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Abstract

BACKGROUND: Cassava utilization for food and/or industrial products depends on inherent properties of root dry matter con-
tent (DMC) and the starch fraction of amylose content (AC). Accordingly, in the present study, near-infrared reflectance spec-
troscopy (NIRS) models were developed to aid breeding and selection of DMC and AC as critical industrial traits taking care
of root sample preparation and cassava germplasm diversity available in Uganda.

RESULTS: Upon undertaking calibrations and cross-validations, best models were adopted for validation. DMC in calibration
samples ranged from 20 to 45 g 100g~", whereas, for amylose content, it ranged from 14 to 33 g 100g™". In the validation
set, average DMC was 29.5 g 100g~", whereas, for amylose content, it was 24.64 g 100g™". For DMC, a modified partial least
square regression model had regression coefficients (R) of 0.98 and 0.96, respectively, in the calibration and validation set.
These were also associated with low bias (—0.018) and ratio of performance deviation that ranged from 4.7 to 5.0. In addition,
standard error of prediction values ranged from 0.9 g 100g~" to 1.06 g 100g~". For AC, the regression coefficient was 0.91 for
the calibration set and 0.94 for the validation set. A bias equivalent to —0.03 and a ratio of performance deviation of 4.23 were
observed.

CONCLUSION: These findings confirm the robustness of NIRS in the estimation of dry matter content and amylose content in
cassava roots and thus justify its use in routine cassava breeding operations.

© 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.

Supporting information may be found in the online version of this article.
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INTRODUCTION

Cassava (Manihot esculenta Crantz) is one of the most famous
crops in Uganda as a result of its wide use in food, feed and
industry.! These applications are mainly dependent on root
properties such as the dry matter content (DMC) and the starch
properties. In addition, root properties, which are mainly a func-
tion of starch, determine the quality of cassava or its products.?
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It is for these reasons that most cassava breeding programs
consider selecting for high DMC as a ‘must-have’ trait when
developing new varieties.> Additionally, starch related quality traits
such as amylose content are currently being considered for the
industrial utilization of cassava.
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Traditionally, most cassava breeding programs have estimated
DMC and amylose content using laboratory procedures such as
the oven based method for DMC* and iodometric method for
amylose content.”> However, these methods are characterized by
drudgery and lower precision, which consequently reduces
breeding efficiency in the long run.® For these reasons, alternative
and high throughput methods characterized by speed, versatility
and precision are required among breeding programs. Such alter-
natives include a range of high throughput phenotyping proce-
dures, the most notable of which is near-infrared reflectance
spectroscopy (NIRS).”

Previous studies have recognized NIRS as a robust technique for
estimating DMC in cassava roots.®'° Such studies act as a basis
for estimating amylose content and the starch yield. As a rapid
and low cost technique (in terms of sample preparation and
reduced wet chemistry costs), NIRS has the transformative power
to measure breeding traits of up to 100 samples per hour. Absorp-
tion of wavelengths in the near-infrared electromagnetic region
by molecular groups' particularly involving hydrogen bonds
(C—H, O—H and N—H) underpins the appropriateness of NIRS.
NIRS is therefore important in estimation of primary constituents
of organic compounds of plant tissues.'®

Development of NIRS protocols for DMC, amylose and starch by
individual breeding programs is important in the improvement of
cassava. This is because of the variability in sample preparation
and presentation forms, trait preferences for the target product
profiles, and the different working conditions within specific
breeding programs. Such differences significantly influence the
analysis® and hence call for program specific calibrations.

00—

Samples

Biochemical
Biophysical
Procedures

|

15 -

10

20-‘

® + -3 C

Trait

Reference
information

NIRS equipment

2 e 10 ] e

ABCDEABCDEABDEABDEABDE 5 10 15 20

Sampling methods are also limited by resource capabilities of dif-
ferent breeding programs, necessitating the development and
customization of locally adapted calibrations. Other factors such
as vibration mechanisms of spectrum, mathematical and statisti-
cal procedures performed, as well as submission and preparation
conditions of the sample, also affect predictions."’

Given that selection metrics are dependent on proper measure-
ment, the requirement of high throughput phenotyping proce-
dures (HTPPs) is critical. These procedures depend on
instrumentation such as NIRS where a trait by trait approach is
needed for locally adapting use. For these tools to be used, there
is a need for their optimization and for models to be developed
for their use. Specifically, there is a need to develop calibrations
that take into consideration a range of specific sampling
procedures, mindful of the evolution in NIRS technology and
equipment. Thus, the present study aimed to optimize NIRS as
an HTPP tool for the selection of root quality traits of DMC, amy-
lose content and starch yield.

MATERIALS AND METHODS

Selection of the calibration samples

Different sample sets were used in the development of calibra-
tion. For dry matter content, the calibration set was obtained from
a diverse set of 300 cassava clones introduced from Latin America
for pre-breeding at National Crops Resources Research Institute
(NaCRRI) and additional local checks (https://cassavabase.org/
breeders/program/164). For the amylose content, the calibration
set consisted of a diverse set of 197 clones. The details of the field
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Figure 1. Schematic showing sample handling and analysis of starch/amylose parameters.

wileyonlinelibrary.com/jsfa

© 2023 The Authors.

J Sci Food Agric 2023

Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

85U8017 SUOWILIOD BAIIRID) 8|qedldde ay) Aq peussnob are sspile YO ‘8sn JO S3|nJ o A%eiq)T 8UlJUO AB|IA UO (SUORIPUOD-PUB-SWLBYWOY" A3 1M ARe.d 1 Ul |U0//SdNL) SUORIPUOD PuUe SWB | 3U188S *[£202/2T/¥0] Uo ARiqiTauliuo /B|IM ‘1S1a - SHADAd - V1D Aq 99621 IS[/200T 0T/I0p/wW0d A8 | 1M Alelq iUl uoy/Sdiy woly papeojumod ‘0 ‘0T00.60T


https://cassavabase.org/breeders/program/164
https://cassavabase.org/breeders/program/164
http://wileyonlinelibrary.com/jsfa

Development of NIRS for root dry matter and amylose contents

@)
SClL

where science
meets business

WWW.S0Ci.org

experiment is available in an open access data repository at
(https://www.cassavabase.org/breeders/trial/4384?format=). The
pre-breeding set of germplasms used in the present study con-
tained genotypes that are from diverse backgrounds (from Inter-
national Institute of Tropical Agriculture (lITA), International
Center for Tropical Agriculture (CIAT) and NaCRRI), for which
diversity is important in development of NIRS calibrations. They
are currently being used to breed for future populations for differ-
ent traits including DMC and amylose content.

In all cases, the trials were harvested at maturity (12 months
after planting), three plants per clone were selected to get at least
six to 10 root samples, with each root measuring at least 30 cm in
length and 6 cm in diameter. Sampled roots were immediately
taken to the laboratory and each root was peeled, washed and
dried using a towel. Peeled roots were grated using a kitchen
grater to generate approximately 300 g of cassava mash that
was placed into an aluminum foil, covered and labeled awaiting
spectra acquisition (Fig. 1). The peeled grated cassava root tissue
was preferred because of its ability to provide for better spectral
acquisition and hence increased spectral reproducibility.”

Validation samples

Part of the samples used for calibration was selected and used for
constituting a validation set. For dry matter content (100 samples)
were selected, whereas 74 samples were selected for amylose
content. These samples were sourced from Uganda's cassava
breeding program (https://cassavabase.org/breeders/program/
164) as described for the calibration set and treated in the same
way as the calibration sets before being used for validation. The
details of the sample sets used are provided in Table 1 with further
description in Figs 2 and 3.

Spectral data acquisition

A benchtop Vis/NIRS device (DS2500; FOSS, Hilleroed, Denmark)
was used to acquire spectral data on all grated root samples.
Immediately after grating, sample portions (approximately 15 g)
were used for spectra acquisition. Samples for spectra acquisition
were placed in the small sample cup, which was then placed on
the stage and spectral information acquired. Samples were
scanned in diffuse reflectance between 400 nm and 2500 nm
with a 2-nm step. For each spectrum, a total of two sub-spectra
were collected per sample from refilling the sample cup two times
with the grated sample and averaged to get the main spectra for
that sample. Instrument control was performed with the ISIscan
Analysis Software (Infrasoft International LLC, State College,
PA, USA).

Determination of DMC

For both calibration and validation sets, DMC was determined
from the measurement of the dry weight of the sample after
oven-drying and presented as a percentage. Grated fresh root
samples (100 g measured to a precision of 0.01 mg) obtained
from the same plot were weighed off in triplicate on aluminum

dry matter plates. The samples were oven-dried at a constant tem-
perature of 105 °C for 48 h. Thereafter, samples were weighed
upon attainment of constant weight*'® The average DMC of
the two replications was recorded using the Eqn (1) and used as
reference data during model development.

w2
DMC= ——=x100 1
W (M

where W1 is the weight of the chopped cassava sample before
drying and W2 is the weight of the cassava sample after drying.

Methodology for amylose determination

For amylose determination, starch was initially extracted from
grated samples. Selected roots were manually peeled with a labo-
ratory knife and the resultant tissue was crushed in a laboratory
blender. The slurry was filtered through a muslin cloth. The starch
was allowed to settle and the supernatant decanted off. The
remaining starch was washed with water for two times and then
dried in an air forced oven at 40 °C for 48 h.

The amylose content of the extracted cassava starch was deter-
mined using a spectrophotometric procedure based on iodine
staining with slight modifications by adjusting the volume of anal-
ysis to a total working volume of 50 mL (ISO 6647-2:2020).> The
amylose standard curve was prepared using potato amylose
(Sigma Chemicals, St Louis, MO, USA). Repeated analyses were
undertaken where the SD was higher than 5 g 100g™" to ensure
consistency. The results were presented as percentage amylose
on dry weight basis.

Data analysis

Data pre-processing and model development

Spectra used covered the full wavelength range (400-2500 nm) of
visible/NIRS and data in these spectra were pre-treated for
improvement and reduction of interferences. Pre-treatment
involved undertaking light scatter correction methodologies
including the standard normal variate and de-trending (SNVD)
and the multiplicative scatter correction (see Supporting informa-
tion, Tables S1 and S2). For each of these, four derivative and
smoothing options were used and compared with no treatment.’
Based on the different data pre-processing techniques, models
were developed using the calibration set and the best model
was selected based on: highest coefficient of determination of cal-
ibration (R%c); R%cv of internal cross-validation; lowest standard
error of calibration (SEC) and standard error of cross-validation
(SECV); and the smallest difference between SEC and SECV.

Prediction of root traits

The selected model was used to predict DMC of validation sets on
either whole root. In all cases, samples were prepared by grating
and root portions treated as sample categories. The validation sta-
tistics of interest used to understand the quality and performance
of the models included coefficient of determination of prediction
(R%p), the bias and the ratio of performance to deviation (RPD).

Table 1. Descriptive statistics for dry matter content and amylose content
Statistic N Minimum Maximum Mean SD
Dry matter content (g 100g™") 300 10.74 45.00 29.58 5.08
Amylose content (g 100g™") 247 15.17 32.96 24.52 337
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Figure 2. Dry matter content distribution per set.
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Figure 3. Amylose content distribution per set.

Assessment of the robustness of the prediction models also
depended on the standard error of prediction (SEP) and standard
error of prediction corrected for bias (SEPC).

Statistical analysis

Statistical analyses were performed using Win-ISI 4.6 software
(Infrasoft International and FOSS, Hillerod, Denmark) and R soft-
ware, version 4.1 (R Foundation, Vienna, Austria). Different pre-
treatments were tested and the mathematical correction for
light scattering using SNVD correction was selected. Partial least
squares (PLS) and modified partial least square (MPLS) algorithms
were used to develop prediction models. Based on different data
pre-processing techniques, models were developed using the cal-
ibration set and the best model was selected. Specific factors for
each PLS or MPLS model were optimized with WinlISI 4.6 software.
In the process of calibration development, cross-validation was
used to select the optimum number of latent variables and to
minimize overfitting the equations. The identification of outlier
samples during calibration development was based on the Stu-
dent's t-test. Outlier detection was based on the standardized
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Figure 4. Representative cassava root spectra for amylose calibration
with no treatment.

residuals (= error/SECV) with a cutoff of 2.5. The RPD was calcu-
lated by dividing the SD of the reference data from the validation
set by the SEP. Scatter plots were used to visualize the relationship
between predicted and reference values using Excel (Microspft
Corp., Redmond, WA, USA).

RESULTS

Phenotypic variation of root traits

The calibration set consisting of Latin American clones and
Ugandan local checks had DMC ranging from 215 to
445 g 100g~" (Fig. 1). Average DMC was 33.7 g 100g™" with SD
of 4.53. On the other hand, the amylose content ranged from
15.2.9 100g™" up to 33 g 100g™" (Fig. 3). Average amylose con-
tent was 24.48 g 100g~" with a SD of 3.44. For the validation set,
average DMC ranged from 10.7 g 100g™" to 44.3 g 100g™" and
on average was 29.46 g 100g™".

All the cassava genotypes used in the development of the cali-
bration had a definitive spectra with similar patterns observed.
There were no atypical spectra observed for both the dry matter
and amylose sets used. Spectral variability was observed with dif-
ferences observed in the water absorption bands (1500 and
1900 nm) (Fig. 4).
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Table 2. Spectral treatment parameters selected for development of calibrations

Trait Math treatment Regression statistic Scatter N No. of terms
Dry matter content SNVD MPLS 2,442 262 7
SNVD MPLS 2,222 262 6
Amylose content None MPLS 0,0,1,1 197 5
SNVD MPLS 22,22 183 5
Abbreviation: MPLS, modified partial least squares; SNVD, standard normal variate and detrend; N, total number of samples.
Table 3. Calibration statistics for the two traits
Parameter Scatter N SEC SECV 1-VR RSQ
Dry matter content 2,222 262 0.57 0.848 0.963 0.983
2442 262 0.525 0.826 0.965 0.986
Amylose content 0,0,1,1 197 1.267 1.346 0.847 0.865
2,222 183 1.510 2631 0413 0.779

Abbreviation: SEC, standard error of calibration; SECV, standard error of cross validation; 1 — VR, Statistic 1 — variance ratio; RSQ, coefficient of deter-
mination of calibration.

Table 4. Validation statistics for each of the traits (SEP, Rzp, SEPC, RPD and bias)

Parameter SEP SEPC RPD Bias R%p Predicted average
Dry matter content 1.035 1.037 493 0.018 0.962 29.48
Amylose 0.733 0.74 4.23 —0.026 0.943 24.68

Abbreviation: SEP, standard error of prediction; SEPC, standard error of prediction corrected for bias; RPD, Ratio of Perfromance deviation; Rzp, coef-

ficient of prediction.

To compare the effect of mathematical treatment, calibrations
based on SNVD were developed using all the spectral segments
(visible + NIR). These were compared with no treatments at all
and with the main regression method being the MPLS method.
Differences were observed in performances of equations devel-
oped using SNVD with the MPLS, and the equations which had
higher coefficient of determination (R%c) across all calibrations
were selected (Table 2). The number of terms used for this regres-
sion to achieve a maximum R%c value close to 0.98 and minimum
difference between SEC and SECV were six® terms. The number of
terms in each calibration ranged from six to seven for the dry mat-
ter content and was five terms for the amylose content.

A different mathematical treatment was used to develop cali-
bration equations (Table 2). For dry matter content, the mathe-
matical treatment SNVD was used across different scatter
treatments producing R*c values ranging from 0.97 to 0.98 for
the corresponding MPLS regression. On the other hand, for amy-
lose content, where no specific treatments were used for the
MPLS regression, an R?c value of 0.865 was realized, whereas, with
treatments for SNVD, an R?c of 0.79 was realized. For dry matter
content, the SECV values observed for the MPLS regression ran-
ged from 0.826 to 0.848 for both treatments, whereas SEC values
ranged from 0.52 to 0.57. On the other hand, the SECV
values observed for amylose content was 1.346 for the scatter
0.0.1.1 with a corresponding standard error of calibration of
1.267 and 2.631 for the scatter 2,2,2,2 with a corresponding

standard error of calibration of 2.631 (Table 3,4). The squared cor-
relation coefficient (RSQ) for dry matter content ranged between
0.983 and 0.986 for the selected scatter and was high enough for
the calibrations to be considered for utilization in selection. Like-
wise, the RSQ for amylose content ranged between 0.779 and
0.865, explaining a total variation of up to 86.5 g 100g~". The
RSQ values also were well fitting for the developed calibration
models meant for selection at early stages in the breeding pro-
gram. The low SEC values obtained for the two parameters
showed that the selected equations would have acceptable quan-
titative correlations for the amylose content and the dry matter
content predictions.'’ Likewise, the difference between the SEC
and SECV was low, which further showed the robustness of the
developed equations and their predictive abilities. The internal
cross-validation for the selected equations was also high enough
(0.961-0.973) to allow for utilization of the calibrations. In addi-
tion, the SECV values observed were close to SEC values, and thus
showed that the developed models were fair and robustly fitting
for DMC estimation.

Calibration equations developed were evaluated to identify
their prediction accuracy based on correlation coefficient of
actual and predicted values in the external cross-validation
set using the R?p, SEP, the bias and the RPD (Table 4). For dry
matter content, the smoothing and derivative options under
SNVD 2,4,4,2 had R’p values ranging from 0.962. For these
options, the RPD was 4.93, whereas the bias was 0.018. These
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Figure 5. Reference values from oven-based dry matter content (DM laboratory) estimation compared to NIRs predicted dry matter content (DM NIRS)
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Figure 6. Reference values for amylose content (amylose labarotory)
compared to predicted amylose (amylose NIRs predicted).

resulted into a predictive average of a dry matter content of
29.48 g 100g~", which ranged from 28.9 to 30.6 g 100g™". On
the other hand, the derivative option 0,0,1,1 for amylose con-
tent resulted in a SEP of 0.733 and an RPD of 4.23. The bias
observed for this option was —0.026, whereas the predicted
average was 24.68 g 100g™" (Tables 3,4).

The observed R*p and SEP were strong enough to allow for eval-
uation of predictive accuracy of models (Figs 5 and 6).

Validation of the NIRS models

The R%p for the whole root, averaged at 0.95, with the predicted
DMC ranging from 28.86 to 30.6 g 100g~" (Table 4). SEP was
1.04 g 100g™", 1.07 g 100g~", 1.06 g 100g~" and 0.97 g 100g™",
respectively. The RPD values ranged from 4.7 to 5.01 (Table 4)
and underpinned the robustness of models in the estimation of
DMC (Figs 5 and 6).

DISCUSSION

One of the major drawbacks in measurement of root quality traits
across cassava breeding programs relates to methods for estima-
tion of such traits and the sampling procedures used.2° The results
from the present study highlight the role of NIRS in accurately esti-
mating cassava root quality traits. The high predictive accuracy for
root quality traits in in grated root samples shows that NIRS can be
used not only for screening large populations, but also in quality
control parameters involving determination of root quality traits.
Particularly, the observations in the present study showed that
minimum preparation procedures involving the increase in surface
area though grating provide better root quality traits estimates.
Such recommendations were suggested previously.® Sample prep-
aration and presentation forms are very important in the successful
development of calibrations for particular parameters®'! Thus, in
the present study, cassava grates packed in a sample cup used dur-
ing NIRS scanning provided a good scanning surface to produce
spectra with increased homogeneity hence reliable predictions.
This is the result of a reduction in noise by reducing light scattering
from the sample during spectral acquisition.2 Thus, sample prepa-
ration methodologies that provide for reliable scanning and spec-
tral homogeneity such as grating in an enclosure to reduce
heterogeneity in the sampling environment are crucial for achiev-
ing spectral homogeneity. Thus the reported sample selection and
sample preparation methodologies can be used in estimation of
DMC in cassava with minimal cost in addition to saving time.

The selection and utilization of the MPLS regression statistic
under SNVD was based on the observed higher coefficients of
determination for calibration, which was more than 98 g 100g™"
for dry matter content. This showed that oven drying method pro-
vides better estimates and thus has increased robustness as a ref-
erence method for determination of dry matter content
compared to other methods.* For amylose content, it was realized
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that the initial extraction of starch and determination of amylose
using the iodometric procedures provided estimates of up to
93 g kg™". Such estimates are good enough for estimation of
amylose content in cassava, especially in routine root based prop-
erty selections. The selected MPLS regression statistic was also
important for identifying outliers and hence providing for a
dependable calibration for use in determination of dry matter
contents and amylose contents of the cassava root. Because the
developed models that explain up to 80 g kg™ of variation
(R?c = 0.8) can be used for screening different germplasm and
those that explain up to 96 g kg™' can be used in quality
control,' our developed models for dry matter content with R*c
values above 0.98 can be used for screening and quality control
in all breeding stages for DMC estimation. In addition, the devel-
oped model for amylose can be routinely used for screening of
cassava clones for amylose content.

The performance of SNVD as a mathematical treatment was bet-
ter than other mathematical treatments, indicating the relevance
of SNVD in developing equations for determination of root quality
traits in cassava. It is important to note that calibrations devel-
oped in this case were based on the SNVD mainly. In addition,
the performance of MPLS as a regression was more satisfactory
under the SNVD for the different calibrations developed com-
pared to the PLS.

Validation statistics across different scatter correction on
wavelength selection provided a basis for the selection of the
best models for prediction of root quality traits in cassava. A
high coefficient of determination for prediction ranging from
95.7 t0 96.3 g kg™ was observed across validation sets for dry
matter content, whereas the range was 77.9-93.4 g kg™"' for
amylose content. These values were in agreement with previ-
ous recommendations® on the appropriate prediction parame-
ters for NIRS applications. Higher values for RPD ranging from
4.3 to 4.7 were also observed for the selected model across
the two root quality traits of amylose and dry matter content.
The values were higher than those reported previously® for
dry matter content and this could be attributed to the differ-
ences in methods used for sample preparation and dry matter
determination. The above observations showed that the
benchtop NIRS equipment used was useful for providing reli-
able prediction with respect to dry matter in cassava either
for breeding or for quality control.

Overall, it was observed that the developed models are fit for
use in breeding programs for estimation of root quality traits. This
was further supported by the observation from the plots of refer-
ence values against the predicted values, which show a strong
relationship between the reference and the predicted values. In
particular, the relevance of such models will be useful for the
selection of industrial based cassava varieties that are currently
required by different industrial cassava consumers.

CONCLUSIONS

The present study demonstrates the capability of NIRS as a tool to
accurately predict root quality traits in fresh cassava roots. Based
on the datasets generated, three conclusions are apparent: (i) to
increase speed and precision at the same time as reducing drudg-
ery in determination of cassava root quality traits, NIRS based pro-
cedures that involve efficient sample preparation followed by
model development need to be developed by specific cassava
breeding programs; (ii) for calibration development, better perfor-
mance can be achieved using the SNVD mathematical treatment

and the MPLS as the regression statistic for models that predict
cassava root quality; and (iii) for model selection, equations with
SEP values as low as 1 g kg™ and RPD values of more than 5 are
robust enough for the prediction of root quality ranging from as
low as 10 g kg™ to as high as 45 g kg™ for dry matter content
and from as low as 15 g kg™' to as high as 35 g kg™' for amylose
content. This range also includes estimation for root quality
parameters in pro vitamin A clones, which are currently being
improved by the Ugandan cassava breeding program. The admi-
rable predictive ability of NIRS justifies its integration as a tool to
enhance cassava breeding as a result of its prediction ability for
root quality in fresh cassava roots. Generation of information on
cassava traits such as dry matter content using NIRS will also rev-
olutionize the integration of NIRS in the prediction of other traits
of importance such as the consumer acceptability traits and
industrial traits. The tool will also bridge the gap between pheno-
typing and genotyping, providing more robust selections for
future traits that are presently less considered.
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