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Abstract: The MYB gene family constitutes one of the largest transcription factors (TFs) modulating
various biological processes in plants. Although genome-wide analysis of this gene family has been
carried out in some species, only three MYB members have been functionally characterized heretofore
in sesame (Sesamum indicum L.). Here, we identified a relatively high number (287) of sesame MYB
genes (SIMYBs) with an uncommon overrepresentation of the 1R-subfamily. A total of 95% of SIMYBs
was mapped unevenly onto the 16 linkage groups of the sesame genome with 55 SIMYBs tandemly
duplicated. In addition, molecular characterization, gene structure, and evolutionary relationships of
SIMYBs were established. Based on the close relationship between sesame and Arabidopsis thaliana,
we uncovered that the functions of SIMYBs are highly diverse. A total of 65% of SIMYBs were
commonly detected in five tissues, suggesting that they represent key TFs modulating sesame growth
and development. Moreover, we found that SIMYBs regulate sesame responses to drought and
waterlogging, which highlights the potential of SIMYBs towards improving stress tolerance in sesame.
This work presents a comprehensive picture of the MYB gene family in sesame and paves the way for
further functional validation of the members of this versatile gene family.

Keywords: abiotic stress; gene expression; MYB; plant growth and development; Sesamum indicum;
transcription factors

1. Introduction

Transcription factors (TFs) are important regulators of the expression of functional genes under
different biological processes, including development, reproduction, and various environmental
conditions [1]. Within the landscape of TFs that are present in the genome, the MYB family constitutes
one of the largest and functionally diverse [2]. The MYB proteins are characterized by the MYB domain
at the N-terminus which encodes 52 amino acid residues and contains one to four imperfect tandems
repeats (R) [2]. According to the numbers of MYB repeat, MYB genes are classified into four different
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subfamilies, namely MYB –related proteins or 1R–MYB proteins (with 1R), R2R3–MYB proteins
(with 2R), R1R2R3-MYB proteins (with 3R), and 4R-MYB proteins (with 4R) [3]. The R1R2R3-MYB
proteins are found in animals, but the R2R3-MYB proteins are more frequent in plants [4]. The MYB
TFs have been studied in diverse species and particularly in plants. Various numbers of MYBs have
been detected suggesting that they have expanded to differing degrees: 177 MYB genes were found
in Citrus sinensis [5], 231 in Pyrus bretschneideri [1], 475 in Brassica rapa ssp. pekinensis [6], 524 in
Gossypium hirsutum [7], and 104 and 166 in Lotus japonicas and Medicago truncatula, respectively [8].

In plants, MYB proteins are key factors in physiological processes, shoot growth, root formation,
organ development, metabolism, hormone signal transduction, and responses to biotic and abiotic
stress tolerance [9–13]. For example, expression profiles analysis in Arachis hypogaea identified
30 MYB genes responsive to abiotic stress treatments [14]. Over-expression of SpMYB gene from
Solanum pimpinellifolium improved abiotic and biotic stress resistance in tobacco [15]. A total of
44.67% and 47.21% MYB genes were found up- and down-regulated in Arabidopsis under cold
stress, respectively [16]. Later on, Zhang et al. [17] reported the gene TaLHY, a 1R-MYB type as
a positive regulator of resistance against stripe rust fungus and ear heading in Triticum aestivum.
More recently, Xu et al. [18] demonstrated that the R2R3-type MYB gene DcMYB6, is involved
in regulating anthocyanin biosynthesis in purple Daucus carota taproots. In the case of drought
stress, many MYB genes have been isolated and demonstrated to be involved in drought responses
in plants [19]. The transcriptional activation of cuticular wax biosynthesis by MYB96 contributed
to drought resistance in Arabidopsis thaliana [20]. A recent study revealed that PbrMYB21 plays a
positive role in drought tolerance by modulating polyamine synthesis through the regulation of
the ADC expression in Pyrus betulaefolia [21]. Furthermore, Yin et al. [22] showed that OsMYBR1
that was isolated from Oryza sativa improves drought tolerance of transgenic plants through the
up-regulation of stress-related genes and the accumulation of osmoprotectants. Similarly, Butt et al. [23]
demonstrated that GaMYB85 confers good drought tolerance in Gossypium arboreum, most probably via
an ABA-induced pathway. Altogether, these evidences demonstrated the versatility and importance of
this gene family in plants.

Sesame (Sesamum indicum L.) is one of the oldest oilseed crops, which is widely grown in tropical
and subtropical areas [24]. It has one of the highest oil contents (~55%) among major oilseed crops [25].
Drought and waterlogging represent the most important abiotic stresses that affect sesame plant growth
and yield [26]. Sesame is a very sensitive crop to waterlogging [27]. The majority of sesame resources
are susceptible to waterlogging damage at the different developmental stages [28], and so far, few
studies have been conducted to unravel the genetic basis of waterlogging response in sesame [27,29,30].
In contrast, sesame is moderately tolerant to drought stress [31]. However, severe drought adversely
impairs the plant normal growth and development [32], the reproduction and yield [26], and both
the quality and quantity of the sesame oil as well [33–35]. Therefore, breeding sesame varieties with
higher tolerance to these abiotic stresses is drawing great attention from breeders [36].

Given the potential roles of MYB proteins in the regulation of gene expression in response
to environmental stresses, it is of the utmost interest to perform a genome-wide survey of this
gene family in sesame. In this study, we identified at the genome-wide level 287 MYB genes and
revealed that the MYB proteins are highly active in growth and adaptation to the major abiotic stresses
namely drought and waterlogging in sesame. We also presented here a comprehensive analysis of the
protein characteristics, gene classification and structure, chromosomal distribution, gene duplication,
and phylogenetic relationships of sesame MYBs.

2. Materials and Methods

2.1. Identification and Sequence Analysis of MYB Proteins in Sesame

The sesame genome sequence was downloaded from Sinbase (http://ocri-genomics.org/
Sinbase/) [37]. The HMM profile of MYB DNA-binding domain (PF00249) was downloaded from Pfam
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protein families database (http://pfam.sanger.ac.uk/) and was exploited for the identification of MYB
genes from Sesamum indicum L. genome, using HMMER3 tool of the software Unipro UGENE (Unipro,
Novosibirsk, Russia) [38]. To confirm the presence of MYB domain, the PROSITE (http://prosite.
expasy.org/scanprosite/) and the SMART program (http://smart.embl-heidelberg.de/) [39] were used
for further analysis. The isoelectric point and protein molecular weight of MYB proteins in sesame were
obtained using ExPASy proteomics server (http://www.expasy.ch/tools/protparam.html). In addition,
the sequences of 125 Arabidopsis R2R3-MYB proteins were downloaded from The Arabidopsis
Information Resource (TAIR; http://www.arabidopsis.org/).

2.2. Chromosomal Location and Gene Duplication of MYB Genes in Sesame

The MYB genes were mapped onto the 16 linkage groups (LGs) of the sesame genome on the basis
of their genomic location from Sinbase using the software MapChart 2.3 (Wageningen UR, Wageningen,
The Netherlands) [40]. The tandemly repeated MYB genes were identified when two sesame MYB genes
were separated by three or fewer genes [41].

2.3. Phylogenetic Analysis and Functional Classification of MYB Proteins in Sesame

To characterize the evolutionary features of MYB proteins, we extracted all of the predicted MYB
protein sequences from Sinbase (http://ocri-genomics.org/Sinbase/). According to the numbers
of the conserved domains, we classified the sesame MYB genes into four subfamilies: R1-(single
domain), R1R2-(2 domains), R1R2R3-(3 domains), and Atypical MYB (4 or more domains) [2]. Multiple
alignments of their conserved domains were conducted using ClustalW program that was embedded
in the MEGA6.0 software (Temple University, Philadelphia, PA, USA) [42], with a gap open penalty of
10 and gap extension penalty of 0.2. Thereafter, a Neighbor-Joining (NJ) tree was constructed with a
1000 bootstrap value. The tree was loaded along with the information of the gene CDS organization
into the Gene Structure Display Server (GSDS2.0) (http://gsds.cbi.pku.edu.cn/) [43] to construct the
exon-intron map.

Moreover, a Neighbour-Joining (NJ) tree was constructed from ClustalW aligned full-length of 259
R2R3-MYB proteins (125 MYB of Arabidopsis and 134 R2R3 MYB proteins for sesame) using MEGA6.0
software (Temple University, Philadelphia, PA, USA) [42] with the settings described above. Functional
classification of the R2R3-MYB genes in sesame was performed according to their phylogenetic
relationships with the corresponding Arabidopsis AtMYB genes.

To identify the orthologous genes of the sesame MYBs, we conducted a BLASTp search of their
protein sequences against the protein database of Arabidopsis in TAIR. Hits with E-value ≤ 1e−40 and
at least 70% similarity were considered significant [44]. The relationships between the orthologous
genes of sesame and Arabidopsis MYBs were illustrated using Circos package [45].

2.4. Analysis of the Expression Patterns of Sesame MYB Genes in Different Tissues, under Drought and
Waterlogging Stresses Using RNA-seq Data

To analyze the expression patterns of sesame MYB genes in various sesame tissues, we used
RNA-seq data from root, stem seed, capsule, and leaf developed by our group and accessible from
sesameFG (http://www.ncgr.ac.cn/SesameFG; [46]). Moreover, we investigated the expression levels
of sesame MYB genes in responses to the two major abiotic stresses: waterlogging and drought.
Transcriptomic data from a tolerant cultivar (Zhongzhi No. 13) under 3, 9, and 15 h of waterlogging
stress were retrieved from GeneBank with the SRA accession number SRR2886790 [30]. Concerning
the drought stress, the RNA-seq data of a drought tolerant genotype (ZZM0635) submitted to 3 (d1),
7 (d2) and 11 (d3) days of drought periods [47,48] were downloaded from http://www.ncbi.nlm.nih.
gov/bioproject/PRJNA356988. The read per kilobase per million mapped reads (RPKM) values were
log2 transformed and used for the construction of heatmaps with the MEV Software (J. Craig Venter
Institute Inc., La Jolla, CA, USA) [49].
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2.5. Plant Materials and Stress Treatments

To analyze the changes in expression of sesame MYB genes under drought and waterlogging
stresses, two experiments were concomitantly conducted. The cultivars ZZM0635 and Zhongzhi No.
13, both obtained from the China National Genebank, Oil Crops Research Institute, Chinese Academy
of Agricultural Sciences, were grown in pots for drought and waterlogging experiments, respectively.
A three-days water withholding was applied to half of the seedlings when plants entered the early
flowering stage with the soil volumetric water content falling from 35% to 10% following descriptions
of Dossa et al. [47,48]. For the waterlogging application, the pots were flooded by standing in a plastic
bucket filled with tap water to 3 cm above the soil surface and maintained for 9 h according to the
experimental descriptions described by Wang et al. [30].

The roots of the seedlings were harvested after stress application for both stressed and control
plants. The samples were harvested from three individual plants and were snap-frozen in liquid
nitrogen and stored at −80 ◦C until further use.

2.6. RNA Isolation and Quantitative RT-PCR

Total RNAs from various tissues samples were extracted with Easy Spin RNA kit (Aidlab, Beijing,
China). The quantity and quality of RNA samples were assessed by agarose gel electrophoresis
and the spectrophotometer (Unico SpectroQuest Model SQ2800) measurement of the A260/A280
ratio. For cDNA synthesis, 1.5 µg of RNA was reverse transcribed using the Superscript III reverse
transcription kit (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s instructions.
Gene-specific primers were designed by using Primer5.0 [50]. We designed primers to amplify
29 SIMYB genes using Primer Premier 5.0 software (Premier Biosoft International, Palo Alto, CA, USA)
(Table S5). The qRT-PCR was conducted on Roche Lightcyler® 480 instrument using SYBR Green
Master Mix (Vazyme), according to the manufacturer’s protocol. We performed each reaction using
a 20 µL mixture containing 10 µL of 2xChamQ SYBR qPCR Master Mix, 8 µL of nuclease-free water,
2.4 µL of each primer (10µM), and 2 µL of diluted cDNA. All of the reactions were run in 96-well plates
and each cDNA was analyzed in triplicate. The reactions were performed with the following cycling
profile: 95 ◦C for 30 s, followed by 40 cycles of 95 ◦C/10 s, 60 ◦C/30 s. Each reaction was performed
in biological triplicates, and the relative gene expression values were calculated using the 2−∆∆Ct

method, as described by [51]. The sesame Actin gene (SIN_1006268) was used as the internal reference
gene [52]. For stress related genes, they were considered significantly up- and down-regulated when
their relative expression fold change (stress/control) were >2 and <0.5, respectively [53].

3. Results

3.1. Identification of Sesame MYB Genes and Analysis of Their Sequence Features

We identified in the sesame genome, 287 sequences that contain MYB or MYB-like repeats.
We followed the united nomenclature for Sesamum indicum genes and used SIMYB (for S. indicum
MYB) to represent MYB genes from sesame.

All of the putative MYB genes were further confirmed by SMART and PROSITE searches for the
presence of the two MYB repeats. Finally, we confirmed 287 typical MYB genes in the whole genome
of sesame, including 134 R2R3-MYB, 5 R1R2R3-MYB, 147 MYB related, and 1 atypical MYB genes.
The MYB related genes represent more than half of the total MYB genes, and thus constitute the largest
subfamily of MYB genes in sesame (Table 1).

The isoelectric point (pI) values for SIMYB proteins ranged from 4.73 (SIMYB3) to 9.91 (SIMYB240).
The molecular weight (Mw) was from 9208.63 kDa (SIMYB22) to 73269.43 kDa (SIMYB18) (Table S1).
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Table 1. Classification of the MYB gene family and distribution across the linkage groups (LG) of the
sesame genome.

Linkage Groups R1-MYB R1R2-MYB R1R2R3-MYB Atypical-MYB Total

LG01 12 8 1 1 22

LG02 11 16 27

LG03 17 15 1 33

LG04 12 9 21

LG05 10 8 1 19

LG06 11 10 1 22

LG07 5 8 13

LG08 19 9 28

LG09 8 7 15

LG10 7 7 14

LG11 10 7 17

LG12 6 4 10

LG13 1 4 5

LG14 1 3 4

LG15 7 10 17

LG16 4 3 7

Scaffold 6 6 1 13

Total 147 134 5 1 287

Percentage (%) 51.22 46.69 1.74 0.35

3.2. Chromosomal Distribution and Duplication Events among Sesame MYB Genes

Genome chromosomal location analyses showed that the sesame MYB genes were distributed
throughout all of the 16 linkage groups (LG) (Figure 1). In the currently released genome sequences,
273 SIMYB genes (95% of the total SIMYBs) were successfully mapped onto the LGs, whereas 14 genes
were remained on as yet unmapped scaffolds. All of the SIMYB genes were named from SIMYB1 to
SIMYB287 following their order on the LGs and unanchored sequences. The anchored SIMYB genes
were unevenly distributed onto the 16 LGs of the sesame genome. The LG03 encompassed the largest
number of SIMYBs (33 genes), followed by 28 genes on LG08. In contrast, only three SIMYB genes
were detected on LG14.

We detected 55 genes (20% of the anchored SIMYBs) that were involved in tandem duplicated
arrays with sizes ranging from two to four SIMYBs on the LG02, LG03, LG04, LG05, LG06, LG07, LG08,
LG10, LG11, LG15, and LG16 (Figure 1).
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Figure 1. Mapping of sesame MYB genes based on their physical positions. Vertical green bars represent
linkage groups (LG) of the sesame genome. The LG numbers are indicated at the top of each LG. The genes
colored in blue are the tandemly duplicated SIMYBs. The scale on the left is in megabases (Mb).

3.3. Phylogenetic Relationships, Classification and Exon-Intron Structures of SIMYB Gene Family in Sesame

Using the Arabidopsis R2R3-MYB proteins as reference for classification, we subdivided the SIMYB
members into 30 subgroups (designated as C1–C30 in this study) according to the sequence similarity
and topology (Figure 2; Table S2). Most of the subgroups in our classification were in accordance
with those in Arabidopsis, and only seven subgroups (C1, C5, C11, C16, C18, C29, and C30) were not
retrieved in the phylogenetic tree of Arabidopsis MYB proteins. According to the functions described
for Arabidopsis R2R3-MYB subgroups [2], we therefore inferred the functions of the corresponding
subgroups of R2R3-MYB in sesame (Table S2).

Synteny analysis of SIMYB genes when compared to those of Arabidopsis could provide more
functional insight. Comparative orthologous mapping of MYB genes between the two species revealed
that 133 SIMYBs are orthologs to Arabidopsis MYB genes across the 16 LGs of the sesame genome.
The LG03 and LG02 exhibited the highest numbers of orthologous genes (16 and 15 gene pairs,
respectively) while only one gene pair was detected on LG14. Moreover, Arabidopsis MYB genes
retained from 1 to 6 copies of SIMYBs while conversely, no gene in sesame has conserved more than a
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single copy in Arabidopsis genome (Figure 3). Based on the functions described for the Arabidopsis MYB
genes [1,2], we assigned various functions to the orthologous SIMYBs (Table S3).

The exon/intron structure analysis for the 287 SIMYBs indicated that most of the coding sequences
were disrupted by introns, with exception of 16 genes (Figure S1). The numbers of exon of the
287 SIMYB genes ranged from 1 to 31. In addition, we identified five genes that were possessing
high numbers of exons from 16 to 31 (SIMYB70, SIMYB83, SIMYB187, SIMYB197, and SIMYB135).
The clustering pattern of SIMYBs was not obviously consistent with the exon/intron structures.
However, in few cases, some of the genes in the same cluster exhibited a similar exon/intron
structure. For example, the intronless genes SIMYB119, SIMYB32, SIMYB77, SIMYB190, and SIMYB182,
all clustered together on the phylogenetic tree. Moreover, clustering patterns of SIMYB genes did not
strictly follow their subfamily’s classification (Figure S1).
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The subgroups were designated as C1 to C30 following the classification in Arabidopsis [2]. Sesame
SIMYBs are represented by the red dot whereas Arabidopsis MYB are labeled by a blue dot.

3.4. Expression Patterns of SIMYB Genes in Different Tissues of Sesame

The gene expression pattern can provide important clues for its function. To explore the expression
pattern of MYB gene family in sesame development and growth, we investigated the relative expression
level of SIMYBs in five tissues, including root, capsule, leaf, stem, and seed. The results revealed that
SIMYB genes have a variety of expression patterns in different tissues of sesame (Figure 4), and could
be classified into 25 groups (I to XXV) according to their tissue-specificity expression (Table S4). A total
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of 268 SIMYB genes were expressed (RPKM > 1) in the different tissues, although their transcript
abundance was highly varied according to the tissues. Of these expressed genes, 173 SIMYBs (~65%)
were commonly detected in all of the tissues, suggesting that they regulate sesame development
and growth (Figure 4a). We found some highly expressed genes (SIMYB69, SIMYB106, SIMYB171,
SIMYB175, SIMYB245, etc.) in the tissues, some low expressed genes (SIMYB84, SIMYB134, etc.),
and also found some tissue-specific SIMYBs. For instance, the gene SIMYB73 was only expressed in
the stem; two genes, including SIMYB72 and SIMYB200 were exclusively expressed in the sesame root;
one gene in the leaf (SIMYB56), three genes (SIMYB74, SIMYB242, and SIMYB249) were expressed
in the seed and one gene (SIMYB19) was exclusively expressed in the capsule (Figure 4b,c; Table S4).
To further validate the gene expression profile from RNA-seq data, we performed qRT-PCR analysis
with ten selected genes, including six genes with high or low expression levels from the group I and
one tissue-specific gene each from the groups XXII, XXIII, XIV, and XXV. For all of the genes tested,
qRT-PCR results confirmed well the RNA-seq expression profiles, proving the accuracy of the RNA-seq
dataset that was used in this study (Figure 4d).
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Figure 3. Syntenic relationships between MYB genes in sesame and Arabidopsis genomes. The black
bars represent the chromosomes of Arabidopsis whereas the colored bars represent the linkage groups
of the sesame genome. The numbers LG01–16 represent linkage groups within the sesame genome
and the five Arabidopsis chromosomes are labeled Chr1–Chr5. The area chart displays the gene density
along the LGs in the sesame genome. The colored dots represent the locations of the SIMYB genes
along the LGs. Colored lines indicate orthologous genes in sesame and Arabidopsis.
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Figure 4. Expression profile analysis of MYB genes in five sesame tissues. The SIMYB genes expressed
(RPKM > 1) in leaf, stem, root, seed and capsule were represented according to their tissue specificity:
(A) SIMYBs commonly expressed in the five tissues; (B) SIMYBs expressed in only some tissues;
(C) Venn diagram exhibiting the numbers of common and unique SIMYB genes expressed in the
various sesame tissues; and, (D) Validation through qRT-PCR of the expression patterns of ten selected
genes. Gray cells represent genes not expressed. -I- to -XXV- represent the groups of genes according to
their tissue specificity (Table S4).

3.5. Expression Profiles of SIMYB Genes in Response to Waterlogging Stress

The expression of SIMYB genes under waterlogging stress was examined at 3, 9, and 15 h
after treatment. In total, we identified 114 SIMYBs as differentially expressed genes (DEGs) with
various expression patterns across the three time points of waterlogging stress application (Figure 5a).
The observed expression patterns revealed that SIMYB genes could be categorized into five main
groups. The group I was composed of 39 genes, which were strongly induced at 9 h of stress application.
The group II gathered together 12 genes which were induced when the stress became more intense
(15 h). The group III encompassed 12 genes induced at 3 and 9 h, but their expression levels were
significantly decreased at 15 h under stress. The group IV included 22 genes that were up-regulated at
the beginning of the stress application (3 h), but their expression levels decreased with an increasing
level of stress. Finally, the group V was composed of 29 down-regulated genes with their expression
levels significantly down-regulated at 9 h under stress but induced at the beginning of the stress
(3 h) and under severe stress (15 h). The RNA-seq data was further verified by qRT-PCR experiment
which was performed on root samples of a waterlogging-tolerant cultivar Zhongzhi No.13 based on
ten selected SIMYB genes differentially expressed (Figure 6a). A total of five genes were detected
up-regulated with the gene SIMYB107, the most induced one (>22-fold increase in gene expression).
In contrast, the genes SIMYB166, SIMYB155, and SIMYB174 were down-regulated under waterlogging,
as revealed by the RNA-seq data.
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the shared and stress-specific differentially expressed genes between waterlogging and drought.
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Figure 6. MYB gene induction rates in sesame roots during abiotic stress treatments. (A) 9 h of
waterlogging; (B) 3 days of drought. Transcripts abundance was quantified through qRT-PCR and the
experimental values were normalized using sesame Actin as reference gene. The histograms represent
the relative expression values of induction rates (stress/control). The green bars represent the no
significantly regulated genes, the red bars represent the genes significantly up-regulated (induction
rate > 2) and the blue bars represent the significantly down-regulated genes (induction rate < 2).
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3.6. Expression Profiles of SIMYB Genes in Response to Drought Stress

Previously developed RNA-seq data under drought stress [42,43] allowed for us to analyze the
expression profiles of SIMYBs under this important abiotic stress. First, we retrieved all SIMYBs
from the DEGs at d1, d2, and d3 when compared to control (period prior to water stress application).
A total of 46 SIMYBs were found as DEGs across the different drought application periods, and their
expression profiles were subsequently summarized in the heatmap represented in the Figure 5b.

The results showed that SIMYBs regulating drought responses could be assembled into
four clusters: The first group (I) represented five genes constitutively up-regulated under drought
stress with a striking induction at d3. The group II gathered together six genes with increased
activity under severe stresses (d2 and d3). The group III was composed of eight genes constitutively
down-regulated under drought stress. Finally, the group IV encompassed 27 genes highly induced at
d1 or d2, but down-regulated under severe drought stress (d3).

To further confirm the transcriptomic expression patterns of SIMYBs, we selected nine SIMYBs
and performed qRT-PCR analysis in the drought tolerant genotype after three days of drought stress.
Among these genes, we found four SIMYBs, including SIMYB22, SIMYB57, SIMYB174, and SIMYB287,
which were significantly up-regulated in response to drought, with SIMYB22 being the most induced
gene. The genes SIMYB192 and SIMYB205, in contrast, were down-regulated in response to drought
stress exactly, as shown in the RNA-seq results. However, we found three SIMYB genes (SIMYB136,
SIMB171, and SIMYB267) that were not significantly regulated under drought stress, as their expression
levels in the stressed plants when compared to the control ones remained unaffected (Figure 6b).

By crossing the significantly regulated SIMYB genes under drought and waterlogging stresses,
we found that a total of 132 genes (46% of the total SIMYB genes) were implicated in these major
abiotic stresses in sesame. Moreover, we identified some stress-specific genes while 28 genes were
commonly involved in drought and waterlogging stresses (Figure 5c). Most of these shared genes
displayed contrasting expression patterns under both stresses. For example, the gene SIMYB174 was
highly down-regulated under waterlogging, but was found strongly up-regulated under drought
stress (Figure 6).

4. Discussion

The function of MYB genes has been extensively investigated in numerous plants species, but,
to date, no comprehensive analysis of the MYB gene family members has been reported in sesame and
their functions are still largely unknown. In this study, we comprehensively studied this important gene
family based on bioinformatic tools and expression profiling. We identified 287 SIMYB genes, which is
quite higher than the 198 MYB genes reported in Arabidopsis, 183 in rice [16], 247 in soybean [54],
177 in sweet orange [5], 125 in Jatropha curcas [55], 231 in Pyrus bretschneideri [1], and 104 and 166 in
Lotus japonicus and Medicago truncatula, respectively [8]. To date, only two species, namely, cotton and
Chinese cabbage had much higher MYB genes than sesame, which could be attributed to their bigger
genome sizes [6,7]. Hence, according to the previous reports related to the expansion of gene families
in sesame [44,53,56,57], we speculated that sesame has retained and expanded during the evolutionary
process, the MYB family members that may play essential roles in various biological processes.
Similarly as reported in cotton [7], soybean [54], rice, and Arabidopsis [16], tandem duplication events
have contributed to the expansion of the MYB gene family in sesame. More importantly, we deduced
that tandem duplication events have also contributed to the functional divergence of SIMYBs since
some tandem duplicated SIMYB genes were predicted distinct functions.

One surprising feature of the SIMYB gene family is the over-representation of the 1R-MYB
subfamily. The 2R-MYB subfamily has been reported to be the largest subfamily of MYB family,
followed by the 1R-MYB in many plant species [7,16,58,59]. Contrarily to the 2R-MYB, the 1R-MYB
subfamily is less-studied and their functions were assigned for circadian and light regulation,
cell differentiation, and telomeric DNA binding [9]. In sesame, we have found its members to
be highly active in abiotic stress response, suggesting a novel role of this subfamily. Nonetheless,
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the abundance of 1R-MYB subfamily members in the sesame genome is intriguing and may deserve
in-depth functional investigations.

To date, only three MYB genes (SIMYB186 (SIN_1010473), SIMYB261 (SIN_1025617),
and SIMYB257 (SIN_1004921)) have been functionally characterized as being involved in the corolla
and petiole pigmentation in sesame [52]. Wherefore, revealing the functions of the members of
this important gene family should be the focus of future studies in sesame. The R2R3-MYB genes
are known to be involved in plant specific processes, such as control of secondary metabolism
or cellular morphogenesis, defense, pigmentation, and root formation [60]. Structurally similar
MYB proteins within species were found to be functionally orthologous. For example, the genes
ZmMYBC1, ZmMYBPL from maize and PhMYBAN2 from Petunia are structurally related and play
the same function: control of anthocyanin synthesis [7]. Hence, we performed an evolutionary
relationship analysis of the R2R3-MYB subfamily in sesame when compared with the well-studied
species Arabidopsis. Out of 30 sesame clades, 23 clades were consistent with those in Arabidopsis [1,2],
providing an excellent reference to explore the functions of sesame R2R3-MYB genes [61]. For example,
SIMYB50, SIMYB74, SIMYB242, and SMYB261 were assembled together with Arabidopsis AtMYB044
and AtMYB077 into the clade 21, referring to abiotic stress response and anthocyanin biosynthesis [62].
The genes SIMYB24 and SIMYB80 were grouped into the clade 22 with two Arabidopsis genes AtMYB90
and AtMYB113, representing the functional clade of anthocyanin biosynthesis [63]. The genes SIMYB72
and SIMYB200 were found in the groups C3 and C10, respectively, related to root development.
Accordingly, based on tissue RNA-seq analysis, we uncovered that these genes were exclusively
expressed in sesame roots. Seven R2R3-SIMYB subgroups of sesame have no representative in
Arabidopsis, suggesting that these proteins might have specialized roles that were either lost in
Arabidopsis or gained after divergence from the last common ancestor [2]. Furthermore, the close
relationship between sesame and Arabidopsis helped to identify some homolog MYB genes and allowed
for us to predict the functions of SIMYB genes [53].

Few MYB genes have been reported to be involved in plant developmental processes [6].
In sesame, 65% of SIMYB genes were expressed in all of the tissues, indicating that these genes
might contribute in various aspects of growth and developmental processes. In contrast, we detected
few tissue-specific SIMYBs that may play major role in their respective tissues [2]. To cite an instance,
the gene SIMYB200, which is exclusively expressed in the sesame root, is the homolog of the gene
AtMYB93 which regulates lateral root development in Arabidopsis [64]. Until now, the sesame root
system architecture has not been yet examined at the molecular level [36]. Therefore, SIMYB200 could
be a potential gene to be targeted for functional characterization in the sesame root. In addition,
the homolog of the sesame seed-specific genes SIMYB74, SIMYB242, and SIMYB249 in Arabidopsis
(AtMYB113) was found to be involved in anthocyanin biosynthesis [65]. We suspected that these genes
may be involved in seed coat coloration in sesame.

Waterlogging is a common adverse environmental condition that limits sesame plant growth
and reproduction [30]. Similarly, drought stress constitutes the second major abiotic stress in sesame
production [26]. Unfortunately, advances in developing abiotic stress tolerant sesame varieties have
been hampered by the lack of functional gene resources [36]. Increasing evidences have shown that
MYB TFs are implicated in drought response in various plant species, including Arabidopsis thaliana,
Zea mays, Gossypium herbaceum, Vitis vinifera, Oryza sativa, Solanum tuberosum, Triticum aestivum,
and Glycine max [66–72]. In sesame, 16% of the total SIMYB genes were significantly active in drought
stress responses, and most of their homologs in Arabidopsis are described as abiotic stress responsive
genes. By way of illustration, the homologs of the sesame drought responsive genes SIMYB204
(AtMYB015), SIMYB77, SIMYB245, SIMYB78 (AtMYB073), and SIMYB8 (AtMYB2) were proved to be
implicated in drought responses in Arabidopsis. This suggests a conservation of gene function across
the two species, implying that these identified genes could be regarded as candidate gene resources
for drought tolerance improvement in sesame [1,2].
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On the other hand, little is known concerning the role of MYB genes in the waterlogging response
in plants. It was shown that AtMYB2 is induced by hypoxia, with mRNA levels peaking after 2–4 h
under hypoxic conditions [73]. The gene TaMyb1 (ortholog of AtMYB2) exhibited a dramatic increase in
transcripts under waterlogging stress, indicating its positive involvement in alleviating the damages in
common wheat root [74]. The gene SIMYB8, which is the homolog of AtMYB2, was also highly induced
after 9 h waterlogging stress in sesame, indicating a functional conservation. Recently, based on a
transcriptome profiling under waterlogging stress in kiwifruit plants, Zhang et al. [75] found that the
MYB TFs were abundant in the differentially expressed genes. In the present study, 40% of SIMYBs
was significantly associated with waterlogging stress responses, representing potential genes for
enhancing sesame endurance under this important abiotic stress. The higher number of SIMYBs
regulated under waterlogging as compared to drought confirms sesame’s greater susceptibility to
waterlogging stress [30].

SIMYBs commonly involved in drought and waterlogging responses are of a great interest as they
could be targeted for improvement towards tolerance to both stresses simultaneously. Our results are
in agreements with previous reports which showed that some MYB gene members are key regulators
of several abiotic stresses, including cold, osmotic stress, salt, etc. [76–78]. However, it appears that
SIMYBs may function differentially under drought and waterlogging stresses as shown by their
contrasting expression patterns under these stresses. Therefore, in-depth analysis of these particular
genes is needed to get insight into the mechanisms of co-regulation of drought and waterlogging
stresses in sesame.

5. Conclusions

In the present study, we analyzed the characteristics of MYB gene structures, phylogenetic
relationships, chromosomal locations, and their functional diversification in sesame. For the first time
in sesame, we identified 287 SIMYB genes that were unevenly distributed on the 16 LGs. SIMYBs are
quite abundant in sesame probably due to tandem duplication events with an over-representation
of the 1R-MYB subfamily. Phylogenetic-based prediction of the SIMYB functions indicated that they
are involved in diverse biological processes. Expression profiling in various tissues suggested that
SIMYBs are highly active in modulating sesame growth and development. Moreover, by integrating
RNA-seq data and qRT-PCR analysis, we demonstrated that SIMYBs are key transcription factors
regulating sesame responses to drought and waterlogging stresses. Altogether, we provide here a firm
groundwork for the future functional characterization of SIMYBs.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/12/362/s1.
Table S1: Full details of the sesame SIMYB genes, subfamily, ORF length, number of CDS, genome location
and protein characteristics. Table S2: Classification and functional prediction of R2R3- SIMYB genes based on
Arabidopsis functional clades [1,2,79–99]. Table S3: Function prediction of SIMYBs based on sesame and Arabidopsis
orthology. Table S4: List of the SIMYB genes expressed in five tissues of sesame. Table S5: List of gene specific
primers used for qRT-PCR expression analysis of MYB genes in sesame under drought, waterlogging and various
tissues. Figure S1: Gene structures of MYB proteins detected in sesame. Exon and intron are represented by blue
box and black line, respectively.
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