝑖𝑗𝑘  

where 𝜇 is the general intercept, 𝑟 is the fixed effect for the replicates, 𝑏 is a random block effect 

nested in 𝑟  with distribution 𝑏~N(0, 𝐼σ𝑏
2) , 𝑔  is the random genotype effect with distribution 

𝑔~𝑁(0, 𝐼𝜎𝑔
2), and 𝜀 is the random error term with distribution 𝜀~𝑁(0, 𝐼𝜎𝜀

2). This model, as well as all 

the following mixed models was fitted using ASReml-R v3.0 (Butler et al. 2007). 
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SFig 2-1: Density of SNP markers in the calibration set (334 S0 plants) in the 12-chromosome R package Synbreed (Wimmer 
et al., 2012) 

SFig 2-2: MAF distribution among the population of 334 S0 plants. 
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SFig 2-3: Linkage disequilibrium, measured as r2 between all pairs of markers considered in a 50 variants 
window (PLINK1.09). R2 values plotted against distances between markers in kb as a nonlinear regression 
model based on Hill and Weir’s (1988) equation. 
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STable 2-2: Genetic characterization of the population: Observed heterozygosity (Ho) among the 334 genotypes 

 Ho  Bin of Ho Frequency Percentage Cumulative percentage 

Min.    0.08743  [0.08 - 0.118] 3 0.9 0.9 
1st Qu. 0.27065  [0.118 - 0.156] 4 1.2 2.1 
Median  0.29296  [0.156 - 0.194] 4 1.2 3.3 
Mean    0.29466  [0.194 - 0.232] 7 2.1 5.4 
3rd Qu. 0.32386  [0.232 - 0.27] 61 18.3 23.7 
Max.    0.41015  [0.27 - 0.308] 126 37.7 61.4 

   [0.308 - 0.346] 90 26.9 88.3 

   [0.346 - 0.384] 32 9.6 97.9 

   [0.384 - 0.422] 7 2.1 100 

 

STable 2-3: Summary of the cross-validation (CV) procedures used in the study. Calibration set represents the number of lines 
in the respective sites (PAL and SRO) and is not the total number of lines representing either PAL or SRO or both sites. 
Validation set represents the number of lines with no phenotype in SRO considered for the validation 

CV method Set size (s) Calibration set Validation Set   
    PAL SRO ntot     

SINsr 25 0 25 25 100 

validation on lines with no PAL 
observation 

 50 0 50 50 100 
 100 0 100 100 100 
 200 0 200 200 100 

BAL1 25 25 25 25 100 
 50 50 50 50 100 
 100 100 100 100 100 
 200 200 200 200 100 

BAL2 25 25 25 37.5 100 
 50 50 50 75 100 
 100 100 100 150 100 
 200 200 200 300 34 

IMB 25 334 25 334 100 

validation on lines with PAL 
observations 

 50 334 50 334 100 
 100 334 100 334 100 

  200 334 200 334 100 
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STable 2-4: Average linkage disequilibrium (r2) between marker pairs according to chromosomes and the distance between 
markers, considering loci with MAF >2.5%. In italics are r2 with values less than initial r2/2 

 
The rice 12 chromosomes 

Distance 
range (kb) 
between 
markers 

Os01 Os02 Os03 Os04 Os05 Os06 Os07 Os08 Os09 Os10 Os11 Os12 Average std 

]0:25] 0.610 0.620 0.674 0.581 0.338 0.608 0.632 0.645 0.744 0.541 0.510 0.580 0.590 0.100 

]25:50] 0.448 0.526 0.583 0.530 0.273 0.391 0.485 0.529 0.586 0.422 0.349 0.513 0.470 0.096 

]50:75] 0.458 0.515 0.567 0.366 0.378 0.470 0.476 0.451 0.450 0.440 0.333 0.426 0.444 0.064 

]75:100] 0.406 0.464 0.591 0.351 0.265 0.433 0.471 0.454 0.446 0.428 0.332 0.466 0.426 0.082 

]100:150] 0.387 0.451 0.505 0.333 0.394 0.433 0.405 0.450 0.433 0.429 0.301 0.428 0.412 0.055 

]150:200] 0.380 0.435 0.478 0.310 0.480 0.457 0.421 0.448 0.450 0.392 0.294 0.357 0.409 0.063 

]200:250] 0.319 0.386 0.451 0.338 0.363 0.400 0.358 0.429 0.394 0.393 0.273 0.382 0.374 0.048 

]250:300] 0.303 0.390 0.437 0.331 0.335 0.372 0.384 0.360 0.360 0.385 0.249 0.332 0.353 0.048 

]300:400] 0.269 0.347 0.392 0.270 0.326 0.334 0.337 0.338 0.379 0.299 0.218 0.304 0.318 0.049 

]400:500] 0.231 0.305 0.380 0.258 0.302 0.314 0.331 0.323 0.332 0.290 0.206 0.224 0.291 0.052 

]500:750] 0.198 0.265 0.327 0.256 0.239 0.263 0.279 0.294 0.365 0.245 0.186 0.230 0.262 0.050 

]750:1000] 0.165 0.245 0.248 0.197 0.111 0.197 0.182 0.253 0.355 0.194 0.168 0.154 0.206 0.063 
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STable 2-5: Fixed effect and variance decomposition for 50 Temporal Checks randomly distributed across the design within 
each repetition, considering A) 50 S0:2 lines in the two sites in 2017 and 2018 trials, following the model y = mu + year + 
rep:year + bloc:rep:year + genotype + genotype:year + error and B) 50 S0:2 and 50 S0:3 lines in the two sites in the 2018 trials, 
following the model y = mu + rep + Gen:rep + genotype + genotype:generation + error. The p-values for the fixed year effect 
are obtained by the Wald test and the p-values for the random effect by the likelihood ratio test 

A 
        

  Year effecta Variance decompositionb 
Trait Site 2018-2017 p-value G p-value GxY p-value (GxY)/G 
FL PAL -2.545 ** 9.54 *** 1.64 ns 0.17 

 SRO 2.908 *** 28.38 *** 9.70 ns 0.34 
PH PAL -4.27 *** 30.67 *** 8.76 ns 0.29 

 SRO -7.222 *** 14.87 *** 2.55 ns 0.17 
YLD PAL 457.519 *** 2050.98 *** 0.00 ns 0.00 

 SRO -75.879 *** 2295.96 *** 196.30 ns 0.09 
ZN PAL 0.145 ** 1.68 *** 0.00 ns 0.00 

 SRO 2.231 *** 3.82 *** 1.36 ns 0.36          
a 2018-2017: difference between year 2018 and 2017 
b G: genetic variance; GxY: genotype by year interaction variance; (GxY)/G ratio of the genetic variance and the genotype 
by year interaction variance          
B 

    

    

  Generation effecta Variance decompositionb 
Trait Site S0:3-S0:2 p-value G p-value GxGen p-value (GxGen)/G 
FL PAL 0.624 ns 16.95 *** 0.00 ns 0.000 

 SRO 0.5 ns 14.70 *** 0.29 ns 0.020 
PH PAL 0.245 ns 55.82 *** 0.00 ns 0.000 

 SRO -0.381 ns 27.40 *** 0.00 ns 0.000 
YLD PAL 29.167 ns 1626.61 *** 0.00 ns 0.000 

 SRO -2.166 ns 1555.21 *** 211.78 ns 0.136 
ZN PAL -0.221 ns 2.64 *** 0.13 ns 0.049 

 SRO 0.297 ns 4.25 *** 0.25 ns 0.058          
a S0:3-S0:2: difference between generation S0:3 and S0:2 
b G: genetic variance; GxGen: genotype by generation interaction variance; (GxGen)/G ratio of the genetic variance and 
the genotype by generation interaction variance 

 

STable 2-6: Average predictive ability for the SINSRO scenarios across all traits, years, GP methods and calibration set sizes 

    2017   2018 
General Mean Trait   25 50 100 200 Mean   25 50 100 200 Mean 

FL Mean 0.194 0.257 0.278 0.327 0.264  0.263 0.311 0.357 0.413 0.336 0.300 

GBLUP 0.184 0.242 0.257 0.322 0.251  0.257 0.300 0.351 0.404 0.328 0.290 

RKHS 0.205 0.272 0.298 0.332 0.277  0.270 0.322 0.363 0.422 0.344 0.310 

PH Mean 0.155 0.235 0.347 0.464 0.300  0.244 0.322 0.394 0.466 0.357 0.328 

GBLUP 0.158 0.232 0.360 0.469 0.305  0.247 0.313 0.380 0.458 0.350 0.327 

RKHS 0.151 0.238 0.335 0.459 0.296  0.241 0.332 0.408 0.473 0.363 0.330 

YLD Mean 0.176 0.234 0.318 0.387 0.279  0.171 0.231 0.306 0.351 0.265 0.272 

GBLUP 0.184 0.246 0.320 0.390 0.285  0.170 0.224 0.312 0.353 0.265 0.275 

RKHS 0.167 0.223 0.317 0.384 0.273  0.173 0.238 0.299 0.350 0.265 0.269 

ZN Mean 0.173 0.225 0.283 0.356 0.259  0.127 0.197 0.240 0.316 0.220 0.240 

GBLUP 0.167 0.219 0.276 0.351 0.253  0.136 0.198 0.229 0.309 0.218 0.236 

RKHS 0.179 0.231 0.290 0.361 0.265  0.118 0.195 0.252 0.323 0.222 0.244 
STable 2-7: Average predictive ability for the BAL1, BAL2, IMB and IMB scenarios across all traits, years and calibration set 
sizes using RKHS 

    2017   2018 General 
mean Trait   25 50 100 200 Mean   25 50 100 200 Mean 
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FL Mean 0.252 0.282 0.298 0.322 0.288  0.364 0.403 0.439 0.469 0.419 0.354 

BAL1 0.117 0.147 0.171 0.186 0.155  0.244 0.291 0.349 0.380 0.316 0.236 

BAL2 0.136 0.156 0.168 0.215 0.169  0.254 0.311 0.357 0.384 0.326 0.248 

IMB 0.553 0.552 0.553 0.556 0.553  0.687 0.688 0.688 0.690 0.688 0.621 

SINSRO 0.205 0.272 0.298 0.332 0.277  0.270 0.322 0.363 0.422 0.344 0.310 

PH Mean 0.276 0.339 0.413 0.480 0.377  0.363 0.422 0.480 0.542 0.452 0.414 

BAL3 0.191 0.267 0.357 0.443 0.315  0.231 0.314 0.388 0.478 0.353 0.334 

BAL4 0.217 0.299 0.400 0.447 0.341  0.291 0.350 0.422 0.503 0.391 0.366 

IMB 0.545 0.551 0.560 0.572 0.557  0.690 0.693 0.701 0.713 0.699 0.628 

SINSRO 0.151 0.238 0.335 0.459 0.296  0.241 0.332 0.408 0.473 0.363 0.330 

YLD Mean 0.192 0.242 0.318 0.381 0.283  0.183 0.244 0.304 0.376 0.277 0.280 
BAL5 0.145 0.205 0.310 0.364 0.256  0.141 0.223 0.283 0.395 0.260 0.258 

BAL6 0.180 0.241 0.318 0.411 0.288  0.167 0.231 0.309 0.388 0.274 0.281 

IMB 0.275 0.298 0.325 0.362 0.315  0.253 0.286 0.326 0.369 0.308 0.312 

SINSRO 0.167 0.223 0.317 0.384 0.273  0.173 0.238 0.299 0.350 0.265 0.269 

ZN Mean 0.220 0.258 0.289 0.328 0.274  0.196 0.238 0.272 0.293 0.250 0.262 

BAL7 0.124 0.176 0.215 0.248 0.191  0.106 0.139 0.176 0.196 0.154 0.172 

BAL8 0.164 0.206 0.230 0.276 0.219  0.102 0.156 0.196 0.189 0.161 0.190 

IMB 0.414 0.419 0.423 0.425 0.420  0.460 0.463 0.465 0.464 0.463 0.442 

SINSRO 0.179 0.231 0.290 0.361 0.265  0.118 0.195 0.252 0.323 0.222 0.244 
 

STable 2-8: Average predictive ability for the SINSRO, BAL1 and BAL2 scenarios across all traits, years and calibration set sizes 
using GBLUP 

    2017   2018 General 
mean Trait   25 50 100 200 Mean   25 50 100 200 Mean 

FL Mean 0.188 0.230 0.261 0.335 0.254  0.253 0.312 0.364 0.413 0.335 0.295 

BAL1 0.185 0.225 0.254 0.313 0.244  0.242 0.316 0.362 0.412 0.333 0.289 

BAL2 0.196 0.223 0.273 0.369 0.265  0.260 0.321 0.379 0.422 0.346 0.305 
SINSRO 0.184 0.242 0.257 0.322 0.251  0.257 0.300 0.351 0.404 0.328 0.290 

PH Mean 0.181 0.268 0.372 0.467 0.322  0.254 0.322 0.390 0.467 0.358 0.340 

BAL1 0.184 0.270 0.364 0.472 0.323  0.238 0.313 0.376 0.461 0.347 0.335 

BAL2 0.199 0.303 0.392 0.460 0.339  0.278 0.341 0.414 0.480 0.378 0.359 

SINSRO 0.158 0.232 0.360 0.469 0.305  0.247 0.313 0.380 0.458 0.350 0.327 

YLD Mean 0.188 0.256 0.330 0.411 0.296  0.167 0.230 0.313 0.375 0.272 0.284 

BAL1 0.177 0.258 0.330 0.412 0.294  0.152 0.223 0.312 0.393 0.270 0.282 

BAL2 0.203 0.264 0.339 0.433 0.310  0.180 0.243 0.316 0.381 0.280 0.295 

SINSRO 0.184 0.246 0.320 0.390 0.285  0.170 0.224 0.312 0.353 0.265 0.275 

ZN Mean 0.163 0.229 0.285 0.359 0.259  0.136 0.182 0.249 0.320 0.222 0.241 

BAL1 0.157 0.220 0.285 0.344 0.252  0.133 0.156 0.239 0.324 0.213 0.232 

BAL2 0.165 0.250 0.296 0.382 0.273  0.138 0.193 0.279 0.327 0.234 0.254 

SINSRO 0.167 0.219 0.276 0.351 0.253  0.136 0.198 0.229 0.309 0.218 0.236 
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STable 2-9: Average predictive ability for the SIN_SRO and IMB scenarios across all traits, years and calibration set sizes using 
GBLUP 

    2017   2018 General 
mean Trait   25 50 100 200 Mean   25 50 100 200 Mean 

FL Mean 0.341 0.368 0.368 0.406 0.371  0.453 0.468 0.489 0.520 0.483 0.427 

IMB 0.498 0.493 0.479 0.489 0.490  0.649 0.636 0.628 0.636 0.637 0.563 

SINSRO 0.184 0.242 0.257 0.322 0.251  0.257 0.300 0.351 0.404 0.328 0.290 

PH Mean 0.341 0.386 0.456 0.522 0.427  0.464 0.498 0.538 0.584 0.521 0.474 

IMB 0.524 0.541 0.553 0.575 0.548  0.680 0.684 0.695 0.710 0.692 0.620 

SINSRO 0.158 0.232 0.360 0.469 0.305  0.247 0.313 0.380 0.458 0.350 0.327 

YLD Mean 0.228 0.275 0.336 0.402 0.310  0.211 0.271 0.340 0.387 0.302 0.306 

IMB 0.272 0.304 0.353 0.414 0.336  0.252 0.319 0.367 0.422 0.340 0.338 

SINSRO 0.184 0.246 0.320 0.390 0.285  0.170 0.224 0.312 0.353 0.265 0.275 

ZN Mean 0.276 0.314 0.356 0.411 0.339  0.289 0.329 0.356 0.409 0.346 0.343 

IMB 0.385 0.409 0.436 0.471 0.425  0.443 0.460 0.483 0.509 0.474 0.450 

SINSRO 0.167 0.219 0.276 0.351 0.253  0.136 0.198 0.229 0.309 0.218 0.236 
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Avant propos 

Le chapitre qui suit constitue la suite du chapitre 2. Une fois la prédiction génomique testée par 

validation croisée à l’intérieur des génération S0:2 et S0:3 , nous l’avons appliquée entre deux sets de 

notre population. Le premier set, servant à la calibration, était constitué du matériel utilisé au chapitre 

précédent alors que le second, développé spécialement pour la validation, était constitué de nouveaux 

génotypes phénotypés en S0:4. Plutôt que de prédire à l’intérieur d’une même génération, l’utilisation 

des phénotypes S0:4 comme références nous a permis de nous approcher au plus de lignées fixées. Les 

différents caractères aillant montrer différentes réponses à l’utilisation des données des deux sites au 

chapitre précédent, nous avons testé différentes structures de variance-covariance avec le double 

objectif de comprendre mieux les phénomènes derrières ces différences entre caractères et 

idéalement de trouver l’approche la plus adaptée pour chacun d’entre eux. Il aura été écrit à six mains 

par Hugues de Verdal, Cécile Grenier et moi-même et fera l’objet d’une publication dans la revue Rice. 

 

Hugues de Verdal12*, Cédric Baertschi12, Julien Frouin12, Yolima Ospina3, Maria Fernanda Alvarez3, 

Jérôme Bartholomé123, Cécile Grenier123* 

1CIRAD, UMR AGAP Institut, F-34398 Montpellier, France 

2UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France. 

3Alliance Bioversity-CIAT, A.A.6713, Km 17 Recta Palmira Cali, Colombia 
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 Abstract 
Genomic selection (GS) is a good option to improve the genetic gain of recurrent selection in rice 

breeding programs. The present study assessed the impact of the addition of multigeneration multisite 

genomic prediction models that could significantly increase the predictive ability of GS and therefore, 

the genetic gain of the CIAT-Cirad rice breeding program. 

Of a synthetic population PCT27, a fraction was used for calibrating models (PCT27A), while another 

set (PCT27B) was considered for validating them. All S0 plants from PCT27 were advanced by selfing to 

the S0:2, S0:3 and S0:4 generation by bulk harvesting seeds. Progenies were phenotyped at S0:2 and S0:3 

generations for PCT27A and at S0:4 generation for PCT27B in two distinct environments: Santa Rosa as 

the target site and Palmira as a surrogate site with distinct characteristics but with important potential 

contributions to accelerate breeding cycles.  

Predictive ability (PA) of genomic predictions were estimated using several scenarios and models, 

according to the presence of one or two growing environments, one or several phenotyping 

generations, the presence of genetic by environment interaction and the size and composition of the 

training set. 

The results indicated that selection intensity can be increased by GS models calibrated on a fraction of 

the population. Breeding cycles can be accelerated with models calibrated with early generation 

families (S0:2). Despite relatively low PA achieved when including two locations in the training set, the 

gain in time realized by phenotyping in the surrogate site during the off-season lead to genetic and 

economic gains.  
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 Introduction 
In the literature, several studies have demonstrated empirically or by simulation the interests of 

genomic selection (GS) models for crops breeding, for example wheat (Crossa et al. 2010; Heffner, 

Jannink, and Sorrells 2011; Rutkoski et al. 2012), maize (Bernardo and Yu 2007; Zhao et al. 2012; Crossa 

et al. 2013) and barley (Lorenz, Smith, and Jannink 2012; Endelman et al. 2014; Sorrells 2015) among 

others. Regardless of the trait and species considered, predictive ability (PA), i.e. the estimated 

correlation between phenotypic and predicted values, was always higher with GS than with classical 

selection based on phenotypes and pedigree. In the case of rice, the potential of GS to accelerate 

genetic gain has been highlighted previously (Onogi et al. 2015b; Isidro et al. 2015; Spindel et al. 2015; 

Grenier et al. 2015; Wang et al. 2017; Ben Hassen, Cao, et al. 2018; Bhandari et al. 2019; Nour Ahmadi 

et al. 2020). The main observations extracted from a review of GS applied to rice (Ahmadi et al. 2020), 

resume that markers set size does not have to be large (Spindel et al. 2015; Bhandari et al. 2019), the 

population structure needs to be accounted for (Isidro et al. 2015; Grenier et al. 2015; Ben Hassen, 

Cao, et al. 2018), and the relatedness between the training set and the breeding population remains 

essential to insure high effective PA. GS models in rice breeding have been used to select among 

genebank accessions (Tanaka and Iwata 2018; Wissuwa et al., in press), to predict among biparental 

crosses derived from parental breeding lines (Ben Hassen, Bartholome, et al. 2018), progenies or 

synthetic populations (Grenier et al. 2015; Morais Júnior et al. 2018; Baertschi et al. 2021). The 

integration of genomic prediction (GP) into the rice breeding program is expected to increase genetic 

improvement for polygenic traits such as yield and adaptation to climate change.  

The ways in which GS can increase genetic gain over a conventional pedigree breeding program are 

multiple (Spindel and Iwata 2018; Bartholomé, Prakash, and Cobb 2021). Considering the breeder’s 

equation, almost all parameters could be improved using GS. A greater precision in prediction has a 

direct impact on genetic gain (Falconer and MacKay 1996), therefore, even a small improvement in PA 

can have a consequent impact in terms of genetic gain (Onogi et al. 2015b; Yang Xu et al. 2021). In 

addition, predicting the genomic estimated breeding value (GEBV) of non-phenotyped genotypes 

included in the candidate population would significantly increase the intensity of selection. As 

genotyping is getting more affordable relative to the phenotyping cost, selection could be performed 

on a larger number of individuals. Yet, the inclusion of a larger set or entries will have to be balanced 

with the necessity to limit population structuration and to maintain relatedness between the training 

set and candidate population. While applying high selection intensity on a large population could 

theoretically maximize a benefit to the breeding program, such value would essentially depend on 

population genetic diversity and the prevalence of superior genotypes.  
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Furthermore, it has been shown previously that PA could be improved with multi-environment models 

rather than using single-environment models (Burgueño, Campos, et al. 2012; Lopez-Cruz et al. 2015; 

Crossa et al. 2016; Cuevas et al. 2016; Cuevas et al. 2017; Ben Hassen et al. 2018; Jarquin et al. 2020; 

Yang Xu et al. 2021). Multi-environment trials are commonly performed in plant breeding, with trials 

in environments more or less close to the production environment, making it possible to evaluate the 

genotype and its phenotypic stability for traits under selection, or genotypes with high adaptation 

capabilities. In this context of GS and G×E interactions, the use of sparse testing methods in which only 

a subset of the genotyped individuals is also phenotyped in multiple environments could be attractive 

to reduce the phenotyping efforts (Jarquín et al. 2017b; Jarquin et al. 2020). Although very promising 

this strategy that relies on the use of various sites to calibrate the model, thus accounting for the GxE, 

is mainly dependant on the level of correlation between sites. To ensure a gain in resource allocation 

for the phenotyping step, certain site similarity should be considered.  

Another aspect to consider is the relationship between training and validation populations. Optimizing 

the training population has previously been shown to improve the predictive ability of genomic 

selection models (Rincent et al. 2012; Isidro et al. 2015; Akdemir, Rio, and Isidro y Sánchez 2021). 

Several methods have been developed to optimize the selection of individuals for inclusion in the 

training set based on the relationship between genotypes in the training set and/or between training 

and validation sets. The selection of genotypes to be phenotyped and included in the training set has 

two major interests: it could reduce the number of families to be phenotyped and at the same time, 

can increase predictive ability of the GS.  

Genomic selection can also shorten the length of reproductive cycles and increase genetic gain per 

unit time by reducing intergenerational time (Heffner et al. 2010; Spindel and Iwata 2018). However, 

only a few studies report germplasm development based on early genomic selection of promising lines 

(Mendonça et al. 2020). It is rare to see descriptions of GS applied on breeding populations composed 

of segregating progenies. A particularity of our plant breeding pipeline is a change from a very 

heterozygous genetic make-up in the population to a fixed germplasm prior to cultivar release. A 

potentially important difference in allelic fixation can be found between the calibration and the 

prediction unless GS is conducted when the germplasm has reached homozygosity, in which case a 

gain in time is not maximised. 

The collaborative rice breeding program between CIAT (International Center for Tropical Agriculture, 

member of the CGIAR centers) and Cirad (French Agricultural Research Centre for International 

Development) has developed synthetic populations, managed through recurrent selection (RS) which 

presents an ideal context for applying GS. The orientation towards the use of population improvement 

took place in the 90s following observation of the declining crop genetic diversity among improved rice 

germplasm (Martinez et al. 2014). A recurrent selection scheme consists of three main steps conducted 
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recurrently and is summarized as follows: i) evaluation of families, ii) selection of the best families, iii) 

inter-crossing of those best candidates to develop the next generation. In the CIAT-Cirad program, the 

RS scheme applied to the inbreeder rice was facilitated through the use of a recessive nuclear male-

sterility gene (ms-IR36, reviewed in Frouin et al. 2014) segregation in the population. The number of 

crosses and combinations of crosses among best haplotypes have never been limited during the 

various cycles of population breeding. At each cycle, about 3000 plants derived from the best 

candidates (segregating progenies of each candidate), randomly distributed in the field are the parents, 

either male or female parent, of the new cycle. In addition to the population improvement, at each 

cycle, the best candidates are selected to enter for the variety development pipeline which is 

conducted through conventional pedigree breeding. As detailed in Baertschi et al. (2021), the CIAT-

Cirad rice breeding program benefits from two distinct locations in Colombia to develop improved 

populations and inbred lines. At CIAT-HQ (Palmira, PAL) rice is grown under irrigated conditions 

throughout the year and with limited pathogen pressure. The second site, located in the Llanos of 

Colombia, farther from CIAT-HQ is at the Colombian National Federation of rice growers (Fedearroz) 

research station in Santa Rosa, Meta (SRO). The station is amidst one of the most productive rice 

growing areas in the country where rice is direct seeded and grown under rainfed conditions. This 

ecosystem is the target production environment for the japonica rice and the research field location 

in SRO presents the advantage for the breeding program to have a high incidence of diseases, notably 

blast. Two locations for phenotyping and a proof of concept that GS is feasible on the CIAT-Cirad 

japonica synthetic population, are the basis for our current research to apply GS for accelerated 

recurrent GS and optimization of the upland rice breeding scheme. An ideal situation for simplifying 

the breeding scheme would advocate the prediction of candidates as early as possible for population 

improvement through recurrent selection and for variety development through pedigree breeding. 

The first objective of the present study was to evaluate whether we can effectively apply GP models 

developed in early generation to select breeding candidates in the target production environment 

based on GEBVs. The second objective was to evaluate whether GP models including GxE interactions 

into the breeding program are improving the efficiency of RS. The third objective aimed at defining 

whether using two generations of progeny testing and combining two evaluation trials per year would 

improve the efficiency of the breeding program. Finally, a fourth objective was to evaluate whether 

optimizing the choice of these phenotyped individuals in combination with the two-site two-

generation scenario could significantly increase the predictive ability of GS and therefore, the genetic 

gain of the breeding program.  
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 Material and Methods  

3.3.1 Development of the used population  
The training and the validation sets were both derived from a rice synthetic population belonging to 

the tropical japonica group of rice (Oryza sativa L.) as described in Figure 3-1. The population 

development was earlier described (Grenier et al. 2015; Baertschi et al. 2021). Among a set of 

approximately one thousand fertile plants extracted from the PCT27 population, 384 were used for 

calibrating the model (PCT27A), while another set of 334 (PCT27B) was considered for validating the 

model. All 718 entries were advanced to the S0:2, S0:3 and S0:4 generation by bulk harvesting seeds from 

15 to 20 male fertile plants per line per generation as explained in Baertschi et al. (2021). A set of 50 

families at the S0:2 generation extracted from the set considered for model calibration and designed as 

“temporal checks” were included in each phenotyping trial to account for the year effect within the 

site. 

3.3.2 Genotyping 
Genotyping-by-sequencing (GBS) was performed on the 718 S0 plants as described in Baertschi et al. 

(2021). The genetic characterization of the two populations is presented in supplementary Tables and 

Figures. A total of 9,928 SNP markers fairly well distributed among the 12 rice chromosomes (SFig 3-1) 

The MAF distribution among the 718 S0 reflects a population where rare alleles were not depleted, 

which fits well with long-term objectives of a population breeding program. The degree of allelic 

Figure 3-1: Scheme of the GP models and origin of the set used to calibrate and validate the models. From the base 
population PCT27, two subsets were randomly constituted (PCT27A and PCT27B). Data acquirement, model calibration 
and model validation through CV within the PCT27A were described in Baertschi et al. (2021). 
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fixation varied greatly between the genotypes but remained relatively low for individuals at the S0 

generation (STable 3-1). Considering the rather large average LD (STable 3-2) and the slow LD decay 

observed, the average marker density (1 SNP every 40 kb) was considered sufficient so as to allow the 

capture of all linked QTLs with the SNP matrix in hand. Globally, the whole set of genotypes as two 

random fractions extracted from a large population were tested for any structuration (SFig  3-2). 

3.3.3 Field trial and phenotyping 
Field phenotyping was performed at two locations in Colombia from 2017 to 2020. The two sites are 

described in Baertschi et al. (2021) and consist of the experimental field at CIAT-HQ in Palmira (PAL) 

located in the Valle del Cauca, Colombia (3.50° N - 76.35° W, 1000 masl) and an experimental site in 

Santa Rosa (SRO) property of the Fedearroz, located in the Oriental plains of Colombia, in the 

department of Meta, Colombia (4.03° N - 73.48° W, 300 masl). While PAL location is a surrogate site 

with irrigation systems freeing rice trials from any constraint on planting time or any severe disease 

pressure, the SRO site is within a rice growing area, where the crop is cultivated under rainfed 

conditions during the main cropping season, May to September, and with the natural occurrence of 

various pathogens such as blast. 

Six trials were conducted for four years, using different semesters for each location. Field trials for the 

S0:2, S0:3 and S0:4 generation were established in PAL on 4 December 2017, 10 December 2018, and 26 

December 2019, respectively and in SRO on 12 May 2017, 30 May 2018, and 20 May 2020. PCT27A 

population was phenotyped at the S0:2 and S0:3 generations whereas PCT27B population was only 

phenotyped at the S0:4 generation. At each site, the experimental design followed a lattice with 16 

blocks and three repetitions and included the 334 families and the 50 S0:2 temporal check lines all 

randomly distributed across the design within each repetition of the two sites and three-year trials. In 

PAL, the trials were established after transplanting 3-week-old seedlings in a bundled field. The plot 

size was two rows of 17 plants with 25 cm between plants and between rows. Fertilizer application 

was split, with NPK nutrients (377 kg/ha urea, 188 kg/ha DAP, 189 kg/ha KCl) added at 25 and 35 days 

after transplanting. Irrigation was maintained continuously to ensure a 25 cm layer of water in the field 

until a week prior to the crop maturation period. In SRO, the trials were established by direct sowing 

of two 4 m-long rows, spaced by 26 cm at a density of 1 gram of seed per linear meter. Split fertilizer 

application was performed according to the recommended application for growing tropical japonica 

rice in upland soil conditions (230 kg/ha urea, 217 kg/ha DAP, 150 kg/ha KCl). Phytosanitary treatment 

was applied in SRO to prevent blast outbreaks. 

Four traits were measured following the IRRI Standard Evaluation System (IRRI 2013) on the whole 

training population including the 50 temporal checks. Flowering date (FL) was expressed as the number 

of days after crop establishment – being either the date after transplantation (PAL) or sowing (SRO) – 
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when 50% of the plants within a plot reached anthesis. Plant height (PH) was calculated as the average 

height measured in centimetres of five plants with their panicle extended. Grain yield (YLD) was 

obtained by weighing the grains collected within each plot after discarding the plants at the start and 

end of each plot. For each harvested plot, percent humidity was measured and used to correct the 

weight of collected grains, expressed in grams per plot, for a relative humidity of 14%. For some plots, 

due to the low harvest, humidity measurements were not taken but estimated by using other plots 

from other replicates of the same genotype. The YLD value was neither adjusted for the plot size nor 

for the count of fertile plants. The grain zinc concentration (ZN), expressed in parts per million (ppm), 

was measured on a subsample of collected grains polished in Teflon equipment, using energy 

dispersive X-ray fluorescence spectrometry (X-supreme 8000, Oxford Instrument, Shanghai, CN) 

available at the CIAT-HQ Nutritional Laboratory. The exact same procedure was used for generations 

S0:2 S0:3 and S0:4. 

The 50 temporal checks were phenotyped as S0:2 in all the trials. This allowed measurement of the non-

confounded year within site effect on the S0:2 and the generation effect in 2018 by analysing the data 

from the S0:2 and S0:3 lines (STable 3-3). 

3.3.4 Statistical analyses 

3.3.4.1 Elementary statistics 
The raw data were checked per trial for outliers using the boxplot.stats function of the R package “stats” 

(R Development Core Team 2018) with a coefficient of 1.5, which means that outliers were identified 

if the phenotypic values were outside 1.5 time the interquartile range above the upper quartile and 

below the lower quartile. No outliers were discarded. Variance decomposition was performed using 

the lmer function of the R package “lme4” (Bates et al. 2015). 

To correct for the fixed effects of location, replicate and bloc, best linear unbiased predictions (BLUPs) 

were estimated for each trait using the lmer function of the R package “lme4” (Bates et al. 2015) using 

the following model: 

 𝑦𝑖𝑗𝑘𝑙 = µ +  𝐿𝑜𝑐𝑖 + 𝑅𝑒𝑝𝑗(𝐿𝑜𝑐𝑖) + 𝐵𝑙𝑘 (𝑅𝑒𝑝𝑗(𝐿𝑜𝑐𝑖)) + 𝑔𝑙 + 𝑔𝑙 (𝐿𝑜𝑐𝑖) +  𝑒𝑖𝑗𝑘𝑙 model (3-1) 

where 𝑦𝑖𝑗𝑘𝑙  is the vector of phenotypic values, µ is the overall mean of the phenotypic values, 𝐿𝑜𝑐𝑖 is 

the fixed effect of the location i (PAL or SRO), 𝑅𝑒𝑝𝑗(𝐿𝑜𝑐𝑖) is the fixed effect of the replicate j (from 1 

to 3) within location i, 𝐵𝑙𝑘 (𝑅𝑒𝑝𝑗(𝐿𝑜𝑐𝑖)) is the random effect of the bloc effect k (from 1 to 8) within 

replicate within location with distribution 𝐵𝑙~𝑁(0, 𝜎𝐵𝑙
2 ), 𝑔𝑙  is the random effect of the genotype l, 

𝑔𝑙(𝐿𝑜𝑐𝑖) is the random nested effect of the genotype within location with distribution 𝑔~𝑁(0, 𝜎𝑔
2)and 

𝑒𝑖𝑗𝑘𝑙  is the residual considered as a random effect with distribution 𝑒~𝑁(0, 𝜎𝑒
2). The model was run 

by generation and the BLUPs values were used for prediction analyses. 

Broad sense heritability (H2) was estimated using the following model:  



Chapter 3 : Material and Methods 
 

88 

 𝐻2 =
𝜎𝑔

2

𝜎𝑔
2 +

𝜎𝑔:𝑙𝑜𝑐
2

𝑁𝐸
+

𝜎𝑒
2

𝑁𝑅

 
model (3-2) 

where 𝜎𝑔
2 is the genetic variance of the trait under study, 𝜎𝑔:𝑙𝑜𝑐

2  is the genetic by location variance, 𝜎𝑒
2 

is the residual variance, NE is the harmonic mean of the number of locations per genotype and NR is 

the harmonic mean of the number of replicates per genotype across the two locations. For each trait, 

correlations of phenotypic values between the two locations were performed using the rcorr function 

of the R package “Hmisc” (Harrell Jr 2021). 

3.3.5 Genomic prediction 
Genomic predictions were performed under several scenarios depending on the families included in 

the training set (TS) and the validation set (VS), as illustrated in Figure 3-2:  

1) The first scenario (Uni1) was a cross-validation to estimate the predictive ability of a model 

calibrated with the genotypes of plants at S0 generation and the phenotypes of their derived 

progenies at the generation (S0:4) evaluated in a single location (SRO) to predict the values of 

S0:4 families in SRO. In this scenario, the TS consisted in a random draw of 70% of the population 

PCT27B and the remaining 30% constituted the VS. 

2) The second scenario (Uni2) was used to evaluate the suitability of the models when families 

from the population PCT27A at generation S0:2 were used as a TS to estimate the genomic 

breeding values of all the families of PCT27B at generation S0:4. Only one environment (SRO) 

was included in this scenario. 

3) The third scenario (Uni3) was similar to Uni2 except the calibration was performed with 

PCT27A families at generation S0:3.  

4) The fourth scenario (Multi1) was performed to highlight the impact of genetic by environment 

interactions (GxE). Data from two locations (PAL and SRO) from a single generation (S0:4) were 

used. The TS was composed of 100% and 70% of the PCT27B families phenotyped at PAL and 

SRO, respectively, and the VS was composed of the remaining 30% of the PCT27B families 

phenotyped in SRO. The families from PCT27B whose phenotypes from SRO were included in 

the TS and VS were picked by random draw. 

5) The last scenario (Multi2) mixed all previous parameters. The potential of genomic prediction 

was assessed for calibration using data from PCT27A at generation S0:2 and S0:3 phenotyped in 

PAL and SRO respectively to predict PCT27B at generation S0:4. The TS consisted of the PCT27A 

families with 100% of S0:2 phenotyped in PAL and x% (x%= 25, 50 or 75%) of the S0:3 phenotyped 

in SRO, and the VS included all PCT27B families at S0:4 generation phenotyped in SRO. The x% 

of the S0:3 included in the TS were either randomly drawn or selected by an optimisation 

process, as presented below. 
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All genomic predictions were performed using the R package “BGGE” (Granato et al. 2018) with the 

following parameters: burn-in = 2,000, nIter = 15,000 and thin = 100.  

In the first scenario, two different prediction methods were used and compared: GBLUP (VanRaden 

2008) and RKHS (based on the reproductive kernel Hilbert space approach by Gianola and van Kaam 

(2008)). Because the results obtained from both approaches were similar; the GBLUP was preferred 

for all the analyses, and RKHS results were not shown in the present study. For Uni1, Uni2 and Uni3 

scenarios, the genomic predictions were run using a univariate single-environment model (SM) 

considering only the main genotypic effects. 

In the Multi1 and Multi2 scenarios a GxE interaction random effect was added to the predictive model. 

To do so, GxE genomic variance matrices were constructed, and genomic prediction performed using 

a Bayesian linear mixed model. Three different multi-environment models were used in the present 

study all available in the BGGE package:  

i) a multi-environment model (MM) assuming that genetic effects across the environment are constant, 

and therefore the absence of GxE. In this MM model, a single matrix was constructed, related to the 

main across-environment effects with the model looking as follow: 

 𝑦𝑖𝑗 = µ +  𝐿𝑜𝑐𝑖 + 𝑔𝑗 + 𝑒𝑖𝑗 model (3-3) 

with 𝐿𝑜𝑐𝑖  and 𝑔𝑗  are as described in model 3-1 with 𝑔𝑗  having a variance-covariance structure 

following 𝑔𝑗~𝑁(0, 𝜎𝑔
2𝐺), G being the genotype relationship matrix from VanRaden (2008); 

ii) a multi-environment model (MDs) which is an extension of the model 3-3 including a single random 

deviation effect of the GxE.  

Figure 3-2: The different scenarios of calibration and validation of the GP models to predict the phenotype of the 
PCT27B at the S0:4 generation in Santa Rosa (SRO). The red area represents the validation set (VS), the green and blue 
represent the training set (TS), from SRO and PAL, respectively. The percentage in the coloured areas represent the 
fraction of the population used to calibrate or validate the model. The x% of S0:3 families phenotyped in SRO included 
in the TS in Multi2 scenario varies from 25, 50 and 75 %. 
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 𝑦𝑖𝑗 = µ +  𝐿𝑜𝑐𝑖 + 𝑔𝑗 + 𝑔𝑗(𝐿𝑜𝑐𝑖) + 𝑒𝑖𝑗 model (3-4) 

the GxE effects following the normal distribution 𝑔𝑗(𝐿𝑜𝑐𝑖)~𝑁(0, 𝜎𝐺𝑥𝐸
2 G); 

iii) a multi-environment, environment-specific, variance GxE deviation model (MDe). This model is the 

same as model 3-4 with the difference that the environment-specific genetic effects follow the 

variance-covariance structure 𝑔𝑗(𝐿𝑜𝑐𝑖)~𝑁(0, [
𝜎𝑃𝐴𝐿

2 𝐺 0

0 𝜎𝑆𝑅𝑂
2 𝐺

])  𝜎𝑃𝐴𝐿
2  and 𝜎𝑆𝑅𝑂

2  being environment 

specific variances and 𝐺 the again the genotype relationship matrix. Full details about these models 

can be found in Granato et al (2018).  

3.3.6 Optimisation methodology 
Careful selection of the TS may be relevant to improve the accuracy of GP. Considering the Multi2 

scenario including multiple generations and two environments, one of our objectives was to test 

whether it was possible to reduce the phenotyping effort in SRO in generation S0:3. In this scenario, the 

CDmean-optimality criterion, based on the GBLUP mixed model, was used to select the TS and 

compared to randomly selected TS. Either twenty-five percent, 50% or 75% of the S0:3 phenotyped 

individuals grown in SRO were included in the TS. This model of optimization was proposed by Rincent 

et al. (2012), estimating the expected reliability of contrast predictions, defined as the squared 

correlation between true and predicted contrasts of genetic values. The parameters used were similar 

to those used for the previous model, adding a value of 1 for the variance ratio λ (λ=(1-h²)/h²) 

corresponding to a heritability of 0.5. The R TrainSel package (Akdemir, Rio, and Isidro Sanchez 2021) 

was used for the optimization process with the algorithm parameters as follows: number of iterations 

for the GA is 200, population size for GA is 300, and number of elite solutions at each iteration is 10. 

3.3.7 Model and scenario comparison 
For each model and scenario, the predictive ability (PA) was computed as the correlation between 

predicted and the phenotypic BLUPs adjusted by trial. To ensure that variations in accuracy between 

models and scenarios were not due to stochastic effects, all predictions were replicated 100 times, 

allowing the mean and standard deviation of each model to be estimated and compared using all the 

predictive abilities (100 PA for each model). The model comparisons were performed with a linear 

model considering the fixed effect of the method used.  

 Results 

3.4.1 Phenotypic performances  
Phenotypic data were collected for two consecutive generations in two separate locations on the same 

population of S0 progenies (PCT27A) in 2017 (S0:2) and 2018 (S0:3) and on another population of S0 

progenies (PCT27B) at the S0:4 generation in the same two locations in 2019 and 2020. The phenotypic 



Chapter 3 : Results 
 

91 

data from PCT27A were presented in Baertschi et al. (2021) and will not be described in the present 

results.  

For all four traits measured on the PCT27B, differences were observed between the two locations 

(Table 3-1). On average, flowering date (FL) was 6 days earlier and plant height (PH) 20cm shorter at 

SRO than at PAL. Yields (YLD) were largely reduced (5.5 times lower) at SRO and conversely, grain zinc 

concentrations (ZN) were 12.6ppm higher at SRO than at PAL. Coefficients of variation (CV) of all traits 

were higher at SRO than at PAL. 

Phenotypic correlations were 

relatively low ranging from 0.216 (for 

YLD) to 0.319 (for FL).  

For each trait measured an analysis of 

variance components was performed 

using model 2 (Table 3-2). 

Surprisingly, the proportion of 

variance explained by the genotype 

effect was particularly low for PH, 

explaining the near-zero H². 

However, distinguishing locations, it 

appeared that H² was negligible for 

PH measured at PAL, which was not 

considered except in Multi1 scenario, 

but high for PH measured at SRO (H² 

= 0.82 when the effects including 

location were removed). For all other 

 

    PCT27B S0:4 generation  

Trait1  Site Mean SD min max CV Corr 

FL 
PAL 87.38 3.84 78 96 4.39 

0.319 
SRO 81.68 5.73 69 96 7.02 

PH 
PAL 120.4 4.98 113.2 128.2 4.14 

0.229 
SRO 97.84 8.89 75 121 9.09 

YLD 
PAL 759.6 184.1 304.6 1240.1 24.2 

0.216 
SRO 137.0 50.1 65.4 270.5 36.6 

ZN 
PAL 14.68 1.83 10 19.6 12.5 

0.313 
SRO 27.27 3.65 18 37.5 13.4 

Table 3-1: Descriptive statistics for the PCT27B phenotyped at the S0:4 generation in two locations; Palmira 
(PAL) and Santa Rosa (SRO) with mean, standard deviation (SD), min, max, coefficient of variation (CV) and 
the phenotypic correlation (Pearson) between locations. 

1Traits are flowering date (FL), plant height (PH), grain yield per plot (YLD) and grain zinc concentration 
(ZN) 

Trait  
Variance 

component 
Variance Proportion H² 

FL 

Bloc 0.69 3.11 

0.67 

Genotype 7.95 35.83 

Location:Genotype 5.49 24.74 

Bloc:Rep:Location 0.8 3.61 

Residuals 7.26 32.72 

PH 

Bloc 1.014 2.41 

0.02 

Genotype 0.211 0.50 

Location:Genotype 15.49 36.88 

Bloc:Rep:Location 0.978 2.33 

Residuals 24.31 57.88 

YLD 

Bloc 237.93 1.311 

0.21 

Genotype 1293.41 7.121 

Location:Genotype 6356.78 35.00 

Bloc:Rep:Location 264.55 1.46 

Residuals 10007.7 55.11 

ZN 

Bloc 0.042 0.53 

0.51 

Genotype 1.854 23.45 

Location:Genotype 2.438 30.83 

Bloc:Rep:Location 0.404 5.11 

Residuals 3.169 40.08 

 

Table 3-2: Variance decomposition and broad sense heritability (H²) 
obtained using Model 2 by trait for the PCT27B at S0:4 generation 
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trait combinations, H² was moderate, ranging from 0.21 to 0.67, with a lower H² for YLD than for the 

other three traits. The GxE effect explained  

a non-negligible part of the variance with an explained proportion ranging from 25% to 37% for the 

four traits. 

3.4.2 Single generation single site calibrations 
The potential of GP was first tested with calibration using single generation data, either by cross-

validation (Uni1) or by prediction between population (Uni2 and Uni3) (Table 3-3). For prediction 

within PCT27B on progenies at the S0:4 generation (Uni1), PA ranged from 0.17 for ZN to 0.39 for YLD. 

The PA using a model calibrated at S0:2 (Uni2), was greater than with the S0:3 (Uni3) to predict the GEBVs 

of S0:4. The increase in PA using a different set of progenies was significant but moderate for FL and PH 

(PA increased by 0.08 in Uni2 compared to Uni1) and highly significant for ZN (PA=0.17 ± 0.08 and 

PA=0.32 ± 0.01 for Uni1 and Uni2, respectively). Differing from the other traits, YLD revealed a higher 

PA when calibrated directly on S0:4 than when the calibration was done on the S0:2 of the PCT27A (PA = 

0.39 ± 0.08 and 0.33 ± 0.01 for Uni1 and Uni2, respectively).  

3.4.3 Genomic selection and GxE interactions 
The Multi1 scenario considered one generation but two locations. It was tested to assess the utility of 

including the GxE interaction in the GP models. Using this scenario, it was possible to estimate the PA 

of models including a single location (SM), both locations with a location effect (MM), and the GxE 

interaction effect with a single or two different variances for each of the two locations (MDs and MDe, 

respectively). The PA obtained with the Multi1 scenario and the four different models are shown in 

Figure 3-3. From these analyses, it appeared that for FL, PH and ZN, the PA of models using multiple 

location (MM and MDs) were significantly higher than the model based on a single location (SM) with 

PA increased by +0.09, +0.04, and +0.1 for FL, PH and ZN, respectively. All three traits responded in 

broadly the same way: PA using the MM model had the highest values, followed by MDs and MDe. 

Only for FL and PH the PA values obtained with MM were not significantly different from those of the 

MDs model (PA for FL were 0.31 and 0.29 for MM and MDs, respectively and PA for PH were 0.34 and 

Training set Validation set Scenario FL PH YLD ZN 

S0:4 (70%) S0:4 (30%) Uni1 0.23 ± 0.08b 0.31 ± 0.07b 0.39 ± 0.08a 0.17 ± 0.08c 

S0:2 (100%)1 S0:4 (100%) Uni2 0.31 ± 0.01a 0.39 ± 0.01a 0.33 ± 0.01b 0.32 ± 0.01a 

S0:3 (100%)1 S0:4 (100%) Uni3 0.23 ± 0.01b 0.25 ± 0.01c 0.24 ± 0.01c 0.29 ± 0.01b 

 

Table 3-3: Predictive ability (PA, LSmeans ± standard deviation) for the three “Uni Site” scenario combining different make-
up of training set and validation set. Within a trait, values followed by different letters are significantly different (p<0.05). The 
description of the scenarios is in Figure 2-2. 

1Set derived from the PCT27A 
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0.32 for MM and MDs, respectively). While for FL the PA obtained with MDe (PA=0.25) was not 

significantly different to the PA obtained in SM (PA=0.22), for PH and ZN the MDe model induced a 

significant reduction in PA (-0.05 for PH, -0.07 for ZN). Except for YLD, the PA were always higher when 

two locations were included in the models. For YLD, the effect of including location without GxE 

interaction (MM model) greatly reduced PA with significantly lower PA (PA=0.28) than with the SM 

model (PA=0.39). However, including the GxE (MDs and MDe models) did not reduce the PA (PA=0.40 

and 0.38 for MDs and MDe, respectively) in comparison to SM model. 

3.4.4 Multi-generation and multi-environment genomic selection 
We previously showed that for most of the traits, PA were greater when using Uni2 scenario and the 

consideration of multiple environments tended to increase the PA of the GP models. Therefore, 

combining these approaches of early-generation prediction using a TS of genetic constitution differing 

from the VS and multi-environment GP, as presented in the Multi2 scenario, was tested (random part 

of Figure 3-4). In this scenario, the calibration was performed on PCT27A population. The TS consisted 

Figure 3-3: Predictive ability (LSmeans with error-bars representing the standard error) within the Multi1 scenario considering 
the single-site model (SM), the multi-site model without genotype by environment interaction (MM) and the multi-site model 
including the genotype by environment interaction with similar variances between environments (MDs) or with different 
variances between environments (MDe). Calibration and validation were performed within the PCT27B population 
phenotyped at the S0:4 generation in Santa Rosa (SRO) for the four traits of interest: flowering date (FL), plant height (PH), 
grain yield per plot (YLD) and grain zinc concentration (ZN). TS included 100% of the records in Palmira (PAL) and 70% of the 
records in SRO for all the models except SM where the TS included only 70% of the phenotypes recorded in SRO. For all 
models VS was 30% of phenotypes in SRO. 

YLD ZN 
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of 100% of the families phenotyped in PAL at the S0:2 generation and 25, 50 or 75% of the families 

measured at SRO at the S0:3 generation. The validation was made, as before, with the phenotypes of 

the whole population PCT27B at the S0:4 generation grown at SRO. With the exception of PH, it appears 

that the more phenotypes of S0:3 families are included in the TS, the higher the PA. For FL and YLD, the 

best estimates of PA (PA= 0.22 and 0.30, for FL and YLD, respectively) were found with an MDs model 

including 75% (250 from the 334 individuals) of the S0:3 phenotypes. For ZN, the best model (PA= 0.25) 

also included 75% of the S0:3 phenotypes but using the MM model, for which a location effect was 

included but without GxE interaction. Finally, for the PH trait, the results were completely different, 

with the best models being MM models (PA = 0.30), regardless of the number of S0:3 families included 

in the TS. 

3.4.5 Optimization of the training set  
Within the Multi2 scenario, one way to gain PA while keeping the phenotyping effort low would be to 

optimize the choice of individuals to be included in the TS. As TS optimization method, CDMean was 

Figure 3-4: Predictive ability (LSmeans with error-bars representing the standard error) for the multi-site model (Multi2 
scenario) without G × E interaction (MM), including the G × E interaction with similar variances between environments (MDs) 
or with different variances between environments (MDe). Validation was performed with the phenotypes of the PCT27B at 
generation S0:4 in Santa Rosa (SRO) for the four traits of interest: flowering date (FL), plant height (PH), grain yield per plot 
(YLD) and grain zinc concentration (ZN). Within a trait, the letters represent significant differences between estimations 
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performed to optimize the choice of the S0:3 families phenotyped at SRO to be included in the TS (Figure 

3-4). Globally, across the three TS sizes and the three GxE models, optimizing the selection of S0:3 

families to include in the TS increased the PA only for FL (from 0.23 to 0.26) compared to a random 

selection of the TS. 

The superiority of the largest TS (75% of the S0:3 families phenotyped at SRO) found in the random 

sampling holds true only for ZN in the case of optimized sampling of TS. Regarding the impact of the 

GxE interaction, the results were similar to those obtained when S0:3 families were selected by random 

draw except for FL where MDe appeared similar to the MDs model.  

3.4.6 Selection of the best families  
The main interest of GP is to estimate with high accuracy among a large set of progenies and with the 

least amount of phenotyping possible which families would be selected to be candidate for variety 

development and/or crossed to constitute the next generation. Therefore, it seemed important to 

evaluate if the different prediction models used would select the same families or not. By ranking the 

S0:4 families according to their GEBVs for a phenotypic performance in SRO, it was possible to define 

which progenies would be selected if the 10, 20 or 50 best ones, i.e. those with the highest GEBVs, 

were selected. This analysis was performed by combining all models together and calculating the 

percentage of times each family was selected (Figure 3-5). For all traits, it appears that a large majority 

of families were never selected because of their low GEBVs encountered across all 18 models. 

Moreover, few families were selected in almost all the models used. On average, eight to ten families 

Figure 3-5: Number of time (in %) families were selected across the 18 models of the Multi2 scenario (with random draw or 
optimization of the S0:3 families included in the TS) when selection threshold was 10 (in blue), 20 (in orange) or 50 (in grey) 
best according to their estimated GEBVs 
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were selected in at least 50% of the GP methods (STable 3-4) when the 10 best families were selected. 

This number increases from 18 to 21 and 47 to 52 depending on the trait considered when the 20 and 

50 best families were selected, respectively. 

 Discussion  
Genomic selection can have a significant impact in terms of improving genetic gain in plant breeding 

programs (Bernardo and Yu 2007; Heffner, Jannink, and Sorrells 2011; Rutkoski et al. 2012; Sorrells 

2015; Grenier et al. 2015). Currently, phenotyping is one of the most challenging and costly activities 

in breeding programs. Genomic assisted breeding has been advocated as a major player to develop 

climate-smart and nutrient dense crop cultivars in a cost- and time-efficient manner (Varshney et al. 

2021). However, even in the context of genomic selection, it is still important to find a way to reduce 

phenotyping efforts, however not at the cost of a reduced predictive ability (PA) of prediction models. 

The constitution of the training set (TS) to calibrate the prediction models have been shown to strongly 

influence the PA values (Spindel et al. 2015; Berro et al. 2019; Merrick et al. 2022). The overall objective 

of the present study was to assess whether genomic prediction (GP) could improve the recurrent 

selection scheme in the actual CIAT-Cirad program. Specifically, we wanted to investigate which TS 

with which GP models based on the infrastructure of the program would allow the highest PA and the 

possibility to achieve higher genetic gain. To do this, several scenarios were developed and tested 

through their ability to predict GEBVs of families of a population (PCT27B) at a specific generation (S0:4) 

phenotyped at one target site (SRO). Thus, different prediction models were considered depending on 

the inclusion data originating from two locations, the consideration of the G×E interaction, the addition 

of data from a different set of progenies derived from the original population (PCT27), and the 

generation, size and composition of the TS. 

3.5.1 Predictive ability in a single environment and in a single population  
The variance decomposition and PA of the S0:2 and S0:3 generations of PCT27A have been analysed in 

Baertschi et al. (2021) and will not be discussed in this study (STable 3-5), except to compare them to 

the results we obtained on the subset of progenies PCT27B at the S0:4 generation. Although the models 

used to estimate the variances were not exactly similar, the results were close. The PA obtained for 

the prediction of S0:4 families at SRO were relatively low compared to those previously estimated in 

the literature (reviewed by Ahmadi et al. 2020). Compared to the PA from the cross-validation of 

Baertschi et al. (2021) on the S0:2 and S0:3 generations (PCT27A), the PA estimates were lower for the 

S0:4 in PCT27B (STable 3-6). The only exception was the PA for YLD where the values were comparable 

between the generations of the families evaluated, as well as to estimates made on other selection 

programs (Spindel et al. 2015; Grenier et al. 2015; Morais Júnior et al. 2018; Yang Xu et al. 2021). For 

ZN, Baertschi et al. (2021) obtained PA of 0.26 and 0.24 in the S0:2 and S0:3 generations and the estimate 
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was 0.17 in the S0:4 generation, showing a high decrease in advanced generations. Early generation GP 

using phenotypes measured at the S0:2 generation appeared to be more accurate than using 

phenotypes of families measured at later generation. One potential explanation could be that the year 

had a relatively high effect which randomly resulted in higher PA when the calibrations was based on 

S0:2 rather than on S0:3. Another potential explanation could be that the model is calibrated with 

genomic information of S0 plants, thus the segregating families used to generate the phenotypic 

dataset are closer to their original parent, and the association between the genomic information and 

the phenotypic expression in the derived families is better. This observation holds for all traits but YLD 

for which a potential loss of allelic diversity during the three cycles of generation advances by selfing 

and bulk harvest could have had a lesser impact than for the more oligogenic traits. Other explanations 

can also be suggested to explain this phenomenon of reduced PA at more advanced generation, such 

as the probability of error during the generation advance phase. The unexpected gene flow from 

mistakenly collected seed from sterile plants segregating in the families could also have induced an 

error rate in the estimation of the GEBVs on the more advanced generations. Nevertheless, this 

observation of better PA achieved with phenotypic data from S0:2 families is of great interest as it 

suggests that phenotyping for model calibration could be performed as early as possible in the 

recurrent selection breeding scheme. 

3.5.2 Potential to increase intensity of selection 
One of the great potentials of GS lies in its ability to increase the selection intensity (Heffner et al. 

2009; Hunt et al. 2018; Cobb et al. 2019; R2D2 Consortium et al. 2021). Phenotypes of PCT27B S0:4 

families in SRO were predicted with a TS consisting of individuals from another S0 progeny (PCT27A) at 

the S0:2 generation with better accuracy than with a model using these PCT27B S0:4 families in the TS. 

Therefore, in population breeding with thousands of S0 plants available, it appears possible to calibrate 

a model with early generation families (S0:2) derived from a set of a few hundred S0 progenies to predict 

the value of S0:4 families in the rest of the population. The result was surprising given that predicting 

S0:4 at SRO with a model built with the same genetics (PCT27B families) gave a lower PA than using 

different set of S0 progeny for calibration (PCT27A families), with additional potential year and GxE 

interaction effects. One potential reason could that S0:2 families are less fixed than S0:4, their progeny 

means are more representative of the PCT27 at large, thus more adequate to predict a different subset 

of the population. Obviously, biases due to GxE is another potential explanation that cannot be 

excluded. Nevertheless, the Uni2 scenario seems promising to include GP in the current CIAT-Cirad 

breeding program, with early calibration of the genomic model based on fewer families than the 

number of potential candidates for selection (the genotyped S0 plants).  



Chapter 3 : Discussion 
 

98 

However, there is still room for improvement, notably in terms of speed and cost of the program. Two 

phenotyping locations are available, one being a site where rice can be grown all year around, which 

raises the question of whether the sparse phenotyping could be applied the in the CIAT-Cirad breeding 

program. 

3.5.3 Interest in considering GxE interactions 
Although SRO is the target selection site, it is far away from CIAT-HQ, and more complex to manage 

within the research activities. PAL being a more practical location for conducting field location, our 

objective was to concentrate the phenotyping efforts on the surrogate site while keeping relevance 

for the target site. In the S0:4 generation for each trait, phenotypic correlations between the two 

locations were relatively low, and lower than reported in the earlier generation except for YLD 

(Baertschi et al. 2021). This low phenotypic correlation between location suggests a high genotype-by-

environmental effect and makes accurate prediction across sites more difficult. (Hunt et al. 2018). The 

value of sparse testing – multi-environment trial in which some families are phenotyped in all locations 

while others are phenotyped in only one location – is clear. It allows a reduction of investments in 

phenotyping in multiple locations. Instead of evaluating the whole population in each environment, 

the population is divided in sets each evaluated in another location (Burgueño, de los Campos, et al. 

2012; Jarquín et al. 2014a; Lopez-Cruz et al. 2015; Ben Hassen, Bartholome, et al. 2018; Millet et al. 

2019a). However, this option, despite its strong economic incentive, must be carefully considered if 

phenotypic correlation between locations is not high. Therefore, one of the objectives of the present 

study was to evaluate the possibility to combine a reduced phenotyping effort at SRO and complete 

phenotyping of families at PAL. The sparse testing design within a population, holds potential in the 

context of the CIAT-Cirad breeding program as it could be possible to reduce the phenotyping effort at 

SRO and even increase the PA for FL, PH and ZN. Only for YLD, the PA of the multi-environment model 

assuming no GxE interaction (MM model) was significantly reduced compared to the single site model 

(SM) or any of the other models including GxE interactions (MDs and MDe models). This was also the 

only trait which did not benefited from an evaluation in surrogate site in Baertschi et al. (2021). This 

confirms that for complex traits with low site correlation, there is no added value in phenotyping in 

more location to calibrate the GP model. On the contrary, calibration with multisite data improved the 

PA for FL, PH and ZN, but only in cases where no GxE or GxE with a single variance was considered 

(MM and MDs). The calibration models considering the environment-specific variance (MDe) were 

similar to the GP model developed in Baertschi et al. (2021). On a different set of S0 progenies from 

the same PCT27 population, larger PA for all the traits were obtained when data from the whole 

population phenotyped in the surrogate site were included in the calibration. However, while for FL, 

PH and ZN the calibration model significantly increased the PA in the IMB strategy (334 and 200 families 
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at PAL and SRO, respectively) including environment specific variance of Baertschi et al. (2021), such 

was not the case in our study. The PA using MDe model to predict PH and ZN was lower than those 

achieved with any other models within the Multi1 scenario (Figure 3-3), and to the previously reported 

study, likely because of a strong reduction in correlation between sites, or a difficulty inherent to the 

use of the S0:4 generation of families, as mentioned earlier (Table 3-3). 

Despite this, using only the PCT27B S0:4 generation, the multi-environment models (Multi1) allow for 

an increase in the number of families included in the TS (all the PCT27B, i.e. 334 families phenotyped 

in PAL) compared to the single-environment model (Uni1) where the TS consisted of 70 % of PCT27B 

(i.e. 234 families phenotyped in SRO), which may also have an impact on increasing the PA of the 

models. Combining phenotypes from more locations acquired on early generations of a set of S0 

progenies to predict on a larger set of S0 genotypes would have a greater impact on genetic gain, as it 

would increase the intensity of selection, reduce time to selection and potentially, increase the 

accuracy of predictions. 

3.5.4 The inclusion of GxE interactions in a multi-generation model 
PAL is an ideal location to produce a large amount of high-quality seeds due to the optimal conditions 

all year around and thus the lack of stress impacting rice productivity. The use of families phenotyped 

in the S0:2 generation at PAL and a subset of those in the S0:3 generation at SRO in the TS (Multi2 

scenario) was set as a scenario of interest to test. This sequence was proposed as growing the S0:2 

during the off season in PAL allows gathering of phenotypic data and production of seeds for the 

evaluation of S0:3 in SRO during the main season. Overall, as described above, the higher the proportion 

of S0:3 at SRO included in the TS, the higher the PA, in line with what is commonly reported that larger 

TS improves PA (Ahmadi et al. 2020). Regardless of the model and trait, the PA using the Multi2 

scenario are always lower than the PA using the Uni2 scenario where the TS consisted of S0:2 families 

grown at SRO, with a reduction of PA ranging from 9.1 to 29 % when the best model is considered in 

the Multi2 scenario. These relatively strong reductions in the present analyses can be explained by 

different points already mentioned: i) the low correlations between locations; ii) the fact that S0:4 can 

be further distant from the S0 plants and some genome/phenotype relations are missed; iii) the 

presence of environment × year interaction effects.  

One way to potentially improve the PA in this Multi2 scenario would be to optimize the choice of S0:3 

families grown at SRO to be include in the TS. Several studies have demonstrated an improved PA, 

when the choice of individuals to be included in the TS was optimized using a specific optimization 

method (Rincent et al. 2012; Akdemir, Sanchez, and Jannink 2015; Akdemir, Rio, and Isidro y Sánchez 

2021; Mangin et al. 2019; Isidro y Sánchez and Akdemir 2021) such as CDmean (Rincent et al. 2012), 

based on the variance of prediction error derived from the realized additive relationship -BLUP model. 
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Improved PA with optimized TS can thus conduct to reduce the phenotypic effort without reducing the 

power of GP. Such an optimization of the S0:3 included in the TS resulted in a higher PA for FL (maximum 

a + 0.08 for the MDe models and 25% of S0:3 in the TS), but it did not significantly improve the PA of 

PH, YLD and ZN, regardless of the model and proportion of S0:3 considered.  

3.5.5 Impact of the GP models on the family ranking  
As we have seen, the choice of the genomic prediction models will have an impact on PA values. These 

PA values are only used to describe the achieved correlations between BLUPs and GEBVs, which may 

or may not lead to changes in the choice of families to select for the next cycle of recombination 

(Blondel et al. 2015; Mendonça et al. 2020). Regardless of the method and the model used to predict 

GEBVs, the objective of all these predictions is to rank individuals and select the best ones to be used 

as parents for the next cycle of selection.  

Overall, the different models had a good ability to select the same individuals at the top of the ranking. 

The ranking of individuals was relatively similar between the prediction methodologies, which leads to 

the conclusion that the methodologies and models used to predict GEBVs will not have a substantial 

impact in the actual genetic gain of the breeding program.  

3.5.6 Economic impact of the different scenarios 
The scheme is based on two parts: the RS for population improvement and the pedigree breeding for 

genetic fixation and selection of candidates for variety release. A strategy opted for in this scheme of 

variety development is to advance the selected families to a relatively good level of genetic fixation 

(S0:4) by bulk harvest in order to maintain the variability within the family, prior to proceed to two 

generations of pedigree breeding. While advancing generation in PAL, this material is used to calibrate 

the model. In recurrent selection, the possibility to select quickly the best families through progeny 

testing will help recycle faster and recombine the best selected candidates to improve the population. 

Ultimately, we want to have a rapid, easy, and cost-effective way to select the best families for 

recombination and for generation advance in order to develop new cultivars. This was the rational for 

testing all the strategies presented in this work for which we compared scenarios based on various 

uses of surrogate sites, or sparse testing in the two locations. Our findings reveal that PA was greater 

when performing calibration with the Uni2 scenario, compared to Uni1, Uni3 or any Multi scenario. 

Yet, in the top 50 best ranked families, 26 to 47% were similar between Uni2 and the best Multi2 

scenario including 50% of S0:3 at SRO in the TS (STable 3-4). Comparing our five scenarios in terms of 

time spent for the calibration, while the GP model could be built in 1.5 years for the Uni2, Uni3 and  
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Table 3-4: Time and cost for each scenario to generate the material (generation advance) and phenotype the training set (TS) 
to calibrate a genomic prediction (GP) model and produce the generation on which to start pedigree breeding scheme. Cost 
X$PAL and X$SRO are unit price for the phenotyping of 1200 plots in Palmira (PAL) and Santa Rosa (SRO), respectively. 

* year-semester; ¶ generation planted → generation harvested 

 Multi2 scenario, it took 3 years for Uni1 and Multi1 scenarios (Table 3-4). This means that the 

calibration work needed for prediction and selection of the best candidates for RS can be reduced, by 

phenotyping families as early as possible. In terms of cost, we fixed a reference cost per location as the 

cost of the trials we conducted for this study, being 1X$PAL and 1X$SRO for the 1200 plots in PAL and 

SRO, respectively. The phenotyping involving families at a more advanced generation will necessarily 

result in higher cost due to the need for multiplication steps (although still less costly than a 

phenotyping step (0.4X$PAL)) rather than for an evaluation as no replicated design and no phenotyping 

is involved) and the evaluation of the advanced generation families (Table 3-4). If phenotyping in the 

target site is more costly than in the surrogate location either because it involves that the breeders 

travel and be hosted in a different city, or because it requires a particular management due to high 

pathogen pressure that would impact the evaluation of grain quality traits, or it implicates some risks 

due to abiotic constraints, the multi-location (Multi2) strategy can be of interest to cost saving as only 

Scenario Season* 
Generation 

¶ 
TS size 

Generation advance 

in PAL 

Phenotyping 
GP Total cost 

PAL SRO 

Uni1 

Yr1-A S0:1 → S0:2 100% 0.4X$PAL    

1.2X$PAL + 1X$SRO 

Yr1-B S0:2 → S0:3 100% 0.4X$PAL    
Yr2-A S0:3 → S0:4 100% 0.4X$PAL    
Yr2-B no activity      
Yr3-A S0:4 → S0:5 100% 

  
1X$SRO GP 

Uni2 

Yr1-A S0:1 → S0:2 100% 0.4X$PAL    

0.9X$PAL + 1X$SRO 
Yr1-B S0:2 → S0:3 100% 0.4X$PAL    
Yr2-A S0:2 → S0:3 100%   1X$SRO GP 

Yr2-B S0:3 → S0:4 sel. fam 0.05X$PAL    

Uni3 

Yr1-A S0:1 → S0:2 100% 0.4X$PAL    
0.8X$PAL + 1X$SRO Yr1-B S0:2 → S0:3 100% 0.4X$PAL    

Yr2-A S0:3 → S0:4 100% 
  

1X$SRO GP 

Multi1 

Yr1-A S0:1 → S0:2 100% 0.4X$PAL    

2.2X$PAL + 1X$SRO 

Yr1-B S0:2 → S0:3 100% 0.4X$PAL    
Yr2-A S0:3 → S0:4 100% 0.4X$PAL    
Yr2-B S0:4 → S0:5 100%  1X$PAL   
Yr3-A S0:4 → S0:5 100% 

  
1X$SRO GP 

Multi2 

Yr1-A S0:1 → S0:2 100% 0.4X$PAL    
1.4X$PAL + 0.6X$SRO Yr1-B S0:2 → S0:3 100%  1X$PAL   

Yr2-A S0:3 → S0:4 50%   0.6X$SRO GP 
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a fraction of the population is phenotyped in the target site. Furthermore, having two sites will allow, 

if problem occurs, to still have a phenotyping record on the population in one location. In our case, 

1X$SRO >> 1X$PAL and Multi2 scenario with one year being enough to phenotype the whole population 

at S0:2 at PAL and 50% of the population at S0:3 at SRO was the most economic (1.4X$PAL + 0.6X$SRO), 

even though the PAs were lower (from 0.23 to 0.30) than with the Uni2 (from 0.31 to 0.39) for the four 

traits considered. Uni2 was the best scenario in terms of PA and the cost estimated at 0.9X$PAL + 1X$SRO. 

Thus, the question comes whether the saving resulting from using the Multi2 scenario (about 4,000 

USD) in comparison with Uni2 is worth it, considering the latter had higher PA, notably for PH (+0.1). 

Yet the question does not stop at this observation as one should also consider the environmental risks 

in the target site for losing a season, which will be the only source of phenotypes for calibrating the 

model. There is also the possibility to further optimize the scheme by phenotyping a reduced set of 

the population in the two locations with a common fraction in both locations, as in the BAL2 scenario 

of Baertschi et al. (2021), but this was not tested in the current study. 

The inclusion of the GP in our breeding scheme also has to include a model update to ensure that the 

GP model stays relevant while the population improves through the recurrent cycles of genomic 

selection. The cost of the breeding program will thus have to include this step of recurrent model 

update. This is currently being tested with a simulation approach.  

Our study revealed that phenotype measured as early as S02 have some predictive ability for later 

generation phenotypes. Based only on the PA, the best approach is still to only phenotype in the target 

site. However, considering practical concern such as securing the availability of data for selection, 

multi-environment calibration might have a place in the breeding program. 
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 Supplementary Figures 

 

SFig 3-1: Density of SNP markers in the two populations (PCT27A and PCT27B) and the TC set (713 S0 plants) in the 12-
chromosome R package Synbreed (Wimmer et al. 2012) 

 

 

SFig  3-2: Biplot from PCA performed on 7,766 SNP (after prunning) and 713 S0 plants (PLINK). Grouping by colour of 
PCT27A, PCT27B and the temporal checks (TC belonging to PCT27A) 
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STable 3-3: Phenotypic correlations between years for the 50 temporal checks repeated in all trials in SRO. Means are in 
diagonal. 

 

STable 3-4: Number of families selected included in the 10, 20 or 50 best ones according to their estimated GEBVs in all the 
methods of the Multi2 scenario 

 

Selection of the 10 best 
families 

Selection of the 20 best 
families 

Selection of the 50 best 
families 

Trai
t 

Number 
of 

families 
selected 
at least 

once 

Number 
of 

families 
selected 

in at 
least 50% 

of the 
models 

Numbe
r of 

families 
selecte
d in all 

the 
models 

Number 
of 

families 
selected 
at least 

once 

Number 
of 

families 
selected 

in at 
least 50% 

of the 
models 

Numbe
r of 

families 
selecte
d in all 

the 
models 

Number 
of 

families 
selected 
at least 

once 

Number 
of 

families 
selected 

in at 
least 

50% of 
the 

models 

Numbe
r of 

families 
selecte
d in all 

the 
models 

FL 25 10 2 40 18 7 95 48 21 
PH 29 9 0 54 18 2 104 52 10 
YLD 27 8 1 44 21 3 87 48 26 
ZN 36 9 0 68 19 1 120 47 4 

 

  

FL S0:2 S0:3 S0:4 

S0:2 86.5 0.53 0.69 

S0:3 
 88.1 0.61 

S0:4     86.4 

 1 

PH S0:2 S0:3 S0:4 

S0:2 128.5 0.72 0.75 

S0:3 
 127.2 0.62 

S0:4     128.4 

 1 

YLD S0:2 S0:3 S0:4 

S0:2 701.7 0.64 0.52 

S0:3 
 712.8 0.57 

S0:4     715.2 

 1 

ZN S0:2 S0:3 S0:4 

S0:2 14.8 0.79 0.80 

S0:3 
 15.1 0.71 

S0:4     14.9 

 1 
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STable 3-5: Variance decomposition and broad sense heritability (H²) obtained using Model 2 by trait and generation 

    PCT27A S0:2 PCT27A S0:3 

Trait  
Variance 

component 
Variance 

Proportio
n 

H² Variance Proportion H² 

FL 

Bloc 0.03 0.11 

0.57 

0.97 4.23 

0.75 

Genotype 9.68 34.57 8.42 36.75 

Location:Genoty
pe 

12.51 44.68 1.92 8.38 

Bloc:Rep:Locatio
n 

0.2 0.71 0.66 2.88 

Residuals 5.58 19.93 10.94 47.75 

PH 

Bloc 1.98 2.57 

0.68 

4.45 7.84 

0.77 

Genotype 23.56 30.62 22.25 39.18 

Location:Genoty
pe 

8.77 11.40 4.96 8.73 

Bloc:Rep:Locatio
n 

2.02 2.63 <0.001 0.00 

Residuals 40.62 52.79 25.13 44.25 

YLD 

Bloc 22.31 0.12 

0.38 

845.19 8.77 

0.21 

Genotype 2354.9 12.14 516.48 5.36 

Location:Genoty
pe 

3908.6 20.15 1872.05 19.41 

Bloc:Rep:Locatio
n 

1498 7.72 392.82 4.07 

Residuals 11611 59.87 6015.79 62.39 

ZN 

Bloc 0.279 4.69 

0.53 

<0.001 0.00 

0.57 

Genotype 1.436 24.14 1.31 26.44 

Location:Genoty
pe 

1.688 28.37 1.278 25.79 

Bloc:Rep:Locatio
n 

0.004 0.07 0.287 5.79 

Residuals 2.542 42.73 2.08 41.98 
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STable 3-6: Predictive ability of the different scenarios and models 

Scenario Model FL PH YLD ZN 

Uni1  0.225 ± 0.077 0.309 ± 0.069 0.388 ± 0.079 0.174 ± 0.080 

Uni2  0.311 ± 0.005 0.389 ± 0.005 0.333 ± 0.005 0.323 ± 0.006 

Uni3  0.229 ± 0.004 0.254 ± 0.006 0.243 ± 0.008 0.293 ± 0.006 

Multi1 SM 0.220 ± 0.082 0.309 ± 0.069 0.388 ± 0.079 0.174 ± 0.080 

Multi1 MM 0.313 ± 0.082 0.341 ± 0.074 0.282 ± 0.078 0.275 ± 0.076 

Multi1 MDs 0.292 ± 0.080 0.321 ± 0.070 0.396 ± 0.072 0.209 ± 0.078 

Multi1 MDe 0.246 ± 0.085 0.258 ± 0.069 0.382 ± 0.073 0.105 ± 0.076 

Multi2 Random_25_MM 0.157 ± 0.019 0.295 ± 0.011 0.225 ± 0.016 0.204 ± 0.020 

Multi2 Random_50_MM 0.186 ± 0.018 0.297 ± 0.013 0.251 ± 0.017 0.233 ± 0.022 

Multi2 Random_75_MM 0.200 ± 0.012 0.296 ± 0.008 0.274 ± 0.014 0.250 ± 0.016 

Multi2 Random_25_MDs 0.186 ± 0.033 0.265 ± 0.024 0.243 ± 0.038 0.178 ± 0.045 

Multi2 Random_50_MDs 0.216 ± 0.024 0.261 ± 0.020 0.274 ± 0.032 0.221 ± 0.035 

Multi2 Random_75_MDs 0.223 ± 0.015 0.264 ± 0.013 0.295 ± 0.023 0.241 ± 0.021 

Multi2 Random_25_MDe 0.175 ± 0.038 0.245 ± 0.035 0.221 ± 0.055 0.167 ± 0.047 

Multi2 Random_50_MDe 0.204 ± 0.030 0.250 ± 0.024 0.254 ± 0.039 0.211 ± 0.041 

Multi2 Random_75_MDe 0.204 ± 0.023 0.255 ± 0.017 0.285 ± 0.027 0.238 ± 0.027 

Multi2 CDmean_25_MM 0.184 ± 0.012 0.288 ± 0.006 0.218 ± 0.013 0.184 ± 0.012 

Multi2 CDmean_50_MM 0.206 ± 0.010 0.277 ± 0.009 0.250 ± 0.013 0.225 ± 0.011 

Multi2 CDmean_75_MM 0.212 ± 0.008 0.290 ± 0.006 0.272 ± 0.011 0.238 ± 0.010 

Multi2 CDmean_25_MDs 0.253 ± 0.016 0.234 ± 0.015 0.236 ± 0.025 0.145 ± 0.025 

Multi2 CDmean_50_MDs 0.255 ± 0.012 0.227 ± 0.009 0.289 ± 0.019 0.203 ± 0.016 

Multi2 CDmean_75_MDs 0.242 ± 0.009 0.246 ± 0.008 0.289 ± 0.015 0.223 ± 0.013 

Multi2 CDmean_25_MDe 0.259 ± 0.016 0.195 ± 0.020 0.242 ± 0.032 0.149 ± 0.026 

Multi2 CDmean_50_MDe 0.261 ± 0.016 0.206 ± 0.014 0.276 ± 0.019 0.187 ± 0.019 

Multi2 CDmean_75_MDe 0.239 ± 0.013 0.234 ± 0.009 0.282 ± 0.016 0.214 ± 0.014 
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Avant-Propos 

Ce dernier chapitre m’aura permis de me familiariser avec la simulation de programme de sélection, 

un monde en soit. Il m’a également permis de considérer très en détail le programme de sélection 

CIAT-Cirad. Ça a également été l’opportunité de collaborer avec Giovanni Eduardo Covarrubias Pazaran 

et Christian Werner de l’EiB (Exellence in breeding) deux très bons généticiens quantitatifs et 

spécialistes de la simulation. Ils m’auront aidé à scripter la simulation et nous ont fait de précieuses et 

pertinentes critiques sur le contenu du chapitre 4. Ce chapitre sera soumis à la revue à BMC Plant 

Biology. 
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 Abstract 
Population improvement via recurrent selection has recently regained attention in the plant breeding 

community with the possible integration of genomic prediction (GP) in the schemes due to the 

reduction of genotyping costs. For several decades, the CIAT-Cirad rainfed rice (Oryza sativa L.) 

breeding program has been using a two-parts breeding program with a population improvement based 

on recurrent selection and a cultivar development following pedigree breeding. More recently, the 

recurrent selection integrated GP to improve the efficiency of progeny evaluation. In this study, we 

used simulations to assess the long-term effect of the integration of GP into the CIAT-Cirad breeding 

program. We investigated the effect of trait architecture (levels of genotype-by-environment 

interaction (GxE) and dominance) on the performance of two breeding schemes. The current breeding 

scheme based on a two-year phenotypic evaluation for the training set (BS1) was compared with a 

strategy based on a one-year evaluation (BS2). 

For the recurrent selection part, the observed rate of genetic gain (ΔG) ranged from 1.37% to 5.29% 

for the two traits under positive selection and from -0.32% to 0.21% for the two traits selected for 

stability. This variability was mostly associated with the breeding schemes (with BS1 having the 

greatest gain) and the level of GxE. The level of dominance had little impact on ΔG. As expected, the 

differences between the two schemes increased in favour of BS1 when the level of GxE increased. The 

ΔG were lower and a higher interannual variability was found for the candidate varieties at the end of 

the product development part. The better performances of BS1 were related to the higher accuracies 

of the genomic prediction models: 0.64 and 0.59 on average for BS1 and BS2, respectively. With the 

increase of GxE, the accuracies dropped for both schemes with similar intensity. 

Population improvement via recurrent selection is an ideal framework for designing efficient short-

cycle breeding programs and therefore increases the rate of genetic gain for complex traits. The results 

from the simulation experiments are currently being used for the optimization of the CIAT-Cirad 

breeding program toward a faster genetic progress. 
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 Introduction 
Food demand is expected to increase between 45% and 51% by 2050 (van Dijk et al. 2021).The increase 

in yield observed in the last decades is however not sufficient to cover future demand (Ray et al., 2013). 

While meeting the food demand will be a challenge for agriculture in the future, it will have to be done 

while taking into account changing rainfall patterns (Trenberth, 2011), increasing temperatures (Zhao 

et al., 2017) or new biotic stresses (Bebber et al., 2013) due to climate change. In this race against time 

to ensure food security, plant breeding has a central role to play. Indeed, genetic improvement has 

been shown to be an important driver of the increase in plant production over the last decades (Laidig 

et al., 2014; Piepho et al., 2014). However, the gains from breeding varied greatly depending on the 

crops and the breeding programs. 

Genetic gain is the change in population mean across time following artificial selection. It is influenced 

by the intensity of selection, its accuracy, the additive genetic variance available in the population 

under selection and the length of a breeding cycle as formalized in the breeder’s equation (Lush, 1937). 

By looking at its parameters, one finds valuable information on how to address the genetic gain of a 

breeding program. Recently, much attention has been given to the optimization of public breeding 

programs with a great wealth of advice and potential leads to increase the rate of genetic gain for yield 

(Cobb et al. 2019b; Rutkoski 2019). Among the different options to increase the rate of genetic gain, 

the most promising is the reduction of the breeding cycle length via the integration of genomic 

prediction (GP). Since its introduction in the 2000 (Whittaker, Thompson, and Denham 2000; 

Meuwissen, Hayes, and Goddard 2001), GP has gained in popularity among plant breeders due to the 

drastic reduction in the genotyping costs. The concept of GP is simple: train a statistical model with 

genotypic and phenotypic information from a reference population and then use the model to predict 

the performance of selection candidates based only on molecular markers. GP has been tested and 

validated on multiple crops and types of population and is now a valuable tool in the breeder’s toolbox 

(Crossa et al., 2017; Hickey et al., 2017; Jannink et al., 2010; Lorenz et al., 2011). 

By nature, breeding programs are complex and the integration of new methodologies, such as GP, 

always necessitates evolutions of the breeding schemes. For logistical reasons as well as fear of ending 

up with a less efficient program, the introduction of new methods and tools are generally slow. 

Therefore, strong evidence of the positive impact of the integration of new tools are required to plan 

their integration. Stochastic simulation is a fast and cost-effective tool to test breeding schemes under 

conditions relevant for the target breeding program. Recent simulation studies have shown that GP is 

especially interesting in the context of recurrent selection (RS) (Gaynor et al., 2017; Müller et al., 2017). 

Those works shed a new interest on this now old breeding technique (Hull, 1946) in the plant breeding 

world, even though it is classically used by animal breeders (Hickey et al., 2017). 

https://www.zotero.org/google-docs/?qClpV4
https://www.zotero.org/google-docs/?AulZRD
https://www.zotero.org/google-docs/?1Kch1g
https://www.zotero.org/google-docs/?1Kch1g
https://www.zotero.org/google-docs/?FUzYE2
https://www.zotero.org/google-docs/?DCAvtb
https://www.zotero.org/google-docs/?DCAvtb
https://www.zotero.org/google-docs/?5FzKF8
https://www.zotero.org/google-docs/?fSEk9W
https://www.zotero.org/google-docs/?29xoOS
https://www.zotero.org/google-docs/?uSWUIq
https://www.zotero.org/google-docs/?4CD9nY
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The CIAT (Centro Internacional para la Agricultura Tropical) with the Cirad (Centre international de 

recherche agronomique pour le développement) have together run a breeding program for upland 

rice for Latin America and the Caribbean for more than 30 years. In 1996, the decision was made to 

broaden the genetic base from which varieties were derived (Châtel et al., 2005). To reach this 

objective, the program has been based on two distinct parts: a population improvement part based on 

RS and a product development part based on pedigree breeding, with the improved population serving 

as a source of diversity for the pedigree breeding. RS was described by Fehr et al. (1991) as “the 

systematic selection of desirable individuals from a population followed by recombination of the 

selected individuals to form a new population”. The CIAT-Cirad program uses a classical progeny 

evaluation for the selection of the recurrent parent. In this breeding scheme, selected S0 plants (as 

they went through zero generation of selfing) are advanced in generation through selfing and bulking 

up to S0:2 and S0:3 for phenotyping (the main traits are: days to flowering, plant height, grain yield, grain 

zinc content and tolerance to blast). The selection of the S0 is then based on S0:2 and S0:3 phenotypes. 

The crosses are realized with the progeny of the selected S0 at generation S0:1 to generate the new 

population of S0 for the next cycle. To facilitate and increase the number of crosses in the RS scheme, 

the breeding program uses a segregating male sterility gene (ms-gene) (Frouin et al., 2019; Singh and 

Ikehashi, 1981). As the phenotypes are easily visually identified, the breeder can plant a mix of families 

segregating for this gene and let open pollination happen in the field. Then, by harvesting male sterile 

plants, one can ensure getting sibs or half-sibs seeds coming from outcrosses. For this reason, the 

crosses are done with S0:1, the bulked progeny from S0, at this generation, 25% of the individuals are 

male sterile which allows a sufficient rate of outcrossing. With this strategy, a cycle is completed every 

four years: ½ year to get the crosses, ½ year to advance to S0:1, ½ year to advance to S0:2, ½ year to 

advance to S0:3, 1 year to phenotype the S0:2 families and 1 year to phenotype the S0:3 families. As 

crosses are done with S0:1, the advance in generation is useful only for phenotyping and not to generate 

the material necessary for the crosses. This shows high potential for improvement if the selection of 

the parental families could be disconnected from the actual phenotyping as it has been shown that 

increasing the number of recombination steps per unit of time can increase the genetic gain (Gorjanc 

et al., 2018). 

GP has already been evaluated in the framework of the CIAT-Cirad rice breeding program. Grenier et 

al. (2015) experimented with different genomic prediction models on advanced lines within a single 

environment as well as with different types of genotypic data. With predictive abilities of 0.31 for grain 

yield, 0.30 for flowering or 0.54 for plant height, results were considered promising. However, the 

approach suffered from one major drawback: it was applied relatively late in the program, in 

generation S2:3 for genotyping and S2:4 for phenotyping. Based on those first results, the integration of 

GP was improved by using S0 genotypes and progeny obtained from S0:2 and S0:3 families (Baertschi et 

https://www.zotero.org/google-docs/?YFEpWi
https://www.zotero.org/google-docs/?lwfgSt
https://www.zotero.org/google-docs/?OjFgpH
https://www.zotero.org/google-docs/?OjFgpH
https://www.zotero.org/google-docs/?bbzMyp
https://www.zotero.org/google-docs/?bbzMyp
https://www.zotero.org/google-docs/?A1WNIS
https://www.zotero.org/google-docs/?WemdFN
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al., 2021). This second experiment also took the opportunity to integrate the multi-environment aspect. 

When new material was predicted for the targeted environment, predictive abilities of 0.25 for yield, 

0.37 for zinc concentration, 0.33 for flowering or 0.40 for plant height have been recorded. The 

conclusions about the utility of a multi-environment approach, however, varied depending on the level 

of genotype-by-environment interaction associated with each trait. 

Encouraged by such results, the CIAT-Cirad breeding program started to implement GP in its 

population improvement scheme. So far, the approach has been to take the same experimental design 

as in the full phenotypic selection scheme and use it to train a predictive model as in Baertschi et al. 

(2021). Two years of phenotyping allow the capture of part of the genotype-by-year interaction, 

however it requires time for the generation advancement as well as for the phenotyping itself. Also, 

as the phenotyping is done in two consecutive years on two consecutive generations, there is a risk to 

confound the year (environment) and the generation effects under this scheme. Additionally, if a 

supplementary year of phenotyping does not slow down the RS, it will delay the collection of new 

phenotypic data and add one more recombination event between the newest calibration data and the 

predicted genotype. This will increase the number of crossing steps and possibly the genetic distance 

between the calibration and prediction population with potential negative impacts on the prediction 

accuracy. The simplest and easiest way to reduce the cost of the phenotyping would be to limit it to 

one generation/year of phenotyping. It would not only halve the phenotyping effort but also reduce 

the number of crossing events between the newest calibration material and the prediction set. 

However, there would be no way to account for the year effect on the tested material. Under those 

conditions, traits showing strong genotype-by-environment interactions are expected to deliver poor 

calibration data as the year fluctuation would be confounded with the intercept and genetic effect. As 

the dominance variance evolves through the generations of fixation, they are expected to also 

influence the accuracy of the phenotyping and hence the predictive ability of our model. 

The goal of this study was therefore to assess the long-term performances of the CIAT-Cirad upland 

rice breeding program: a two-part breeding program integrating a rapid cycling genomic selection 

component. We compared two breeding schemes combining RS and GP: one based on the current 

strategy with two generations of phenotyping by cycle to update the GP model (BS1) and a second one 

with only one generation of phenotyping to represent a scenario where the budget is limited (BS2, 

Figure 4-1). We investigated the impact of different levels of dominance and genotype-by-environment 

interactions (GxE) on each breeding scheme in order to identify the conditions that favour one scheme 

over the other. The simulation parameters were chosen to reflect as closely as possible the CIAT-Cirad 

breeding program. Four traits (T1, T2, T3 and T4) and their relative level of variance were modelled to 

represent the four main traits of the program (grain zinc content, grain yield, days to flowering and 

https://www.zotero.org/google-docs/?WemdFN
https://www.zotero.org/google-docs/?NhxnNg
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plant height). The genetic gain, the accuracy of prediction, the variance component and the allele 

frequencies were followed to dissect the performances of the two breeding schemes (BS1 and BS2). 

 Material and Methods 

4.3.1 Breeding scheme description 
A schematic representation of the simulated breeding schemes can be found in Figure 4-1 and details 

on the population sizes used and the number of years necessary for its application are given in STable 

4-6 for BS1 and STable 4-7 for BS2. 

4.3.1.1 Current breeding strategy: Breeding scheme 1 
The breeding scheme 1 (BS1), as well as the alternative BS2 (see below), can be described in three 

tasks depending on each other in terms of data and material but not necessarily locked together in 

terms of time. The first task consists in running RS . In its first semester, 500 candidates for selection 

Figure 4-1: Schematic representation of the two breeding schemes. The colored squares represent populations in the field 
while the orange circles stand for tasks done on those populations. The black arrows represent a flow of information and the 
orange arrows a flow of material. On the upper part are the two recurrent selection parts and on the lower panel the common 
product development part. 
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are randomly sampled in a population of S0, their genotype is acquired, and their genomic estimated 

breeding values (GEBV) predicted. Based on the GEBV, the best 50 S0 are selected for building the 

recombination set. This set of S0 and an the additional next best 150 S0 based on GEBV are used as an 

update set for the prediction model. All 200 S0 are selfed and their S0:1 progenies are bulked by S0 to 

build families. For the recombination set, 60 seeds per family are mixed to create a population for open 

pollination. The open pollination is made possible in autogamous rice by the presence of a segregating 

male-sterility gene (see Appendix 1 for details). The male sterile plants can only be fertilized by pollen 

from other male fertile plants and will carry S0 seeds from which a new cycle of RS can be started. One 

cycle of RS needs one semester for the open pollination and one semester for the generation advance 

from S0 to S0:1. Under those conditions, a RS cycle lasts one year with parental material recycled every 

year.  

We considered that we have a prediction model from the beginning of the population. Under this 

condition, the RS can be run independently but the model is expected to lose its accuracy over the 

cycles. For this reason, a second task consisting of the phenotyping for the model-update is connected 

to the RS. For the 150 S0 only in the update set, all the S0:1 progenies are selfed and bulked to advance 

to generation S0:2 while, for 50 S0 also in the recombination set, the seeds remaining after the sampling 

for future recombining are used. In a similar way, part of the S0:2 seeds are used to advance to 

generation S0:3 while the rest is kept for phenotyping. The same operation is done on S0:4 progenies 

with one part used for phenotyping and the rest kept for later generation advancements. The 

phenotyping consisted of measuring the mean value of a plot composed of bulked progeny coming 

from a single S0. The exact same design was applied at generation S0:2 and S0:3. Once the phenotyping 

was completed, the means of the S0:2 and S0:3 phenotypes were computed and used with the genotypes 

from their respective S0 plant to update the GP model. Based on the phenotypic data as well as on the 

genotypic data from S0, the best families were selected as a base population for pedigree breeding and 

advanced to generation S0:4 using the stored S0:3 seeds. In theory, generation advance and phenotyping 

could be done at the same time. However, in practice the generation advance is currently done 

separately as combining phenotyping and seed production activities would increase too much the risk 

of mistakes. 

With the pedigree breeding starts the third task of the program: the product development. For two 

consecutive generations, S0:4 followed by S4:5, the 20 best families and then the five best plants within 

the family were selected. After the pedigree breeding, the selected plants went through a step of 

multiplication consisting of one generation of selfing and bulking of progeny to generate enough 

material for the upcoming field testing. The lines go through three multi-environment yield trials: the 

observation yield trial (OYT), the preliminary yield trial (PYT) and the advanced yield trial (AYT). The 

OYT is done in two sites with two replicates and allows the selection of 50 lines based on adjusted 
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phenotypes. It is followed by the PYT run in three sites with three replicates. At the end of this step 20 

lines are selected to go through the AYT. The AYT is realized in five sites with three replicates and 

allows at the end the selection of five candidate varieties. This represents the scheme as it is currently 

run and is later referred to as BS1. 

4.3.1.2 Alternative breeding strategy: Breeding scheme 2 
In an effort to reduce the phenotyping to a single generation, a second scheme (BS2) was tested with 

the GP model update based on the phenotyping in S0:2 only (Figure 4-1). The recurrent selection runs 

as in BS1 as well as the advance in generation up to S0:2. Once in generation S0:2, part of the material 

was used for phenotyping while the rest was kept aside for generation advance. The candidate families 

for pedigree breeding were selected on their GEBV based on a model calibrated with S0:2 phenotypes 

and S0 genotypes. The selected families were then advanced to generation S0:3 and S0:4. The product 

development started from there and the scheme followed the same steps as BS1 with two generations 

of pedigree breeding, one generation of multiplication and three generations of yield testing. 

4.3.2 Simulation 

4.3.2.1 Genome simulation 
The genome was simulated to approach a rice genome. It had 12 chromosomes with a physical length 

of 33.4*106 base pairs, a genetic length 140 cM (Chen et al., 2002) and the default mutation rate of 

2.5*10-8. Each chromosome had 833 SNP and 300 quantitative trait loci (QTL). The effective population 

size (Ne) was set at 50, according to the real breeding population (Baertschi et al., 2021). The genome 

simulation was done with the software MaCS (Chen et al., 2009) embedded in AlphaSimR (Gaynor et 

al., 2021) which was used for later simulation. 

4.3.2.2 Initial population 
Based on the simulated genome, 80 heterozygous founders were generated. From the 80 founders, 

4,500 crosses were realized with ten progeny per cross. From those 45,000 S0 plants, 300 were 

randomly sampled to assemble a first synthetic population. The 300 crosses were used to generate 

again 4,500 random crosses giving each ten progenies generating a new synthetic population. Those 

successive crossings and random samplings were realized in total five times. Within the offspring from 

the fifth random crosses, 400 S0 were randomly sampled to be used as the initial population. 

The genome simulation followed by the creation of the initial population was replicated twenty times 

and the same replicates were used later for both breeding schemes. Details on the population size are 

given in STable 4-8. 

4.3.2.3 Genetic and phenotypic values 
Four correlated traits were simulated (T1, T2, T3 and T4). The mean values and total genetic variance 

in the initial population were chosen to reflect the one observed in the program for zinc concentration 

https://www.zotero.org/google-docs/?broken=Jxr4nN
https://www.zotero.org/google-docs/?broken=x8RDRd
https://www.zotero.org/google-docs/?broken=k4fa6s
https://www.zotero.org/google-docs/?broken=wTrZKD
https://www.zotero.org/google-docs/?broken=wTrZKD
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of the grain (T1), the grain yield (T2), the number of days from sowing to flowering (T3) and the plant 

height (T4) (Table 4-1). Three levels of dominance were tested. AlphaSimR simulates dominance effects 

as the product of dominance degrees and the absolute additive effect. The dominance degrees are 

sampled from a normal distribution with custom parameters (Table 4-1). Three different variances 

were used, while the mean was kept at zero. This means that the probability of a strongly dominant 

QTL varied among the variance of dominance degree but they were always equally likely to be positive 

or negative. 

Three levels of genotype by environment interaction (GxE) always proportional to the additive variance 

were simulated (Table 4-1). The heritabilities for the different steps involving phenotyping were set 

after the values in Table 4-2. More details on the method of trait simulation can be found in the 

vignette “Traits in AlphaSim” (Gaynor, 2020). 

For each phenotyping step, heritabilities are chosen with values close to what could be observed in 

field experiments of similar design (Table 4-2). AlphaSimR requires an error variance to simulate 

phenotypic values from genetic values. This error variance 𝜎𝜀
2  was computed at each phenotyping 

steps following the function: 

 𝜎𝜀
2 =

𝜎𝑔
2

𝐻𝑠𝑡𝑒𝑝
2  Eq. 4-1 

with 𝜎𝑔
2being the true genetic variance and 𝐻𝑠𝑡𝑒𝑝

2  the heritability parameter given for each trait at each 

phenotyping step. 

 

Table 4-1: Parameter for the trait simulation. Number of QTLs is the total number of loci with effects, Mean is the intercept 
for the genetic value, Genetic variance gives the total genetic variance for each traits, the Mean DD gives the centre of the 
normal distribution from which the dominance degree for each locus is drawn and the DD variance is used to compute is 
standard deviation, varGxE is the total genotype by environment interaction and is computed from as varGxE=(GxS + 
GxY)*Genetic variance 

  
T1 T2 T3 T4 

Number of QTLs 
 

3600 

Mean 
 

20 500 100 100 

Genetic variance (Var) 
 

7 500 50 50 

Mean DD 
 

0 

DD variance 
 

Low = 0.1, High = 0.6 

varGxE = Var x GxE 
 

Low = 1, Medium = 3, High= 5    

Additive genetic correlation T1 T2 T3 T4  
T1 1 -0.1 0.1 -0.1  
T2 -0.1 1 -0.2 0.2  
T3 0.1 -0.2 1 0  
T4 -0.1 0.2 0 1 
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4.3.2.4 Genomic prediction models 

Recently the CIAT-Cirad program used the genotyping of 400 S0 and their subsequent phenotyping in 

S0:2 and S0:3 to build a strong initial calibration population (Baertschi et al., 2021). Following the same 

approach, the initial GP models of the simulations (one for each trait) were calibrated on 400 S0 from 

the initial population and their phenotypes in S0:2 and S0:3 for BS1 or S0:2 for BS2. Then, two different 

phases of genomic prediction application were simulated. For the first cycles of the simulations, the 

GP models were calibrated using the genotypes and the phenotypes of the 400 families from the initial 

population. These models were only updated after cycle 5 or cycle 4 for BS1 and BS2, respectively. 

Indeed, the progeny testing phase takes three or four years depending on if S0:2 and S0:3 generations 

are evaluated or only S0:2 (Figure 4-1). This was done to mimic the transition between the phenotypic 

selection and the genomic selection. After these first cycles, the GP model was updated at each cycle 

by adding 200 new S0 to the calibration sets. 

The predictions were based on a random regression best linear unbiased predictor (RRBLUP) with the 

following model: 

 𝑌𝑖𝑗 = 𝜇 + 𝑐𝑖 + 𝑔𝑖𝑗 + 𝜀𝑖𝑗 Eq. 4-2 

The prediction accuracy was estimated as the correlation between the GEBV and the line ability of the 

predicted S0. The line ability of a cross is the “expected value of all lines which can be derived from it” 

(Gallais, 1979). To compute it, 100 double haploid (DH) for each S0 predicted were generated and their 

average genetic value (GV) (DHGV) computed. The precision was then measured as 

𝑐𝑜𝑟(𝐺𝐸𝐵𝑉, 𝐷𝐻𝐺𝑉). 

4.3.2.5 Index definition 
The multi-traits selection was based on a selection index. Target gains stated as the number of 

standard deviations were defined and adjusted using the variance-covariance between the traits by 

matrix multiplication 𝑅 = 𝐺−1𝑡, 𝐺−1 being the inverse of the trait variance-covariance matrix and t 

the vector of target change in the population means. The indices are then used in the index 𝐼𝐺 = 𝛽𝑅𝑋û 

where 𝑋  is the matrix of allele dosages for the predicted genotypes and û is the vector of marker 

effects (Céron-Rojas and Crossa, 2018). Two different vectors of targets 𝑡′ = [𝑡𝑇1 , 𝑡𝑇2 , 𝑡𝑇3 , 𝑡𝑇4] were 

used, one for the selection of parental families used in the recurrent selection part t_RS’= [0.8, 1, 0, 0] 

Table 4-2: Heritabilities set for the 
different steps of the breeding 
scheme. Heritability for generation 
S0:3 is relevant only for BS1 

Step T1 T2 T3 T4 

Progeny testing S0:2 0.4 0.2 0.3 0.6 
Progeny testing S0:3 0.4 0.2 0.3 0.6 
Pedigree breeding S0:4 0.1 0.1 0.1 0.1 
Pedigree breeding S4:5 0.1 0.1 0.1 0.1 
OYT 0.5 0.4 0.6 0.8 
PYT 0.5 0.4 0.6 0.8 
AYT 0.5 0.4 0.6 0.8 
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and one for the three different yield trial steps at the end of the pedigree breeding t_PD’= [0.5, 1, 0, 

0]. 

4.3.3 Breeding scheme evaluation 

4.3.3.1 Genetic gain  
The two breeding schemes were compared for different scenarios considering the levels of GxE and 

dominance in the set of traits simulated. First the change in population mean was followed at 

generation S0. The true genetic values were extracted at each cycle for all the available crosses and not 

only the candidates S0 (n = 500) and averaged. Similarly, the true genetic values for the fixed lines 

obtained at the end of the pedigree breeding part (varieties, n = 5) were extracted and averaged by 

cycle. Based on those means by cycle, the genetic gain over the 20 cycles were computed as GG =
1

20
∗

(
𝐺𝑉20̅̅ ̅̅ ̅̅ ̅−𝐺𝑉0̅̅ ̅̅ ̅

𝐺𝑉0̅̅ ̅̅ ̅
) ∗\100, for G𝑉0

̅̅ ̅̅ ̅ being the mean genetic value of the initial population and G𝑉20
̅̅ ̅̅ ̅̅  at the last 

cycle (20). Aside from the population mean, the total genetic variance as well as its additive fraction 

were measured across all cycles for all treatment and breeding schemes. 

For the step involving phenotyping the broad sense heritabilities were computed as 𝐻2 =
𝜎𝐺

2

𝜎𝑃
2 to control 

the simulation. This was done for S0:2 and S0:3 progeny testing and OYT to get a sense of the precision 

of the phenotyping at those stages. Only the simulations of BS1 were displayed but the values are 

expected to be the same no matter the breeding scheme. 

4.3.3.2 Evolution of the population diversity and structure 
The additive and dominance variance were tracked across the cycles on the S0 population. The 

genotypes at the QTLs (n=3600) were extracted from the 500 genotyped S0 plant and the minor allele 

frequencies (MAF) for each QTLs were computed at five different cycles (1, 5, 10, 15, 20) during the 

simulation for all breeding schemes, GxE levels and dominance levels. 

A principal component analysis was also run on the combined genotypic matrix of the genotypes of 

the non-QTL SNPs (n=9,996) of the 500 candidates for prediction at S0. The outputs were limited to 

cycles 1, 5, 10, 20 plus the 400 genotypes of the initial population (cycle 0). The results for one replicate 

of BS1 with low dominance and medium GxE is displayed. 

 Results 

4.4.1 Genetic gain in a two-part breeding scheme 

4.4.1.1 Population improvement and rate of genetic gain 
The two breeding schemes (Figure 4-1, BS1 and BS2) were first compared for the evolution of the mean 

genetic value of the population at S0. This allowed an assessment of the scheme for population 

improvement under the different levels of GxE and dominance. Looking at the evolution of the 

population mean (Figure 4-2), clear trends either for gain (T1 and T2) or for stability (T3 and T4) were 
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found. The observed rate of genetic gain (ΔG) ranged from 2.78% to 5.29% for T1, from 1.37% to 2.41% 

for T2, from -0.32% to 0.08% for T3 and from 0% to 0.21% for T4 (Table 4-3). The variability observed 

within each trait was related to the breeding scheme, the level of GxE and to a lesser extent the level 

of dominance (STable 4-1). Differences between the two breeding schemes were observed for T1 with 

BS1 presenting a significantly higher ΔG than BS2 in average (ΔG = 4.48% for BS1 compared to ΔG = 

3.88% for BS2). A similar trend was found for T2 with the average ΔG at 1.92% for BS1 and at 1.75% 

for BS2. The GxE levels had a significant effect on the ΔG for all traits but T4. As expected, ΔG decreased 

as the level of GxE increased. For T1, the average ΔG dropped from 5.07% under low GxE to 3.47% 

under high GxE. Similarly, for T2 the average ΔG went from 2.27% under low GxE to 1.48% under high 

GxE. While the effect was in general more pronounced under BS2 than under BS1, no trait showed an 

interaction between the breeding schemes and the GxE levels. Considering the two traits selected for 

stability, T3 and T4, no significant differences were observed between the schemes nor between the 

GxE levels (STable 4-1). Despite selection for stability, T3 and T4 means did slightly evolve across the 

cycle. While the population mean for T3 decreased, the population mean for T4 increased. The 

dominance levels influenced significantly the population mean for T1, T2 and T3. For T1 and T2, higher 

dominance level resulted in lower ΔG while for T3, the ΔG were higher when dominance was high 

(Table 4-3, STable 4-1). 

The differences between the two schemes did increase in favour of BS1 with increasing GxE. This was 

especially visible with T1. Initially small in the first cycles, the differences increased to reach a 

Trait Dom Scenario S0 Varieties 

      Low GxE Medium GxE High GxE Low GxE Medium GxE High GxE 
T1 Low BS1 5.28 4.37 4.35 4.33 3.52 3.52 
  High BS1 5.25 4.20 3.44 4.37 3.28 2.86 
  Low BS2 4.92 3.80 3.33 4.51 3.66 2.86 
  High BS2 4.80 3.68 2.78 3.91 3.25 2.08 
T2 Low BS1 2.41 1.97 1.52 1.72 1.40 1.15 
  High BS1 2.26 1.72 1.62 1.61 1.23 1.18 
  Low BS2 2.30 1.80 1.39 1.68 1.29 1.03 
  High BS2 2.12 1.51 1.37 1.48 1.11 0.93 
T3 Low BS1 -0.09 -0.05 0.08 0.07 0.00 0.05 
  High BS1 -0.32 -0.11 -0.13 -0.25 0.05 -0.03 
  Low BS2 -0.04 -0.06 -0.14 -0.13 -0.24 0.13 
  High BS2 -0.25 -0.12 -0.07 -0.06 0.00 0.07 
T4 Low BS1 0.06 0.11 0.01 0.06 0.13 -0.10 
  High BS1 0.16 0.14 0.15 0.24 0.17 -0.06 
  Low BS2 0.06 0.14 0.00 -0.02 0.26 -0.06 
  High BS2 0.20 0.06 0.08 0.16 0.00 0.01 

 

Table 4-3: Genetic gain per cycle. The genetic gain was obtained by standardizing the total population increase on the 
population mean at cycle 1 and divided by the total number of breeding cycles. The genetic gain was computed on the true 
breeding value of the S0 and of the candidate varieties. For the S0, a cycle is done in one year and it can be seen indistinctly 
as genetic gain per cycle or per year. 
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maximum after 20 cycles. The population mean under BS1 was at this point 9% higher than the 

population mean under BS2 at high GxE while only 4% higher at low GxE. Differences between schemes 

were smaller for T2 with the average differences between the schemes across all GxE and dominance 

levels ranging from 1% to 4% at the maximum at cycle 20. The population mean of T3 and T4 behaved 

more erratically and no tendency in scheme performances due to GxE or dominance could be observed. 

4.4.1.2 Genetic gain of the candidate varieties 
Differences between the breeding schemes were also investigated on fixed lines at the end of the 

product development part. Compared to the ΔG obtained for the RS, the ΔG of fixed lines were lower 

and a higher interannual variability was found (Figure 4-3, Table 4-3). Indeed, the trends in genetic 

Figure 4-2: Evolution of the population mean at S0. The mean genetic value computed on all the available crosses S0 (n=4500) 
and averaged on 20 replicates. The results for BS1 are in blue while the results for BS2 are in green. The levels of dominance 
are identified by the color darkness, darker colors standing for low dominance and brighter color for high dominance. The 
three levels of GxE are as columns and each row is a different trait (see Table 4-1 for trait definition). 
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mean presented a less continuous increase for T1 and T2 and a saw-tooth profile for T3 and T4. A clear 

increase was found for traits under selection with ΔG ranging from 2.08% to 4.51% for T1 and from 

0.93% to 1.72% for T2 (Table 4-3). The values ranged from -0.25 to 0.13% for T3 and from -0.10% to 

0.26% for T2. As for the RS part, an increase in GxE levels significantly reduced the ΔG for T1 and for 

T2. Despite the absence of significant interaction between breeding schemes and GxE levels, the drop 

in ΔG due to the increase in GxE was stronger for both traits under BS2 (STable 4-2). For T1, no 

significant effect of the breeding scheme was found on ΔG. However, this average trend hid an increase 

of the difference between BS1 and BS2 when the level of GxE increased. For low GxE, the largest gain 

(ΔG = 4.51%) was observed under the BS2 (4.51% for BS2 compared to 4.33% for BS1). For the higher 

Figure 4-3: Evolution of the mean of the varieties at the end of the product development. The mean genetic value computed 
on all the available crosses variety (n=5) and averaged on 20 replicates. The results for BS1 are in blue while the results for 
BS2 are in green. The levels of dominance are identified by the color darkness, darker colors standing for low dominance and 
brighter color for high dominance. The three levels of GxE are as columns and each row is a different trait (see Table 4-1 for 
trait definition). 
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level of GxE, the inverse was found: 3.52% for BS1 and 2.86% for BS2. Contrary to T1, the difference 

between breeding schemes was significant for T2, with an average ΔG of 1.38% for BS1 against 1.25% 

for BS2 (STable 4-2). For T2, the strongest gains were observed for BS1 under low GxE and low 

dominance (ΔG = 1.72%) which correspond to a ΔG of 1.68% under BS2. 

Dominance levels had a significant effect on ΔG for T1 and T2. Under low dominance, the average ΔG 

of T1 was 3.84% and dropped to 3.41% when dominance was high. Similarly, for T2 the average ΔG 

went from 1.38% under low dominance to 1.26% under high dominance.  

4.4.1.3 Comparison between recurrent selection and product development 
The final values of the population and of the fixed lines were very close, sometimes even lower for the 

fixed lines with differences varying between a reduction in mean of -6% of the population value or an 

increase of 9%. The pedigree breeding allowed a slightly better selection for T2 with a gain between 

population and fixed lines mean of 5-7%. For T1 and T2, differences between population and fixed lines 

means were not influenced by the scheme. The response of the ΔG of the RS part and of the candidate 

varieties to the GxE and dominance were rather similar and both BS1 and BS2 showed lower ΔG on the 

candidate varieties than on the RS part. Proportionally to the RS ΔG, differences were about half as 

large under T1 than under T2, where ΔG of at varieties-level were about 70% of the one observed for 

the population improvement. For T3 and T4, the differences between improvement of the population 

and improvement of the varieties mean are much less homogenous across the GxE and dominance 

levels as well as across the schemes with the relative difference in ΔG taking values between -300% 

and +200%. As we wanted to select T3 and T4 for stability, we see that our breeding scheme performed 

best at selecting for populations with stable T3 and T4 mean rather than for fixed lines with stable 

values. 

4.4.2 Role of genomic prediction on breeding scheme performance 

4.4.2.1 Prediction accuracies 
All traits showed a similar trend in terms of the evolution of prediction accuracies (Figure 4-4). The 

initial accuracies were high, almost at 0.8 for T1, T2 and T4 and around 0.7 for T3 when calibration data 

were from still closely related genotypes. Then, up to the third cycle under BS2 and up to the fourth 

cycle under BS1 the accuracy dropped. After the models were updated five or six times, accuracies got 

back to their initial values for T1, T2, T4 and even higher than the initial accuracy for T3. 

For T1, the highest accuracies were obtained under low GxE for both breeding schemes. BS1 reached 

0.72 under low dominance and 0.71 under high dominance. For the low GxE as well BS2 was at 0.69 

and 0.65 for low and high dominance respectively. With increasing GxE, the accuracies dropped for 

both schemes with also increasing differences between the two. The lowest accuracies were for both 

schemes under high GxE and dominance. The picture was very similar for T2 with smaller differences 
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between BS1 and BS2. Again, average accuracies were at the highest under low GxE with 0.69 for BS1 

and 0.66 for BS2. They dropped to 0.48 for BS1 under high GxE and 0.45 for BS2. Differences between 

the two dominance levels were smaller than for T1. For both T1 and T2, the accuracy of the differences 

between the schemes, the GxE levels and the dominance levels increased with the cycle. The average 

accuracy for T3 was higher than for T1 and T2. Although, it started slightly lower than the other traits, 

the accuracy increased more in the last cycles pulling the average upward. When the GxE increased so 

did the differences between BS1 and BS2. More importantly, the difference was visible from the first 

cycle and stayed more or less constant across all simulated cycles. T4 was similar to T3 as the last cycles 

Figure 4-4: Prediction accuracy for the line value of S0. The accuracy was computed as the correlation between the GEBV and 
the mean genetic value of 100 double haploid lines developed from the S0 sampled for genomic selection (n=500). The single 
replicate accuracies were first Fisher transformed before the average was computed on the 20 replicates and the results 
back transformed. The blue lines stand for BS1 and the green lines for BS2. The levels of dominance are identified by the 
color darkness, darker colors standing for low dominance and brighter color for high dominance. The three levels of GxE are 
as columns and each row corresponds to a different trait (see Table 4-1 for trait definition). 
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showed accuracies higher than the initial ones. The differences between the breeding schemes were 

less pronounced than under T3 especially when the GxE was high. 

Looking at the mean accuracies across all cycles, the two breeding schemes delivered significantly 

different value for all traits with accuracy for BS1 systematically higher than the one for BS2 (STable 

4-4, STable 4-3). The levels of GxE had significant effects on the accuracy for all traits with accuracy 

dropping when levels of GxE increased. Nevertheless, no interactions with the breeding scheme were 

observed. Dominance level had a significant impact on accuracies for T1 and showed a p-value of 0.06 

for T2. 

4.4.2.2 Precision of the phenotyping 
The broad sense heritabilities (H2) were in all cases below the set heritabilities (Figure 4-5). They 

dropped as the GxE increased but did not respond to the different levels of dominance. Higher 

heritabilities also showed stronger response to the GxE. It can be observed between traits but also 

within traits. Indeed, higher H2 were used for OYT steps, which showed a systematically larger response 

to GxE than the two progeny testing steps. 

4.4.3 Impact of rapid recurrent selection on population diversity 
The proportion of fixed loci increased similarly in the two breeding schemes from about 5% in the first 

cycle to 50% of all positions in the cycle 20 (Figure 4-6). The level of fixation was almost linear with five 

cycles of selection and recombination fixing about 10% of the remaining polymorphic QTLs. No 

Figure 4-5: Broad sense 
heritability computed at the S0:2 
and S0:3 progeny testing and 
OYT under BS1. The GxE levels 
are on the x-axis and the levels 
of dominance are identified by 
the boxplot colors (red=low, 
blue=high). Rows correspond to 
the four simulated traits (see 
Table 4-1 for trait definition). 
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differences could be observed between the breeding scheme nor between the GxE and the dominance 

levels. 

We looked at the other categories of MAF for the same cycles and treatments. The distribution of 

proportion of position with 0 < MAF ⋜ 0.5 were uniform with only the level decreasing as more position 

were fixed (data not shown).  

A principal component analysis was also run on the genomic data of the same five cycles (Figure 4-7). 

A clear evolution could be observed. While the population at cycle 1 did not differ from the initial 

population, four additional cycles of selection clearly differentiated the populations as cycles 1 and 5 

show. The distancing of the populations continued at each cycle while the variability was 

simultaneously reduced as the cloud of points was reduced.  

Trait Dom Scheme Additive variance Dominance variance 

   Low GxE Medium GxE High GxE Low GxE Medium GxE High GxE 

T1 Low BS1 -2.68 (0.47) -2.49 (0.37) -2.52 (0.41) -2.49 (0.39) -2.45 (0.43) -2.31 (0.50) 

 High BS1 -2.57 (0.34) -2.54 (0.64) -2.37 (0.66) -2.59 (0.29) -2.41 (0.40) -2.40 (0.48) 

 Low BS2 -2.77 (0.40) -2.45 (0.58) -2.44 (0.53) -2.69 (0.49) -2.36 (0.49) -2.24 (0.41) 

 High BS2 -2.61 (0.44) -2.43 (0.55) -2.26 (0.36) -2.48 (0.40) -2.32 (0.32) -2.32 (0.40) 
T2 Low BS1 -2.79 (0.38) -2.73 (0.36) -2.55 (0.40) -2.59 (0.41) -2.43 (0.33) -2.35 (0.47) 

 High BS1 -2.79 (0.41) -2.63 (0.51) -2.37 (0.53) -2.53 (0.36) -2.52 (0.27) -2.33 (0.41) 

 Low BS2 -2.87 (0.49) -2.53 (0.48) -2.52 (0.56) -2.62 (0.52) -2.32 (0.48) -2.25 (0.65) 

 High BS2 -2.91 (0.36) -2.47 (0.61) -2.30 (0.62) -2.45 (0.45) -2.46 (0.36) -2.27 (0.42) 
T3 Low BS1 -2.42 (0.39) -2.22 (0.54) -2.20 (0.58) -2.46 (0.38) -2.33 (0.43) -2.23 (0.58) 

 High BS1 -2.32 (0.47) -2.14 (0.36) -2.32 (0.33) -2.64 (0.26) -2.39 (0.37) -2.26 (0.41) 

 Low BS2 -2.34 (0.47) -2.32 (0.60) -2.30 (0.46) -2.37 (0.36) -2.43 (0.48) -2.20 (0.56) 

 High BS2 -2.31 (0.49) -2.32 (0.56) -2.11 (0.52) -2.41 (0.29) -2.44 (0.37) -2.23 (0.56) 
T4 Low BS1 -2.49 (0.36) -2.18 (0.34) -2.13 (0.48) -2.55 (0.46) -2.44 (0.34) -2.16 (0.53) 

 High BS1 -2.25 (0.59) -2.20 (0.48) -2.08 (0.61) -2.50 (0.35) -2.43 (0.38) -2.23 (0.51) 

 Low BS2 -2.42 (0.57) -2.13 (0.54) -2.01 (0.57) -2.57 (0.39) -2.30 (0.69) -2.29 (0.53) 
  High BS2 -2.29 (0.54) -2.21 (0.59) -2.14 (0.51) -2.45 (0.38) -2.42 (0.30) -2.28 (0.35) 

 

Table 4-4: Average change by cycle in additive and dominance variance expressed as percent of the initial variances 

Figure 4-6: Evolution of the 
proportion of fixed QTL across the 
cycle. The percentage of fixed 
QTLs at cycle 1, 5, 10, 15, 20. BS1 
is on the left panel and BS2 on the 
right one. Plain bars are for low 
GxE, hatched bars for medium 
GxE and crosshatched bars for 
high GxE. Low Dominance are in 
red and high dominance in blue 
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The rate of change in variance, for its additive as for its dominance component, was relatively uniform 

across all traits, breeding schemes and GxE and dominance levels (Table 4-4). On average, T1 lost 2.54% 

of its initial additive variance and 2.45% of its dominance variance at each cycle. T2 lost respectively 

2.65% and 2.43% of its additive and dominance variance per cycle. Each cycle, T3 lost 2.31% of its 

additive variance and 2.38% of its dominance variance and T4 2.24% of its additive variance and 2.41% 

of its dominance variance. 

For all traits, the levels of GxE had a significant effect on both the rate of additive and dominance 

variance loss. In all cases the reductions of the variance were smaller under larger GxE levels. 

Neither the breeding schemes nor the set dominance variance influenced the evolution of the variance 

component (STable 4-5). 

 Discussion 

4.5.1 Simulation as a tool to optimize breeding strategy  
The optimization of breeding strategies via simulations is an important component of breeding 

program modernization (Sun et al., 2011). Deterministic simulations such as the one proposed by (Atlin 

and Econopouly, 2022) can give interesting information to rank breeding schemes. However, this type 

of simulation relies on the assumption at the base of the breeder’s equation (the infinitesimal genetic 

model, independent QTL, constant additive variance) and it does not consider the evolution of the 

population with the time. This limits the conclusion that one can draw from this type of approach. 

Recently, several tools have been developed to perform stochastic simulations and help breeders 

evaluate alternative breeding schemes. Among them, AlphaSimR (Gaynor et al., 2021) , ADAM-Plant 

(Liu et al., 2019), BSL (Yabe et al., 2017) or MoBPS (Pook et al., 2020) allowed the users to design 

breeding schemes in silico and test different hypothesis. The advantage of such an approach is the 

Figure 4-7: Principal component 
analysis on the S0 genotype at 
cycle 0, 1, 10, 20. Only the 
results for the high GxE high 
Dom and of one replicate are 
shown 

https://www.zotero.org/google-docs/?uVS62G
https://www.zotero.org/google-docs/?wOyg8r
https://www.zotero.org/google-docs/?wOyg8r
https://www.zotero.org/google-docs/?hCg2x2
https://www.zotero.org/google-docs/?IZzHax
https://www.zotero.org/google-docs/?5OTgwP
https://www.zotero.org/google-docs/?JjcroO
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possibility to model complex breeding schemes and access different properties of the population 

under selection. In the present study, the parameters were chosen to reflect the characteristics of the 

CIAT-Cirad breeding population. Indeed, the effective population size, the mean and the variance 

components associated with each trait, and the correlations between traits were defined based on the 

data from the most recent population. However, we were constrained to do some simplifications. For 

example, the male sterility gene was not directly simulated. Instead, the fraction of fertile and male 

sterile plants was computed based on simple Mendelian inheritance at each generation. As we did not 

choose a position and defined it as our ms-gene and we did not simulate any potential linkage drag 

around this gene. We did not simulate a specific ms-gene because first we had no control on the effect 

of QTLs that would be simulated around it and second, the drag around the gene had been shown to 

be at worst negligible (Frouin et al., 2014).  

Another simplification is forced by the AlphaSimR. If one wants to simulate traits with defined 

correlation, all the traits will have exactly the same of QTLs. Therefore, if one QTL is fixed because it is 

favourable for one trait, the same QTL will also be fixed for any other traits. This will automatically 

negatively impact the variability of the other traits, even the one we choose not to select. This is of 

importance as one goal of RS is to improve some trait of interest while keeping a reservoir of variability 

for future selection. 

4.5.2 Expected rate of genetic gain 
Maximizing the rate of genetic gain in a given context (crop, resources, breeding objectives) is an 

important objective of every breeding program. Even if there are multiple ways to assess the 

performance of a breeding program, the genetic gain for a particular trait (usually associated with the 

productivity) is the main indicator (Ceccarelli, 2015; Rutkoski, 2019). In the present study, we found 

rates of genetic gain ranging from 1.37% to 2.41% for the trait representing grain yield. These values 

are medium to high compared to the values reported in the literature on real data. Using data from 

the irrigated rice breeding program at the International Rice Research institute, Juma et al. (2021) 

reported a rate of genetic gain for grain yield of 0.23% per year. For upland rice, few studies have been 

conducted to estimate the rate of genetic gain for grain yield. They reported a wide range of annual 

gain: 0.67% for advanced lines (Breseghello et al., 2011), and up to 2.68% with segregating material 

(F3:4) (Barros et al., 2018). Interestingly, Morais Júnior et al. (2017) reported a gain of 1.96% per year for 

a breeding program based on population improvement through RS. These results highlighted that the 

expected genetic gain estimated with our simulation are realistic even if in our case the breeding cycle 

is only one year with the use of GP and that in the majority of the studies based on real data breeding 

cycles are longer (3-6 years). Hence, we could have expected higher genetic gain in our context. Indeed, 

shortening the breeding cycle is the most efficient way to improve the rate of genetic gain (Cobb et al., 

https://www.zotero.org/google-docs/?36vUpZ
https://www.zotero.org/google-docs/?XXAck7
https://www.zotero.org/google-docs/?eUx0Il
https://www.zotero.org/google-docs/?lqtbeE
https://www.zotero.org/google-docs/?yDYYgM
https://www.zotero.org/google-docs/?fAv7du
https://www.zotero.org/google-docs/?jo3By4
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2019). Different simulation studies have proposed to go even further by achieving two to three cycles 

per year with the use of GP (Muleta et al., 2018). In the field, rice is grown between 90 days to 120 

days depending on the genetic parameters as well environment parameters. Considering logistics, and 

under tropical conditions two generations per year is a routine for most breeding programs when 

water is available. However, in this context, the program must genotype two cohorts per year. In 

addition, the effect of the increased number of cycles per year on the genetic gain is limited if no 

measures are taken to limit the loss of variability (Gaynor et al., 2017; Gorjanc et al., 2018). When only 

a small number of parents were used in the population improvement, the increase in genetic gain was 

possible only by passing from one to two cycles per year. Any increase in the number of cycles resulted 

in a loss of genetic gain after 20 years (Gorjanc et al., 2018). In addition, selection of parents only on 

their performances strongly reduces the efficiency of converting variability into genetic gain and larger 

number of cycles per unit of time even increase this effect (Gorjanc et al., 2018). Finally, the drop in 

accuracy in the first cycles also showed that predictions are less reliable the more crossing events there 

are between the genotypes of the calibration set and the predicted genotypes. The benefit from more 

than one RS cycle per year might be compensated by the loss in accuracy. This need, however, to be 

further investigated.  

  

https://www.zotero.org/google-docs/?jo3By4
https://www.zotero.org/google-docs/?ii2ePq
https://www.zotero.org/google-docs/?Oj9HKZ
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 Appendix 1 
To simulate the presence of the ms-gene in the population we adapted the number of possible crosses 

and number of phenotyped plants per plot considering the fraction of the possible genotypes expected 

at each generation assuming Mendelian inheritance. 

We know that S0 carry either the genotype [Msms] or [msms], as the mother is necessarily male sterile 

hence [msms]. As the S0:1 come from the selfing of a S0, it can only be a S0 with the genotype [Msms] 

and hence they follow the classic proportion for the selfing of a heterozygous 25:50:25 for [MsMs], 

[Msms] and [msms]. The same logic was followed for generation S0:2 further but considering that the 

selfed plant harvested could be either [MsMs] or [Msms]. 

For the recombination steps we assumed that only a certain number of crosses were possible in the 

population considering that only 25% of the population could be allo-fecundated, that the crosses only 

occurred between direct neighbours and that we expect that each plant has 6 male fertile neighbours 

(75% of 8). For the phenotyping steps, the maximum number of plants per plot was multiplied by the 

expected fraction of male fertile plants to simulate a phenotyping on a reduced number of plants. This 

was done up to generation S0:4 (90% of male fertile plants). In more advanced generations it was 

considered as negligible and phenotyping plots were always considered fully fertile. 
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STable 4-1: Analyze of variance on the mean genetic gain per cycle for population S0 

 

STable 4-2: ANOVA on the mean genetic gain per cycle for varieties 

STable 4-3: ANOVA on the mean prediction accuracy 
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STable 4-4: Summary statistics for the prediction accuracies across all 20 cycles 

Variance Variable Df

Sum Sq F value P value Sum Sq F value P value Sum Sq F value P value Sum Sq F value P value

Additive Scenario        1 0.07 0.30 0.58 0.12 0.51 0.48 0.01 0.04 0.84 0.03 0.09 0.76

GxE             2 2.76 5.76 0.00 6.74 14.30 0.00 0.61 1.28 0.28 3.09 5.64 0.00

Dom             1 0.55 2.31 0.13 0.43 1.80 0.18 0.13 0.53 0.47 0.06 0.21 0.65

Scenario:GxE    2 0.30 0.62 0.54 0.76 1.61 0.20 0.46 0.96 0.39 0.00 0.01 0.99

Scenario:Dom    1 0.03 0.14 0.71 0.00 0.01 0.93 0.03 0.14 0.71 0.21 0.78 0.38

GxE:Dom         2 0.37 0.77 0.46 0.50 1.06 0.35 0.01 0.03 0.97 0.75 1.36 0.26

Scenario:GxE:Dom 2 0.00 0.00 1.00 0.03 0.06 0.94 0.49 1.03 0.36 0.04 0.07 0.93

Residuals       228 54.68 53.74 54.39 62.46

Dominance Scenario        1 0.10 0.58 0.45 0.23 1.21 0.27 0.10 0.55 0.46 0.00 0.00 1.00

GxE             2 2.52 7.03 0.00 2.50 6.55 0.00 2.43 6.43 0.00 3.12 7.83 0.00

Dom             1 0.00 0.00 0.97 0.00 0.00 1.00 0.19 1.02 0.31 0.00 0.00 0.99

Scenario:GxE    2 0.23 0.64 0.53 0.05 0.12 0.89 0.54 1.43 0.24 0.28 0.71 0.49

Scenario:Dom    1 0.19 1.05 0.31 0.00 0.01 0.92 0.06 0.32 0.57 0.00 0.00 0.95

GxE:Dom         2 0.24 0.66 0.52 0.49 1.28 0.28 0.07 0.19 0.83 0.21 0.52 0.60

Scenario:GxE:Dom 2 0.28 0.79 0.46 0.08 0.21 0.81 0.06 0.15 0.86 0.16 0.41 0.67

Residuals       228 40.79 43.53 43.00 45.41

T4T3T2T1

STable 4-5: ANOVA on the difference between initial and final variance for the additive component and for the dominance 
component 
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STable 4-6: Details of the BS1 breeding scheme. 

Year Semester Step
Generat io n in 

f ie ld
N b families

P lant  per 

families

Selected 

families

P lant  

pro duced per 

selected 

families

Selected o n

1 A Cross S01 50 60 500 1
random sampling 

of crosses

3 A Pheno PAL S02 S02 200 174 none

B Pheno SRO S02 S02 200 174 none

4 A Pheno PAL S03 S03 200 174 none

B Pheno SRO S03 S03 200 174 100 34

S02 and S03 

phenotype + S0 

genotypes 

(GBLUP)

5 A Self S03 S03 100 34 all 78

B Pedigree breeding S04 100 78 20 5
visual 

phenotyping

6 A

B Pedigree breeding S45 100 78 20 5
visual 

phenotyping

7 A M ultiplication S56 100 34 all 816

B OYT S57 100 408

8 A OYT S57 100 408 50 1836
adjusted 

phenotypes

B PYT S58 50 918

9 A PYT S58 50 918 20 10200
adjusted 

phenotypes

B AYT S59 20 5100

10 A AYT S59 20 5100 5

34 for adv.

348  for phenot.* 

5/6

B Self S02 S02 200 34 all

34 for adv.

348 for phenot. * 

9/10

50 + 150
34 * 3/4 for adv. 

60 for cross
GEBV

2 A Self S01 S01 200 34 all

B Self S0 S0 500 1
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Year Semester Step Generation in 
field 

Nb 
families 

Plant per 
families 

Selected 
families 

Plant produced per 
selected families 

Selected on 

1 A Cross S01 S01 50 60 500 1 random sampling of 
crosses 

  B Self S0 S0 500 1 50 + 150 34 * 3/4 for adv.  
60 for cross 

GEBV 

2 A Self S01 S01 200 34 all 34 for adv. 
348 for phenot.* 5/6 

  

  B Pheno SRO S02 S02 200 174 none     

3 A Pheno PAL S02 S02 200 174 100 34 S02 and S03 phenotype + 
S0 genotypes (GBLUP) 

  B Self S02 S02 100 34 all 34   

4 A Self S03 S03 100 34 all 78   

  B Pedigree 
breeding 

S04 100 78 20 5 visual phenotyping 

5 A               

  B Pedigree 
breeding 

S45 100 78 20 5 visual phenotyping 

6 A Multiplication S46 100 34 all 816   

  B OYT S47 100 408       

7 A OYT S47 100 408 50 1836 adjusted phenotypes 

  B PYT S48 50 918       

8 A PYT S48 50 918 20 10200 adjusted phenotypes 

  B AYT S49 20 5100       

9 A AYT S49 20 5100 5   
 

 

STable 4-7: Details of the BS2 breeding scheme 
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STable 4-8: Details for the population sizes at the different simulated steps on the initial population. 

Year Semester Step Generation in 
field 

Nb 
families 

Plant per 
families 

Selected 
families 

Plant per 
selected families 

Selected on 

1 A Cross S01 50 60 400 1 random sampling 
of crosses 

  B Self S0 S0 400 1 all 34 for adv.  
60 for cross 

 

2 A Self S01 S01 400 34 all 34 for adv. 
492 for phenot. 

  

  B Self S02 S02 400 34 all 34 for adv 
492 for phenot. 

  

3 A Pheno 
S02 

S02 400 246 none  --   

  B Pheno 
S02 

S02 400 246 none  --   

4 A Pheno 
S03 

S03 400 246 none  --   

  B Pheno 
S03 

S03 400 246 50  60 random sampling 
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 Lesson learned 
The field experiments of chapter 2 and 3 showed us that prediction can be realized using S0 genotypes 

and phenotypes from generation S0:2 and S0:3, however with PA not exceeding 0.5 for any traits. In 

general, multi-environment calibration did not outperform single-environment calibrations and in 

some cases, had even lower PA. The traits did show some differences both in general PA and in 

response to multi-environment calibration (Table 5-1). One multi-environment approach which took 

advantage of the two sites was the imbalance approach (IMB) where each line predicted in SRO had 

phenotypic data in PAL, with the strongly depending on the traits and their the site correlation (STable 

2-9, p.77). However, when single generation data were replaced by multi-generation data in the same 

approach (Multi2) and S0:4 was predicted PA did not compete with single-environment approaches 

(Chapt. 3). From the different GxE variance-covariance structures none was systematically better for 

all traits. 

Considering only the PA, the general conclusion was that multi-environment GP was not necessary in 

our situation, as we specifically aimed at predicting SRO and that PAL were, at best, of little utility 

despite the large phenotyping effort (BAL1), and at worst, detrimental for the PA (Multi2). Considering 

the cost as well as some practical aspects of the breeding program, Multi2 could however be 

interesting despite its slightly lower PA. 

From the simulation we learned that S0:2 phenotypes or the mean of S0:2 and S0:3 phenotypes can be 

medium to average proxies for the line ability. At least under the simple conditions of a simulation. 

Those results are slightly contradictory with the one obtained in chapter 3, where PA were low for S0:2, 

S0:3 (Table 5-1) but even lower when the mean of S0:2 and S0:3 was predicted (data not shown). We also 

learned that two generations of phenotyping improve the accuracy for traits with medium heritability 

(T1) more than for the one with low heritability (T2). In any case, BS2, could not compete with BS1 

under the most favourable conditions. The most important result from the simulation is that forward 

prediction – or the prediction of current breeding cycles with data from older cycles – is possible. 

 
SIN_ 
S02 

SIN_ 
S03 

BAL1_
S02 

BAL1_
S03 

Uni1 Uni2 Uni3 Multi2 BS1 BS2 

T3/FL 0.32 0.40 0.31 0.41 0.23 0.31 0.23 0.22 0.59 0.50 
T4/PH 0.47 0.46 0.47 0.46 0.31 0.39 0.25 0.30 0.65 0.60 
T2/YLD 0.39 0.35 0.41 0.39 0.39 0.33 0.24 0.27 0.48 0.42 
T1/ZN 0.35 0.31 0.34 0.32 0.17 0.32 0.29 0.23 0.51 0.42 

 

Table 5-1: Predictive abilities from the different experiment conducted in chapter 2-3-4. For BAL1 (multi-environment CV with 
balanced representation of both sites while SIN stands for CV within SRO) the PA from the calibration done with 200 
genotypes is presented and a GBLUP approach (Chap. 2). For Multi2 (Cal on PAL S0:2 et SRO S0:3, val on S0:4) the best model of 
each trait with 50% of genotypes phenotyped in SRO are represented while Uni1(CV within S0:4), Uni2 (Cal. on S0:2 val. on S0:4) 
and Uni3(Cal. on S0:3 val. on S0:4) had only one value per trait to choose from (Chapt. 3). For BS1 and BS2 the results are the 
one at the highest GxE and dominance levels (Chapt. 4). Careful, as not all the chapter followed the same order for the traits, 
they were ordered following the more common order seen in chapter 2 and 3. 
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 Limitations of the approach 

5.2.1 Suspicion of generation effect on the prediction 
Fifty temporal checks were used to trace year and generation effects as well as their interaction effects 

on the phenotypes. They highlighted a strong year effect but neither a generation effect nor a GxY 

effect (STable 2-5, p.75). Based on those results combined with the absence of systematic changes in 

PA between the generations, we concluded in chapter 2 that the differences between S0:2 and S0:3 were 

only due to year effect on the phenotype. However, we observed in chapter 3 a systematic decrease 

in PA when S0:4 was predicted with phenotypes from increasingly more advance generation (S0:2, S0:3 

and S0:4). This could be a sign that mistakes accumulate at each generation advance making the 

prediction between generations harder. 

As long as we cannot conclude on the reason why S0:2 predict S0:4 better than S0:3 does and even better 

then S0:4 itself, we cannot suggest an appropriate calibration approach. To exclude completely the year 

effect from the experimental setup, the calibration generation and the validation generation should 

be grown at the same time. We could use the 50 temporal checks in 2018 to predict S0:3 with S0:2. The 

population would be small but at least the PA would only be influenced by the generation. 

5.2.2 No test with crossing event between calibration and prediction set 
The greatest expectation for GP in our RS scheme is based on the forward prediction. As 

recombinations occur when the S0:1 are crossed, it might change the LD between the marker and the 

QTL thus negatively affect the PA. As our prediction stayed always within the same RS cycle we could 

not assess the effect of recombination on the accuracy on real data. Time was clearly the limiting factor 

here. It took already three full years to collect the data for chapter 2 and 3, without counting the time 

necessary to produce the material. Assuming we run a crossing in November 2022 based on genomic 

selection of S01 families, the first validation data would be ready in October 2025. The results of the 

simulation were also rather comforting for the potential of forward prediction and the literature shows 

examples where models trained on parents or on former generations worked (Ben Hassen et al. 2017; 

Hickey et al. 2014; Bernal-Vasquez et al. 2017) so we can be confident on the feasibility of this approach. 

However, substantial biases have been reported under multi-generations prediction (Michel et al. 

2016), hence the necessity to test the forward prediction on the field.  

5.2.3 No realistic simulation of our experimental design 
One limitation of our simulation experiment was the oversimplification of the phenotyping design. In 

both predictions based on field data, we focused heavily on the effect of the two different sites but in 

the simulation, the only parameters we controlled to simulate the phenotyping were the GxE variance, 

the probability that one simulated phenotype represents a theoretical target site, the residual variance 

and the number of replicates. If it allows giving an across sites heritability, it is not possible to set site 
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correlations. One option would have been to simulate the two sites as two traits thus doubling the 

number of traits. We would have still lacked the effect of the sterility in SRO but this is a possible 

approach. 

5.2.4 Difficulty to simulate realistic traits 
Another point is how accurately we simulated the trait. T1 is supposed to simulate a Zn grain 

concentration-like trait from our field experiment but the amount of field data we had, two years and 

two sites at the time, were somewhat scarce to ensure a realistic simulation. The same goes for T2 that 

we wanted close to the yield per plot, T3 close to the flowering date and T4 to the plant height. 

The genetic assumption behind the control also had to be simplistic and, in some regards, wrong. As 

discussed in chapter 4, all four traits had not only the same number of QTLs but all QTLs had pleiotropic 

effects on four traits. This is forced by AlphaSimR if wants to be able to define correlations between 

the traits. This, of course, has consequences on the trait simulation and on their evolution across the 

cycle. Traits not under selection will progressively loose variability as the good QTL for the selected 

traits get fixed. 

Also, the accuracies we had are rather optimistic considering what we could reach with real data even 

within cycle. The GxE was probably under-estimated. We did base our GxE levels on the observed data 

however. One reason is probably that we used the true line ability as a reference and not a phenotype 

in a defined environment where noise can still be present in the adjusted phenotypic values. 

5.2.1 Effect of the ms-gene 
On aspect of the CIAT-Cirad upland rice breeding program that was little discussed but that is very 

unique in rice breeding is the use of the ms-gene. It allows more crosses with less work, which is of 

importance for programmes with few resources. Despite the absence of documentation, some criticise 

this system for favouring some ideotypes as the father. Tall plants will spread their pollen further and 

it will drop on the other plants while pollen from short plants will have less chance to reach the stigma 

of plants that have panicles above them. The early and late flowering genotypes are also expected to 

cross less with the rest of the population. Alleles being responsible of earliness or lateness would 

progressively be negatively selected and all the population would converge toward the mean earliness. 

There is also the risk of genetic drag by using the ms-gene. If no drag was observed around the ms-

IR36 gene by Frouin et al. (2014) our genotyping showed an increase heterozygosity around the 

position of the gene (SFig 5-1). 

For those two reasons, the rice breeding program from the EMBRAPA (Brazilian agronomical state 

research) abandoned the ms-gene and went back to manual crosses (EMBRAPA staff, personal 

communication). Under those conditions, all ideotypes can have an equal chance, providing they have 

the expected qualities. Also, they have control on both the male and the female of the crosses, while 
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only the female can be selected in the currently used scheme at CIAT-Cirad and only based on visual 

assessment within the crossing plot. If it requires more work it allow to increase the genetic gain 

(Rutkoski 2019). It is said in the presentation of the breeding scheme that the candidates for selection, 

phenotypic or genotypic, are randomly selected. But the human eye tends to spot the unusual. Even if 

I haven’t done this step personally, I do expect the “prettier” plants to be selected rather than a 

completely random sampling. This is not all bad as it is a good opportunity to cull-out the population 

for some high heritability trait like disease sensibility or grain colour. 

 Future evolution of the program 
The CIAT-Cirad program will continue on path toward the implementation of genomic prediction in its 

RS scheme. The definitive phenotyping approach still need to be clarified. The program might in the 

short future focus the phenotyping on S0:2 only but we know now that SRO will remain central in the 

selection and calibration process. Secondary traits showing good correlation between the sites like FL 

and PH will probably be phenotyped in PAL while YLD and ZN will still rely heavily on SRO. 

A good strategy to clearly trace year and genotype by year interaction will have to be implemented to 

reduce to a minimum the confounded effect in the design. 

The whole thesis was focalized on four traits, however many other traits such as grain dimension, 

amylose content or chalkiness are already measured routinely. They are good candidates for genomic 

prediction and will go through the same CV as presented in chapt.2 and 3 in the near future to decide 

which strategy to adopt for their calibration. 

 Perspective 
If the results obtained in this thesis answer some questions, they also raised many more. I address a 

few of the improvement the breeding program could try to implement as well as some future 

researches to help to design the optimal breeding scheme. 

5.4.1 Improvement of the GP 
We used a simple approach to model GxE in our GP model. Many different models with a more 

sophisticated modelling of the environmental variance-covariance exist. Several have been suggested 

using either factor analytic (Burgueño, Campos, et al. 2012; Oakey et al. 2016) and could be used in 

our scheme. Another possible improvement for the GP that would be immediately available is the use 

of multi-variate prediction model (Calus and Veerkamp 2011; Ward et al. 2019; Ben-Sadoun et al. 2020; 

Fernandes et al. 2018). 

Another resource that could easily be tapped in are the meteorological data. Already in 2014, Jarquìn 

et al. (2014b) used environmental covariates to construct a relationship matrix for the environments 

of a multi-environment trial. This would give us the opportunity to make better use of multi-year data 



Chapter 5 : Perspective 
  

152 

and even predict in theoretical or never observed environments (Jarquín et al. 2017b). More 

sophisticated approaches have since been tested such as the one from Millet et al. (2019b). It would 

however not be easily used for the CIAT-Cirad program as it relies partly on data from a phenotyping 

platform. 

While, all those approaches are still based on mixed models, prediction could later take a more radical 

turn and use the deep learning prediction approach (Montesinos-López et al. 2016; Montesinos-López 

et al. 2021). This will be possible only when sufficient data are accumulated over the breeding cycles. 

Changing the genotyping platform could also bring some improvement in the breeding scheme. Using 

array-based genotyping with specific markers for blast sensitivity for example could allow an early 

culling based on some eliminatory criterion. Custom genotyping chips with markers for major QTLs of 

quantitative traits would also allow us to use some markers with those QTLs as fixed effect (Zhang et 

al. 2014; Bernardo 2014; Bhandari et al. 2019; Ahmadi et al. 2020). 

The training set used in chapter 4 was assembled by phenotyping the progeny of the S0 showing the 

highest GEBV. One could argue that, as they are the one that will be crossed together to generate the 

improved population, they would be the most closely related to the future genotype to predict and 

hence be the better choice (Habier, Fernando, and Dekkers 2007; Hickey et al. 2014). On the other 

hand, this might reduce the coverage of the genetic space by the calibration set (Bustos-Korts et al. 

2016). This would be interesting to test and could be very easily implemented in the program. 

During the simulation, we also accumulated the calibration data without considering the utility of the 

oldest one. It is known that using calibration population containing genotypes that are genetically 

distant form the genotypes to predict can be detrimental to the accuracy (Lorenz and Smith 2015). 

Across the simulated cycles, we did follow the mean realized additive relationship of all genotypes. We 

could see the relationship drop during the three or four cycles without update but as soon as we 

started to update the calibration set the mean additive relationship stagnate or even increased again 

(SFig  5-2). We could not see a detrimental effect on the accuracy be we did not test it in detail but 

improvements are possible here. At one point it might also be necessary just to shorten the 

computation time. 

Different methods were used to assemble the best calibration set. We tested the CDmean in chapter 

3, but many other methods exist. They can be targeted – optimized for a specific set of genotypes – or 

untargeted. Some aim at capturing the diversity as efficiently as possible (Bustos-Korts et al. 2016; T. 

Guo et al. 2019) while others aim at maximizing reliability of the prediction (Akdemir, Sanchez, and 

Jannink 2015) or the reliability of the contrast between prediction candidate and individuals in the 

calibration set (Rincent et al. 2012). The selection could be applied on data from each cycle separately 

or on the complete data set assembled across the cycle. 
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Also concerning the ideal calibration set, the CDmean approach used in chapter 3 was not tailored for 

multi-environment set. Ben-Sadoun et al. (2020) extended the CDmean for a multi-trait context. We 

could consider a single trait in two sites as two different traits and, a priori, easily transfer their 

approach to our multi-environment case. Unfortunately, we had not time to test this approach. 

Additionally, it is not adapted for forward prediction as the CDmean optimizes a calibration set 

considering a defined set to be predicted. 

5.4.2 Toward an optimization of the breeding scheme 
The field experiments allowed us to test several calibration sets using different combinations of the 

generations and sites we had at our disposal. One calibration approach that gave good PA was the IMB 

(STable 2-9). This is however of little use for forward prediction as the high PA were due to the available 

data in the surrogate PAL site. It inspired us, however, a design to test ZN in SRO. As previously 

mentioned, SRO is valuable among other reasons for its high blast pressure. To accurately measure 

gain Zn concentration, we need healthy plants. On another hand, we want to measure YLD under high 

disease pressure. An imbalance approach could be integrated in the scheme where some line would 

be protected against blast while the rest would experience normal disease pressure. This would 

simplify later selection steps as the families would be already assessed under blast pressure. However, 

we do not know how those data would perform in a forward prediction model. 

This thesis has been the opportunity to test several GP scenarios and breeding schemes, but 

optimization still needs to be done. For the schemes chosen on those preliminary results, we need now 

to find an optimal repartition of the financial and logistical resources on the population improvement 

part as well as the product development part. I could not so far study much about optimization 

approaches but for such a complex model a grid search is probably not feasible as the number of 

parameters to considered are highly dimensional. Nevertheless, the scripts used for the previous 

simulation were developed to be easily modulable. A few predefined size combinations could easily be 

tested to, in the worst case, at least find a local optimum. We will also need to further dissect fix and 

variable cost of phenotyping at the different sites and depending on the planned work (phenotyping 

or generation advance) as already started in chapter 3 to be sure to stay within the boundaries of the 

program.  

The use of an index is rather straight forward but the choice of the weights is not. We ran our 

simulation with defined genetic gain targets in a number of standard deviations rather than by giving 

economic weights (Pešek and Baker 1969). If we chose those target values to represent the relative 

importance of T1/ZN and T2/YLD in the breeding program, the values were still arbitrary. More work 

must be done here. Alternative methods to use selection index in case of unknown economic weights 

are available for genomic prediction (Cerón-Rojas et al. 2008) but were not tested. Additionally, we 
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also used index selection for the yield trial. This is probably unrealistic because, for example, a really 

good T1/ZN value could make us keep a line that has T2/YLD below the best actual cultivar, and that 

no farmer would use. A culling approach is probably more appropriate and should also be tested.  

A common simplification seen in most simulations of breeding schemes is the use of a closed 

population (Gaynor et al. 2017; Müller, Schopp, and Melchinger 2017; Muleta, Pressoir, and Morris 

2018). Our simulation experiment was not different in that regard. Nevertheless, after 20 cycles of 

simulation, the variability of the population was reduced but not exhausted yet, despite the GP being 

based on RRBLUP, which has a tendency to select for related individuals (Ramasubramanian and Beavis 

2020). The program might still want to take advantage of exotic material. In this case the effect on the 

GP and on the population itself could be investigated through simulation and method such as the one 

suggested by Allier et al. (2020) could be used.  

We are especially concerned about the population variability as it is the source of variability for the 

pedigree breeding. So, it is important to preserve it as much as possible. We selected the S0 families 

for the crosses based on their predicted progeny performance. Another approach for the selection of 

the recombining family could be made to balance genetic gain and fixation such as with optimal 

contribution selection (Woolliams et al. 2015).  

If we start to consider the diversity that the crosses generate, one could also rethink the adequacy of 

the ms-gene. As previously mentioned, some ideotype might be favoured as father compared to others 

that could have a negative impact on the diversity. It was already observed that the plants showing 

very early or very late flowering tended to disappear and the flowering time would become more 

homogenous. 
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SFig 5-1: Comparison of expected (He) and observed (Ho) heterozygosity in the OCT27 

SFig  5-2: Mean realized relationship between the genotypes in the calibration and 
validation population 
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Intégration de la prédiction génomique précoce dans 

un schéma de sélection récurrente: exemple du 

programme de sélection du r iz  pluvial du CIAT-Cirad 
Introduction 

Contexte général 
Selon les estimations, la demande alimentaire mondiale va augmenter entre 45% et 51% d’ici 2050 

(van Dijk et al. 2021). Deux tiers des besoins en calories de la population humaine sont couverts par 

seulement quatre cultures : le riz (Oryza sativa L.), le blé (Triticum sp.), le maïs (Zea mays L.) et le soja 

(Glycine max (L.) Merr). Jusqu’à maintenant la production mondiale combinées aux stocks a toujours 

permis de couvrir la demande pour ces quatre cultures (FAO 2021), mais les futurs besoins ne seront 

peut-être pas assurés (Ray et al. 2013). 

C’est principalement l’augmentation des rendements qui a permis à l’offre de continuer à couvrir la 

demande malgré sa hausse constante ces dernières décennies (Fischer, Byerlee, et Edmeades 2014). 

L’augmentation du rendement a été en partie due au rétrécissement de l’écart de rendement grâce à 

de meilleures pratiques agricoles mais c’est surtout l’augmentation du rendement potentiel qui en a 

été à l’origine (Fischer, Byerlee, et Edmeades 2014). 

Le rendement potentiel est le rendement d’une variété dans son environnement cible si elle est 

cultivée sans contraintes biotiques et abiotiques. Ceci sous-entend que le maintien ou l’augmentation 

du rendement potentiel dépend de la disponibilité de variétés adaptées à des environnements précis. 

Le changement climatique risque fortement de rendre d’anciennes variétés obsolètes pour certaines 

régions à cause de l’augmentation des températures ou des changements dans les régimes de 

précipitations qui en résulteront (IPCC 2022). 

Les sélectionneurs ont donc la tâche de développer des variétés qui seront adaptées aux futures 

conditions. Les gains annuels en rendement potentiel ont été, ces dernières années, d’environ 0.5-

0.8% pour le riz, le blé et le soja et de 1.1% pour le maïs (Fischer, Byerlee, et Edmeades 2014) mais ces 

progrès ne permettront pas de couvrir les besoins futurs (Ray et al. 2013). Encore pire, un 

ralentissement de l’augmentation du rendement potentiel a été observé ces dernières années. Les 

sélectionneurs ont la responsabilité de fournir aux paysans des variétés qui permettront d’assurer la 

future sécurité alimentaire. Pour ce faire un important travail de modernisation des programmes de 

sélection doit être entrepris pour s’assurer que l’augmentation du rendement potentiel continuent à 

couvrir l’augmentation de la demande pour les principales cultures alimentaires. 
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La sélection variétale chez les plantes 
La sélection variétale est l’art de créer des plantes adaptées aux besoins des humains. Elle a 

progressivement évolué d’une pratique intuitive, lors de la domestication, en une réelle science avec 

la redécouverte du travail de Mendel et la fondation de la génétique quantitative par Fisher (Fisher 

1919). Le rôle d’un sélectionneur est (i) de créer de la variabilité génétique, souvent en croisant deux 

parents élites, ensuite (ii) de sélectionner les meilleurs descendants du croisement et finalement (iii) 

de synthétiser les meilleures descendances en un nouvelles variété (Bernardo 2008). 

La sélection variétale peut être appréhendée selon deux angles différents: soit le type de variété 

développée soit la méthodologie appliquée pour obtenir ladite variété. La méthodologie choisie va 

dépendre du type de variété voulu et du système de reproduction de l’espèce. Les différents types de 

variétés existant sont les populations synthétiques ou composite, les lignées pures, les hybrides et les 

variétés clonales. Deux systèmes de reproduction existent dans les plantes supérieures: l’allogamie et 

l’autogamie. Les plantes allogames sont principalement ou exclusivement, selon l’espèce, fécondées 

par le pollen d’autres plantes (de la même espèce). C’est le cas du maïs mais aussi du seigle (Secale 

cereale L.) par exemple. Les espèces autogames au contraire favorisent l’autofécondation et 

seulement une petite proportion des fécondations sont des croisements entre plantes. Le riz, le blé, le 

soja ou encore l’orge (Hordeum vulgare L.) en font partie. 

Dans la pratique, le travail du sélectionneur consiste à favoriser l’autofécondation ou l’allofécondation 

selon s’il veut augmenter la variabilité ou l’homogénéité de la population sur laquelle il travaille. 

Un des outils qui permet au sélectionneur de pousser une espèce autogame à se comporter en partie 

comme une allogame et donc de favoriser les croisements est l’utilisation de gènes nucléiques de 

stérilité mâle. La gestion d’une population ségrégant pour un gène de stérilité mâle dépendra du degré 

de dominance de celui-ci. En bref, le sélectionneur devra s’assurer que des phénotypes mâles fertiles 

et mâles stériles sont présents dans la population de travail ainsi toutes les plantes étant mâle stérile 

se comporteront de façon allogame et seront exclusivement allofécondées. Ce type de gène existe 

chez le blé, le sorgho (Sorghum bicolor) et le riz dont on parlera plus en détail. 

Je vais présenter les trois méthodes de sélection importantes pour ce travail mais ils en existent 

beaucoup d’autres (Fehr, Fehr, et Jessen 1991). 

La première et sans doute la plus simple est la sélection massale. Le travail consiste ici à identifier les 

phénotypes d’intérêt à l’intérieur d’une population présentant de la variabilité. Les descendances des 

différentes plantes sont mélangées et semées comme une nouvelle population à la saison suivante. 

Cette méthodologie est facile à appliquer mais fonctionne surtout pour les caractères présentant une 

héritabilité élevée. 

La seconde est la sélection généalogique. Comme pour la sélection massale, on commencera par 

sélectionner des plantes parmi une population comportant de la diversité. Ensuite, plutôt que de 
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mélanger les semences, la généalogie de chaque lignée sera conservée et permettra au sélectionneur 

de sélectionner non seulement sur la base de la performance propre d’une plante, mais aussi 

relativement à sa famille et à ses ancêtres. Cette méthode est beaucoup plus adaptée pour des 

caractères à faible héritabilité. 

La troisième méthode que nous aborderons plus en détail est la sélection récurrente. Elle consiste en 

la sélection systématique d’individus supérieurs dans une population, suivie d’une étape de 

recombinaison entre les individus sélectionnés pour générer une nouvelle population avancée. Elle est 

particulièrement adaptée pour les espèces allogames mais peut être appliquée sur des espèces 

autogames, entre autres en utilisant un gène de stérilité mâle. 

Evaluation et amélioration d’un programme de sélection 
Un programme de sélection s’évalue, notamment sur son gain génétique(Ceccarelli 2015), soit 

l’évolution de la moyenne de la population en sélection à travers les cycles de sélection. On peut soit 

mesurer le gain génétique réalisé en regardant l’évolution des moyennes, soit l’estimer en utilisant 

l’équation du sélectionneur Δ𝐺𝑡 =
𝑘𝑟𝑥𝑔σ𝑔

𝐿
 (Lush 1937). Cette équation permet de savoir sur quels 

paramètres d’un programme influer pour en augmenter le gain génétique. On peut en augmenter 

l’intensité de sélection 𝑘, augmenter la corrélation entre les valeurs utilisées pour la sélection et les 

valeurs génétiques réelles 𝑟𝑥𝑔, augmenter la racine carrée de la variabilité génétique de la population 

σ𝑔ou réduire la longueur du cycle de sélection 𝐿. 

Simulation des programmes de sélection 
Les méthodes pour influencer ces paramètres dans la direction permettant une augmentation du gain 

génétique peuvent être testées en champs. Néanmoins, il est souvent impossible de le faire pour des 

raisons logistiques ou financières. Une alternative aux essais en plein champs sont les simulations 

stochastiques. 

Une simulation stochastique introduit l'incertitude en échantillonnant des valeurs d'entrée à partir 

d'une fonction de distribution de probabilité qui représente des processus stochastiques. L'utilisateur 

peut fixer les paramètres de la distribution mais des valeurs différentes seront échantillonnées à 

chaque fois que la simulation est exécutée. Dans le contexte de la simulation d'un schéma de sélection, 

ces processus stochastiques sont, par exemple, la probabilité qu'un allèle soit hérité, la probabilité 

qu'une plante soit échantillonnée ou la distribution de l'erreur aléatoire pendant le phénotypage, pour 

n'en citer que quelques-uns. En choisissant correctement les paramètres de la fonction de distribution, 

les simulations peuvent fournir des données précieuses sur les performances à long terme de 

programmes de sélection spécifiques dans des conditions particulières et aider à la prise de décision.  

Dans la dernière décennie, de nombre software ont été développés spécifiquement pour la simulation 

stochastique de schéma de sélection (e.g. ADAM-plant (Liu et al. 2019), AlphaSimR (Gaynor, Gorjanc, 
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and Hickey 2021), BSL (Yabe, Iwata, and Jannink 2017), HaploSim (Coster and Bastiaansen 2010), 

MoBPS (Pook, Schlather, and Simianer 2020), QU-Gene (Podlich and Cooper 1998), …). 

Sélection génomique 
Le concept de la sélection génomique est relativement simple. On commence par entrainer un modèle 

statistique avec une population de référence dont on connait les génotypes et les phénotypes. Ceci 

nous permet d’estimer l’effet de chaque marqueur génétique et ainsi d’estimer la valeur génétique et 

de sélectionner des individus sur l’unique base de leur génotype. Elle a été développée dans les années 

2000 (Whittaker, Thompson, et Denham 2000; Meuwissen, Hayes, et Goddard 2001) mais a 

énormément gagnée en popularité ces dernières années grâces à l’apparition de méthodes de 

génotypage bon marché (Crossa et al. 2017). Elle peut permettre l’amélioration des gains génétiques 

en influençant tous les paramètres de l’équation du sélectionneur. Le génotypage étant souvent moins 

cher que le phénotypage, de plus grandes populations peuvent être évaluées et l’intensité de sélection 

augmentée (k). Elle peut dans certain cas améliorer la précision de sélection ( 𝑟𝑥𝑔 ) et également 

améliorer l’intégration de nouvelle diversité dans une population de sélection (σ𝑔). Finalement, elle 

permet de découpler sélection et phénotypage et ainsi de réduire fortement la durée des cycles de 

sélection (𝐿).  

Le programme de sélection CIAT-Cirad 
Depuis plus de 30 ans, le CIAT et le Cirad conduisent conjointement un programme d’amélioration chez 

riz pluvial pour l’Amérique latine et les Caraïbes. Contrairement à la majorité des programmes 

d’amélioration variétale pour le riz, le programme CIAT-Cirad a toujours été centré sur l’amélioration 

de ses populations par sélection récurrente. 

La sélection récurrente consiste en une succession de cycles comprenant une étape d’évaluation des 

familles issues d’une population en amélioration, suivie par la sélection des meilleures familles basée 

sur cette évaluation et finalement la génération d’une population améliorée en recombinant les 

familles sélectionnées, constituant ainsi le début d’un nouveau cycle de sélection. L’évaluation des 

familles est traditionnellement pratiquée en avançant en génération la descendance des croisements 

candidats à la sélection, soit des plantes uniques en S0, (S pour désigner le nombre de cycle 

d'autofécondation, donc ici une plante n'ayant subi aucune autofécondation et donc directement 

dérivée d'un croisement) jusqu’à des générations plus avancées (S0:2 ou S0:3). La moyenne de 

l’ensemble de la descendance pour chaque croisement est mesurée aux générations avancées afin 

d’obtenir une valeur sur descendance (Figure 1-9, p.28). Ce travail d’avancée en génération puis 

d’évaluation prend du temps, et les valeurs sur descendance ne sont pas disponibles avant au mieux 

1.5 ans et au pire 4 ans selon le nombre de génération et d’environnement nécessaire au phénotypage. 

Le programme entend dans un futur proche améliorer son schéma de sélection récurrent en y 
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intégrant la prédiction génomique pour la sélection des parents à recombiner. Le potentiel de la 

prédiction génomique en terme d’augmentation des gains génétiques dépendra de son influence sur 

les différents paramètres de l’équation du sélectionneur dans le contexte donné du schéma de 

sélection CIAT-Cirad. 

 

L’objectif général de ma thèse est de proposer différentes voies d’amélioration du programme de 

sélection basées sur la prédiction génomique. Cet objectif est abordé selon trois axes. Tout d’abord, le 

potentiel de la prédiction génomique sur les données issues de la population de sélection sera testé 

par validation croisée à l’intérieur des générations des descendances des croisements à prédire et en 

intégrant les données de phénotypage provenant des deux sites à disposition. Dans un second temps, 

des validations externes seront réalisées sur des descendances n’ayant pas contribuées à la calibration 

des modèles et impliquant des données multi-générations et multi-sites pour développer une 

approche de calibration qui utilise au mieux les données déjà générées par le programme de sélection. 

Finalement, le programme sera simulé pour évaluer les prédictions entre cycles de sélection et 

comparer deux schémas de sélection basés sur la sélection génomique. 

Matériels et méthodes 

Expérience en plein champs 

Acquisition des données 

Deux expériences en pleins champs ont été conduites sur deux sous-ensembles d’une même 

population, les PCT27A et PCT27B. Les deux sous-ensembles ont été génotypé en S0. La PCT27A a 

ensuite été avancée en génération S0:2 puis S0:3 par bulk et phénotypée à ces deux générations dans 

deux sites Palmira (PAL) et Santa Rosa (SRO). Les deux sites font partie du dispositif d’essai du 

programme CIAT-Cirad pour l’évaluation sur descendances des candidats à la sélection. A PAL les essais 

sont logistiquement simples à réaliser car conduits en conditions irriguées dans une région avec une 

faible pression des maladies du riz et sur le site du CIAT. SRO de son côté est une station expérimentale 

éloignée du CIAT, non irrigué et donc où la culture est possible uniquement à la saison des pluies. De 

plus, la station est située dans un point chaud pour les maladies du riz telle que la pyriculariose 

(Magnaporthe grisea). SRO, bien que plus difficile à gérer, représente l’environnement cible du 

programme. Quatre caractères ont été mesurés dans chacun des quatre essais : le nombre de jours 

entre le semis et la floraison (FL), la hauteur de plante (PH), le rendement par parcelle (YLD) et la 

concentration en zinc du grain (ZN). La PCT27B a été avancée jusqu’en génération S0:4 et a été 

phénotypée uniquement à cette génération pour les mêmes caractères et dans les mêmes sites que la 

PCT27A. 
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Prédiction génomique 
Dans un premier temps la population PCT27A a été utilisée pour tester la validation intra-population 

une approche mono-environnement avec une calibration exclusivement sur des données SRO. Dans 

un deuxième temps, des calibrations intégrant les deux environnements ont été évaluées. Les 

prédictions génomiques ont été réalisées indépendamment pour chaque génération et suivant la 

procédure proposée par (Lopez-Cruz et al. 2015). 

Plusieurs approches de validation croisées ont été utilisées pour tester différents cas de figures 

concernant la représentation des deux sites dans le set de calibration (Figure 2-2, p.48). Dans 

l’approche mono-site (SINSRO) les modèles ont été calibré sur les phénotypes de 𝑠 familles pour 𝑠 ∈

{25, 50, 100, 200}. Les approches BAL1 et BAL2 utilisent soit des données des deux sites pour toutes 

les lignées de calibration (BAL1), ou une combinaison de lignées phénotypées uniquement à PAL, 

uniquement à SRO et dans les deux sites. Finalement, pour IMB les modèles ont été calibrés sur 

l’ensemble des familles à PAL (n=334) complétés par les phénotypes de 𝑠 familles à SRO. 

La validation externe a consisté en la calibration de modèles de prédiction sur des données PCT27A 

pour la prédiction de génotypes de la population PCT27B selon plusieurs scénarios(Figure 3-2, p.89). 

Les scénarios Uni1, Uni2 et Uni3 utilisent des phénotypes S0:2, S0:3 ou S0:4 à SRO pour prédire S0:4 à SRO. 

Le scénario Multi1 utilise une combinaison de données PAL et SRO en S0:4 pour prédire SRO en S0:4. 

Finalement, Multi2 utilisée des données phénotypiques S0:2 à PAL et S0:3 à SRO pour prédire S0:4 à SRO. 

Pour les approches multi-environnement différentes structures de variance-covariance ont été 

utilisées pour modéliser le GxE, MM représentant un modèle multi-environnement sans effet GxE, 

MDs avec une variance unique pour les effets GxE et MDe avec une variance spécifique pour chaque 

environnement. Plus de détails sont donnés dans (Granato et al. 2018). 

Les précisions de prédiction (PA, predictive ability) ont été mesurées avec la corrélation entre les 

phénotypes ajustés par essai à SRO et les prédictions génomiques pour SRO. 

Simulation 
Toutes les simulations ont été réalisées avec le package R AlphaSimR (Gaynor, Gorjanc, et Hickey 2021). 

Les mêmes dix populations initiales ont été utilisés comme points de départ pour les deux scénarios. 

Pour chaque population, 80 fondateurs ont été générés avec des déséquilibres de liaison et des 

fréquences alléliques représentant une taille efficace de population de 50. Ils ont été utilisés comme 

base pour cinq cycles de recombinaisons et de échantillonnages aléatoire. À la fin des cinq cycles, 400 

lignées ont été échantillonnées et leur génotype en S0 ainsi que leurs phénotypes en S0:2 et S0:3 ont été 

utilisés comme base pour la première calibration des modèles de prédiction génomique. 

Quatre caractères ont été simulés avec différentes moyennes et décomposition de la variance 

génétique pour ressembler au nombre de jours jusqu’à la floraison, à la hauteur de plante, au 

rendement et à la concentration en zinc du grain. Les scénarios ont été choisis pour représenter deux 
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intégrations de la prédiction génomique directement applicables dans le schéma actuel de sélection 

récurrente (Figure 4-1, p 121). Dans les deux cas, la prédiction se fait sur les génotypes de candidats à 

la sélection échantillonnés aléatoirement dans la population en génération S0. Un modèle a été calibré 

en amont à l’aide des 400 familles également génotypées en S0 et phénotypées en S0:2 et S0:3 pour le 

scénario BS1 ou seulement en génération S0:2 pour le scénario BS2. A chaque cycle, les 200 familles 

avec les meilleures GEBV sont phénotypées aux générations S0:2 ou S0:2 et S0:3 selon le scénario pour 

mettre le modèle de prédiction à jour. De plus les 50 meilleures familles sont également croisées entre 

elles pour démarrer un nouveau cycle. 

Résultats et Discussion 

Prédiction intra-population 
Des PA moyennes relativement similaires ont été obtenues pour tous les caractères avec l’approche 

SINSRO à travers les tailles de set s et les méthodes de calibration (PA = 0.30, 0.33, 0.27 et 0.24 pour FL, 

PH, YLD and ZN, respectivement). La taille de set s a eu un effet très fort sur les PA, les grands sets 

permettant systématiquement de meilleures PA, même pour les caractères à l’architecture génétique 

plus simple tel que FL ou PH (Figure 2-5, p.55). 

Aucune différence flagrante n’a été notée entre les deux années qui représentent des prédictions 

basées sur des phénotypes obtenus dans deux générations différentes. 

En comparant les approches intégrant les deux sites (PAL et SRO), BAL1 et BAL2 à SINSRO, on voit que 

l’utilité des données des différents sites dans la prédiction de SRO dépends fortement de la corrélation 

entre sites pour le caractère prédit. Pour FL, PH et ZN, un fort gain de PA peut être observé en 

comparaison à SINSRO quand les phénotypes de 334 familles à PAL (IMB) (Figure 2-6, p.57). Ce gain en 

PA diminue progressivement quand la taille des sets augmente et ne dépasse la corrélation 

phénotypique entre site qu’avec les plus grands sets de calibration. 

Pour YLD, la combinaison de données PAL et SRO dans la calibration ne permet pas de gain de PA par 

rapport à l’approche mono-site. La prédiction génomique permet néanmoins d’obtenir des prédictions 

avec des précisions supérieures à la corrélation phénotypiques entre les sites même avec la plus petite 

taille de set de calibration. 

Prédiction inter-population 
D’une manière générale, la précision de prédiction a été meilleure avec des modèles mono-site 

comparé au modèle multi-site (Table 0-1). Uni2 est pour tous les caractères à l’exception de YLD 

l’approche avec la meilleure PA. Etonnamment, Uni2 et Uni3, calibrés sur des données PCT27A en S0:2 

et S0:3 respectivement, prédisent S0:4 mieux que Uni1 calibré sur des données S0:4. Plusieurs causes sont 

envisagées. La première est que des allèles ont été perdu durant le l’avancement en génération suite 

à une sélection naturelle. YLD étant hautement polygénique, la perte de certains allèles a eu moins 
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d’effet sur le phénotype finalement que pour les autres caractères à l’architecture génétique plus 

simple. Des effets aléatoires pourraient également être à l’origine de la bonne PA de Uni2. Une autre 

explication possible est que l’avancement en génération a causé des erreurs telles que des mélanges 

de semences ou la récolte de plantes mâle stérile. La génétique des plantes S0:4 ne correspondant pas 

complètement à celle attendue pour des descendants des génotypes S0 utilisés pour la prédiction. Dans 

tous les cas, il est très intéressant de savoir que S0:2 est un bon prédicteur pour S0:4, ceci même entre 

populations. 

Le modèle Multi2 a été moins performant que les modèles mono-sites malgré un grand nombre de 

données supplémentaires (Table 0-1, Figure 3-2, p.89). On sait que la performance des modèles multi-

environnement est liée aux corrélations entre les environnements intégrés dans la calibration (Lopez-

Cruz et al. 2015; Cuevas et al. 2016) or les corrélations phénotypiques observées entre les différents 

environnements de calibration et l’environnement prédit étaient relativement basses. 

Les différentes structures de variance-covariance testées ont montré des résultats variables selon les 

caractères. Dans aucun des cas, MDe ne permet de meilleures PA, MM étant la meilleure approche 

pour FL et YLD, et MDs la meilleure approche pour PH et ZN. Bien que les PA varient entre les structures 

de variance-covariance, les individus sélectionnés sont sensiblement les mêmes d’une structure à 

l’autre, le rang n’étant pas très différent entre les modèles (Figure 3-5, p.95). 

Simulation 
Les deux schémas de sélection BS1 et BS2 ont été comparés sur leurs gains génétiques par cycle de 

sélection récurrent et en fin de sélection généalogiques ainsi que sur leur PA. Pour tous les caractères, 

les gains en sélection récurrente et en sélection généalogique ont été plus élevés pour BS1. Cela 

s’explique facilement par le plus grand nombre de données et donc une meilleure estimation de la 

valeur en lignée pour BS1. Il est important de noter que lorsque l’héritabilité était faible, comme pour 

le cas de T2 (Table 4-2, p.125), les différences de gain entre schéma étaient plus faibles (Table 4-3, 

p.127). 

Scenario Model FL PH YLD ZN 

Uni1 MS 0.225 ± 0.077 0.309 ± 0.069 0.388 ± 0.079 0.174 ± 0.080 
Uni2 MS 0.311 ± 0.005 0.389 ± 0.005 0.333 ± 0.005 0.323 ± 0.006 
Uni3 MS 0.229 ± 0.004 0.254 ± 0.006 0.243 ± 0.008 0.293 ± 0.006 
Multi2 MM 0.200 ± 0.012 0.296 ± 0.008 0.274 ± 0.014 0.250 ± 0.016 
Multi2 MDs 0.223 ± 0.015 0.264 ± 0.013 0.295 ± 0.023 0.241 ± 0.021 
Multi2 MDe 0.204 ± 0.023 0.255 ± 0.017 0.285 ± 0.027 0.238 ± 0.027 

 

Table 0-1 : Résumé des différentes précisions de prédiction obtenues pour les modèles mono-site (MS) Uni1, Uni2 et Uni3 et 
le modèle multi-site Multi2 75%. Le modèle multi-site a été testé avec trois différentes structurations de l’interaction 
génotype environnement, soit sans interaction (MM), soit avec un effet aléatoire d’interaction avec un variance unique (MDs) 
soit avec un effet aléatoire d’interaction avec une variance par site (MDe). La description des schémas de validation se trouve 
dans la Figure 3-2, p.89 
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Les niveaux de GxE ont également eu un impact négatif significatif sur le gain génétique sur les trois 

caractères avec l’héritabilité la plus faible T4 n’étant pas affecté. D’un autre coté les PA de tous les 

caractères ont été négativement influencées par l’augmentation du GxE. 

L’intensité de sélection appliquée durant les 20 cycles simulés n’a pas épuisé la variabilité de la 

population bien qu’elle ait perdu entre 2 et 3 pourcents de sa variabilité initiale à chaque cycle. Après 

20 cycles un peu plus de 50% des QTLs n’étaient pas encore fixés. 

Conclusion 
Finalement, la prédiction génomique devrait permettre une réduction de la durée d’un cycle de 

sélection, ainsi que de l’effort de phénotypage. Le programme CIAT-Cirad continuera sur la voie de la 

mise en œuvre de la prédiction génomique dans son schéma d’amélioration de population. L'approche 

de phénotypage définitive doit encore être clarifiée. Le programme pourrait, dans un avenir proche, 

concentrer le phénotypage sur les S0:2 uniquement mais nous savons maintenant que le site SRO 

restera central dans le processus de sélection et de calibration. Les différences entre caractères 

suggèrent que des compromis devront être faits pour accommoder les besoins de phénotypages de 

chacun. Les caractères montrant une bonne corrélation entre les sites, comme FL et PH, pourront 

probablement être phénotypés dans PAL, tandis que YLD et ZN devront toujours être phénotypés à 

SRO, du moins pour une partie de la population. Une bonne stratégie devra encore être mise en place 

pour réduire au minimum les effets confondus dans le dispositif expérimental tels que l’effet essai et 

l’effet génération ainsi que pour tracer clairement les interactions génotypes par année. 
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Résumé  
L'amélioration des populations par sélection récurrente a récemment regagné l'attention de la 

communauté des sélectionneurs grâce à la possibilité de réduire la durée du cycle de sélection en 

utilisant la prédiction génomique (PG) plutôt que des tests sur descendance. Pendant plusieurs 

décennies, le programme de sélection récurrente du riz pluvial (Oryza sativa L.) CIAT-Cirad a utilisé un 

schéma de sélection en deux parties (i) l’amélioration de la population basée sur la sélection récurrente, 

(ii) le développement de cultivars par la sélection généalogique. Récemment, des efforts ont été faits 

pour mettre en œuvre la PG afin de raccourcir considérablement le cycle de sélection. 

L'objectif de cette thèse était d'évaluer le potentiel de la PG pour la sélection récurrente, de tester des 

stratégies de calibration des modèles en utilisant les dispositifs expérimentaux existants pour ensuite 

mettre en place une sélection génomique précoce des parents recombinants.  

Une population de sélection récurrente a été génotypée à la génération S0 avant d'être divisée en deux 

sous-populations : la PCT27A et la PCT27B. La PCT27A a été avancée en génération S0:2 et S0:3 et 

phénotypée à ces générations tandis que le PCT27B a été avancé jusqu'à la S0:4 et phénotypé. Quatre 

caractères ont été mesurés dans un site cible et un site de substitution. La précision des modèles de 

PG a été estimée à l'aide de plusieurs scénarios et modèles, en fonction de la présence d'un ou deux 

environnements de culture, d'une ou plusieurs générations de phénotypage, de la présence d'une 

interaction génétique x environnement (GxE), de la taille et composition de la population de calibration. 

Tout d’abord, nous avons évalué par validation croisée des modèles intra-population. Ensuite, nous 

avons testé différents modèles pour prédire du matériel avancé dans une population de validation 

externe. Pour compléter ces résultats, une étude de simulation a été réalisée pour évaluer l'effet à 

long terme de l'intégration de la PG dans le programme de sélection. Dans cette dernière étude, les 

effets de trois niveaux de GxE et de deux niveaux de dominance ont été évalués dans deux schémas 

de sélection basés soit sur une génération de phénotypage, soit sur deux générations. 

Les calibrations sur deux sites n'ont pas été plus performantes que celles réalisées uniquement sur le 

site cible. Les données PCT27A du site cible en S0:2 et S0:3 ont pu être utilisées pour prédire les 

références S0:4 en PCT27B. Lorsque les calibrations confondaient l'effet de la génération et du site, les 

précisions étaient plus faibles. Il ne semble donc pas approprier de calibrer sur des données de deux 

générations obtenues dans deux sites. Les simulations ont permis de mettre en évidence que la 

prédiction forward, utiliser pour la sélection récurrente, était possible avec les deux schémas de 

sélection, la calibration sur deux générations étant systématiquement meilleure que celle sur une 

seule génération. Avec l'augmentation des interactions GxE, les précisions ont chuté pour les deux 

schémas de façon similaire. Seul le niveau de GxE a eu un impact sur la capacité de prédiction et le gain 

génétique.  

En conclusion, il est possible de dire que la PG peut remplacer les tests sur descendance dans la 

sélection récurrente. L'utilité des différents sites et des différentes générations dans la calibration 

dépend des caractères prédits et des compromis devront être faits lors de la conception du schéma de 

sélection pour obtenir des prédictions aussi précises que possibles pour les différents caractères dans 

les limites financières et logistiques imposées programme. Les résultats de l’étude de simulation et des 

expériences sur le terrain vont permettre l'amélioration du programme de sélection CIAT-Cirad en vue 

d'un progrès génétique plus rapide tout en conservant un coût économique relativement stable.  
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Abstract   
Population breeding through recurrent selection has recently regained attention in the plant breeding 

community with the new possibility to reduce the breeding cycle length by selecting on genomic 

prediction (GP) rather than progeny testing. For several decades, the CIAT-Cirad rainfed rice (Oryza 

sativa L.) breeding program has been using a two-parts breeding scheme with population 

improvement based on recurrent selection and a cultivar development following pedigree breeding. 

More recently, effort have been made to implement GP to shorten the breeding cycle. 

The objective of this thesis was to evaluate the potential of GP in CIAT-Cirad program, test calibration 

strategies using the existing infrastructure to later implement early genomic selection of recombinant 

parents.  

A population was genotyped at generation S0 before being divided in two subpopulations: the PCT27A 

and the PCT27B. PCT27A was advance to generation S0:2 and S0:3 and phenotyped at those generations 

while PCT27B was advanced up to S0:4 and phenotyped. Four traits were measured in a target site and 

a surrogate evaluation site. The predictive ability of the GP models was estimated using several 

scenarios and models, according to the presence of one or two growing environments, one or several 

phenotyping generations, the presence of genetic by environment interaction and the size and 

composition of the training set. 

First, we assessed by cross-validation the GP in a single population. Then, we used the same data to 

predict more advanced material in an external validation population. To complete the field 

experiments, a simulation study was realized to assess the long-term effect of the integration of GP 

into the breeding program and the response of calibration scenario to dominance and genotype-

environment interaction (GxE) variance. 

In this last study, the effect of three levels of GxE and two levels of dominance were assessed on two 

breeding schemes based on either two generations of phenotyping or a single generation. 

Two-sites calibrations never strongly outperformed single site calibrations. Early generation PCT27A 

phenotypes from target site could be used to predict generation S0:4 from PCT27B. However, when the 

calibration confounded generation and site effects, the precisions were lower. Hence it seems so far 

unappropriated to phenotype different generations in different sites. The simulations allowed to 

highlight that forward prediction, which is the base of recurrent selection, is possible with either 

breeding schemes, calibration with two generations being systematically better than single generation 

one. With the increase of GxE, the accuracies dropped for both schemes with similar intensity. Only 

the level of GxE had an impact on predictive ability and genetic gain.  

To conclude, GP can replace progeny testing in recurrent selection. The utility of the different sites and 

different generations in the calibration depend on the traits predicted and compromises will have to 

be done when the breeding scheme will be design to reach the best possible accuracy for each trait, 

while staying within the program financial and logistical limitations. Those results from the simulation 

and field experiments will be valuable for the improvement of the CIAT-Cirad breeding program toward 

a faster genetic progress and more sound use of resources. 

 




