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Abstract

Human and bovine respiratory syncytial virus (HRSV and BRSV) are closely genetically

related and cause respiratory disease in their respective host. Whereas HRSV vaccines are

still under development, a multitude of BRSV vaccines are used to reduce clinical signs. To

enable the design of vaccination protocols to entirely stop virus circulation, we aimed to

investigate the duration, character and efficacy of the immune responses induced by natural

infections. The systemic humoral immunity was monitored every two months during two

years in 33 dairy cattle in different age cohorts following a natural BRSV outbreak, and

again in selected individuals before and after a second outbreak, four years later. Local

humoral and systemic cellular responses were also monitored, although less extensively.

Based on clinical observations and economic losses linked to decreased milk production,

the outbreaks were classified as moderate. Following the first outbreak, most but not all ani-

mals developed neutralising antibody responses, BRSV-specific IgG1, IgG2 and HRSV F-

and HRSV N-reactive responses that lasted at least two years, and in some cases at least

four years. In contrast, no systemic T cell responses were detected and only weak IgA

responses were detected in some animals. Seronegative sentinels remained negative, infer-

ring that no new infections occurred between the outbreaks. During the second outbreak,

reinfections with clinical signs and virus shedding occurred, but the signs were milder, and

the virus shedding was significantly lower than in naïve animals. Whereas the primary infec-

tion induced similar antibody titres against the prefusion and the post fusion form of the

BRSV F protein, memory responses were significantly stronger against prefusion F. In con-

clusion, even if natural infections induce a long-lasting immunity, it would probably be
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necessary to boost memory responses between outbreaks, to stop the circulation of the

virus and limit the potential role of previously infected adult cattle in the chain of BRSV

transmission.

Introduction

Human and bovine respiratory syncytial virus (HRSV and BRSV) causes respiratory infection

in their respective host and have similar virus characteristics and pathogenesis. Understanding

the duration and character of protective immunity to these viruses is essential to develop effec-

tive vaccines and to tailor vaccination schemes to susceptible individuals, in order to stop virus

circulation.

Infections with HRSV in humans are very common worldwide. About 60–70% of all chil-

dren become infected during their first year of life [1] and nearly one third of all hospitalised

children under one year of age are hospitalised due to HRSV [2]. Reinfections are very fre-

quent. Although the clinical symptoms are milder upon each reinfection, virus shedding

occurs, albeit in lower quantities and with less duration [3]. This partial protection could partly

be explained by the existence of two antigenic subgroups (HRSV A and B) and multiple geno-

types [4], but repeated reinfections with homologous virus is also possible, indicating that

immune responses are often quite weak [5].

Both the humoral and the cellular responses are crucial in preventing infection and elimi-

nating HRSV, however, as a single parameter, virus-neutralising antibody titres in serum are

those most commonly (negatively) correlated both to severity of disease and occurrence of

reinfection [6–8]. Indeed, children develop weak virus-neutralising antibody responses and

can be susceptible to HRSV within a year after a primary infection [9, 10]. Some children

develop a detectable T lymphocyte memory, but this does not appear to be sufficient to afford

a long-term protection [11]. Overall, since HRSV is ubiquitous, and since repeated reinfections

are inevitable and not always detectable, long term studies on the kinetics of antibody

responses to a controlled number of natural HRSV infections are difficult to perform.

The situation in the cattle population is somewhat different. Cattle do not mix to the same

extent as humans and some herds have little exchange of pathogens with other herds, at least

in Scandinavia. In addition, the genome of the bovine virus is more conserved than its human

counterpart and the antigenic differences are smaller [12, 13]. Despite this limited degree of

variation, BRSV is a major viral pathogen and of great concern. The virus is diagnosed in 12%

to 83% of respiratory disease outbreaks in European cattle [14, 15]. In areas and herds with

frequent BRSV circulation, calves are more prone to disease than adults, indicating that a pro-

tective or a partially protective immunity is acquired [16]. This agrees with data from experi-

mental infections, which suggest that both clinical and virological protection to homologus

virus last at least four months [17]. However, little is known about the field situation, if and

when cattle can be naturally re-infected and consequently shed virus, with no or mild clinical

signs. This information would be essential to understand if previously infected animals would

need to be vaccinated to rupture the viral cycle of transmission, and at which point after a pri-

mary infection this would be required.

The main objective of this study was to characterise the long-term kinetics of immune

responses against natural BRSV infections in animals of different age. To enable consideration

of these results in other contexts and herds in the future, we additionally wanted to describe

the clinical pattern and the impact of the BRSV infections on milk production in the studied

cattle population. Furthermore, to investigate the memory and protective immunity to BRSV,
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virus shedding and humoral responses were monitored in cows that were repeatedly exposed

to BRSV, four years apart.

Materials and methods

Description of the herd

In January 2016, when a BRSV outbreak occurred, Lövsta research farm at the Swedish Uni-

versity of Agricultural Science consisted of 534 cattle, mainly of the Holstein breed (41%) and

the Swedish red and white breed (57%). The average age was 33 months, and most cows were

in parity 1 (34%), 2 (26%) and 3 (21%). The lactating dairy cows (n = 204) were housed in free-

stalls, in a heated cubicle system with approximately 50–60 animals per group, in the same sec-

tion of a building. They were milked in automatic milking systems, either by voluntary robot

milking (DeLaval VMS™, average 2.3 times/ day), or twice a day in a milking rotary parlour

(DeLaval AMR™). The average yearly milk production per cow was 9971 kg energy corrected

milk (ECM). Dry cows and heifers older than 5.5 months were also housed in free-stall cubi-

cles, in groups of 20–25 individuals, in a separate section of the building. From two weeks

before calving, dry cows were moved to a separate compartment for calving. Cattle that needed

close surveillance and special care were housed in a sick ward. Weaned calves were housed in

group pens on straw in four different rooms and calves up to eight weeks of age were housed

outdoor, singly or in pairs in covered calf hutches under a roof. None of the animals were vac-

cinated against BRSV, before 2016 or during the entire study.

At the time of a second BRSV outbreak in March 2020, the same herd consisted of 560 cat-

tle, 471 (83%) of which were born after the first outbreak. The number of lactating cows and

the average milk production had increased to 285 and 10313 kg ECM per year, respectively,

and the average replacement rate had increased from 35% to 43%. The farm was self-sustain-

able regarding replacement of cows and had not introduced any cattle from other farms since

2011. Sweden is free from bovine herpes virus type 1, bovine leucosis virus and bovine viral

diarrhoea virus (since 1995, 2001 and 2014, respectively).

Data collection regarding food intake and milk production of cows that

continued to produce milk for commercial purpose

Data on sold milk and the composition of this milk was collected from reports of the dairy

company (Arla Foods) in both 2016 and 2020. In addition, the daily milk production and daily

roughage and non-roughage intake of 272, 163 and 272 cows, respectively, was collected for

December 1, 2015 to January 31, 2016. These animals were fed roughage in weighted feed

troughs and non-roughage in automatic feeders and the milk was weighed in the milking

systems.

Cows with the most severe clinical signs were placed in the sick ward, where neither milk

nor food intake was recorded. Data from cows at these time points were thus missing and, con-

sequently, the estimation of food intake and milk production during the outbreak was valid

only for cows without severe clinical signs of disease. Considering that most clinical disease

occurred during a period of two weeks, the study period was subdivided into sub-periods

(phases) according to Table 1.

Sample collection

In January 2016, during the first outbreak, nasal secretions and blood samples were collected

from 10 animals with clinical signs (Table 2). Between March 2016 and February 2018, samples

were additionally repeatedly collected from 33 female cattle of the Swedish red and white
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breed, in different cohorts based on age (hereafter called closely monitored individuals, see

Table 2). Besides age, these animals were selected based on having a good health record, as

well as on gender and genetic background, to increase the probability that they would be pres-

ent in the herd for the entire study period. Blood and milk (if applicable) were collected every

second month. Nasal secretions were similarly collected from 5 of these individuals, aged 4–5

months at the time of the outbreak.

To reinforce the monitoring of absence of new BRSV infections, blood was additionally col-

lected 26–27 months after the outbreak, from 50 other animals that were born after the out-

break in 2016. In February 2020, during a new upsurge of BRSV outbreaks in the geographical

area where the university farm was situated, the animal care takers within the farm collected

blood from closely monitored individuals that were still alive and accessible. Three weeks later,

in March 2020, the second BRSV outbreak occurred. Nasal swabs were then collected from five

of the closely monitored animals, two additional cows that had been present during the out-

break in 2016 and from five younger cows (born after September 2016). Blood was additionally

Table 1. Time periods used to study changes in food intake and milk production during a BRSV outbreak.

Start date Stop date Phase

December 1, 2015 December 14, 2015 Pre

December 15, 2015 December 22, 2015 Base

December 23, 2015 January 2, 2016 Inter

January 3, 2016 January 15, 2016 Outbreak

January 16, 2016 January 31, 2016 Post

https://doi.org/10.1371/journal.pone.0274332.t001

Table 2. Sampling for BRSV diagnosis and monitoring of BRSV-specific immunity.

Sample occasion Age at outbreak 2016 Sample type Number of individuals sampled (cattle ida)

Outbreak 2016 2–9 m Serum

NS

7 (560, 609, 618, 620, 627, 629, 636)

31–60 m Serum

NS

3 (155, 287, 1664)

Repeated sampling 2016–2018 (closely monitored

animals)

Born during or within 3 w after the outbreak

2016

Serum 5 (662, 666, 672, 675, 676)

2–3 m Serum 6 (620, 624, 627, 629, 634, 636)

4–5 m Serum

NS

6 (603, 604, 605, 606, 609, 618)

7–11 m Serum

Milk

8 (546, 548, 552, 554, 555, 580, 581, 583)

23–30 m (early gestation, < 6 m) Serum

Milk

4 (306, 355, 403, 415)

23–30 m (late gestation, > 6.5 m) Serum

Milk

4 (372, 373, 377, 399)

26–27 m after outbreak 2016 Born at least 5 m. after the outbreak 2016 Serum 50 (random, aged 3 d to 22 m at sampling)

3 w before outbreak 2020 See above Serum 9 (355, 580, 583, 606, 636, 666, 672, 675,

676)

Outbreak 2020 Born > 2 m before outbreak 2016 NS 7 (355, 436, 553, 580, 605, 606, 636)

Born > 9 m after outbreak 2016 NS 5 (777, 778, 784, 842, 2173)

2.5 m after outbreak 2020 See above Serum 8 (580, 583, 606, 636, 666, 672, 675, 676)

a Cattle id in bold if animal was closely monitored (repeatedly sampled)

NS, nasal swab; m, month(s); w, week(s); d, day(s)

https://doi.org/10.1371/journal.pone.0274332.t002
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collected from eight of the closely monitored animals 2.5 months later (Table 2). The study

was approved by the Ethical Committee of the district court of Uppsala, Sweden (Ref. no.

C146/15 and 5.8.18-16188/2017). The herd is an approved research facility (dnr 5.2.18-870707/

4) and a contract including a written consent was made before the start of the study.

Sampling, sample preparation and storage

Blood was collected by using BD vacutainer1 systems with clot activator tubes and heparin-

ized tubes. Nasal secretions were either obtained by nasal swabs (virus swab UTM™, Copan,

Italy) that were frozen at −75˚C until RNA extraction for virus detection, or was collected by

using tampons left for 5–10 min in one nostril. The tampons were centrifuged at 200 x g and

room temperature (RT) for 10 min and the secretions were frozen at −20˚C until antibody

analysis. Peripheral blood mononuclear cells (PBMC) were isolated from heparinized blood as

described previously [18] and were immediately frozen at −80˚C in foetal calf sera (FCS) con-

taining 10% dimethyl sulfoxide. Serum was extracted from blood by centrifugation at 3000 x g
at RT for 10 min and was frozen at −20˚C. Milk was defatted by centrifugation at 3000 x g and

RT for 10 min and was frozen at −20˚C.

Virus detection

Analyses for BRSV-RNA were performed on nasal swab medium by Taqman RT-qPCR using

LSI VetMax™ Screening Pack–Ruminants Respiratory Pathogens (Life technologies, France),

after extraction by using the RNAeasy1Mini kit (Qiagen, Sweden) according to the manufac-

turers’ instructions. A standard curve based on a BRSV-infected cell lysate with a known titre

was used for virus quantification. Live BRSV was isolated on bovine turbinate cells, as previ-

ously described [19].

BRSV-specific immune responses

Analyses for BRSV-specific IgG, IgG1, IgG2 and IgA antibodies were performed by indirect

(IgG, IgG1, IgG2) and capture (IgA) ELISAs, as described previously [19]. Antibodies reactive

against the F protein were analysed by a competitive ELISA based on HRSV and mAb 56F,

reactive against the antigenic site IV (Ingezim Compac, INGENASA), according to the manu-

facturers’ instructions, and N-specific IgG1 antibodies were analysed by indirect ELISA, as

described previously [20], but with slight modifications. In brief, 96-well plates were coated

overnight with 100 ng per well of purified HRSV N protein or an irrelevant purified protein

(control antigen), diluted in carbonate buffer (pH 9.6), at 4˚C. After blocking with 3% bovine

serum albumin (BSA) in PBS for 1 hour at RT, the sera were added at 1/25 dilutions and incu-

bated for 1h at 37˚C. The bound antibodies were detected using horseradish peroxidase

(HRP)-labelled monoclonal anti-bovine IgG1 (EC10, INGENASA) incubated for 30 minutes

at 37˚C. Washes between consecutive steps were performed with 0.05% Tween 20 in PBS. The

substrate and stopping solution consisted of 3,3’,5,5’-tetramethylbenzidine (TMB)-MAX

(Neogen Corporation, Lexington, KY) and 0.5 M sulfuric acid. Absorbance was measured at

450 nm in a Multiscan Ascent ELISA reader. For each serum sample, the optical density (OD)

against the control antigen was subtracted from the OD value against the N protein (Corrected

OD, COD) and the COD was transformed into sample-to-positive values (SPs) by using the

formula SP = CODsample/ (CODpos—CODneg).

Analyses for BRSV pre-fusion (PreF)- and post-fusion (PostF)-specific IgG1 antibodies

were performed by indirect ELISAs. Briefly, Ni-NTA HisSorb plates (Qiagen, Hillerod, Den-

mark) were coated overnight with 2 μg/ml his-tagged antigen (kindly provided by P. Kwong,

NIAID, NIH, Washington, USA) in PBS containing 0.2% BSA and were thereafter blocked
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with Sea Block buffer (Thermo Fisher, Gothenburg, Sweden) for one hour at RT. Serial dilu-

tions of sera were added and were visualized by HRP-conjugated monoclonal anti-bovine

IgG1 antibodies and TMB-substrate (both from Svanovir, Svanova Indical, Uppsala, Sweden).

Antibody-incubations were performed for one hour at RT and washes between consecutive

steps were performed with 0.05% Tween 20 in PBS.

Antibodies specific for BRSV PreF were additionally analysed by a competitive ELISA.

Briefly, plates were coated with recombinant PreF protein (kindly provided by P. Kwong,

NIAID, NIH, Washington, USA) and blocked as above, but after the incubation of sera and

a washing step, humanized monoclonal antibodies to PreF (AM14, kindly provided by P.

Kwong, NIAID, NIH, Washington, USA) was added. The AM14-antibodies were visualised

with HRP-conjugated mouse anti-human IgG1 antibodies (Invitrogen A-10648, clone

HP6069) and TMB-substrate (Svanovir, Svanova Indical, Uppsala, Sweden). Antibody incuba-

tion and washing steps were performed as above.

BRSV-neutralising antibodies were detected by using Vero cells and BRSV (Strain

ATue51908), expressing green fluorescent protein. Briefly, Vero cells were seeded in 96-well

plates, at 15 000 cells per well, in cell culture medium (DMEM, Lonza, Belgium) containing

10% FCS. On the following day, serum samples were serially diluted in DMEM without FCS,

were mixed with 300 plaque forming units of green fluorescent protein -BRSV and incubated

at RT for one hour. The Vero cells were rinsed once with DMEM without FCS and were

thereafter inoculated with the serum-virus samples at 37˚C and 5% CO2 for one hour. There-

after, DMEM with FCS was added to reach a final FCS concentration of 2%, the cells were

incubated at 37˚C and 5% CO2 for 3 days, and were examined by using a fluorescent micro-

scope (Nikon Eclipse Ts2R). Each serum was tested in eight dilutions, and the titre (defined as

the serum dilution needed to completely inhibit 300 plaque forming units) was calculated by

linear regression.

BRSV-specific T cells in PBMC were analysed using a lymphoproliferation assay, as previ-

ously described [21], but using both live and heat-inactivated BRSV (strain DK9402022, kindly

provided by prof LE Larsen, Denmark) as antigen for in vitro restimulation of the cells. Fur-

thermore, BRSV-specific IFNγ-producing T cells in PBMC were analysed by ELISpot as previ-

ously described [22].

Statistical methods

The mean value for milk production, roughage consumption and non-roughage consumption

was calculated for each cow, for each period. These mean values were used in mixed models,

which take missing values into account [23]. The models included sub-period as a fixed factor

and used cow, and the cow�period interaction, as random factors. Denominator degrees of

freedom were estimated according to Kenward and Roger (1997) [24]. The assumptions

underlying the models were checked using diagnostic plots. No apparent deviations from nor-

mality or homoscedasticity could be detected. Post-hoc pairwise comparisons were adjusted

for multiplicity using Tukey’s method and adjusted p values <0.001 was considered statisti-

cally significant. The Mixed procedure of the SAS (2018) package was used. Data concerning

antibody responses and virus shedding were analysed by using Minitab 18 and two-sided one-

way ANOVA followed by Tukeys test, or two-tailed Student T-test.

Results

BRSV diagnosis and virus shedding

Bovine respiratory syncytial virus was diagnosed by serology and virus detection in both respi-

ratory outbreaks in the herd. In 2016, the virus was detected in nasal swabs from 9/10 sampled
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cattle, by RT-qPCR and virus isolation. In 2020, BRSV was detected by RT-qPCR in nasal

swabs from 12/12 sampled cows (all sampled once, on the same day and in the same section of

the loose range system), including in seven cows that had been present in the herd during the

outbreak in 2016. However, the samples from these seven cows contained lower virus quanti-

ties than samples from five younger and previously naïve cows (0.41–2.04 (mean 1.33) log 10

TCID50 equivalents and 2.31–4.96 (mean 3.79) log 10 TCID50 equivalents, respectively,

p<0.001, S1 Fig). In 2020, the virus was additionally detected by RT-qPCR in environmental

swabs from the food tray of a milk robot but not in a watering cup (data not shown).

Respiratory outbreak pattern and clinical signs

The first outbreak started on the 3rd of January 2016, when a second parity cow (10 days in

milk) had elevated rectal temperature and showed clinical signs of respiratory disease. Within

a week, respiratory disease was observed in all stable sections in the building and two weeks

later, the calves in the outdoor hutches became affected.

The clinical signs varied. Several animals developed fever (up to 41.1˚C), inappetence and a

decrease of milk production. A large proportion of the animals had serous to mucopurulent

nasal discharge. Some additionally demonstrated coughing, tachypnea and dyspnea, and a few

animals had severe dyspnea, anorexia and apathy. The highest morbidity and the most severe

clinical signs were observed in lactating cows, in peripartum animals in the calving room and

in two to six months old calves. The seemingly least affected animals were the youngest calves

in the outdoor hutches. Only a few of these were affected, with fever and mild respiratory

signs. None of the calves were treated and none died, despite the outdoor temperature being

very low (down to −25˚C and −15˚C during night and day, respectively). Twenty-six adult cat-

tle were treated with non-steroid anti-inflammatory drugs and six of these additionally with

procaine benzyl penicillin. One was a pregnant heifer (aged 26 months) and 25 were cows, in

parity 1 (n = 12), 2, (n = 2), 3 (n = 9), 4 (n = 1) and 5 (n = 1), which had calved 2–327 (mean

87) days earlier. One newly dried 3-year old otherwise healthy cow, and one 5-year old cow in

otherwise poor health died. Overall, clinical signs were observed in the herd for approximately

3 weeks.

The second outbreak started in a similar manner, with disease in adult cows, but with clini-

cal signs first observed on the 11th of March 2020. Overall, this outbreak was slightly milder

than that in 2016, but several animals, both young cows and heifers, were moderately to

severely affected. All the five closely monitored cows that were accessible for collection of nasal

secretions in 2020 had mild clinical signs of respiratory disease, such as nasal discharge and

cough. The five younger and previously naïve cows that were also sampled for virus detection

in 2020 (that were born after the first outbreak) had mild to severe clinical signs, including

tachypnea, dyspnea and pyrexia.

Impact of BRSV on food intake and milk production

During both outbreaks, the fat content increased in sold milk and the volume of sold milk

decreased (Fig 1A and 1B). In 2016, when individual food and milk recordings were per-

formed, cows that were healthy enough to remain in the production system had lower milk

production and food intake during the outbreak, compared to before and after the outbreak

(S1 Table). Given that only data with p-values <0.01 were considered significant; milk produc-

tion was significantly lower during the outbreak, compared to all other sub-periods, before

and after the outbreak, and was lower after compared to before the outbreak (S2 Table).

Accordingly, the roughage and non-roughage consumption was significantly lower at the out-

break compared to at least two other subperiods (Fig 1C and 1D, S2 Table).
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Immune responses to BRSV

BRSV-neutralising antibody in serum. BRSV-neutralising antibodies were detected 2

months after the outbreak in serum of most animals (Fig 2). Furthermore, from 4 months after

Fig 1. Sold milk, milk composition and feed consumption of cows during BRSV outbreaks in a dairy herd. Weight

of sold milk and milk fat and protein composition in (A) 2016 and (B) 2020. Mean (±SD) (C) roughage and (D) non-

roughage consumption of cows while remaining in production 2016 (i.e. not moved to sick ward). Data on sold milk

are expressed as means of two adjacent days.

https://doi.org/10.1371/journal.pone.0274332.g001

Fig 2. Kinetics of BRSV-neutralising serum antibody titres in cattle of different age and production status. Cattle

were (A) 23–30 months old (<6 months gestation), (B) 24–26 months old (>6.5 months gestation), (C) 7–11 months

old, (D) 4–5 months old, (E) 2–3 months old, not analysed (N.A), or (F) born during or just after a BRSV outbreak in

January 2016 (month 0). Limit of detection in the virus neturalising assay: titre 20.

https://doi.org/10.1371/journal.pone.0274332.g002
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the outbreak, the titres of these antibodies remained mostly very stable throughout two years

(Fig 2A–2D). In the youngest calves, maternally derived BRSV-neutralising antibodies were

detectable at 2–7 weeks of age, but not at 3–4 months of age, nor at any other time point

throughout the two first years of life (4–26 months after the outbreak, Fig 2F).

The strongest BRSV-neutralising responses were detected in some of the heifers that were

5–11 months old at the outbreak, but these titres dropped within 4–6 months (animals no.

552, 555, 603, 604 and 605, Fig 2C and 2D). In contrast, one calf that was four months old at

the time of the outbreak developed a very poor neutralising antibody response, which was only

barely detectable on one occasion, despite that the assays were repeated (calf no. 618, Fig 2D).

This calf had nevertheless been infected, since BRSV had been isolated from its nasal secretions

and a seroconversion was detected by ELISA, as described below.

When excluding presumably non-infected calves with maternally derived antibodies

(MDA) from calculations, no significant differences in mean titres were detected between dif-

ferent age groups, apart from the oldest cows that were in early pregnancy (Fig 2A) which had

significantly higher titres than younger cows (Fig 2B and 2C) at 26 months post outbreak

(p<0.05).

BRSV-specific IgG1 antibody in serum

All cattle that were born before the outbreak in 2016 (including calf 618) responded with

BRSV-specific serum IgG1, which remained stable throughout two years (Fig 3A–3E). Four

cows that were infected near calving (gestation month >6.5) had significantly weaker

responses than four cows infected during earlier pregnancy (gestation month <6), at all three

time points when these eight cows were sampled simultaneously (month 15 p<0.01, month 17

p<0.01 and month 25 p<0.001, Fig 3A and 3B).

The youngest cattle, which were born during or just after the outbreak in 2016, became neg-

ative for BRSV-specific serum IgG1 within 4–6 months after the outbreak (within 3–5 months

of age). Thereafter, they remained seronegative, inferring that they had MDA and that no rein-

fections occurred (Fig 3F).

Fig 3. Kinetics of BRSV-specific serum IgG1 in cattle of different age and production status. At the time of a BRSV

outbreak the cattle were (A) 23–30 months old (<6 months gestation), (B) 24–26 months old (>6.5 months gestation),

(C) 7–11 months old, (D) 4–5 months old, (E) 2–3 months old, or (F) born during or just after the outbreak in January

2016 (month 0). Corrected optical density (COD) values are presented as percentage of a positive control serum.

https://doi.org/10.1371/journal.pone.0274332.g003
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BRSV-specific IgG2 antibody in serum

In contrast to the BRSV-neutralising antibody titres that decreased rapidly in the animals with

the strongest responses and thereafter remained at similar levels in most animals, BRSV-spe-

cific IgG2 levels did not show a decrease overall, but varied between individuals (Fig 4). Calf

no. 618, which developed poor neutralising antibodies, responded well with BRSV-specific

IgG2, whereas calf no. 609, which developed moderate titres of neutralising antibodies and

high levels of BRSV-specific total IgG1 responded only poorly with BRSV-specific IgG2 (Figs

2D, 3D and 4D). This animal had been infected, since BRSV had been isolated from its nasal

secretions.

The strongest BRSV-specific IgG2 response was detected in calf no. 605 (Fig 4D). Similarly,

calf 634 was the best IgG2 responder within her age group (Fig 4E). In summary, these data

illustrate that IgG2 responses can vary a lot within the same outbreak, even in infected animals

of similar age. The highest variability was observed in 2–5 months old calves, and in cows that

were not in late gestation (Fig 4A, 4D and 4E).

HRSV F-reactive antibody in serum

Since antibodies specific to the F-protein may be neutralising, the dynamics of F-reactive anti-

bodies was investigated by competitive ELISA. The monoclonal antibodies with which serum

antibodies competed in this assay recognise the antigenic site IV on the HRSV F protein. Data

between both virus-neutralising and F-competing assays agreed to some extent. Indeed, cow

403 had the lowest level of both neutralising and F-competing serum antibodies within its

group (Figs 2A and 5A) and cow 399 had the highest level of both neutralising and F-compet-

ing serum antibodies within its group (Figs 2B and 5B). On the other hand, cow 618, which

barely had any detectable neutralizing antibody response, had high levels of F-competing anti-

bodies throughout the 2 years after infection (Figs 2D and 5D).

HRSV N-specific IgG1 antibody in serum

Together with the development of subunit BRSV DIVA vaccines, a DIVA protein needs to be

identified. Since the N protein was previously shown to be immunogenic and highly conserved

Fig 4. Kinetics of BRSV-specific serum IgG2 in cattle of different age and production status. At the time of a BRSV

outbreak the cattle were (A) 23–30 months old (<6 months gestation), (B) 24–26 months old (>6.5 months gestation),

(C) 7–11 months old, (D) 4–5 months old, (E) 2–3 months old, or (F) born during or just after the outbreak in January

2016 (month 0). Corrected optical density (COD) values are presented as percentage of a positive control serum.

https://doi.org/10.1371/journal.pone.0274332.g004
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[12, 25] between bovine and human RSV, the dynamics of antibody responses to the HRSV-N

protein were investigated. Except for two adult cows (id 415 and 377, Fig 6A and 6B), all ani-

mals above 1.5 months of age developed long lasting HRSV N-specific serum IgG1 antibodies.

Only a few unspecific, cross-reactive or polyreactive responses were identified, such as in calf

no 666 (Fig 6F).

BRSV-specific IgA antibody in serum

In contrast to the data obtained on IgG, BRSV-specific IgA was only detectable in serum of a

few animals and had mostly disappeared by 6–10 months after the outbreak (Fig 7). Strong

Fig 5. Kinetics of HRSV-F-reactive serum antibodies in cattle of different age and production status. At the time

of a BRSV outbreak the cattle were (A) 23–30 months old (<6 months gestation), (B) 24–26 months old (>6.5 months

gestation), (C) 7–11 months old, (D) 4–5 months old, (E) 2–3 months old, or (F) born during or just after the outbreak

in January 2016 (month 0). Data are presented as competition percentage. The limit of detection is presented as a

dotted line.

https://doi.org/10.1371/journal.pone.0274332.g005

Fig 6. Kinetics of HRSV N-specific serum IgG1 antibodies in cattle of different age and production status. At the

time of a BRSV outbreak the cattle were (A) 23–30 months old (<6 months gestation), (B) 24–26 months old (>6.5

months gestation), (C) 7–11 months old, (D) 4–5 months old, (E) 2–3 months old, or (F) born during or just after the

outbreak in January 2016 (month 0). For each serum sample, the optical density (OD) against a control antigen was

subtracted from the OD value against the N protein (Corrected OD, COD) and the COD was transformed into a

sample-to-positive value (SP) by using the formula SP = CODsample/(CODpos—CODneg).

https://doi.org/10.1371/journal.pone.0274332.g006
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responses were detected in single serum samples of two animals, 12 and 16 months after the

outbreak in 2016 (id 606 and 620, Fig 7D and 7E). The analyses were repeated, and the IgA-

peak persisted.

BRSV-specific T cell responses in peripheral blood

No circulating BRSV-specific T cell responses were detected, either by lymphoproliferation

assay or ELISPOT, in PBMC collected two months after infection and one year after infection.

BRSV-specific IgA and IgG2 in nasal secretions

The local immunity to BRSV was studied in six individuals that were 4–5 months at the time

of the first outbreak in 2016, from two months post the outbreak and for 4–24 months.

BRSV-specific IgA was detected in nasal secretions of all cattle two months post outbreak,

but these responses were not stable over time (Fig 7). Whereas a drop was observed within six

months, new peaks occurred later and were not coherent with the serum responses (Figs 7D

and 8A). The BRSV-specific local IgG2 responses were more consistent. In agreement with the

Fig 7. Kinetics of BRSV-specific serum IgA in cattle of different age and production status. At the time of a BRSV

outbreak the cattle were (A) 23–30 months old (<6 months gestation), (B) 24–26 months old (>6.5 months gestation),

(C) 7–11 months old, (D) 4–5 months old, (E) 2–3 months old, or (F) born during or just after the outbreak in January

2016 (month 0). Corrected optical density (COD) values are presented as percentage of a positive control serum.

https://doi.org/10.1371/journal.pone.0274332.g007

Fig 8. Kinetics of BRSV-specific antibodies in nasal secretions of calves following a BRSV outbreak. (A) Nasal

BRSV-specific IgA and (B) nasal BRSV-specific IgG2 following BRSV-infection at 4–5 months of age in January 2016

(month 0). Corrected optical density (COD) values are presented as percentage of a positive control serum.

https://doi.org/10.1371/journal.pone.0274332.g008
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data on BRSV-specific IgG2 in serum, the highest levels of these antibodies were detected in

the nasal secretions of calf no. 605 (Figs 4D and 8B). Similarly, IgG2 was detected in both

serum and nasal secretions of calves no 604, 606 and 618.

BRSV-specific IgG1 in milk

The levels of BRSV-specific IgG1 varied more in milk than in serum (Figs 3 and 9). Moreover,

some cows that were in late gestation during the outbreak and had weak serum IgG responses,

did not have detectable antibodies in milk on one or two occasions (id 372 and 377, Fig 9B).

Reinfection and memory responses

The absence of BRSV re-circulation in the herd between the two outbreaks was confirmed by

serology in 50 animals that were aged between 3 days and 22 months at sampling 26–27

months after the first outbreak. All animals that were between 3 months of age and 22 months

of age were BRSV seronegative (n = 24, mean age 12 months, all born at least 5 months after

the first outbreak), whereas 26/28 of the animals that were less than 3 months of age had

BRSV-specific serum IgG1 (i.e. maternally derived).

The serologic response of closely monitored animals, bled three weeks before (n = 9) and

2.5 months after (n = 8) the second outbreak in 2020, were further analysed in detail. Sera

were screened by virus neutralisation test, by a commercial indirect IgG1-ELISA based on

BRSV-infected cell-lysate and by indirect IgG1-ELISAs based on recombinant PreF- and

PostF-protein. Moreover, a competitive ELISA based on recombinant PreF-protein and the

human monoclonal antibody AM14, which recognizes a quaternary, prefusion trimer-specific

epitope on the PreF [26], was used. Three weeks before the second outbreak, BRSV neutralis-

ing antibody titres and the BRSV-PreF- and -PostF-specific antibody titres were lower in cow

606 and 636, which were clearly not protected against reinfection three weeks later, compared

to cow 355 and 580 that appeared partly protected (Fig 10, Table 3). Furthermore, animals in

the youngest age group, which had served as sentinels for reinfections, were still BRSV-sero-

negative (Fig 10, animals 666–676). Virus detection was not attempted in this latter animal

group because the animals were not accessible at the time of the second outbreak.

Memory responses to BRSV, and in particular to the PreF protein, were detected in sera

obtained 2.5 months after the second outbreak. The four animals that had experienced two

BRSV infections (id 580, 583, 606 and 636) had significantly higher PreF- and PostF-specific

responses, including AM14-competing antibodies, than the four animals that had experienced

only one BRSV infection (id 666, 672, 675 and 676, p<0.0001, p<0.05 and p<0.05, respec-

tively, Fig 11A and 11B) and had significantly stronger responses to the PreF form than to the

PostF form of the BRSV F protein (p<0.01, Fig 11A). The mean neutralising responses were

Fig 9. Kinetics of BRSV-specific total IgG1 in milk from cattle of different age and production status. At the time

of a BRSV outbreak (in January 2016, month 0) the cattle were (A) 23–30 months old (<6 months gestation), (B) 24–

26 months old (>6.5 months gestation), or (C) 7–11 months old. Corrected optical density (COD) values are presented

as percentage of a positive control serum. Broken lines represent dry periods and red circles are timepoints for calving.

https://doi.org/10.1371/journal.pone.0274332.g009
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likewise higher in animals that had experienced two, compared to one infection (mean VN

titre 1743 vs. 385), but this difference was not significant (p = 0.15, Fig 11A) due to a very

strong response in one individual. Whereas the PreF-specific antibody titers increased 1.2–7

fold, the neutralising antibody titers increased 8–38 fold.

Discussion

In this work the kinetics of BRSV-specific systemic and local immunity was monitored in a

herd in which BRSV infections occurred only twice at a four-year interval. In contrast to

BRSV-specific serum and nasal IgA and circulating T cell memory, serum IgG and BRSV-neu-

tralising serum antibodies were long lasting. The humoral immune response directed against

PreF, which previously was identified as key in protection against RSV [22, 27], was character-

ised by a strong memory response. A partial virological protection was obtained after four

years, as indicated by reduced quantities of BRSV-RNA in nasal secretions.

The virus-specific immune response post infection is influenced by pre-existing immunity

and the degree of infection, which at herd level influence the severity of an outbreak. The 2016

outbreak, which initiated the studied responses, was considered to be of moderate severity and

representative of outbreaks observed on a regular basis. Less milk was sold because of

decreased production, but also because of loss of cows and increased volumes of waste milk

due to treatments. The reduction in milk production was highly significant and agrees with

previous data from herds that presumably were recently infected with BRSV [28]. The simulta-

neous augmentation in milk fat indicates that cows were in negative energy balance, which

may impede fertility, digestion and immunity [29, 30]. This can lead to disturbed stocking in

Fig 10. BRSV-specific serum antibodies in naïve cows and in cows infected with BRSV four years earlier. BRSV-

neutralising antibodies (VN), BRSV-Pre F-specific IgG1 antibodies (Pre F) and BRSV-Post F-specific IgG1 antibodies

(Post F), AM14-competing antibodies reactive to Pre F (AM14) and BRSV-specific IgG1 (BRSV lysate) 3 weeks before

a BRSV (re)infection (March 2020). Animal 355–636 had been infected four years earlier (January 2016).

https://doi.org/10.1371/journal.pone.0274332.g010

Table 3. Serum BRSV neutralising (VN) titre three weeks before detection of natural BRSV reinfection of cows,

four years after a previous infection. BRSV RNA detected at reinfection in nasal secretions.

Cow id Serum VN titre 3 weeks before reinfection BRSV TCID50 eq. log10 (CTa) detected at reinfection

355 153 0.41 (38.3)

580 86 0.46 (38.1)

606 33 1.74 (33.2)

636 0 2.04 (32.1)

a CT, cycle threshold value

https://doi.org/10.1371/journal.pone.0274332.t003
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different compartments of the herd, with subsequent health problems. The fertility could not

be addressed because inseminations were performed by staff with different experience, but the

immunity was investigated in detail.

Overall, BRSV-specific immunity was developed after the first outbreak because long-last-

ing BRSV-specific serum IgG antibody responses were observed in all studied animals that

were born before the first outbreak. The duration of responses are in line with previous studies,

in which virus neutralising antibodies as well as BRSV G and F-specific serum IgG1 and IgG2

antibodies lasted at least five to six months after natural primary BRSV infections [31, 32]. The

present study confirms and extends these data since the studied period was longer and sero-

negative sentinel animals were regularly monitored to exclude reinfections.

It is very unlikely that virus circulated between the outbreaks, since no sentinel animal sero-

converted and previously infected animals, which hypothetically would not have replicated the

virus enough to produce a detectable humoral systemic response, would neither shed sufficient

infectious virus to enable the transmission of virus. The antibody responses were very similar

in animals of different ages, but two animal categories differed from the others: cows in late

gestation and calves born during or after the outbreak. Cows in late gestation (the last 2

months before calving) developed weaker immune responses than other cows, maybe because

of a physiologic immunosuppression that involves migration of antigen-presenting cells to the

Fig 11. Primary antibody responses and memory responses to BRSV, 2.5 months after (re)infection in March

2020. (A) BRSV-neutralising antibodies (VN), BRSV-Pre F-specific IgG1 antibodies (Pre F), BRSV-Post F-specific

IgG1 antibodies (Post F) and BRSV-specific IgG1 (BRSV lysate) in serum of cattle obtained in June 2020. (B) AM14

(reactive to a prefusion trimer-specific epitope on the PreF)-competing antibodies in the same animals and time point.

Animal 580–636 had been infected four years earlier (January 2016) and animal 666–676 were previously naïve to

infection.

https://doi.org/10.1371/journal.pone.0274332.g011
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endometrium and an increase of γδT cells that have immuno-regulatory functions [33, 34].

Such cows should consequently not be targeted with vaccination. The calves that were born

during or after the outbreak 2016 did not develop BRSV-specific IgG1, IgG2 or neutralising

antibodies until 2020, either because they were not infected in 2016, or because of an inhibitory

effect of BRSV-specific MDA. After the outbreak in 2020, these animals developed significantly

lower antibody responses than older cows, which suggests that they had primary responses to

BRSV and no previous infections.

The antibody levels were relatively stable over time in each animal. Nevertheless, some spo-

radic F- or N-reactive responses occurred in a few of the youngest animals between the two

outbreaks. These reactions were not simultaneous or detected in the same individual, and

therefore they were probably due to unspecific binding of serum proteins in the assays, or to

cross-reactivity with antibodies directed to a protein in a closely related pathogen.

Virus neutralising serum antibodies play an essential role in protection and have been

shown to prevent severe disease and occurrence of natural infections in humans [6, 7]. In all

animals born before the outbreak, such antibodies increased by a wide (tenfold) range of titres

after infection but dropped rapidly within 4 to 6 months and remained thereafter stable at

moderate or low titres for at least four years. This initial drop in antibody titre, which was

most striking in heifers, might have been due to a loss of short-lived plasmablasts, whereas the

low but stable and durable antibody titres, observed in all age categories, indicate presence of

long-lived plasma cells (LLPC) [35]. These latter cells are elicited in germinal centers and are

not dependent on reactivation of memory cells [35].

The added effect of persistent antibody titres and memory responses was studied. Exposure

to a previous infection significantly decreased virus shedding following reinfection after 50

months, although this needs to be verified by a larger dataset including kinetics of virus shed-

ding. However, pre-existing neutralising titres up to at least 1:153 did not afford complete viro-

logical protection. One individual with titres of 1:254 was likewise re-infected, since strong

memory responses occurred, but virus shedding was not investigated.

The neutralising antibody titres that were non-protective against infection were reached in

many cases within six months to one year. Although other immunological parameters, such as

tissue resident memory lymphocytes, probably play an important role at this stage [36, 37], it

seems that there is a direct or indirect association between serum virus neutralising antibodies

and virus re-excretion after natural BRSV reinfection.

Subunit vaccines based on PreF are potent inducers of protective immune responses,

including neutralising antibodies [38, 39]. While PreF- and PostF-specific serum antibody

titres did not differ significantly four years after infection, the memory to PreF was signifi-

cantly stronger than that to PostF, following re-infection. This might be due to affinity matura-

tion among memory B cells, which probably did not contribute to the pool of LLPC that

produced antibodies before reinfection, and underlines the efficacy of PreF-specific antibodies

compared to PostF-specific antibodies. Overall, these data confirm that PreF is a key target to

get a long lasting immunity and memory.

In agreement with data in vaccinated calves and in naturally infected children [11, 27],

virus-specific cellular responses were not detectable in the peripheral circulation of our cattle 2

months post infection. Similarly, serum IgA responses were only detectable in some animals

and were mostly of short duration. Both IgA and T cell responses in peripheral blood were pre-

viously used as criteria to evaluate vaccine efficacy in calves [22], however, taking these new

observations into account, neutralising responses seem to be a more important parameter in

the development of vaccines with long duration of protection. For economic reasons, the dura-

tion of protection is an essential criterion for cattle vaccines.
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Local (respiratory) anamnestic BRSV-specific IgA might additionally be important, espe-

cially at the peak of immunity [17, 19], but the IgA memory seems to be short, at least when

induced by live intranasal vaccines [27]. Unfortunately, nasal secretions for antibody analyis

were not collected after reinfection in this study. The sparse IgA peaks observed, both in

serum and nasal secretions, might be explained by the existence of poly-reactive natural anti-

bodies against conserved epitopes on microbes [40], because the cell clones that produces such

antibodies are enriched among IgA-secreting plasma cells [41]. Another hypothesis is that

BRSV-specific IgA responses were triggered by persistent antigen in BRSV carrier animals, as

has been shown for foot and mouth virus [42]. Nevertheless, despite that persistent BRSV has

previously been detected in lymphoid tissue [43], re-excretion of persistent virus from carrier

cattle has not been demonstrated [44, 45], neither for BRSV, nor for FMDV, and there is no

indication that virus spread from any potential carrier animal in this herd.

Variation over time was also observed for BRSV-specific IgG1 in milk. This inconsistency,

which might be explained by difference in milk yield and the resulting varying degree of anti-

body dilution over time, impedes the possibility to screen milk for protective immunity to

identify targets for vaccination.

Since experimental vaccines based on only the PreF protein have demonstrated good effi-

cacy in calves [22, 27, 38], the N protein could potentially serve as DIVA protein in the future.

The detection of N-specific antibodies in PreF-vaccinated animals could thereby be used to

identify the occurrence of BRSV infections and indicate when the duration of vaccine-induced

protective immunity has waned. The antibody responses to the N protein were in general

strong and long-lasting, which indicate a potential use of this assay as DIVA-test.

In conclusion, this study demonstrated a significant impact of BRSV infections on food

intake and milk production in dairy cows. The infections induced long-lasting systemic

humoral responses and a strong immunological memory to the PreF protein. Despite this

immunity, adult cattle became re-infected and this resulted in mild respiratory clinical signs

and virus shedding. The role of re-infected adults in virus circulation should therefore be

investigated further. If confirmed, based on the demonstrated PreF-memory and if shown

to be cost effective, regular PreF-vaccination might aid to rupture the circulation of this

virus.
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