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ABSTRACT

Grapevine downy mildew (GDM) is a severe disease of grapevines.
Because of the lack of reliable information about the dates of GDM
symptom onset, many vine growers begin fungicide treatments early in
the season. We evaluate the extent to which such preventive treatments
are justified. Observational data for 266 untreated sites for the years
between 2010 and 2017 were used to estimate the timing of GDM onset
on vines and bunches of grapes in South West France (Bordeaux region)
through survival analyses. The onset of GDM was not apparent on vines
and bunches before early to mid-May, and the rate of GDM symptom
appearance was highly variable across years. Depending on the year, 50%

of the plots displayed symptoms between mid-May and late June for
vines. For several years, our statistical analysis revealed that the
proportion of plots with no symptoms was high in early August on vines
(27.5 and 43.7% in 2013 and 2016) and on bunches (between 23 and 79%
in 2011, 2013, and 2016). We found a significant effect of the amount of
rainfall in spring on the date of symptom appearance. These results
indicate that preventive fungicide application is unjustified in many
vineyards, and that regional disease surveys should be used to adjust
fungicide treatment dates according to local characteristics, in particular
according to rainfall conditions in spring.

In France, grapevines (Vitis vinifera L.) are susceptible to several
diseases, one of the most important being downy mildew. The
disease is caused by Plasmopara viticola, which has a dimorphic
life cycle. In autumn, sexual spores, called oospores (Wong et al.
2001), are produced. They overwinter above the vineyard ground
(Dubos 2002) and germinate in spring as macrosporangium, which
releases zoospores (Dubos 2002; Gessler et al. 2011). The latter
generally spread with rain splashes to leaves, where they germinate
and penetrate through stomata, causing primary infection after 7 to
10 days of incubation (Gessler et al. 2011). Sporangia, borne by
sporangiophores, then emerge from affected host tissues. They are
disseminated through wind and rain splashes to green parts of
grapes, where they release asexual zoospores, which can then infect
healthy tissues (secondary infection) and lead to yield losses (Dubos
2002). Leaf damage is also responsible for a reduction in the sugar
content, which induces a decline in the grape’s quality (Jermini et al.
2010).
Given the deleterious effects of grape downy mildew (GDM) on

vineyards, fungicides are almost systematically applied to control
the disease. Currently, in the Bordeaux region, many vine growers
begin applying fungicides early in spring, and spraying is then
regularly repeated. This results in a large number of fungicide
applications over the course of the growing season, with
implications for the public and farmers’ health and for the
environment, and entails greater production costs (Aubertot et al.
2005; Pimentel 2005). In the Bordeaux vineyards, themean number
of fungicide applications on vines increased from 14.8 to 18.5
between 2010 and 2013, 52% of which were applied to control

GDM (Statistical and Prospective Service of the FrenchMinistry of
Agriculture 2015).
One widely recommended control strategy involves a first

fungicide application after the end of the incubation period for
the first primary infection, corresponding to the date on which the
first symptoms appear. However, the lack of information on
the appearance dates of GDM symptoms may contribute to the
overapplication of chemicals in many situations. The dates on
which GDM symptoms first appear on vines and bunches of grapes
are not well known in France, particularly in the Bordeaux re-
gion.Vine growers and extension services need reliable information
concerning these dates, which can indicate potential GDM severity.
Indeed, the early occurrence of GDM symptoms on vines and on
bunches is often associated with high disease severity (Dubos 2002;
Galet 1977; Jermini et al. 2010). Accurate information about the
date onwhichGDMsymptoms appear is also useful for determining
the timing of the first fungicide application.
Typically, the observed dates of symptom onset correspond to

time-to-event data. Particular care is required in their analysis,
because symptom appearance dates are frequently censored. Plots
displaying no observed symptoms during the surveyed period are
considered to be right censored, because they may develop disease
symptoms at a later stage. Plots displaying symptoms before the
start of the surveyed period are considered to be left censored,
because the precise date of symptom appearance is known to lie
before the first observation date in such situations. Finally, on some
plots, GDM symptoms may occur during a follow-up interruption,
after the last observation date at which a negative result is obtained
and before the first positive observation date. Such data are
considered to be interval censored.
Here, we analyzed a unique set of data including weekly

monitoring of GDM symptoms on several vine leaves and bunches,
collected from untreated plots in Bordeaux vineyards between 2010
and 2017. These data have never before been analyzed in detail with
a view to determining the most likely dates of GDM outbreaks. We
used survival analysis methods to deal with both censored and
uncensored data. Survival analysis is widely used in biomedical
sciences, social sciences, engineering, and ecology, but not in plant
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pathology, with a few exceptions (Copes and Thomson 2008; Dallot
et al. 2004; Esker et al. 2006; Ojiambo and Kang 2013; Scherm and
Ojiambo 2004; Westra et al. 1994).
Based on our statistical analysis, we determined the most likely

dates of GDM symptom occurrence on vines and bunches of grapes
in Bordeaux vineyards. We analyzed the interannual variability of
the date of symptom occurrence and estimated the proportion of
sites remaining free from GDM symptoms in the area studied. We
compared the results obtained with parametric, semiparametric,
and nonparametric methods, and we discuss the practical
implications of our results in terms of timing of fungicide
applications and for reducing the total number of applications.

MATERIALS AND METHODS

Data. GDM incidence data were collected from 2010 to 2017
by the French Vine andWine Institute (Institut Français de la Vigne
et du Vin) on Bordeaux vineyards. In each vineyard, at least
one nontreated row of vine stocks was monitored to detect GDM
symptoms. The monitored rows were surrounded by two other
nontreated rows, to ensure that the central rows were not
unintentionally sprayedwith fungicide. Themean number of stocks
in the central rows was 53.1. In the monitored central rows, weekly
visual inspections of vine stocks were conducted between week 12
(late March) and week 33 (end of August). The observation
frequencies are shown in Figure 1. Vine stocks and bunches with
GDM symptoms were recorded by visual inspection. Visual
observations stopped when the proportions of infected vine stocks
and bunches were close to 100%. The vine cultivar, the local name
of the vineyard, and geographic coordinates were recorded for each
of the monitored plots.
According to several previous studies (Caffi et al. 2009; Hill

2000; Rossi et al. 2008a, b; Rouzet and Jacquin 2003; TranManh
Sung et al. 1990), GDM is influenced by weather conditions. In
order to study the effect of temperature and rainfall on the date of
symptom appearance, the daily average amount of rainfall (in
millimeters) and the daily average temperature greater than 10�C
(temperature _ 10�C, in Celsius degrees) were computed for each
site-year over two periods: fall (September to November in the
year of harvest _ 1) and spring (March to June), from the

SAFRAN database (Le Moigne 2002) produced by Météo-
France (Centre National de RecherchesMétéorologiques). The 8
years included in our study show contrasted weather character-
istics. For example, spring was characterized as warm (5.86�C
above 10�C on average) and dry (1.51 mm/day) in 2011, whereas
spring was cold (3.91�C above 10�C on average) and wet
(5.45 mm/day) in 2013.
For each plot, survival time was calculated as the number of

weeks between the first week of the year and the week in which a
certain epidemic threshold was attained. Note that the time origin
(here, the first week of the year) has no influence on the results of
our analysis. Two types of threshold were considered successively,
giving two survival times for each site-year: 1% of vines displaying
symptoms and 1% of bunches displaying symptoms. The survival
times corresponding to these thresholds have different practical
values. The date at which 1% of vines display symptoms
corresponds to the time at which GDM symptoms first appeared
on vines for each plot. In practice, regional farm advisors use this
date to predict subsequent GDMdynamics, as an early disease onset
generally leads to more severe disease incidence (Kennelly et al.
2007) and severity (Dubos 2002). In theBordeaux region, the date at
which 1% of bunches display symptoms in a plot is the latest date
recommended for the first fungicide application, to prevent the
irreversible losses that may occur if climatic conditions are
favorable for pathogen development. Dates of bunch infection
can also serve as an indicator of subsequent damages. Later
infections are usually less damaging because berries acquire an
ontogenic resistance after the veraison stage (Kennelly et al. 2005).
In total, survival times were analyzed for 266 monitored plots from
week 12 to week 33.
Survival times were included in a time-to-event data set. Each

survival time was defined as a time interval characterized by a start
date and an end date. This time interval was expressed in the
following forms: (_‘, t] for left-censored data, [t, +‘) for right-
censored data, [t, t) for exact survival time, and (t1, t2] for interval-
censored data. Interval-censored data occur when the date of
symptom appearance is observed 2 weeks or more after the last
observation of absence of symptoms. In right-censored time
intervals, the infinity symbol was used to indicate that the threshold
considered might have been reached after the last observation date.
Left-censored data corresponded to site-years for which the
threshold had already been reached before the start of the survey.
For interval-censored data, the start and end dates of the interval
correspond to the last observation at which the threshold was not
reached and the first observation date at which incidence exceeded
the threshold, respectively. The intervals of interval-censored data
were assumed to be open on the left-hand side, and closed on the
right.
For vines, the proportions of censored versus uncensored data

were 40.6% of right-censored data, 16.9% of left-censored data,
35.0% of uncensored data, and 7.5% of interval-censored data. For
bunches, we got 57.5% of right-censored data, 7.5% of left-
censored data, 30.5% of uncensored data, and 4.5% of interval-
censored data.

Statistical analyses. Survival analysis is a collection of
statistical methods for censored time-to-event data (Lee and Wang
2003). One of the main purposes of survival analysis is to estimate
survival functions and their dependence on explanatory variables. A
survival function is defined as shown in equation 1:

SðtÞ=PðT > tÞ= 1 _FðtÞ (1)

where T in this case denotes a random variable representing the
time to GDM symptom appearance on 1% of vines or bunches,
P(T > t) is the probability that this time exceeds t in a plot, and F(t)
is the probability distribution function of T. Survival analysis is
also used to calculate a hazard function, h(t), specifying the
instantaneous rate of failure at time t (here, the rate of symptomFig. 1. Number of observations collected per week and per year.
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appearance at time t) given that the individual (here, the vineyard
plot) has survived to time t. This hazard function is defined as shown
in equation 2:

hðtÞ = f ðtÞ
SðtÞ (2)

where f(t) is the probability density function. Here, the survivor
function, S(t), is estimated separately for vines and bunches. We
used and compared three inference methods: nonparametric,
semiparametric, and parametric. All of the estimated survivor
functions were used to identify the 10th, 50th (median), and 90th
percentiles of time to symptom appearance.
The nonparametric approach is distribution free but is less

efficient than the parametric approach when survival times follow a
theoretical distribution. Here, we used the nonparametricmaximum
likelihood estimator (NPMLE), also known as Turnbull’s estimator,
for the nonparametric approach. This method is a generalization of
the Kaplan-Meier method that allows for interval censoring
(Anderson-Bergman 2017b). We first applied this method to the
whole data set to obtain a global survival function for all years, and
then we estimated yearly survival functions for vines and bunches,
separately. Calculations were performed with the ic_np function of
the icenReg package (version 2.0.4; Anderson-Bergman 2017a) of
R software (version 3.3; R Core Team 2017).
The semiparametric approach involved the fitting of a Cox

proportional hazards model to the data set. This model assumes that
the hazard function is defined as shown in equation 3:

hðt;X; bÞ= h0ðtÞeXTb (3)

Where h0(t) is a nonparametric baseline function,X is a set (vector) of
covariates, and b is a set of parameters. We fitted model 3 with year
effects considered as covariates for vines and bunches, separately.We
then introduced four climate input variables inmodel 3 to explain the
between-year variability of dates of symptom appearance on vines
and bunches: mean temperature above 10�C in fall (September to
November in year of harvest _ 1), mean temperature above 10�C in
spring (March to June), mean rainfall (in millimeters per day) in fall,
and mean rainfall in spring. For bunches, we also then fitted a variant
of model 3 in which the date of symptom appearance on the vinewas
included as a covariate (the covariate values were imputed from the
vine survival model using the function imputeCens from icenReg).
The model including year effects was used to assess whether survival
functions differed significantly between years. Significant climatic
variables (P < 0.05) were used to quantify the effects of weather
conditions on dates of symptomappearance. Themodel including the
date of symptom appearance on the vine as a covariate was used to
determine whether the dates of GDM symptom appearance on
bunches were related to the dates of GDM symptom appearance on
vines. The significance of the effects of Xwas estimated by bootstrap
resampling. Calculations were performed with the ic_sp function of
the R icenReg package.
Finally, we fitted several parametric models based on exponen-

tial, Weibull, gamma, log-normal, and log-logistic hazard
functions. First, these models were fitted to the whole data set
without covariates, and the model with the lowest Akaike
information criterion (AIC) was selected, for vines and bunches
separately. Based on the AIC, the log-logistic distribution was
selected for both vines and bunches. The year effects (X) were
then incorporated into a parametric model defined as follows
(equation 4):

Y = lnðTÞ= b0 +XTb +sZ (4)

where b0, b, and s (scale) are parameters and Z is a random variable
defining the baseline hazard function. Several distributions were
compared for Z, and the distribution resulting in the lowest AICwas
selected (the log-normal model presented the lowest AIC for both

vines and bunches). The four weather input variables mentioned
abovewere introduced in model 4 to estimate the effect of weather
conditions on dates of symptom appearance (the log-normal
model presented the lowest AIC for vines and the log-logistic
model presented the lowest AIC for bunches). Finally, for
bunches, we fitted a variant of the parametric model 4 in which
date of symptom appearance on the vine was included as a
covariate. In this case, the log-normal model resulted in the lowest
AIC. Calculations were performed with the ic_par function of the
R icenReg package.

RESULTS

Global survival analysis for the 2010 to 2017 period. In
nonparametric survival analysis (NPMLE model), GDM onset on
vines did not become apparent until week 19 (early to mid-May)
(Fig. 2A). Thereafter, the proportion of plots with symptomless
vines decreased steadily, to 90% in week 21 (mid- to late May) and
50% in week 24 (mid-June). By week 32, at the end of follow-up
period, the proportion of plots with symptomless vines had fallen to
29.3% (Fig. 2A).
According to the fitted parametric model (log-logistic) (Fig. 2A),

the proportion of plots with no GDM on vines was close to 100%
before week 15.1 (95% confidence interval [CI] = 14.1, 16.2) (mid-
to late April) but decreased to 90% in week 19.1 (95% CI = 18.2,
19.9) (early to mid-May), 50% in week 25.3 (95% CI = 24.5, 26.1)
(mid-June), and 10% in week 33.6 (95% CI = 31.8, 35.5) (mid-
August).
According to the NPMLE model, GDM onset on bunches was

not apparent before week 21 (late May). Bunches were symptom-
less in 90% of plots in week 23 (early June) and 50% of plots in
week 27 (early July) (Fig. 2B). This proportion had fallen to
42.1% by week 29 (mid-July) and did not further decrease.
According to the log-logistic model estimates, the proportion of
plots with symptomless bunches was close to 100% before week
17.9 (95% CI = 16.7, 19.1) (late April, early May) and reached
90% in week 22.6 (95% CI = 21.8, 23.3) (late May, early June),
50% in week 27.8 (95% CI = 27.2, 28.6) (early to mid-July), and
10% in week 34.4 (95% CI = 32.8, 36.3) (mid- to late August)
(Fig. 2B).
Thus, the proportion of symptomless plots estimated by both log-

logistic andNPMLE survival curveswas close to 100% inmid-May,
except for log-logistic model for vines, where it was close to 100%
until late April to early May. The survival curves subsequently

Fig. 2. Proportions of plots with symptomless A, vines and B, bunches over
the period from 2010 to 2017 estimated by nonparametric and parametric (log-
normal model) survival analysis methods. Black and gray circles at the base of
the graph indicate the estimated dates at which the proportion of symptomless
plots decreased to 90, 50, and 10%, for the nonparametric maximum likeli-
hood estimator (NPMLE) and log logistic models, respectively. With non-
parametric methods (i.e., NPMLE method), the 10% level was never reached.
Dashed lines indicate 95% confidence intervals.
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decreased rapidly to 50% in mid-June for vines and in early to mid-
July for bunches. However, there were marked differences between
survival curves estimated with the two methods. The proportion of
plots with no symptoms on vines and on bunches decreased more
rapidly between weeks 20 and 22 for vines and between weeks 21
and 25 for bunches for the log-logistic than for the NPMLE model.
In addition, during the period in which survival decreased rapidly
(from weeks 22 to 25 to week 27), the proportion of plots without
symptoms estimated with the log-logistic model was higher than
that estimated with the NPMLEmodel, especially for vines. During
this period, the maximum difference between the two methods
reached 15%. Finally, the log-logistic curves tended to zero,
whereas the NPMLE curves reached a plateau after week 29, at
29.3% for plotswith no symptoms onvines and 42.1% for plotswith
no symptoms on bunches (Fig. 2).

Variability of the proportion of symptomless plots
between years. The observed dates on which symptoms were
first observed varied both within and between years (Figs. 3 and 4).
For example, in 2015, 10% of the plots that reached a threshold of
1% of vines with GDMwere recorded at week 19 (i.e., early May).
Fifty percent of the surveyed plots still had no symptoms at week 21
(i.e., late May). At week 27 (i.e., early July), 90% of the plots
showed symptoms on vines. In 2011, the first plot reaching a
threshold of 1% of vines with GDM symptoms was recorded at
week 19 (i.e., mid-May). At week 21 (i.e., late May), the threshold
of 1% infected vines was reached in 10% of the plots in 2011
(i.e., 2 weeks later than in 2015). GDM symptomswere recorded on
50% of the plots at week 33 (i.e., mid-August) in 2011. The
observed dates of disease onset were also highly variable for
bunches of grapes (Fig. 3).

According to the semiparametric estimations (Cox model), 2010
and 2011 were the first and second years with the latest dates of
GDM onset on vines, and 2015 was the year showing the earliest
symptom appearance dates (Table 1). In 2011, the estimated
proportion of plotswith symptomless vineswas 100%until week 19
(early May), whereas the proportion of symptomless plots had
already started to decrease 2 weeks earlier in 2015. On vines, the
proportion of symptomless plots reached 50% in week 21 (late
May) in 2015, whereas 90% of the surveyed plots still had no
symptoms in week 21 in 2011. The 50% level was reached 3 weeks
later in 2011, according to the Cox survival curve (Fig. 4C).
Parametric estimates (log-normal model) (Fig. 4E; Table 2)
confirmed that symptoms appeared on vines earlier in 2015 than
in 2011. After week 25, the differences observed for log-normal
estimates between 2011 and 2015 were smaller than the differences
observed for Cox estimates.

Fig. 3. Examples of observed dates of GDM onset for two different years
(2011 and 2015). Each point corresponds to a single untreated site in a Bor-
deaux vineyard. Recorded dates of symptom onset are represented by a palette
of colors. Letters indicate censoring status as follows: N = noncensored data,
R = right-censored data (the last recorded date is presented), L = left-censored
data (the first recorded date is presented), and I = interval-censored data (the
first recorded date with an incidence of at least 1% of vines or bunches with
symptoms is presented).

Fig. 4. Proportions of plots with symptomless vines and bunches estimated by
A and B, nonparametric, C and D, semiparametric (Cox model), and E and F,
parametric (log-normal model) survival analyses for 2011 (gray) and 2015
(black). Gray dots indicate the estimated dates by which the proportion of
symptomless plots would decrease to 90, 50, and 10% in 2011, by method.
Black dots indicate the estimated dates by which the proportion of symp-
tomless plots would decrease to 90, 50, and 10% in 2015, by method. Dotted
lines correspond to the 95% confidence interval estimated by the log-normal
model for each year.
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According to the Coxmodel, the years with the latest and earliest
dates of GDM onset on bunches were 2011 and 2015, respectively
(Table 1). According to this model, 90% of plots had no symptoms
on bunches in week 23 (early June) and 50% had no symptoms in
week 24 (early to mid-June) in 2015 (Fig. 4D). The corresponding
date for the 90% level in 2011was week 25 (late June), and the 50%
level was never reached in 2011, even in August. The results
obtained with the NPMLE and log-normal models (Fig. 4B and F)
confirmed that the proportion of symptomless plots in summer was
higher in 2011 than in 2015. As for disease on vines, the differences
between years were smaller with the log-normal model than with
the Cox model after week 25. For example, at week 27 in 2011, the
proportion of symptomless plots was 34.4% with the log-normal
model but 55.7% with the NPMLE method (Fig. 4B and F).
The contrasts between the different years surveyed are reflected

in the estimated parameter values of the fitted Cox and log-normal
models (Tables 1 and 2). These parameter values reveal the
differences in rates of GDM symptom appearance between years,
relative to 2010. The Cox model suggested that the rate of GDM
symptom appearance onvines was higher in 2012 (P = 0.050), 2013
(P = 0.029), 2014 (P < 0.001), 2015 (P = 0.011), and 2017 (P <
0.001) than in 2010 (Table 1), and the rate of GDM symptom
appearance on buncheswas higher in 2015 (P= 0.025) than in 2010.
No statistically significant difference was found for the other years.
The values estimated with the log-normal model confirmed that

the rate of GDM symptom appearance on vines was higher in 2012
(P = 0.026), 2013 (P = 0.016), 2014 (P < 0.001), 2015 (P < 0.001),
and 2017 (P = 0.002). The rate of GDM symptom appearance on
buncheswas higher in 2014 (P= 0.020) and in 2015 (P= 0.004) than
in 2010 (Table 2).
Weather conditions (temperature and rainfall) in fall and

temperature in spring had no significant effect on symptom
appearance on vines (P > 0.05), but results obtained with the Cox
and the log-normal models showed that rainfall betweenMarch and
June had a significant effect on the date of first symptomappearance

on vines (P < 0.01). High amounts of rainfall in spring led to early
dates of symptom appearance on vines. A significant effect of
rainfall in spring was also found for bunches with both types of
models (P < 0.001).
The effect of rainfall in spring is illustrated on Figure 5 for two

contrasted years with a dry (1.51 mm/day in 2011) and a wet
(5.45 mm/day in 2013) spring, respectively. According to the
semiparametric (Cox) and parametric models, symptoms appeared

TABLE 1. Estimated parameters, exponential values for estimates [Exp(Est)], standard errors (SEs), and P values for each of the years surveyed (2010 to 2017) for
the Cox modela

Year

Vines Bunches

Estimate Exp(Est) SE P Estimate Exp(Est) SE P

2010
2011 0.048 1.049 0.383 0.901 _1.010 0.364 0.574 0.078
2012 0.763 2.144 0.389 0.050b 0.508 1.662 0.434 0.242
2013 0.850 2.340 0.391 0.029b 0.692 1.998 0.403 0.086
2014 1.685 5.395 0.448 <0.001b 0.757 2.132 0.482 0.116
2015 1.795 6.019 0.703 0.011b 1.370 3.935 0.609 0.025b

2016 0.348 1.416 0.394 0.378 _0.320 0.726 0.484 0.508
2017 1.279 3.591 0.326 <0.001b 0.382 1.465 0.375 0.309

a Each estimate corresponds to the difference in the rate of grapevine downy mildew appearance on vines or bunches of grapes between years, relative to 2010.
b Statistically significant at P < 0.05.

TABLE 2. Estimated parameters, exponential values for estimates [Exp(Est)], standard errors (SEs), and P values for each of the years surveyed (2010 to 2017) for
the parametric models (log-normal models)a

Year

Vines Bunches

Estimate Exp(Est) SE P Estimate Exp(Est) SE P

2010 3.228 25.230 0.014 0 3.329 27.900 0.012 0
2011 _0.010 0.990 0.063 0.870 0.092 1.096 0.052 0.078
2012 _0.127 0.881 0.057 0.026b _0.059 0.942 0.044 0.180
2013 _0.147 0.864 0.061 0.016b _0.081 0.922 0.047 0.086
2014 _0.277 0.758 0.066 <0.001b _0.116 0.890 0.050 0.020b

2015 _0.275 0.759 0.066 <0.001b _0.154 0.858 0.053 0.004b

2016 _0.037 0.964 0.062 0.547 0.051 1.052 0.049 0.303
2017 _0.203 0.816 0.066 0.002b _0.053 0.949 0.051 0.306
Scale _1.658 0.191 0.073 0 _1.976 0.139 0.078 0

a Each estimate corresponds to the difference in the rate of grapevine downy mildew appearance on vines or bunches between years relative to 2010.
b Statistically significant at P < 0.05.

Fig. 5. Proportion of plots with symptomless A, vines and B, bunches esti-
mated by semiparametric (Cox model) and parametric (log-normal or log-
logistic model) survival analyses as a function of the average spring rainfall
measured in 2011 (1.51 mm/day, gray lines) and 2013 (5.45 mm/day, black
lines). Plain lines represent estimation for Cox models. Dotted lines represent
the estimation of the log-normal model for vines and the log-logistic model for
bunches, respectively. Dots indicate the dates where the proportion of plots
with symptomless vines or bunches reached 50% for each model. Gray dots
represent the estimations for 2011 and black dots represent the estimations for
2013. Circles represent the estimations of Cox models and triangles represent
the estimations of log-normal models for vines and log-logistic models for
bunches, respectively.
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earlier in wet conditions. According to the parametric log-normal
model, the proportion of plotswith symptomless vines reached 50%
at week 24 (95% CI = 23.3, 25.1) in 2013 (mid-June), but this level
was only reached at week 27 (95% CI = 25.5, 29.4) in 2011 (early
July) (i.e., about 3 weeks later). According to the parametric log-
logistic model, the proportion of plots with symptomless bunches
reached 50% at week 27 (95%CI = 26.4, 28.0) in 2013 (early July),

and this level was reached at week 31 (95%CI = 29.1, 33.1) in 2011
(earlyAugust) (i.e., about 4weeks later). Large differences between
2011 and 2013 were also obtained with the Cox model (Fig. 5).
Figure 6 compares the annual estimates of the proportion of

symptomless plots obtained with the log-normal, Cox, and NPMLE
models. Comparisons were performed at three different dates:
weeks 22, 26, and 31 (early June, early July, and early August).

Fig. 6. Proportions of symptomless plots estimated each year with the A, C, and E, parametric (log-normal model) and semiparametric (Cox model) or B, D, and
F, nonparametric (nonparametric maximum likelihood estimator [NPMLE]) models on three different dates (weeks 22, 26, and 31; i.e., early June, early July, and
early August). Gray and black circles correspond to vines and bunches, respectively. The numbers in the circles indicate the years.
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Relative to the Coxmodel, the log-normal model tended to estimate
higher proportions of symptomless vines and bunches at week 26
and lower proportions at week 31 (Fig. 6C and E). For bunches,
higher proportions of symptomless plots were obtained with the
log-normal model than with the Cox model at week 22, but lower
proportions of symptomless plots were obtained with the log-
normal model for vines (Fig. 6A).
The correlations between NPMLE and log-normal estimates

were weaker (Fig. 6B, D, and E). The proportions of symptomless
plots estimated with the log-normal method were frequently lower
than those estimated with the NPMLEmethod, especially at weeks
22 and 31 (Fig. 6B and D).

Relationship between the date of GDM appearance on
vines and the proportion of plots with symptomless
bunches. We found a significant relationship between the date of
GDM appearance on vines and the proportion of plots with
symptomless bunches (P < 0.0001 for the Cox and log-normal
models). The early occurrence of GDM on vines resulted in a low
proportion of plots with symptomless bunches, whereas a late
occurrence of GDM on vines was associated with a high proportion
of plots with symptomless bunches (Fig. 6). With both the Cox and
log-normal models, the proportion of plots with symptomless
bunches was higher if the first GDM symptoms were observed on
vines at week 22 than if such symptoms were not observed until
week 25 (Fig. 7). For example, with the log-normal model, the
proportion of plotswith symptomless bunches reached 10%atweek
23 (95% CI = 22.6, 23.5) (early June) when the first GDM
symptoms occurred on vines at week 22 (late May, early June). By
contrast, this proportion was not reached until week 25.1 (95%CI =
24.6, 25.5) (mid-June) if the firstGDMsymptomswere observed on
vines at week 25 (mid-June) (Fig. 7).

DISCUSSION

We were able to estimate the dynamics of the appearance of
GDM symptoms on vines and bunches of grapes in Bordeaux
vineyards. The onset of GDM was not apparent on vines and
bunches before early to late May. Thereafter, we found that the
thresholds of 90 and 50% of plots with symptoms were attained at
very different dates over the 2010 to 2017 period in this region and
sometimes were never even reached, even in August. For example,
in 2015, 50%of the plots showed symptoms onvines and bunches in
mid-May and in late June, respectively, but this threshold was never
reached for vines and for bunches in 2011. Thus, according to the
NPMLE estimates, the proportion of plots with symptomless vines
in August exceeded 25% in 2013 and 2016 (27.5 and 43.7%). The
proportion of plots with symptomless bunches in August exceeded
25% in 2011, 2013, and 2016 (79.3, 23.6, and 65%). Parametric
models tended to give lower estimated proportions of symptomless
plots in summer than Cox models, but the proportion of symptom-
less plots estimated in early July with parametric models neverthe-
less exceeded 30% for vines in 2010, 2011, and 2016 (44.0, 41.9,
and 36.5%) and 45% for bunches in all years except for 2013, 2014,
and 2015 (43.5, 33.8, and 24.6%).
Our data set included a substantial proportion of censored data.

These data were subjected to several classic procedures for survival
analysis, and we assessed the robustness of our results to the chosen
survival model. We found some discrepancies between the results
obtained with different techniques, particularly for estimations
of the proportions of symptomless plots in summer with the
nonparametric and parametric methods. However, agreement was
found between the tested methods for many aspects. For example,
both the semiparametric and parametric methods showed that the
rates of GDM symptom occurrence were higher in 2012, 2013,
2014, 2015, and 2017 than in 2010 for vines in the Bordeaux
vineyards. Both these methods also showed that the rate of GDM
symptom appearance on bunches was higher in 2015 than in
the other years. These results were consistent with the reports of

the French Agricultural Warnings published from 2011 to 2017. In
the Bordeaux region, these reports indicated that GDM incidence
and severity were “low” in 2011 and 2017 (Gironde Regional
Agricultural Chamber 2011, 2017), “medium” in 2012, 2013, and
2014, “medium to low” in 2015, and “high” in 2016, but damages
and yield losses were “low” (Gironde Regional Agricultural
Chamber 2012, 2013, 2014, 2015, 2016).
High variability of GDM incidence across years was reported by

Kennelly et al. (2007) and Carisse (2016). According to previous
experimental and modeling studies, the variability of the GDM
appearance rate and GDM incidence is at least partly attributable to
climatic factors (Gessler et al. 2011). The occurrence of GDM is
determined principally by rainfall and temperature, which affect the
various steps in the lifecycle of the pathogen, such as oospore
germination (Rossi and Caffi 2007; Rossi et al. 2007; Vercesi et al.
2010) and sporulation (Kennelly et al. 2007). In our study, we found
a significant effect of rainfall in spring on the date of symptom
appearance on vines and on bunches. A dry (wet) spring led to a late
(early) date of symptom appearance onvines and on bunches. These
results are consistent with those from Rossi et al. (2002) (cited by
Rossi and Caffi 2007), who found that dry periods in spring delay
the date of first symptom appearance. This is at least partly
attributable to the fact that litter and leaf moisture stimulates the
development of oospores (Rossi and Caffi 2007). Furthermore,
the survival of zoospores is strictly dependent on the presence of a
film of water (Gessler et al. 2011).
We did find a significant relationship between the proportion of

plots with symptomless bunches and the date of appearance of
GDM on vines. The proportion of plots with bunches displaying
symptomswas higher if GDM symptoms appeared onvines early in
the season. The variability of the timing of GDM symptom onset on
bunches is thus partly explained by the variability in the timing of
GDM symptom appearance on vines in the Bordeaux region. Our
approach based on survival analysis could be applied to determine
dates of symptom appearance for other vine diseases like powdery
mildew or black rot and also for diseases of other crops. Censored
data are quite common in regional disease survey data sets such as
those described for wheat and rapeseed in Northern France (Sine
et al. 2010) or for Yellow Sigatoka on banana and weevils on sweet
potato in tropical regions (Michel et al. 2017). Our approach is
generic and can be applied in many situations.
Our results have several practical implications for the Bordeaux

region. The date of first application has a strong influence on the
total number of fungicide treatments during the growing season
because after the first seasonal treatment, fungicides are applied at
an interval of about 2 weeks, on average, in the Bordeaux region.
Our results indicate that fungicide treatments against GDM should

Fig. 7. Estimated proportions of plots with symptomless bunches for two
different dates for the first observation of GDM symptoms on vines (week 22
and week 25). The dotted lines correspond to the 95% confidence intervals.
Empty black and filled gray circles at the base of the graph indicate the
estimated dates at which the proportion of symptomless decreases to 90, 50,
and 10%, for the A, Cox and the B, log-normal models, respectively.
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not be applied before early to mid-May in Bordeaux vineyards.
Fungicide applications before this date would not be effective and
would unnecessarily increase the number of fungicide applications
in the vineyards of the Bordeaux region, potentially increasing the
environmental impact of vine production and the risk of fungicide
resistance (Chen et al. 2007).
Our results also showed that no GDM symptoms were ever

recorded in some vineyards in certain years, indicating that
systematic preventive fungicide treatments against the disease
may not be justified in every vineyard in the Bordeaux region.
Considering the large variability of the date of first symptom
appearance (i.e., from early May to early July) both within and
between years, we suggest delaying the application of the first
fungicide treatment in the case of low rainfall in spring.Our survival
models could be used to estimate the date of symptom appearance
as a function of the amount of rainfall in spring. This strategy
could reduce the number of pesticide treatments compared with
systematic preventive treatments in the Bordeaux region. This is
consistent with a study by Mailly et al. (2017), who indicated that
fungicide use could be reduced by postponing the date of first
fungicide spray in the French vineyards. From an economic point of
view, the systematic use of fungicide treatments remains the most
effective solution to control GDM compared with biocontrol agent
use (Dagostin et al. 2011) and resistant vine varieties (Pertot et al.
2017). However, regulations on pesticide use may become more
restrictive in the future. For example, in France, the “Plan Ecophyto
2” was established to reduce pesticide use by 50% before 2025
(French Ministry of Agriculture and Food 2018), and its implemen-
tation may encourage farmers to reduce the number of pesticide
treatments during the next decade.
The practicality of this control strategy could be assessed in close

collaborationwith vine growers. The approach presented here could
benefit from various tools, such as alert bulletins based on yearly
field surveys (Michel et al. 2017), climate and/or phenological
indicators (Caffi et al. 2010; Kennelly et al. 2007), on-farm
measurements collected by sensors on drones (Rieder et al. 2014),
and by systems of in-vineyard inoculum detection (Thiessen et al.
2016). The latter could make first symptom detection easier in the
near future. Several epidemiological models (Raynal et al. 2010;
Rossi et al. 2008b; Tran Manh Sung et al. 1990) and warning
systems (Caffi et al. 2010; Delière et al. 2015; Madden et al. 2000;
Raynal et al. 2012) were developed for simulating GDM epidemic
dynamics or optimizing the timing of fungicide sprays. In the future,
the output of some of these models could be used as inputs of
survival models in order to predict dates of GDM symptom
appearance as a function of local characteristics.
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des végétaux (champignons, bactéries, viroses et phanérogames). Broché.
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Rossi, V., Caffi, T., Giosuè, S., and Bugiani, R. 2008b. A mechanistic model
simulating primary infections of downy mildew in grapevine. Ecol. Modell.
212:480-491.
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