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Jérôme BartholoméID
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Abstract

Improving plant performance in salinity-prone conditions is a significant challenge in breeding

programs. Genomic selection is currently integrated into many plant breeding programs as a

tool for increasing selection intensity and precision for complex traits and for reducing breeding

cycle length. A rice reference panel (RP) of 241 Oryza sativa L. japonica accessions geno-

typed with 20,255 SNPs grown in control and mild salinity stress conditions was evaluated at

the vegetative stage for eight morphological traits and ion mass fractions (Na and K). Weak to

strong genotype-by-condition interactions were found for the traits considered. Cross-valida-

tion showed that the predictive ability of genomic prediction methods ranged from 0.25 to 0.64

for multi-environment models with morphological traits and from 0.05 to 0.40 for indices of

stress response and ion mass fractions. The performances of a breeding population (BP) com-

prising 393 japonica accessions were predicted with models trained on the RP. For validation

of the predictive performances of the models, a subset of 41 accessions was selected from the

BP and phenotyped under the same experimental conditions as the RP. The predictive abilities

estimated on this subset ranged from 0.00 to 0.66 for the multi-environment models, depend-

ing on the traits, and were strongly correlated with the predictive abilities on cross-validation in

the RP in salt condition (r = 0.69). We show here that genomic selection is efficient for predict-

ing the salt stress tolerance of breeding lines. Genomic selection could improve the efficiency

of rice breeding strategies for salinity-prone environments.

Introduction

Soil salinization is a major challenge worldwide, affecting about 20% of all irrigated land [1].

The predicted rise in sea level due to climate change will increase the percentage of salt-

affected land, especially in coastal and delta areas [2]. Salinity is one of the most important fac-

tors reducing rice (Oryza sativa L.) crop productivity in river deltas, including some of the

major production areas in Asia and Europe. This is a major concern for rice growers, as rice is

considered to be more salt-sensitive than other cereals, such as wheat or barley [3]. Indeed, salt

stress has a strong effect, decreasing growth or survival at the seedling stage in rice, even at

moderate salinity levels, such as 3.4 dS�m−1 [4]. Salt stress also significantly impacts rice grain
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yield, even at low salinity levels, with decreases in yield components, including tiller number,

spikelet number, and grain weight [5]. Sensitivity depends not only on the intensity of the

stress, but also on its timing relative to plant development. Like other crops, rice is more sensi-

tive during the seedling and reproductive stages [6]. Efforts have been made to unravel the

mechanisms involved in salt tolerance in rice at the physiological, molecular, and genetic levels

[7,8]. Three mechanisms have been implicated in plant salt-stress tolerance: ion exclusion

(Na+ or Cl−), tissue tolerance, and osmotic tolerance [6,9]. Phenotyping is challenging due to

the complex interactions between environmental and genetic factors, and accurate protocols

are required to quantify plant responses to salt stress [6].

Since the start of the Green Revolution, rice breeders and geneticists have been screening

the diversity of O. sativa, with the aim of identifying tolerant genotypes [10,11]. Screening pro-

tocols have been developed to evaluate lines subjected to different stress levels at the seedling

stage [12]. In the 1970s, for example, the International Rice Research Institute in the Philip-

pines evaluated about 100,000 accessions for salt tolerance by visual damage scoring. Less than

20% of the lines tested were found to be tolerant, suggesting that salt tolerance is not a major

characteristic in rice [13,14]. Most of the tolerant accessions belonged to the O. sativa subspe-

cies indica (e.g., Nona Bokra, Pokkali, Hasawi, Getu, Cheriviruppu, Ddamodar, Solla and

Ketumbar) and many originated from mangrove areas, but some tolerant lines were also

found in the japonica subspecies (e.g., Honduras, Slava, and Gigante Vercelli, [15,16]). These

tolerant landraces or ecotypes were subsequently used as donors for salinity tolerance genes in

breeding programs [13]. With the advent of molecular markers, tolerant landraces were used

in various types of crosses, to map quantitative trait loci (QTLs) and to shed light on the

genetic control of salinity tolerance [17–19]. Several hundred QTLs and dozens of genes have

been identified, highlighting the complex genetic control of this trait [12,13]. These QTLs and

genes are spread throughout the rice genome, but with a higher concentration on chromosome

1. The major QTL SalTol, located on chromosome 1, was used for marker-assisted selection

[20–23]. Most efforts have focused on pre-breeding activities based on QTL introgression, and

a number of salt-tolerant varieties, such as IR64-Saltol, ASS996-Saltol and BRRI dhan 47, have

emerged from these approaches [24,25]. However, most of these varieties belong to the indica
subspecies, which grows in tropical and subtropical regions. In the framework of the European

Neurice project, Saltol was introgressed in Spanish, Italian and French temperate japonica
varieties through marker-assisted selection(http://www.neurice.eu).

Despite major advances in the marker-assisted selection of a major QTL/gene, breeding for

salt tolerance is rendered more difficult by the complex genetic architecture of the trait, as hun-

dreds of genes associated with different mechanisms are involved [13,26]. Favorable alleles at

several QTLs/genes are therefore required to occur together to confer a significant level of toler-

ance in field conditions. There is a need to combine QTL/genes controlling salt tolerance at

both the vegetative and reproductive stages. In addition, interactions with environmental condi-

tions, such as the timing and intensity of salt stress, play a major role, making it harder to iden-

tify the best-performing lines. Indeed, tolerant lines must also perform well under more

favorable conditions, and must be adapted to the various environments encountered in farmers’

fields [27]. In this context, genomic selection is a potential tool for accelerating genetic improve-

ment for salt tolerance [28]. Genomic selection requires the initial calibration of a prediction

model on a training population that has been both genotyped and phenotyped. This prediction

model is then applied to candidates for selection, based purely on their genotypes [29]. This

approach enables breeders to optimize their breeding strategy by selecting early in the breeding

cycle for complex and expensive-to-evaluate traits, thereby decreasing the length of the breeding

cycle [30]. In rice, genomic prediction has been successfully evaluated for different traits and

different types of populations [31–33]. Most of these studies focused on predicting
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performances in normal conditions, but a few have assessed the accuracy of prediction for per-

formance under abiotic stress conditions, such as water deficit in particular [34,35]. Genomic

prediction models integrating genotype-by-environment interactions have recently been devel-

oped [36–39]. These models tend to increase prediction accuracy, by incorporating multi-envi-

ronment data and modeling marker-by-environment interactions. They are particularly useful

for breeding programs targeting stress-prone environments, as they make it possible to combine

performances in the presence and absence of stress, to increase accuracy [31].

In this study, we used material from European rice breeding programs to evaluate the poten-

tial of genomic prediction for improving salinity tolerance in japonica rice adapted to temperate

regions. Due to environmental constraints (low temperatures and long days) almost all of the

rice varieties grown in Europe belong to the japonica subspecies [40]. A panel of European

accessions was recently evaluated for tolerance to salt stress at the seedling stage, revealing con-

siderable variability for various traits (growth parameters and sodium (Na+) and potassium

(K+) mass fractions) despite the absence of the favorable allele at the Saltol locus [41]. These

findings indicate that the use of minor genes and selection for this quantitative variation by

genomic selection could help to increase the salt tolerance of temperate japonica breeding lines.

However, for most breeding programs in temperate regions, only one growing season per year

is possible, and the evaluation of salinity tolerance in field conditions is always difficult because

of the high level of interannual variability. Genomic prediction models are, therefore, useful for

predicting the salinity tolerance of untested genotypes, to make it easier for breeders to take

selection decisions as early as possible. The objectives of this study were: i) to assess the accuracy

of single and multi-environment genomic prediction models for predicting the performance of

accessions from European rice breeding programs for traits related to salt tolerance via cross-

validation and ii) to validate these models on an independent subset of breeding lines.

Materials and methods

Plant material

We used two different populations (S1 Table). The first population was a reference panel (RP)

composed of 241 japonica accessions. The RP was previously characterized by Frouin, et al.

[41]. These accessions were mostly varieties from temperate regions, with European accessions

largely represented (Italy (46.7%), France (12.5%), Spain (12.5%), Portugal (7.1%)), alongside

varieties from the United States (10.4%), and more than 15 other countries. The second popu-

lation was a breeding population (BP) of 393 breeding lines, with 73.8% of the lines derived

from the joint breeding program of the Centre Français du Riz (CFR, Arles, France) and the

Centre de cooperation international en recherche agronomique pour le développement (CIRAD,

Montpellier, France). This French material included 289 current advanced breeding lines

derived from 98 crosses involving 114 parents, 33 of which were included in the RP. The num-

ber of lines per cross ranged from 1 to 20, with seven crosses overrepresented (121 individu-

als). The other lines in the BP were lines from the working collections of European breeders.

Genotypic characterization of the populations

The two populations were genotyped with the same genotyping-by-sequencing method [42].

The DNA was extracted with the a modified method using hexadecyltrimethylammonium

bromide [43], as described by Frouin et al. [41]. The genome was digested with the restriction

enzyme ApeKI for library preparation. The libraries were sequenced with a Genome Analyzer

II (Illumina, San Diego, California, USA). The Nipponbare reference genome Os-Nipponbare-

Reference-IRGSP-1.0, [44] was used for sequence alignment. Single-nucleotide polymorphism

(SNP) calling was performed with the Tassel GBS pipeline with the default parameters [45].
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Markers with a call rate below 75%, a heterozygosity rate above 10% and a minor allele fre-

quency below 5.0% were discarded. The remaining heterozygotes were converted to missing

data. The missing data were then imputed with Beagle v4.0, using the default parameters [46].

The imputed file was split into two sets: the 241 accessions of the RP and the 393 accessions of

the BP. Markers with a minor allele frequency below 5.0% were discarded in both populations.

This procedure resulted in the identification of 20,255 informative SNPs common to the two

populations. Markers in complete linkage disequilibrium were further filtered out: for clusters

of markers, only one marker, that with the lowest rate of missing data before imputation and

the highest minor allele frequency, was selected to represent the cluster. This filter resulted in

16,993 non-redundant markers, which were used for further analysis. The data can be down-

loaded from CIRAD Dataverse: https://doi.org/10.18167/DVN1/O1AYGP.

The genetic structure of the 241 accessions of the RP and 393 lines of the BP was assessed

by a discriminant analysis of principal components implemented in the R package adegenet
[47,48]. The functions find.clusters and dapc were successively used to assign individuals to

genetic groups. The number of clusters was set to three, corresponding to the tropical and tem-

perate japonica subgroups and admixed accessions. The percentage of the variance used to

select the number of axes in the principal component analysis was set at 90%. We also used

DarWin v6 software [49] to calculate a simple matching index to assess the dissimilarity

between individuals. We also used DarWin v6 software [49] to calculate a simple matching

index to assess the dissimilarity between individuals. This index was then used to construct an

unweighted neighbor-joining tree. The assignments to groups derived from adegenet were

projected onto the neighbor-joining tree.

Assessment of phenotypic performance under controlled conditions

Reference panel (RP). The accessions of the RP were phenotyped for salinity tolerance

under hydroponic conditions, as previously described by Frouin et al. [41]. Briefly, the experi-

mental design was a split-plot with three replicates staggered in time. In each replicate, the

plants were distributed in 12 tanks (6 control and 6 salt tanks). Two resistant controls (Nona

Bokra and Pokkali) and three susceptible controls (IR29, Aychade and Giano) were replicated

in each tank. Stress was applied for two weeks, beginning two weeks after sowing. The salt con-

centration was 50 mM NaCl (3 g/l), corresponding to an electrical conductivity of 6.5 dS�m-1.

After 28 days sowing, we measured the following growth-related traits in control and salt con-

ditions: the number of tillers (TIL), the lengths of the longest leaf (LL) and the longest root

(RL), the length (LGTH) and width (WDTH) of the last fully developed leaf of the main tiller,

the dry matter weight for shoots (SHOOT), roots (ROOT) and the last fully developed leaf of

the main tiller (LEAF). The Na+ and K+ mass fractions of shoot tissues, expressed as percent of

dry matter, were measured on plants grown in salt conditions, by atomic emission spectros-

copy (ICP-AES), at the UR59 laboratory at CIRAD Montpellier (ISO9001). We also calculated

the following variables: leaf area (LA), calculated as LGTH x WIDTH x 0.75, specific leaf area

(SLA), calculated as LA divided by LEAF, the root-to-shoot ratio (R/S), calculated as ROOT

divided by SHOOT, and the Na/K ratio, calculated as Na+ mass fraction over K+ mass fraction.

Analysis of variance was performed on the morphological trait data, with a mixed model

including salinity/control conditions and genotype as fixed effects and replicate and tank as

random effects. The significance of genotype, conditions and genotype x conditions interac-

tion effects were assessed. The least square mean values of the genotypes were calculated with

SAS software (Cary, NC, USA).

From the least square mean values for morphological traits, stress response indices were

computed as iTRAIT = (salt−control)×100/control.
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Subset of the breeding population. The same methodology was used to phenotype a sub-

set of 41 lines selected from the BP (BP41) in a separate experiment. The design was a split plot

with two conditions (control and salt stress) and three replicates. The resistant and susceptible

controls varieties were as described above. The same statistical model as for the RP was used

for the variance analysis except that, in this case, because of the smaller size of the experiment,

the tank and replicate effects were combined. The process used to select the 41 lines is

explained below in the “Evaluation of predictive ability” section.

Statistical models for genomic prediction

The genomic BLUP (GBLUP) and the reproducing kernel Hilbert space (RKHS) models were

used to predict breeding values with molecular markers. GBLUP is one of the most popular

and robust methods for genomic prediction [50,51]. For GBLUP, we calculated the kernel

matrix as follows K = XX’/p, X being the centered genotype matrix. X is of dimension n×p,

where n is the number of genotypes and p the number of markers. For the RKHS model, we

used a Gaussian kernel Kðxi; xjÞ ¼ expð� hk xi � xj k2Þ to calculate the kernel matrix between

the marker genotype vectors xi and xj, where (i,j)2{1,. . .,N}2. We estimated the bandwidth

parameter h as described by Pérez-Elizalde et al. [52] and with the associated R function

margh.fun. This method is based on estimation of the mode of the joint posterior distribution

of h and a form parameter φ. The shape and scale parameters of the gamma prior distribution

for h were 3.0 and 1.5, respectively.

The extensions of the GBLUP and RKHS models for multivariate analysis were used to pre-

dict the genomic estimated breeding values from data for the two sets of conditions. This

approach is referred to hereafter as “multi-environment prediction”. For both the extended

GBLUP and RKHS models, the effects of markers are divided into two components: the main

effect and the environment-specific effects [38,53]. Following the notation of Cuevas et al.

[38], the model can be expressed as:
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Where yj is the response vector in the jth environment, μj is the intercept in the jth environ-

ment, Xj, is the centered matrix of marker in the jth environment, β0 is the vector of marker

effects across all environments, βj is the vector of marker effects for environment j and εj is the

random error for the jth environment. By using the following notation:
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the model can be written as follow:

y ¼ mþ uo þ uE þ ε

In this mixed model, the random effect uo follows a multivariate normal distribution with a

mean of zero and a variance–covariance matrix K0s
2
uo

with K0 ¼ X0X
0

0=p for the GBLUP and

K0ðx0i; x0jÞ ¼ expð� h0k x0i � x0j k2Þ for RKHS. The random effect uE follows a multivariate

normal distribution with a mean of zero and a variance–covariance matrix KE with

KE ¼
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. The kernel matrix for each environment is esti-

mate as follow: Kj ¼ XjX
0

j=p for the GBLUP and Kjðxji; xjjÞ ¼ expð� hjk xji � xjj k2Þ for RKHS

Analyses were performed in the R 3.6.1 environment [54]. The GBLUP and RKHS models

were fitted in the R package BGLR 1.0.8 [55]. Inferences were based on 3,000 of the 35,000 iter-

ations for the Gibbs sampler. The first 5,000 samples were discarded (burn-in) and we then

kept one sample out of ten to avoid autocorrelation (thinning). Convergence of the Markov

Chain-Monte Carlo algorithm was assessed for all parameters of the models, with Gelman-

Rubin tests [56] and the R package coda 0.19–1 [57].

Evaluation of predictive ability

Cross-validation within the reference panel. We estimated the predictive ability (PA) of

the models described above using a cross-validation strategy within the RP: we randomly

selected 80% of the panel to form the training set, with the remaining 20% used as the valida-

tion set. For multi-environment models, the genotypes composing the training set were associ-

ated with phenotypic information for the two sets of conditions, whereas no phenotypic

information was available for those composing the validation set. This cross-validation

approach is usually referred to as CV1 in the literature [58]. The random partitioning of the

RP was repeated 100 times, and the PA for each partition was calculated as the Pearson coeffi-

cient of correlation between the genomic estimated breeding values and the corresponding

phenotypes in the validation set. For each combination of model (single or multi-environ-

ment), statistical method (GBLUP, RKHS) and trait, the same partitions were used to calculate

predictive ability. The resulting estimates of predictive ability were averaged, and the associ-

ated standard error was calculated. We analyzed the effect of the different factors (trait, condi-

tions, prediction method, etc.) on PA, by performing analyses of variance. To avoid potential

bias due to the distribution of the coefficient of correlation (r2[−1; 1]), we transformed it

using Fisher Z transformation according to the following equation:

Z ¼ 0:5fln½1þ r� � ln½1 � r�g. The analyses of variance were done on the Z statistics.

Validation in the breeding population (BP). We evaluated PA in the breeding popula-

tion in two steps. We first used the 241 accessions of RP to train the model and then predicted

the phenotype of each of the 393 lines in the BP. We then selected a set of 41 lines from the BP

for actual phenotyping under the same conditions as the RP. The number of lines selected was

chosen to allow for the phenotyping of three replicates in hydroponic conditions. This set of

41 lines (BP41) was chosen to be representative of the variability of the predicted phenotypic

values of the most important salt tolerance traits observed for the 393 lines of the BP—Na, K
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and Na/K—and for iSHOOT and iROOT, predicted by both the GBLUP and RKHS methods.

We captured the variability present in the BP, for each trait, by selecting lines ranked in the

lowest 10%, lines ranked in the top 10% and the lines with average performances in the follow-

ing proportion: 20%, 20% and 60%. PA was calculated as the Pearson coefficient of correlation

between the predicted phenotypes of the 41 lines obtained with models trained on the RP and

the corresponding actual phenotypes.

Results

Characterization of the reference panel and the breeding population

In total, 20,255 informative SNPs spread throughout the genome were common to the RP and

the BP (S1 Fig). The mean distance between SNPs was 18.3 kb, and the largest gap between

markers was 1.3 Mb, on chromosome 11. Forty-two gaps of more than 500 kb were observed

throughout the genome, with chromosomes 3 and 5 presenting the largest numbers of such

gaps. SNPs in complete linkage disequilibrium (r2 = 1) were removed. This resulted in 16,993

markers with a distribution very similar to the initial dataset (S1 Fig). The distribution of minor

allele frequencies across non-redundant markers was similar for the RP and the BP (S2 Fig).

Analyses of the genetic structures of both the RP and BP highlighted the well-known bipolar

structure of European rice accessions, with temperate and tropical japonica subgroups (S3 Fig).

As expected, given the nature of the genetic material, the level of admixture between these two

subgroups was high, reaching 37% in both the RP and the BP. The BP was highly related to the

RP, as highlighted by the small genetic distance between the two populations (Fig 1). This relat-

edness between the two populations is a key parameter for genomic prediction.

Fig 1. Unweighted neighbor-joining tree representing the dissimilarities between individuals composing the reference

panel (black) and the breeding population (blue and green for the subset used for validation).

https://doi.org/10.1371/journal.pone.0291833.g001

PLOS ONE Genomic selection for salinity tolerance in japonica rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0291833 September 27, 2023 7 / 22

https://doi.org/10.1371/journal.pone.0291833.g001
https://doi.org/10.1371/journal.pone.0291833


The 241 accessions of the RP had been evaluated under two hydroponic conditions: control

and salt. Weak-to-moderate genotype x conditions interactions (G×C) were observed, depend-

ing on the trait (Fig 2). The weakest G×C interaction was that for leaf length (LL), with a rank

correlation (Kendall) between the two conditions of ρ = 0.79. Conversely, specific leaf area

(SLA) presented the strongest G×C interaction, with ρ = 0.33. The 10% of accessions with the

Fig 2. Phenotypic performance of the accessions of the reference panel in the two sets of hydroponic conditions (CRTL: Control; SALT: Salt).

All traits measured in both conditions are presented: Number of tillers (TIL), leaf length (LL), leaf area (LA), specific leaf area (SLA), root length

(RL), root dry weight (ROOT), shoot dry weight (SHOOT) and the ratio of root-to-shoot dry weights (R_S). The accessions in green are the 10% of

accessions with the lowest Na/K ratios in salt conditions. Spearman’s rank correlation coefficients (ρ) between control and salt conditions are

indicated at the top of each panel.

https://doi.org/10.1371/journal.pone.0291833.g002
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lowest Na/K ratios did not differ significantly (p-value > 0.05) from the rest of the RP for any

combination of trait/conditions other than root/shoot ratio (R_S) in salt conditions, for which

the ratio was higher for the rest of the panel. The correlation between morphological traits ran-

ged from -0.45 to 0.90 in control conditions and from -0.37 to 0.90 in salt-stress conditions

(S2 Table). ROOT was strongly correlated with SHOOT (0.90) and LL was significantly corre-

lated with ROOT, SHOOT and LA, in both sets of conditions. However, the correlations

between traits tended to be weaker in salt conditions than in control conditions. In salt condi-

tions, the ion mass fractions presented few significant correlations with morphological traits:

NA/K was correlated with TIL (-0.20), SHOOT (-0.19) and R_S (0.22, S2 Table).

The phenotypic variability observed in the RP was partly related to population structure.

Indeed, Na/K was significantly higher for the admixed subgroup than for the tropical and tem-

perate subgroups (S4 Fig). A difference was also found for RL, for which the admixed sub-

group had lower values, suggesting a higher susceptibility to the effects of salinity on root

development (S4 Fig).

Predictive ability of genomic prediction within the reference panel

Comparison between single and multi-environment models. Cross-validation in the RP

gave predictive ability (PA) values for the multi-environment model ranging from 0.25 to 0.64

in control conditions and from 0.38 to 0.63 in salt conditions, for the eight morphological

traits analyzed (Fig 3). Similar PAs were obtained for the eight traits in the single environment

Fig 3. Estimates of predictive ability for performances in the two sets of conditions (CTRL and SALT) for the

reference panel. Performances were predicted with multi-environment (black) or single-environment (gray) models.

Two different prediction methods were used: GBLUP and RKHS. The traits considered were: Number of tillers (TIL),

leaf length (LL), leaf area (LA), specific leaf area (SLA), root length (RL), root dry weight (ROOT), shoot dry weight

(SHOOT) and the ratio of root-to-shoot dry weights (R_S). The bars represent the average predictive ability over 100

replicates, and the error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pone.0291833.g003
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model, with values ranging from 0.22 to 0.63 in control conditions and from 0.36 to 0.62 in

salt conditions. For both the single-environment and multi-environment models, the lowest

PA was that for SLA and the highest was that for LL in control conditions. PA was higher in

control conditions than in salt conditions for six of the eight traits (TIL, LL, LA, SHOOT,

ROOT, and R_S) (Fig 3). The largest positive difference in accuracy (0.19) between control

and salt conditions was for LA when the single environment model was used. For SLA and RL,

PA was higher under salt conditions than under control conditions, with differences up to 0.24

and 0.17 (single-environment model, RKHS), respectively. All the factors considered in the

analysis of variance (trait, conditions, prediction method and prediction model) had a signifi-

cant effect on PA, with the largest effect for trait, the other factors being of a much lesser

importance (S3 Table). Indeed, differences in PA between single and multi-environment mod-

els were close to zero, except for SLA and RL in control conditions for which accuracy was

15% and 10% higher, respectively, for the multi-environment model than for the single-envi-

ronment model. Interestingly, these were the two traits with the best PA in salt conditions. No

clear relationship was found between the strength of G×C interactions for traits and the per-

formance of the multi-environment model relative to that of the single-environment model.

Stress response indices and ion mass fractions. The stress response indices combined

values from both control and salt conditions, whereas mass fractions were measured only

under salt conditions. Only the single environment model could, therefore, be used for mass

fractions. The PA values for the indices were lower than those of other traits in each set of con-

ditions, with values ranging from -0.05 to 0.35 (Fig 4A). On average, over the two prediction

methods, the iROOT, iSHOOT and iLL indices had the lowest PAs (lower than 0.10). Con-

versely, the PAs for iRL and iSLA were greater than 0.30. The PA for Na and K mass fractions

and for Na/K ranged from 0.20 to 0.40 (Fig 4A). The K mass fraction was slightly better pre-

dicted than Na mass fraction, with PAs of 0.34 (GBLUP) and 0.40 (RKHS), versus 0.28

(GBLUP) and 0.29 (RKHS), respectively. Both trait and prediction method had a significant

effect on PA. The effect of trait was the most significant, with prediction method having only a

marginal effect (S4 Table). A negative correlation was found between PA and the strength of

G×C interactions for the trait: -0.69 (p-value = 0.059) and -0.58 (p-value = 0.134) for GBLUP

and RKHS, respectively (Fig 4B).

Validation of predictive ability in the breeding population

The performances of the 393 genotypes of the BP were predicted with the two prediction mod-

els (single and multi-environment) built on the RP. As expected, the genomic estimated per-

formances were shrunk toward the mean value of the RP, and this effect was more

pronounced for RKHS than for GBLUP. Depending on the trait, the coefficients of correlation

(ρ) between the predicted performances estimated with RKHS and GBLUP ranged from 0.88

(SLA) to 0.98 (LL) for the multi-environment model and from 0.76 (SLA) to 0.99 (LL) for the

single-environment model (S5 Table). For indices and ion mass fractions, the coefficients of

correlation ranged from 0.29 (iROOT) to 0.97 (iLA). The traits presenting the lowest correla-

tion between prediction methods were those with the lowest PAs in cross-validation in the RP:

iROOT, iSHOOT, and iLL. For Na and K, and for Na/K, the coefficients of correlation

between prediction methods exceeded 0.90.

For validation of the predicted performances, a subset of 41 lines from the BP (BP41) was

selected for phenotyping. This selection had little effect on the extent of variability of the pre-

dicted traits relative to the entire BP (S5 and S6 Figs), but it decreased the neutral genetic vari-

ability, as shown by the distribution of BP41 on the neighbor-joining tree (Fig 1). The

repeatability of the actual phenotypic data obtained for BP41 through evaluation under control
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and salt conditions ranged from 0.70 to 0.93 for the measured traits and from 0.44 to 0.55 for

the indices (Table 1). Under salt conditions, the selected lines displayed phenotypic variation

for ion mass fraction (Na and K) within the expected range relative to the susceptible and tol-

erant controls (Fig 5). G×C interactions of similar strength (ρ) to those in the RP were found

(Table 1). The weakest G×C interaction was that for LA, with a rank correlation ρ between the

two conditions of 0.83, and the strongest G×C interaction was that for SLA (ρ = 0.25).

The phenotypic data for BP41 were used to estimate the PA of the models trained on the RP

for the various traits. For the multi-environment model, PA ranged from 0.00 to 0.66 and

from 0.09 to 0.54 in control and salt conditions, respectively (Table 1). As for cross-validation,

similar results were obtained with the single-environment model, with values ranging from

Fig 4. (A) Predictive abilities for stress response indices (iTrait) and ion mass fraction (Na and K) in the reference

panel. Two different prediction methods are presented: GBLUP in orange and RKHS in gray. A Tukey boxplot is used

to represent the data. (B) Scatterplot of estimates of predictive ability for indices and the level of genotype-by-

environment interactions estimated by calculating the Spearman correlation coefficient for the same genotype in

control and salt conditions.

https://doi.org/10.1371/journal.pone.0291833.g004
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0.02 to 0.67 in control conditions and from 0.04 to 0.61 in salt conditions. For stress-response

indices and ion mass fractions, PA ranged from -0.07 to 0.35. The PAs for the Na (0.31 and

0.32, with RKHS and GBLUP, respectively) and K (0.26 and 0.35) mass fractions (the main

traits used to select BP41) were intermediate, lying between those for the other traits. The dif-

ferences between RKHS and GBLUP were slightly larger than those observed for cross-valida-

tion. Depending on the trait and the model, gains in PA of up to 0.10 were observed for RKHS

(SHOOT in salt conditions) or for GBLUP (SLA in control conditions). Interestingly, the PAs

estimated by cross-validation and those obtained with the subset of the BP were not correlated

for control conditions, whereas there was a non-significant trend towards a positive correla-

tion between these PAs in salt conditions (Fig 6, S6 Table).

Discussion

Performance of japonica accessions under salt stress

In this study, we evaluated the salt tolerance of accessions and advanced lines from European

breeding programs at the seedling stage under hydroponic conditions, with a no-salt control

and a salt-stress treatment of 50 mM NaCl (6.5 dS�m-1). Hydroponic experiments are very use-

ful for evaluations of the sensitivity of accessions to a given level of salt stress [6,59]. This

approach has been used extensively to screen tolerant material in breeding programs [11] as

salt levels are highly variable in field experiments, with micro-environmental and seasonal var-

iations that can bias the evaluation of accessions. However, field-based evaluations and screen-

ing in controlled conditions are jointly used in breeding programs as stress tolerance at the

seedling stage may not fully correlate with field performance. In our experiments, a moderate

stress level, corresponding to a degree of salinity commonly observed in the Camargue region

of France was used [60]. Considerable variability was observed in the phenotypic response to

salt stress in both the RP and BP41, consistent with the findings of previous studies on japonica
accessions [15,16,61]. In their work on 176 temperate japonica accessions, Batayeva et al. [61]

reported that only a few accessions (Nep Ngau, Bai Mang Ai Zhong, and Shinchiku Iku 97)

Table 1. Summary of statistics for the 41 lines of the breeding population (BP41) for the various traits measured under control and salt conditions.

Prediction

method

TIL LL LA SLA RL ROOT SHOOT R_S Na* K* Na/

K*
H2 (control/salt) - 0.70 /

0.73

0.89 /

0.93

0.88/

0.87

0.48/

0.07

0.88 /

0.69

0.82 /

0.86

0.89 /

0.89

0.87 /

0.76

0.82 0.85 0.82

ρ - 0.38 0.66 0.83 0.25 0.67 0.31 0.54 0.80 - - -

PA with multi-environment model

(control/salt)

RKHS 0.02 /

0.14

0.38 /

0.56

0.36 /

0.50

0.50 /

0.14

0.63 /

0.45

0.66 / 0.4 0.43 /

0.43

0.48 /

0.31

- - -

GBLUP 0.00 /

0.10

0.43 /

0.54

0.36 /

0.45

0.57 /

0.09

0.64 /

0.36

0.65 /

0.29

0.42 /

0.34

0.47 /

0.41

- - -

PA with single-environment model

(control/salt)

RKHS 0.03 /

0.14

0.37 /

0.59

0.37 /

0.53

0.45 /

0.17

0.61 /

0.42

0.66 /

0.45

0.46 /

0.47

0.48 /

0.28

- - -

GBLUP 0.02 /

0.04

0.39 /

0.61

0.37 /

0.49

0.56 /

0.12

0.64 /

0.32

0.67 /

0.36

0.46 /

0.40

0.41 /

0.40

- - -

PA for the indices and ion content RKHS -0.05 0.21 0.11 0.35 0.19 0.33 0.34 0.02 0.31 0.26 0.26

GBLUP 0.01 0.06 0.13 0.32 0.31 0.26 0.33 -0.07 0.32 0.35 0.25

Repeatability in the two conditions (H2), the rank correlation between conditions (ρ),predictive abilities (PA) for single- and multi-environment models and for the

indices are provided. The traits presented are: Number of tillers (TIL), leaf length (LL), leaf area (LA), specific leaf area (SLA), root length (RL), root dry weight (ROOT),

shoot dry weight (SHOOT), the ratio of root-to-shoot dry weights (R_S), the ion mass fractions of Na and K and their ratio (Na/K). * The ion mass fractions were

measured only in salt conditions.

https://doi.org/10.1371/journal.pone.0291833.t001
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were as tolerant as the control variety, the others being moderately tolerant or susceptible. In

this study, we found that three lines had performances similar to that of the tolerant control,

with low Na_K values under salt conditions (Fulgente, Escarlate and RX110_01).

Accuracy of genomic predictions for salt tolerance

Genomic prediction has been studied in detail in rice in recent years, with more than 50 stud-

ies published to date [33]. However, none of these studies focused on predicting genotype per-

formances under salt stress. Depending on the trait, the type of population, the validation

Fig 5. Distribution of the ion mass fractions for Na and K in the subset of the breeding population (BP41). The

two tolerant controls (Nona Bokra and Pokkali) are represented in green and the three susceptible controls (IR29,

Giano and Aychade) are shown in pink. The lines from BP41 are in gray. The error bars represent the confidence

interval of the mean (95%) which was calculated based on the data for the three replicates for each line.

https://doi.org/10.1371/journal.pone.0291833.g005
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method and the prediction method, the accuracies reported in these studies varied substan-

tially, from close to zero to more than 0.90. Here, prediction accuracy ranged from 0.05 to 0.63

for the various traits when the cross-validation method was applied to the RP. No clear differ-

ences were found between the two prediction methods used (GBLUP and RKHS). These

results are consistent with those reported in previous studies [34,51,62,63]. We found that the

differences between single- and multi-environment models were also small, although multi-

environment models outperformed single-environment models for most of the traits and

tended to be more accurate for predictions in salt conditions. The small differences between

single- and multi-environment models were expected, given the type of cross-validation

scheme used, with the prediction of untested genotypes only. With this type of cross-validation

scheme, multi-environment models and single-environment models tend to perform similarly

[34,64,65]. Multi-environment models have been shown to perform better when the predicted

genotypes are evaluated in at least one environment (mimicking sparse testing evaluation). In

this case, the gain in prediction accuracy of multi-environment models over single-environ-

ment models may be between 30% and 50%, as shown by Ben Hassen et al. [34] with pheno-

typic data for two sets of conditions (continuous flooding and alternate wetting and drying).

Fig 6. Comparison of the predictive ablities for eight morphological traits estimated by cross-validation on the

reference panel and the 41 selected lines from the breeding population used as a validation set. Control conditions

are shown in black, and salt conditions in gray. Spearman’s rank correlation coefficients (ρ) are indicated.

https://doi.org/10.1371/journal.pone.0291833.g006

PLOS ONE Genomic selection for salinity tolerance in japonica rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0291833 September 27, 2023 14 / 22

https://doi.org/10.1371/journal.pone.0291833.g006
https://doi.org/10.1371/journal.pone.0291833


Cuevas et al. [38] reported similar results for a wheat dataset including four environments,

with gains of up to 60%, depending on the traits considered and the validation method.

Stress response indices had lower predictive abilities than regular traits. For the indices, pre-

dictive ability was negatively correlated with the strength of G×C interactions. This result

reflects the difficulty in predicting and selecting for relative performance between a stress envi-

ronment (in our case salt stress) and normal conditions. The positive relationship between

predictive ability and heritability is well known and has been described in studies on genomic

prediction [66,67], but the impact of genotype-by-environment interactions on predictive abil-

ity tends to be more difficult to characterize [68,69]. Furthermore, for indices, the errors asso-

ciated with measurements in the two sets of conditions are propagated in the index, tending to

decrease heritability. Ion mass fractions (Na and K) and their ratio (Na/K) had low-to-moder-

ate predictive abilities (0.2 to 0.4) with similar values in both populations (RP and BP41).

These predictive abilities are in the expected range given the complex genetic architecture

underlying these two traits [41]. No other study on rice has assessed the performance of geno-

mic prediction in the context of salinity tolerance. We were therefore unable to make direct

comparisons for this trait. However, the predictive abilities obtained in this study for Na and K

could potentially be improved with prediction methods modeling marker effects differently

from GBLUP and RKHS. Methods such as Bayesian LASSSO, BayesB and Random Forest

have been shown to perform better when only a few regions of the genome have moderate

effect on the target traits [51,70,71]. Similarly, the integration of GWAS results into the geno-

mic prediction model might also increase prediction accuracy [35,72,73]. In this study, no

major QTL was found in the RP [41], but this approach may be of interest when major QTLs,

such as Saltol are segregating in the breeding population.

Importance of validation on selection candidates

Predictive ability or accuracy is routinely used to evaluate the efficiency of genomic prediction

models [74]. In most genomic selection studies in plants, accuracy is measured as the correla-

tion (r) between observed and predicted phenotypic performances [75]. The most common

approach for estimating accuracy is cross-validation (subset validation), because of its ease of

use. In this approach, the dataset is split in two (the calibration set and the validation set), mak-

ing it possible to estimate accuracies in a given population while keeping parameters such as

marker density, population structure or allele frequencies constant. However, cross-validation

tends to overestimate accuracy relative to other validation approaches, such as inter-set valida-

tion or progeny validation [63,76,77]. Most of the studies performed in rice have used cross-

validation to obtain estimates of prediction accuracy [33]. Here, we used both cross-validation

and inter-set validation (validation in the breeding population). The two approaches gave sim-

ilar estimates of predictive ability. The accuracies obtained by cross-validation and with BP41

were well-correlated, but only in salt conditions. This finding reflects the method used to select

lines for inclusion in BP41: ion mass fractions measured under salt conditions. The use of sim-

ilar phenotyping conditions for model training and validation is therefore important, to obtain

a more precise idea of the level of accuracy that can be expected, as GxE interactions generally

decrease accuracy [69,78]. The relatedness between the RP and the BP, with a similar structure

in the two populations, may also explain this result. Indeed, the genetic distance between the

training set and the validation set has been shown to be one of the major factors affecting accu-

racy [79,80]. BP41 constitutes only a small subset of the entire BP, but most of the parental

accessions and closely related lines, were present in the RP used to train the model. Ben Hassen

et al. [63] reported similar results in a study using a diversity panel to predicted advance mate-

rial from the breeding program.
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Implications for breeding for salt tolerance in rice

Genotypes tolerant to salt stress are clearly less common among japonica accessions than

among indica accessions [15,16]. However, it is important for temperate rice breeding pro-

grams to characterize their material better for salinity tolerance because the sources of toler-

ance identified in indica accessions are difficult to introgress due to the complex genetic

architecture of the trait, as revealed by linkage mapping [81] and association studies

[16,41,82]. Sterility problems have also been reported for intersubspecific indica x japonica
crosses [83,84]. We show here that genomic selection can be used to predict the salt tolerance

of material from European rice breeding programs (japonica) under mild constraints. The

major challenge would be efficiently combining evaluations under normal and salt conditions.

As discussed above, capturing GxE interactions (or GxC interactions) with multi-environment

models can increase the accuracy of predictions. Genomic selection for salt tolerance can be

implemented just after line fixation (usually F6). In breeding programs involving rapid genera-

tion advances, such selection can take place in the third year of the breeding strategy [33]. The

use of genomic selection at this stage would make it possible to select lines on the basis of their

predicted performance in both normal and salt conditions. Multi-environment genomic pre-

diction could be used to combine information from normal and salt conditions (either in the

greenhouse or in the field) for prediction in a larger set of candidates from the cohort of the

next cycle. The selection intensity for salt tolerance would be increased early in the breeding

scheme (e.g., stage 1 yield trial). As stress trials are difficult to manage, a targeted set of lines

could be evaluated in stress conditions, but with a higher degree of replication, to update the

model.
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(PDF)

S1 Table. List of accessions in the two populations: The reference panel and the breeding

population.

(XLSX)

S2 Table. Correlations between morphological traits in control conditions (upper table)

and between ion mass fractions in salt conditions (lower table). The Spearman rank correla-

tion coefficients are displayed in the lower part of the matrices and the associated p-value are

shown in the upper part.

(PDF)

S3 Table. Analysis of variance of predictive abilities in the reference panel for perfor-

mances in both sets of conditions (CTRL and SALT). Two prediction methods were com-

pared (GBLUP and RKHS), for eight traits and two models (single- and multi-environment).

(PDF)

S4 Table. Analysis of variance of predictive abilities in the reference panel for indices and

ion mass fractions (referred to as Trait in the table). Two prediction methods were com-

pared (GBLUP and RKHS).

(PDF)

S5 Table. Spearman’s rank correlation coefficient for the relationship between the pre-

dicted performances estimated with RKHS and GBLUP for the entire breeding population,

with single- and multi-environment models.

(PDF)

S6 Table. Relationship between predictive abilities estimated by cross-validation on the

reference panel and those estimated with the subset (41 lines) of the breeding population.

Two models (single- and multi-environment) and two methods (GBLUP and RKHS) were
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(PDF)
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