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Abstract: Rearing density directly impacts fish welfare, which, in turn, affects productivity in
aquaculture. Previous studies have indicated that high-density rearing during sexual development
in fish can induce stress, resulting in a tendency towards male-biased sex ratios in the populations.
In recent years, research has defined the relevance of the interactions between the environment and
epigenetics playing a key role in the final phenotype. However, the underlying epigenetic mechanisms
of individuals exposed to confinement remain elucidated. By using zebrafish (Danio rerio), the DNA
methylation promotor region and the gene expression patterns of six genes, namely dnmt1, cyp19a1a,
dmrt1, cyp11c1, hsd17b1, and hsd11b2, involved in the DNA maintenance methylation, reproduction,
and stress were assessed. Zebrafish larvae were subjected to two high-density conditions (9 and
66 fish/L) during two periods of overlapping sex differentiation of this species (7 to 18 and 18 to
45 days post-fertilization, dpf). Results showed a significant masculinization in the populations of
fish subjected to high densities from 18 to 45 dpf. In adulthood, the dnmt1 gene was differentially
hypomethylated in ovaries and its expression was significantly downregulated in the testes of fish
exposed to high-density. Further, the cyp19a1a gene showed downregulation of gene expression
in the ovaries of fish subjected to elevated density, as previously observed in other studies. We
proposed dnmt1 as a potential testicular epimarker and the expression of ovarian cyp19a1a as a
potential biomarker for predicting stress originated from high densities during the early stages of
development. These findings highlight the importance of rearing densities by long-lasting effects in
adulthood conveying cautions for stocking protocols in fish hatcheries.

Keywords: stress; gonad; sex; methylation; masculinization; rearing

1. Introduction

Rearing density holds significant importance in aquaculture, as it directly impacts
fish welfare, thereby influencing overall profitability. Inappropriate stocking densities can
induce stress, leading to physiological disruptions that pose a threat to fish physiology [1,2].
Persistent exposure to chronic stressors, such as high population density, can increase
susceptibility to diseases, deplete energy resources, decrease growth performance, as well
as muscle and bone quality, and antioxidative capacity, and, ultimately, reduce overall
performance [3,4]. The ‘General Adaptation Syndrome’ is the widely accepted concept of
stress and consists of three phases [5,6]. Firstly, there is a physiological state of ‘alarm’,
characterized by the production of adrenaline and cortisol. Secondly, if the stressor persists,
the organism attempts to adapt and defend itself, entering a state of resistance. Finally, if
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the stress continues beyond the organism’s coping abilities, it enters an exhaustion phase,
which may lead to irreversible dysfunction or even death [7].

Stress is defined as a coordinated series of behavioral and physiological responses
to any appreciable challenge to homeostasis or allostasis [8]. As in other vertebrates, fish
respond to environmental challenges with a series of adaptive neuroendocrine adjustments
that are collectively termed ‘the stress response’, which in the short-term could be beneficial
but a prolonged activation of the stress response may lead to immunosuppression, reduced
growth, and reproductive dysfunction [9]. These deregulations in the reproductive axis
are key in the development of the gonads in species in which the environment influences
sexual determination [10].

The stress response is connected to the reproductive system by the brain–pituitary–
gonadal axis in which neuro-endocrine interactions control multi-directionally the fish
physiology [11–13]. In many fish species, the final sex of an individual is determined by ge-
netic and environmental factors [14]; therefore, stress needs to be considered when studying
sexual development. During sex differentiation, environmental factors have the potential
to influence and modify sexual phenotypes. Therefore, genes and diverse factors in their
habitat are responsible for defining the fate of differentiating gonads towards an ovary
or a testis. The most well-documented abiotic factor in many fish species is temperature,
responsible for masculinizing fish populations [15,16]. In contrast, a limited number of
studies have investigated the impact of rearing density on the final sexual phenotype [17].
For instance, this is the case with the paradise fish (Macropodus opercularus) [18], some
coral reef fish species (e.g., Centropyge potteri and Labroides dimidiatus) [19,20], the European
and American eels (Anguilla anguilla and Anguilla rostrata) [21–23], the European sea bass
(Dicentrarchus labrax) [24,25], and the zebrafish (Danio rerio) [26,27].

Zebrafish has become a model organism in many research areas from biomedical,
developmental biology, and toxicology to aquaculture-related research [28–30]. Although
zebrafish is a freshwater fish, its advantages make it an appropriate species for studying
reproduction-related problems observed in marine fish farming [30]. Nevertheless, ze-
brafish presents some disadvantages as an animal model, for example, the inability to
collect blood from it due to its small size or the fact that its genome is almost double the
size (1412 Mb) that of other fish models like medaka (Oryzias latipes, 800 Mb) [29]. Zebrafish
is a gonochoristic species of an undifferentiated type [31,32]. The initial indication of
gonadal differentiation in zebrafish occurs approximately 10 days post-fertilization (dpf),
triggering the onset of a critical period during which the gonadal fate can be influenced
by environmental cues. While the duration of gonadal differentiation may vary among
individuals, it is typically fully accomplished by around 50 dpf [33–35].

Wild zebrafish populations possess a chromosomal sex-determination system, while
some ‘laboratory’ populations, due to artificial selection, are characterized by a polygenic
sex-determining system, both of them environmentally influenced [36–38]). Environmental
factors able to modulate sexual phenotype and, consequently, skew sex ratios in zebrafish
are temperature [27,39,40], hypoxia [41], nutritional resources [42], infection [43,44], and
density levels [45,46]. To enhance the accuracy of rearing protocols and prevent the phe-
nomenon of masculinization caused by rearing density effects, a more precise investigation
into the critical window of sex differentiation in zebrafish is imperative. Previous studies
conducted by Ribas et al. [45,46] predominantly encompassed the entirety of larval devel-
opment, spanning from 6 to 90 dpf. However, to establish a more refined rearing protocol
and gain deeper insights, it is recommended that the focus is placed on the specific time
frame of sex differentiation, which occurs between 15 and 45 dpf in zebrafish.

For more than a decade, aquaculture-related researchers have manifested the role of
epigenetics in environmental conditions to better understand fish physiology to improve
aquaculture production. Thus, searching for informative epimarkers is at the frontier of
aquaculture-related research. The effects of temperature in altering DNA methylation levels
in some canonical sex-related genes associated with the masculinization of the population
have been shown in many farming fish species: in the European sea bass [47–49], Nile tilapia



Int. J. Mol. Sci. 2023, 24, 16002 3 of 18

(Oreochromis niloticus) [50,51], turbot (Scophthalmus maximus) [52], half-smooth tongue sole
(Cynoglossus semilaevis) [53], and the Japanese flounder (Paralichthys olivaceus) [54].

In zebrafish, exposure to high temperatures during sex differentiation has been shown
to engender changes in DNA methylation on genes involved in reproduction and stress,
with these changes in levels associated with the masculinization of the populations [38].
Based on these substantial differential changes, specific epigenetic markers (i.e., CpGs)
have been used to predict the sex and the past-thermal events that occurred during the
early stages of gonad development [55]. Moreover, in a multigenerational experiment,
hypomethylation of the testicular epigenome in the unexposed first-generation offspring
derived from the heat-exposed parents was observed [56]. These results confirmed that en-
vironmental disturbances may involve an epigenetic memory in which molecular biomark-
ers can be valuable toolkits for better understanding the environmental cues that alter
phenotypes during early development.

The present study aimed to identify putative epigenetic biomarkers able to predict past
stress events caused by rearing density. To this end, we used a locus-specific approach to
evaluate the DNA methylation of genes involved in (1) epigenetics: DNA methyltransferase
1 (dnmt1), the enzyme responsible for re-establishing the methylation landscape in the
cell [57]; (2) reproduction: cytochrome P450, family 19, subfamily A, polypeptide 1a
(gonadal aromatase, cyp19a1a), the enzyme that converts androgens to estrogens [58],
and the doublesex and mab-3-related transcription factor 1 (dmrt1), a key regulator of
sex determination of testis development [59], and (3) stress: cytochrome P450 family
11 subfamily b member 1 (cyp11c1), the enzyme involved in the conversion of testosterone
to cortisol [60], hydroxysteroid (17-beta) dehydrogenase 1 (hsd17b1), the enzyme involved
in estrogen production [61], and hydroxysteroid dehydrogenase type 2 (hsd11b2), which
converts cortisol into its inactive form [62]. To complete the study, the expressions of
these six genes were analyzed to determine their relationship with DNA methylation.
In addition, to shed light on the density effects on the rearing protocols in the zebrafish
facilities, the identification of the sensible window that skews sex ratios towards males
during sex differentiation was assessed.

2. Results
2.1. Effects of Elevated Density on Sex Ratio and Growth

Results showed that rearing density had a substantial effect which was dependent
on the exposure period to which larvae were subjected (Table S1). Comparing the effect
of density levels (9 and 66 fish/L) in the 7–18 dpf group, we did not find differences
in the proportion of males (Figure 1A). However, the impact of the 66 fish/L density
level was significant when the treatments were performed during 18–45 dpf (Figure 1B,
χ2 = 13.9378, p = 0.000189). In this second period, the overall percentage of males from
the six families increased from (mean ± SD) 55.22 ± 9.10% at 9 fish/L to 67.54 ± 14.62%
at 66 fish/L. However, when analyzing the effects of masculinization engendered by
density at the individual family level, only Family #6 showed a significant increase in
males (Figure 1C). In fact, with respect to this family, both periods were studied along-
side the resulting masculinization in the 7–18 dpf (χ2 = 6.7267, p = 0.009498) and the
18–45 groups (χ2 = 3.9563, p = 0.046697), confirming previous results of family-specific
responses. Because we did not have equal representation of all the families tested in the con-
trol and in the 18–45 dpf group, and, in the latter, only one of the six families demonstrated
clearly the effects of masculinization caused by density, we investigated the masculinization
effects of elevated density through a GLMM. Results showed that density had a significant
effect on the masculinization rate (p < 0.001) (Table 1). Based on the prediction fit of the
GLMM analysis, we plotted the expected masculinization in the populations of zebrafish
according to the density level (Figure 1D).
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tested in both periods, 7–18 and 18–45 dpf. (D) The expected masculinization in the populations of 
zebrafish according to density level (number of fish/L) based on the prediction fit of a generalized 
linear mixed model for the 18–45 dpf period. The shadow represents the masculinization predicted 
by the model based on the rearing density. Abbreviations: N.S. = no significant; * = p < 0.05; *** = p < 
0.001. 

Table 1. Generalized linear mixed model (GLMM) with logit link function to test the effects of ele-
vated density on the masculinization of zebrafish during the 18–45 days post fertilization (dpf). The 
density factor (9 and 66 fish/L) was set as fixed whereas family was used as the random factor effect. 

Fixed Effects Coefficient S. E. a Z-Value b Pr(>|Z|) c 
Intercept 0.102 0.237 0.430 0.667 
Density 0.010 0.003 3.244 0.001 

Density 9 fish/L set as reference (intercept). Number of observations = 12, groups = 6. Intercepts of 
the random effects of the variance and standard deviation for #Family = 0.176 and 0.419, respec-
tively. a Standard error of parameter estimate. b Z-value estimate to standard error ratio. c Pr (>|Z|) 
statistic for Z-value. 

Growth was inversely related to the rearing density, with sex-related differences (Fig-
ure 2 and Table S2). Weight (mean ± SEM) in females remained unaffected (0.40 ± 0.02 and 
0.39 ± 0.01 for 9 and 66 fish/L, respectively), while males exposed to 66 fish/L showed a 

Figure 1. The number of males observed at different exposure windows: (A) 7–18 and (B) 18–45 days
post-fertilization (dpf) at two stocking densities (9 and 66 fish/L). Sex ratio analysis between density
treatments was conducted using the χ2 test. (C) The number of males observed in family #6 tested in
both periods, 7–18 and 18–45 dpf. (D) The expected masculinization in the populations of zebrafish
according to density level (number of fish/L) based on the prediction fit of a generalized linear mixed
model for the 18–45 dpf period. The shadow represents the masculinization predicted by the model
based on the rearing density. Abbreviations: N.S. = no significant; * = p < 0.05; *** = p < 0.001.

Table 1. Generalized linear mixed model (GLMM) with logit link function to test the effects of elevated
density on the masculinization of zebrafish during the 18–45 days post fertilization (dpf). The density
factor (9 and 66 fish/L) was set as fixed whereas family was used as the random factor effect.

Fixed Effects Coefficient S. E. a Z-Value b Pr(>|Z|) c

Intercept 0.102 0.237 0.430 0.667
Density 0.010 0.003 3.244 0.001

Density 9 fish/L set as reference (intercept). Number of observations = 12, groups = 6. Intercepts of the random
effects of the variance and standard deviation for #Family = 0.176 and 0.419, respectively. a Standard error of
parameter estimate. b Z-value estimate to standard error ratio. c Pr (>|Z|) statistic for Z-value.

Growth was inversely related to the rearing density, with sex-related differences
(Figure 2 and Table S2). Weight (mean± SEM) in females remained unaffected (0.40 ± 0.02 g
and 0.39 ± 0.01 g for 9 and 66 fish/L, respectively) in both periods of treatment, while
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males exposed to 66 fish/L showed a significant (H = 44.38, d.f. = 1, N = 412, p < 0.001)
reduction (0.23 ± 0.01 g) when compared to males from the control treatment group
(0.31 ± 0.01 g) during 18 to 45 dpf treatment (Figure 2A,B). Elevated density during the
18 to 45 dpf significantly decreased length in both sexes (H = 4.60, d.f. = 1, N = 224 and
H = 44.37, d.f. = 1, N = 412 with p < 0.05 and < 0.01 for females and males, respectively);
however, such an effect was not recorded during the 7–18 dpf (Figure 2C,D).
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Figure 2. (A,B) Body mass (weight in g) and (C,D) length (cm) of females and males at different
exposure windows: 7–18 and 18–45 days post-fertilization (dpf) at two stocking densities (9 fish/L and
66 fish/L). The total number of fish used was 1003; 369 (control), 221 (7–18 dpf), and 413 (18–45 dpf).
Abbreviations: N.S. = no significant; * = p < 0.05; *** = p < 0.001.

2.2. Methylation Patterns in Mature Gonads

For further methylation analysis, the second period was chosen due to the observed
masculinization and growth results, which were not evident during the first period. Thus,
ten males and females of the family #4 from the 18–45 dpf group were selected. The
total number of raw paired reads obtained from sequencing was 4245.896 with a mean of
106.15 ± 48.33 per sample (Table S3). After trimming, the number of reads was 501.24 and
171.52 for females and males, respectively, from the 9 fish/L group and 262.97 and 109.02
for females and males, respectively, from the 66 fish/L density level (Table S3). Mapping
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efficiency was 68.07 ± 8.67% and efficiency conversion was 99.55 ± 0.08% from all samples
(Table S3).

We examined the DNA methylation in the promoter region of genes coding for four
different steroidogenic enzymes (cyp19a1a, cyp11c1, hsd17b1, and hsd11b2), one transcription
factor in sex-related development (dmrt1), and one DNA methyltransferase (dnmt1) and
how the effects of elevated density during the period 18–45 dpf affected their methylation
profile. Results showed that the high-density treatment (66 fish/L) caused an effect on
the methylation of a single gene, dnmt1, with low methylation levels in the ovaries (~40%)
compared to the ovaries of control fish (9 fish/L) (~60%). Nevertheless, the methylation
level of this gene was very low in all the groups (<1%). The mean DNA methylation levels
were significantly higher in testes for cyp19a1a, cyp11c1, hsd17b1, and hsd11b2, while the
DNA methylation levels for dmrt1 (p < 0.001) were lower when compared to ovaries at
90 dpf (Figure 3). These differences were due to sexual dimorphism, but the elevated
density had no effect. Thus, sex-related differences in methylation were observed in all the
six tested genes.
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Figure 3. Mean DNA methylation levels in the promoter region of (A) dnmt1, (B) dmrt1, (C) cyp19a1a,
(D) cyp11c1, (E) hsd17b1, and (F) hsd11b2 in mature gonads of females and males (90 days post-
fertilization, dpf) exposed to two rearing densities (9 and 66 fish/L) from the 18–45 dpf group. The
number of fish analysed in each group was n = 10. Two-way ANOVA followed by a post hoc Tukey
test were applied. The p-values for the factor effects of sex (S), density (D), and the interaction of both
factors (S × D) are reported for each gene. A robust non-parametric two-way ANOVA with trimmed
means was applied when data did not follow normality. Data are shown as mean ± S.E.M. Different
letters indicate significant differences (p < 0.05) between sex and/or density.
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2.3. Gene Expression in Mature Gonads

Dnmt1 was downregulated under the high-density treatment for both ovaries and
testes, showing significant (p < 0.05) differences only in the latter (change of −2.5-fold)
compared to the control (Figure 4B). The gene expressions of dmrt1 and hsd11b2 were not
significantly altered for any of the sexes under the treatment, although a decrease in the
expression of both genes appeared in the testes subjected to the 66 fish/L density. By
contrast, the cyp19a1a gene was significantly downregulated (p < 0.001) in the ovaries
of stressed fish (six-fold change) relative to females in the control group. In addition,
no changes in the expression of cyp11c1 were observed for any of the gonadal types at
different densities.
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90 days post-fertilization (dpf) after the exposure to two rearing densities (9 and 66 fish/L) from 18
to 45 dpf. Data shown as mean ± SEM. Fold change values of control group (9 fish/L) was set up
at 1 as reference. Sample size: n = 10 (ovaries) and n = 10 (testes) in each group. Significant differ-
ences between sexes were analyzed using the student’s t-test. Abbreviations: N.S. = no significant;
* = p < 0.05; *** = p < 0.001.
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2.4. Correlation of DNA Methylation vs. Gene Expression in Mature Gonads

We conducted correlation analyses between DNA methylation and gene expression
levels for all of the genes selected (Figure 5). Negative trends in the correlation of methy-
lation and gene expression were observed under both densities (9 fish/L and 66 fish/L)
for dmrt1, cyp19a1a, and dnmt1 in ovaries, despite a non-significant correlation. Hsd11b2,
however, showed a positive correlation trend in ovaries under the high-density treatment
(ρ = 0.75), although, again, without attaining statistical significance. In testes, negative
trends in the correlation of methylation and gene expression were observed for dmrt1,
hsd11b2, and dnmt1, although these correlations were also statistically non-significant. De-
spite the lack of statistical significance, cyp11c1 showed a positive correlation trend in
males under the high-density treatment for both control (ρ = 0.11) and treatment (ρ = 0.72),
and cyp19a1a in males belonging to the high-density group (ρ = 0.24). Thus, overall, data
indicated that no significant correlation was observed in any of the studied comparisons.
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lack of statistical significance, cyp11c1 showed a positive correlation trend in males under 
the high-density treatment for both control (ρ = 0.11) and treatment (ρ = 0.72), and cyp19a1a 
in males belonging to the high-density group (ρ = 0.24). Thus, overall, data indicated that 
no significant correlation was observed in any of the studied comparisons. 

 
Figure 5. Correlations of DNA methylation of the promoter regions and gene expression levels
for dmrt1, cyp19a1a, cyp11c1, hsd11b2, and dnmt1 in the gonads of females and males (90 days
post-fertilization, dpf) exposed to 9 and 66 fish/L during 18–45 dpf. Spearman’s rank correlation
coefficients (ρ) are shown. The direction of the long axis of the ellipses and the color indicate the type
of correlation: negative is shown in red and positive is presented in shades of blue. The short axis of
the ellipse and the intensity of the color are proportional to the correlation coefficients. Significant
correlations were considered when p < 0.05. We represented the gene cyp11c1 in females at both
densities as ‘NA’ due to the absence of gene expression data.
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3. Discussion

Overall, our data indicated that exposing zebrafish larvae to high rearing densities
(66 fish/L) during the 18 to 45 dpf was able to skew the sex ratio towards males. The
beginning of the sexual differentiation in zebrafish into an ovary or a testis occurs from 20
to 25 dpf [63–65]. Nevertheless, Pradhan and Olson [66] described the first sign of gonadal
differentiation at 10 dpf, when the primordial germ cells show signs of oogenesis. Here,
the masculinization by effects of elevated density was not observed in earlier periods of
development (7–18 dpf). However, the control groups exhibited a male predominance
for the first period, exceeding 50% and possibly concealing any potential masculinization
effects of density. Similarly, treatments with DNA methyltransferase inhibitor (5-aza-dC)
altered sex ratios when larvae were exposed at 20–30 dpf, with no significant effects during
earlier periods of gonadal development (i.e., 10–20 dpf [67]). In contrast, high temperature
during the 7–21 dpf and 21–32 dpf developmental stages led to the masculinization of
zebrafish populations [27]. This suggests that temperature might exert a more significant
influence compared to population density as a stress factor. Altogether, our findings reveal
that the phase of susceptibility to density-related effects occurs around the midpoint of
gonad formation.

To investigate the impact of population density, we used standard 3 L tanks com-
monly employed in laboratories worldwide, which imposed limitations on the number of
individuals per group. Consequently, our sample size remained relatively small, lacking
the statistical power to detect potential differences that might have emerged with a larger
sample per group, in particular the differences observed in the first period of treatment. In
addition, inter-family variation in sex ratios was observed. Although the overall percentage
of males increased under high density in all tested families, only one out of the six investi-
gated families (family #6) showed a significant increase in males. The inter-family variation
in zebrafish was described by Liew et al. [36], reporting the importance of the interaction
between genetic and environmental (GxE) factors in this fish species. Later temperature
and density experiments corroborated the existence of these inter-family variations in
zebrafish [27,45,46,68]. Moreover, the importance of the ‘natural’ populations with genetic
sex determination using different families has been recently highlighted, being respon-
sible for sensitivity to the environment [38]. In light of these findings, we recommend
the following strategies to enhance the reliability of zebrafish research: (1) replicate the
experiment multiple times, (2) incorporate different biological replicates, and (3) combine
the resulting outcomes from different zebrafish families to mitigate inter-family variation.
Hence, even though a significant skew in sex ratios was not consistently observed across
all tested families, it remains crucial to consider the density conditions that fish experience
during their gonadal development. Consequently, this finding underscores the importance
of considering density management in zebrafish husbandry protocols. Growth was in-
versely related to stocking density during the 18 to 45 dpf. This result was observed in
our previous experiments [45] as well as in Hazlerigg et al. [26] in zebrafish and other
cultured species [4,69,70]. In particular, the males showed lower growth than the females.
The presence of sexual dimorphism in the growth response of those fish subjected to
high density might be related to the faster growth of the females during development in
zebrafish [42]. This effect might counteract the environmental cues during the sensitive
window of sex differentiation.

In the last decade, the importance of epigenetics as a connection between the genotype
and environmental influences has become more and more important for animal production,
including aquaculture [71]. The most studied epigenetic event is DNA methylation. Never-
theless, efforts toward identifying the epigenetic marks that affect the expression of genes
and how they persist throughout life still require years of research. After investigating
different temperature regimes during early development in the European sea bass, the
methylation patterns of 70 genes were identified as potential biomarkers, as diagnosis
and prognosis were on a gene that fulfilled all the criteria, the keratin-associated protein
10–4 (krtap10–4) [72]. Recently in zebrafish, we have identified biomarkers able to predict
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past-thermal effects [38]. By using machine learning strategies, differential methylation
levels on CpGs in the promoter region of key genes (i.e., cyp19a1a and the forkhead box
L2a, foxl2a for the females and anti-Mullerian hormone, amh for males) were enough to
predict whether an adult zebrafish had been subjected to high-temperature regimes during
early gonadal development. To decipher the underlying epigenetic mechanisms triggered
by high-density regimes, in the present study, we selected six genes involved in epigenetics
(dnmt1), reproduction (cyp19a1a and dmrt1), and stress (cyp11c1, hsd17b1, and hsd11b2). Our
results showed that the main alteration in methyl groups of the studied genes occurred in
dnmt1 in ovaries, an epimarker that was significantly hypomethylated in the ovaries almost
two months after the density treatment had ended. DNA methylation changes occur due
to the activity of DNA methyltransferases (dnmts) [73] and, thus, they play a central role
in the DNA methylation mechanisms. In fish, many studies have shown the alteration of
the expression of dnmts, although less data exist on the alteration of the DNA methylation
patterns. Most of the studies revealed dnmt alterations in fish subject to toxic wastes in the
water, for example, lead or atrazine treatments [74,75], and, to a much lesser extent, changes
to their relation with the gonads. For example, dnmt1 was significantly downregulated
in ovaries and testes associated with bisphenol exposure in zebrafish and cyprinid rare
minnow (Gobiocypris rarus), a phenomenon which was associated with a reduced global
DNA methylation in the gonads [76,77]. Transgenerational disturbances after bisphenol
were observed in some steroidogenic genes in the ovaries of rare minnow [78].

Together with the DNA methylation changes in the ovaries, our data showed that
the exposure to the rearing stressor was contributing to a decrease in dnmt1 transcript
in female ovaries, but more sharply in the testicular tissue. A relationship between the
masculinization effects of high-temperature treatments at early stages and dnmts alterations
have been observed in Nile tilapia and zebrafish [27,79]. The masculinizing steroid 17α-
methyltestosterone downregulated the expression of genes involved in chromatin histone
modification and DNA methylation pathways in epigenetics, including dnmt1, in 18 to
19 dpf zebrafish gonads [80]. Zebrafish testes development occurs via programmed cell
death from the initial undifferentiated ovary-like gonads [81]. The apoptosis events require
a cascade of genes involved in several pathways, including p53, wnt signaling pathways,
and the B-cell lymphoma/leukemia-2 (Bcl-2) family [82]. In mammals, the upregulation
of dnmt1 expression under oxidative stress-induced apoptosis via the hypermethylation
of Bcl-2 family [83] might, therefore, alter the sex differentiation in the gonads. In this
sense, our observations conclude that changes in the dnmt1 methylation, together with
its expression in the gonad during sex differentiation, were triggered by changes in the
environment, i.e., high density.

Based on our data, no significant changes in the DNA methylation after rearing
treatments of the other studied genes (cyp19a1a, dmrt1, cyp11c1, hsd17b1, and hsd11b2) were
observed. This might be explained by the fact that the stressor was not severe enough to
cause permanent DNA methylation changes in the studied genes, unlike that engendered
by temperature in a similar experiment in which six out of ten genes showed significant
changes in the DNA methylation patterns [38]. Another explanation for our data is the
limitation of the methods used. Although MBS has been useful in several studies [38,49],
the candidate gene approach method is limited to just a small part of the genome, near the
coding region of the genes, and, thus, wide-genome strategies would have been required to
fully assess modifications in the epigenome after rearing conditions.

In contrast, clear sexual dimorphism in the DNA methylation patterns was observed
in our data. In the last years, evidence has accumulated highlighting the importance of
the sexual dimorphic methylation patterns in fish. This is the case, for example, in Nile
tilapia muscles [84] and zebrafish brains [85]. Sexual dimorphism was present in the
methylation pattern in the zebrafish gonads, indicating that the immune system responses
differed between fish sexes [86]. In fact, the methylation levels of certain genes were linked
to a particular sex defining the Essential Epigenetic Marks (EEM) as those informative
epigenetic marks that were essential for a particular sexual phenotype [87]. Two genes,
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cyp19a1a and dmrt1, fulfilled the EEM criteria, while in others it was not as clear, indicating
that more information regarding sexual differences in the fish epigenome is required. In
the present study, we added more information regarding the importance of the sexual
differences in the DNA methylation of key genes related to reproduction and stress that
might be a potential EEM.

High density during early development was able to downregulate the expression
level of cyp19a1a in the ovaries. Our data are in accordance with those reported by Val-
divieso et al. [88], whereby fish were subject to even higher densities (i.e., 74 fish/L). Other
environmental factors were able to decrease the levels of cyp19a1a expression in fish, as it
has been observed with high temperature [27,47,79] and hypoxia [41,89]. Therefore, based
on all the available data, the lower expression of cyp19a1a in the ovaries of fish subjected
to environmental stressors might be considered a good biomarker. The other studied
genes did not show a significant regulation of their expression after the introduction of the
stressor, with data showing no more changes in the DNA methylation patterns.

Correlation analyses of methylation and gene expression in the six studied genes
indicated no significant differences in ovaries or testes. Most of the studied genes generally
indicated negative relationships following the assumption that low DNA methylation of
CpG-rich promoters is associated with the activation of the gene transcription machin-
ery [90,91]. In contrast, in our data, we found positive correlation trends between DNA
methylation and gene expression in hsd11b2 in the ovaries, and cyp19a1a and cyp11c1 in
the testes. In a similar manner, positive correlations were observed in hsd11b2 and cyp11c1
in both testes and ovaries of zebrafish exposed to high temperatures [38], corroborating
our findings. In fact, it is currently known that the DNA methylation patterns are more
complex than originally thought, as other genomic elements rather than the promoters,
such as gene body or introns, can contribute to transcriptional regulation [48,92,93].

4. Materials and Methods
4.1. Animal Rearing Conditions and Facility

Zebrafish (AB strain, ZDB-GENO-960809-7) were housed at the ‘Institut de Ciències
del Mar’ (ICM-CSIC) in Barcelona. Fish were reared in a commercial water rack system
(Aquaneering, San Diego, CA, USA). Husbandry and water conditions are described
elsewhere [45]. Fish were fed ad libitum three times per day with zebrafish commercial
food (Aqua Schwarz Gmbh, Maschmühlenweg Germany) and supplemented with brine
shrimp (Artemia nauplii). Water quality parameters were monitored routinely to avoid any
confounding environmental factors that could interfere with fish health and development.
Table S4 provides the water parameters used during the experiment with no harmful
fluctuations. Temperature, acidity, and conductivity were measured daily, while ammonia,
nitrite, nitrate, and hardness were measured weekly using commercial kits (Sera, Heinsberg,
Germany). To prevent any potential negative effects of masculinization before commencing
the density experiments, the larvae belonging to control conditions were reared at a density
of 9 fish per liter (fish/L) [45]. The experimental density of 66 fish/L was selected as a
potential treatment to induce a skewed sex ratio towards males while ensuring minimal
mortality that could hinder the representativeness of the population [45].

4.2. Experimental Design

To generate reliable biological replication, larvae from eight unrelated families (#1–8)
originating from independent pairs were used to assess the effects of density during sex
differentiation. A total of three and six families were used for the first (7–18 dpf) or the
second (18–45 dpf) studied periods, respectively (Table S1 and Figure S1B). Due to the large
number of larvae required for each experiment, only one family (#6) produced enough eggs
to assess the three groups altogether. For each family, to optimize the number of surviving
larvae and to accomplish the desired density treatment in each tank, we calculated the
proper volume to confine the larvae using a micro-perforated barrier in Aquaneering
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tanks (2.8 L volume, ZT280). The barrier was positioned along the x-axis position—which
included a ruler—while the y- and z-axis remained fixed (Figure S1A).

Three groups were created: 7–18 dpf, 18–45 dpf, and a control group for each of the
studied periods of gonadal development (Figure S1B). For the control group, tanks were
set up with 9 fish/L at 7 dpf and the density level remained unchanged until 90 dpf. In
the 7–18 dpf group, tanks started with larvae confined with 66 fish/L at 7 dpf, and larvae
remained confined until 18 dpf. At this point, the physical barrier was removed to create
a non-masculinization density effect that would not lead to masculinization (specifically,
below 16 fish/L) [45]. In the 18–45 dpf group, the larvae were initially maintained at a
density of 9 fish/L until 18 dpf, after which they were confined at 66 fish/L until 45 dpf.
From 45 dpf onwards, the barrier was removed, and fish were kept at a density below
16 fish/L until 90 dpf. Due to the large number of fish per tank, if it was not possible to
achieve the target density of 16 fish/L or lower at the end of the period of treatment, larvae
were evenly distributed into tanks to avoid any effect of density. During the experiment,
fish survival was recorded, and the barrier was adjusted as needed to maintain density
at 66 fish/L. At 90 dpf, fish of all groups were euthanized using iced water. Body weight
(BW± 0.05 g) and standard length (SL± 0.01 cm) were recorded. Fish gonads were recorded
for sex ratio analysis and gonads were kept at −80 ◦C for further molecular analysis.

4.3. DNA and RNA Extractions

Molecular analyses were performed for the second period of treatment (18–45 dpf) and
for the family #6. Genomic DNA and total RNA were isolated from the same gonad sample
to allow comparisons of DNA methylation and gene expression in the same individual. For
the DNA extraction, the gonads were treated overnight at 60 ◦C with a digestion buffer
containing 1 µg of proteinase K (P2308, Sigma-Aldrich, St. Louis, MO, USA). Then, a
standard phenol–chloroform–isoamyl alcohol protocol (PCI 25:24:1, v/v/v) with 0.5 µg
ribonuclease A (12091021, PureLink RNase A, Life Technologies, Carlsbad, CA, USA) was
implemented to eliminate RNA traces. Five hundred nanograms of DNA per sample were
bisulfite-converted using the EZ DNA Methylation-Direct™ Kit (ZymoResearch, Irvine,
CA, USA; D5023). For the RNA extraction, sampling was conducted using Trizol Reagent
(T9424, Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s instructions
and RNA. Quality and quantity of DNA and RNA were measured by NanoDrop (ND-1000)
spectrophotometer and Qubit (Thermo Fisher Scientific, Waltham, MA, USA).

4.4. Methylation Bisulfite Sequencing Analysis

Gonadal DNA methylation levels were studied by Methylation Bisulfite Sequenc-
ing (MBS) following the procedures described elsewhere [38,44,49]. The studied genes
were epigenetic-related (dnmt1), reproduction-related (dmrt1 and cyp19a1a), and stress-
related (cyp11c1, hsd17b1, and hsd11b2). The selected region for each gene included the
promoter, the first exon, and the first intron extended as much as possible. The targeted
portion of approximately 500 bp was amplified with PCR by using designed primers
from Valdivieso et al. (2023) (Table S5). Adaptor sequences for 16 S metagenomic li-
brary preparation (Illumina) were added to the 5′ ends of the primers designed: forward-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG and reverse-GTCTCGTGGGCTCGG
AGATGTGTATAAGAGACAG. PCR products were indexed by Nextera XT index Kit
Set A (Illumina; FC-131–2001) according to Illumina’s protocol for 16 S metagenomic
library preparation and were pooled in an equimolar manner to obtain a single multi-
plexed library which was sequenced in a MiSeq (Illumina, San Diego, CA, USA) using the
paired-end (PE) reads 250 bp protocol at the National Center of Genomic Analysis (CNAG,
Barcelona, Spain).

4.5. Bioinformatic Analysis

The adapters were removed using Trim galore! software (v. 0.4.5, Cambridge, UK) [94]
and those reads with low-quality filtered (Phred score < 20) were discarded. To ensure that the
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adapters were cut off correctly, pre- and post-trim quality control was carried out using MultiQC
and FastQC [95,96]. Bismark software (v.20.0, Cambridge, UK) was used to generate an in silico
bisulfite-converted zebrafish genome (GCF_000002035) using the ‘bismark_genome_preparation’
function. Deduplication and methylation extraction at CpG_context were conducted using the
‘deduplicate_bismark’ and ‘bismark_methylation_extractor’ functions, respectively. Bisulfite
conversion efficiency was calculated with a minimum threshold of 99.0% to accept the
sample for methylation analysis. The coordinates of the CpG sites of the targeted genes
were assessed through the ‘bedr’ package (v. 1.0.4) [97]. From the targeted CpG sites, only
those that showed coverage > 5 times were retained for the methylation analysis.

4.6. Gene Expression by Quantitative PCR

For each sample, 200 ng of RNA were treated with DNAse I, Amplification Grade
(Thermo Fisher Scientific Inc., Wilmington, DE, USA), and retrotranscribed to cDNA with
SuperScript III RNase Transcriptase (Invitrogen, Carlsbad, CA, USA) with Random hexamer
(Invitrogen, Carlsbad, CA, USA). Quantitative PCR (qPCR) was carried out in technical
triplicates for each sample with the SYBR Green chemistry (Power SYBR Green PCR Master
Mix; Applied Biosystems, Waltham, MA, USA). The conditions in the thermocycler were:
50 ◦C for 2 min, 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min
in a 384-well plate (CFX-386, Touch BioRad, Berkley, CA, USA). Finally, a temperature-
determining dissociation step was performed at 95 ◦C for 15 s, 60 ◦C for 15 s, and 95 ◦C for
15 s at the end of the amplification phase. The dissociation step, primer efficiency curves,
and PCR product sequencing confirmed the specificity for each primer pair. The six qPCR
primers used together with the two reference genes are shown in Table S6.

4.7. Statistical Analyses

All statistical analyses were performed using R software (v. 4.1.1, Vienna, Austria) [98].
Data were expressed as mean ± SEM and the differences were considered significant when
p < 0.05. Graphs were generated using the “ggplot2“ package (v. 3.1.0) [99]. The sex ratio
analysis was calculated using the chi-square (χ2) test with the application of the Yates
correction [100] for each family. The overall analysis of density for the second period
(18–45 dpf) was assessed using Generalized Linear Mixed Models (GLMMs). Density level
(continuous variable) was considered the fixed factor and family was the random factor,
with the response variable being the proportion of males and females. For biometry data,
normality was checked with the Kolmogorov–Smirnov test and logarithmic transformations
were applied, when necessary. The homoscedasticity of variances was checked with the
Levene’s test. Means were compared by one-way analysis of variance (ANOVA) with
Tukey’s post-hoc multiple-range test.

To obtain the DNA methylation across all the CpG sites in the studied gene region, the
DNA methylation level for each site was averaged from all samples in each group. The
effects of density on DNA methylation were evaluated by two-way ANOVA followed by a
Tukey’s HSD test. The normality of the residuals was checked using the Shapiro–Wilk test,
while the Levene’s test was used to check for homogeneity of variance.

Data obtained from qPCR were collected by SDS 2.3 and RQ Manager 1.2 software
(Waltham, MA, USA). For each sample, the relative quantity (RQ) values of the genes of
interest were used for normalization against the geometric mean value of two reference
genes validated for zebrafish [101] and the fold change was calculated using the 2∆∆Ct
method [102]. Two-way ANOVA was used to detect differences in gene expression between
treatments (sex and density), after checking for homoscedasticity with the Levene’s test
for every single group, as well as for normality using the Shapiro–Wilk test for each group.
When normality was not followed, a Kruskal–Wallis test was performed. A Tukey’s test
was used to perform post hoc multiple comparisons. DNA methylation and gene expression
correlation analyses were carried out by running a Spearman’s rank correlation (ρ) test
using the ‘corrplot’ package (v. 0.84) [103].
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5. Conclusions

This study confirms the impact of continued exposure to stressors during gonadal
differentiation on DNA methylation, gene expression, and final sexual phenotypes. Present
data revealed that the sensible window for high-density occurred between 18 and 45 dpf,
skewing sex ratios towards males. Among the six studied genes related to epigenetics,
reproduction, and stress, dnmt1 showed significant differences in the DNA methylation,
which, if confirmed in independent studies, could constitute a suitable epimarker in the
male fish subjected to stressors in the two previous months. Similarly, the inhibition of
cyp19a1a gene expression could be considered a promising biomarker in the ovaries of fish
subjected to rearing densities during sex differentiation. This analysis shed light on the
characteristics of the fish reproductive system and the environment’s role in modulating
epigenetic and gene expression molecular events. Thus, caution should be practiced with
respect to rearing protocols in fish facilities, particularly those that use zebrafish as an
animal model for research.
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