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The agricultural sector is the second major source of climate change globally, contributing to anthropogenic Green-
house Gas (GHG) emissions. In low-to-middle income countries, estimations indicate future increases in agricultural
emissions. Climate-Smart Agriculture (CSA) has an express opportunity to transform agriculture across the globe. In
Africa, CSA targets focused on resilience building and food security with less emphasis on the GHG mitigation poten-
tial. Nevertheless, to make CSA conclusive as an express low emission development strategy in Africa, understanding
the mitigation potential in this context is paramount. Through a systematic-narrative review approach conducted on
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), the study aimed to identify opportu-
nities tomitigate GHG emissions in Africa. We observed that the distribution of studies that quantitatively assessed the
GHG emissions of CSA practices was disproportionate across Africa. For instance, out of twenty studies evaluated, nine
were conducted in Southern Africa; three in East Africa, and the rest distributed among Central, Western, and North
Africa. Observed in the studies, advanced livestock breeding and feeding, organic nitrogen input, improved pastures
and switching land-use practices, all contributed to GHG emission reduction. As limited experimental evidence exist
on the GHGmitigation potential for some of the CSA alternatives including agroforestry, rotational farming, improved
livestock breed and intensification of ruminants' diet, we recommend further experimental studies into these alterna-
tives in more locations/contexts in Africa. Also, progress on the mitigation pillar is still limited in Africa due to lack of
the necessary analytical infrastructure to conduct the needed measurements. We call for urgent investments into lab-
oratory facilities and skills training to improve data collection and quality.
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1. Introduction

Greenhouse gases (GHG) concentrations in the atmosphere including
carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) have in-
creased rapidly within the 20th Century (Sparrevik and Utstøl, 2020;
Nayeb et al., 2019; Zheng et al., 2019). The contribution of agricultural
GHG emissions is estimated at 60% for Africa and Latin America, 30% for
Asia, and approximately 10% for Europe and North America (FAO,
2020). In these regions, agricultural GHG emissions are expected to in-
crease (Smith et al., 2014a, 2014b; Herrero et al., 2013). Moreover, small-
holder farmers that are dominant in these regions (Africa, Latin America
and Asia) have low absolute GHG emissions per hectare, but high emission
intensities, i.e., emissions per unit of food produced (Wollenberg et al.,
2016; Seebauer, 2014). For instance, in most African countries, the recent
increase in GHG emissions from the sector has been highly recognized
(Tongwane and Moeletsi, 2018; Bonilla-Findji et al., 2017; Smith et al.,
2014a, 2014b). The last three decades experienced increases in agricultural
output in the continent mainly from the extension of rain-fed crop cultiva-
tion, especially food crops, resulting in the degradation of marginal soils
and reducing traditional fallow periods (Tongwane andMoeletsi, 2018). In-
fluenced by rapid human population growth, unsustainable agriculture
practices including increased use of inorganic fertilizer, insecticides, and
pesticides have been recorded in different African countries (FAO, 2020).
The fast-rising wealth of urban populations and changes in dietary needs
for livestock products has also motivated more livestock production
(WHO, 2018; FAO, 2013, 2014).

Due to low mechanization in Africa's agriculture, the non-CO2 gases
dominate the total GHG emission budget. Non-CO2 GHGs including CH4

and N2O contribute substantially to overall warming. These gases continue
to define the emissions trajectory of Africa's agriculture. For instance, as of
2017, 42%/75% of total CH4/ N2O emissions originated from agriculture
(FAO, 2020). The main sources of these emissions (CH4 and N2O) are
from enteric fermentation, manure management, manure deposits on pas-
tures and soil management/fertilization (Wiedemann et al., 2015;
Valentini et al., 2013). Global GHG analysis shows that Sub-Saharan
Africa (SSA) has the highest absolute GHG emissions per unit of livestock
4580 kg CO2-eq. GJ−1, where enteric fermentation and manure contribute
2877 kg CO2-eq. and fodder production 1689 kg CO2-eq. (Bennetzen et al.,
2016; Herrero et al., 2016; Gerber et al., 2011). It has been estimated that
livestock accounts for 7.1 Gt CO2eq/year, of which 3.1 Gt CO2eq/year is
in the form of CH4, 1.92 Gt CO2eq/year as CO2, and 2.06 Gt CO2 eq/year
as N2O (Gerber et al., 2013).

Distribution of GHG emissions within the African continent reveals that
Eastern and Southern Africa contribute substantially to total GHG emis-
sions. Southern Africa contributes 27%, whereas Eastern Africa accounts
for 21% (FAO, 2020). Within Southern Africa, agricultural GHG emissions
projection indicates about 37.7% increase by 2050 (Stevens et al., 2016).
Out of the ten (10) countries included in the East Africa Regional mission,
eight (8) countries have available GHG emissions data with two (Somalia
and South Sudan) currently without data. The Democratic Republic of
Congo (DRC) is noted to have the highest total GHGemissions in the region,
followed by Tanzania, Ethiopia, Kenya, Central African Republic (CAR),
Burundi, Rwanda and Djibouti (WRI, CIAT, 2015). Agriculture emissions
from West Africa, Central and North Africa are quite lower compared to
Eastern and Southern Africa. West Africa however is experiencing a signif-
icant growth in agriculture GHG emissions accounting for 20% of agricul-
ture emissions in the continent (Tongwane and Moeletsi, 2018).

To slow down the rapid increases in agricultural GHG emissions, the
concept of Climate Smart Agriculture has been developed (FAO, 2010;
2

Lipper et al., 2014). Climate-Smart Agriculture (CSA) focuses on three
major pillars, (1) sustainably increase productivity to support the develop-
ment, and equitable increase in farm incomes and food security, (2) increase
resilience, and (3) reduce or eliminate GHG emissions (mitigation) wher-
ever possible (Saj et al., 2017; de Nijs et al., 2014; FAO, 2010; Lipper
et al., 2014). Under this concept, several agricultural practices including ag-
roforestry, integrated nutrient management, advanced seeds, conservation
tillage, water resource management and improved livestock breeds have
been proposed (FAO, 2020; Aggarwal et al., 2019). Current literature
(Dunnett et al., 2018; Andrieu et al., 2017; Sain et al., 2017; Brévault and
Bouyer, 2014) on the efficacy and potential of CSA in agriculture systems
transformation in Africa have mostly focused on two pillars (Pillar 1: adap-
tation and, Pillar 2: food security). Prioritizing research on the third pillar
(Pillar 3: mitigation) is salient to bridge the science-policy knowledge gap
and provide substantial information that can inform regional, national
and international public and private sector investment (Aggarwal et al.,
2019; Olorunfemi et al., 2019; Das et al., 2014). Appropriate CSA mitiga-
tion strategies can also be developed based on available technical options
and their cost of implementation (Richards et al., 2019a, 2019b;
Hammond et al., 2017). Employing a systematic-narrative approach, our
paper collected evidence from existing case studies on the GHG mitigation
potential (Pillar 3) of CSA in Africa.

2. Materials and methods

The paper adopts a mixed review approach based on systematic and
narrative reviews. The systematic review was guided by the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) ap-
proach.With extensive adherence to the PRISMA protocols, a systematic re-
view of articles and documents on CSA practices in Africa was undertaken
(Liberati et al., 2009; Moher et al., 2009). PRISMA protocols (Liberati et al.,
2009; Moher et al., 2009) represent a more robust adjunct to documentary
analysis techniques. However, as the investigation did not examine
“studies” as the PRISMA statement (Moher et al., 2009) was designed to in-
vestigate, not all components of the statement were relevant. The
systematic-narrative approach was employed to present an overview of
the GHGmitigation potential of CSA in Africa and provide a sense of direc-
tion for policy and future studies. The systematic-narrative approach also
helped to identify research gaps and improve upon current understanding
of the topic, highlighted relevant methodological concerns and provided
clarification on context-specific CSA options promoted in Africa. A narra-
tive in this paper is understood as a storyline about the past, present, and
future based scenarios and assumptions about GHG mitigation trajectories
of one or more context components (soil organic carbon, carbon stock
changes, livestock enteric fermentation, livestock manure management,
and fertilization) (Table 1). The narratives were compiled from summa-
rized speeches on CSA, media discussions and general policy statements
commonly used in the CSA literature. The narratives provided the bases
for comparing conventional agriculture and CSA thereby guided the selec-
tion of the included articles.

2.1. Search strategy/terms

A detailed literature search was conducted on numerous database plat-
forms including SCOPUS, Science Direct, Google Scholar, Springer Link,
and Emerald. Further, an in-depth hand search to identify additional litera-
ture including project evaluation reports was conducted. The same key
terms were used in the searches on the various databases including CSA/
SALM mitigation, carbon sequestration, livestock enteric fermentation,



Table 1
Common narratives/storylines of CSA.

Mitigation narratives  Conventional agriculture  CSA 
Soil Organic Carbon 

(SOC) 

- Leads to erosion of soil organic 

carbon (C) stocks through the 

burning of crop residues, and the 

use of fossil-fuel intensive inputs 

like mechanised ploughs. Higher 

use of chemical fertilizers. 

+ Prevents soil erosion and maintains cover 

crops especially when practiced with trees, 

increases C sequestration and storage. 

+ Promotes recycling of waste and organic 

residues thereby limiting the use of external 

inputs like inorganic fertilizer.  

Agroforestry (Carbon 

Stock Changes)  

- Forests are cleared or degraded for 

new agricultural lands and farm 

expansions. 

 + Increases tree cover that contributes to 

promoting biomass above and below ground 

including soil carbon.  

+Reduces forest degradation through 

improved practices and higher productivity.  

Livestock Enteric 

Emissions (LEM) 

-fewer cattle produced in intensive 

systems. Poor management systems 

including inappropriate diet 

quantity and poor diet quality 

increases CH4.  

+ Mitigation strategies are often related to 

the intensification of cattle production. 

Approaches including fertilizing pastures to 

increase the pasture productivity, reducing 

grazing period and adding more concentrated 

(less fibrous) feed to the diet reduces 

emissions. 

Livestock Manure 

Management (LMM) 

-A Low percentage of manure 

managed; illegal disposal, no 

surface crust, liquid manure flushed 

into the environment, manure not 

collected at one place and high 

anaerobic conditions.

+ Composting, improve manure handling 

and storage, (e.g. covering manure heaps) 

application techniques (e.g. rapid 

incorporation). Alternative uses of manure 

like the biogas, can reduce GHG emissions. 

Fertilization  -Increase soil fertility through 

synthetic fertilizers; affects water 

quality, reduces soil fertility over 

time, weaken soil texture and 

predispose soil to erosion. 

-Higher fertilization of soils with 

nitrogen increase releases of N2O.  

+ Increase soil fertility through organic 

fertilizers. Organic fertilizers improve and 

maintain productive soils and stimulate plant 

growth without environmental degradation.   

Source: Compiled by Authors, 2020
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livestock manure management, carbon stock change, GHG emission reduc-
tion, nutrients management, improved agronomic practices, sustainable in-
tensification, low emission strategies and low carbon development,
including agriculture and Africa as either prefixes or suffixes. The specific
key word search included the search strings “agroforestry” and “mitiga-
tion”, “improved livestock breed” and “emission reduction”, “no-till” and
“mitigation”, “water conservation” and “soil organic carbon” aswell as “nu-
trient management” and “low emissions”. Articles that only made assump-
tions on the GHG mitigation potential of CSA without actual quantitative
measurements were not considered. The searches were performed between
January 1 and February 20, 2020.

2.2. Inclusion and exclusion criteria

Articles published in the English language with the main focus on CSA
mitigation and Sustainable Land Management (SALM) conducted on the
3

African continent were considered. Most importantly, those published in
languages other than English were excluded. The paper considered a de-
cade of CSA implementation. This implies that articles published on CSA
and mitigation for the years 2010–2020 were qualified for the review. In
2010, CSA became a buzzword after theWorld Bank and FAO took compre-
hensive measures to transform agriculture systems in the face of climate
change (World Bank, 2010; FAO, 2010). The motivation was to present in-
formation on the contribution of CSA to GHG mitigation in Africa. More-
over, to capture possible relevant articles, those without CSA or GHG
mitigation directly mentioned but addressed one or more of the CSA/miti-
gation options mentioned by the proponents of the concept were included
(FAO, 2013). For instance, articles addressing issues on: soil organic car-
bon, carbon stock changes, livestock enteric fermentation, livestock ma-
nure management and fertilization were included. Also, articles that
addressed both adaptation andmitigation synergies were considered. How-
ever, these articles must have stated clearly and empirically the GHG
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mitigation potential of any of the CSA practices contextualized. Articles
with the main focus outside CSA/SALM mitigation potential; conducted
outside Africa, including reviewed studies, commentaries, letters, and edi-
torials, duplicated articles published before 2010 were excluded.

2.3. Search results

A total of 222 electronic articles were retrieved from the databases
(SCOPUS = 59, Science Direct = 55, Google Scholar = 60, Springer
Link = 31, and Emerald = 17). The hand search yielded 6 additional rele-
vant articles on the topic under investigation resulting in a total of 228 re-
trieved research articles. Out of the 228 retrieved articles, 8 were
duplicates and 200 were excluded based on their titles and/or abstracts,
as they did not fulfill the inclusion criteria (Fig. 1). Most of the excluded
studies also provided qualitative representation of the GHG mitigation po-
tential of CSA rather than quantitative evidence. The final review included
20 articles. A few of these studies were global studies but provided a central
focus to Africa with empirical evidence of one or multiple CSA practices.
The selected studies were categorized into different themes, thus, geo-
graphical distribution, type of CSA mitigation option addressed, the study
methods/designs used, and the outcomes/findings.

3. Results

3.1. Geographical distribution of studies

Out of the 20 studies, nine were conducted in Southern Africa;
Zimbabwe (studies 5, 10, 11, 15, 16 and 17), Malawi (studies 2, 14 and
19), Zambia (studies 1, 12) and Mozambique (studies 1 and 13) (Shown
in Table 2). Three were from Eastern Africa (studies 1 to 3) and one a com-
parative study for Eastern and Western African countries (study 12). The
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rest of the studies were collaborative, analysing issues from the global per-
spective with empirical evidence fromAfrica (4 and 18) perspective. Others
included sectional studies; tropics (study 6), arid regions (study 20), Sub-
Saharan Africa (studies 5 and 8).

3.2. Agriculture categorization

For the specific agriculture categorization investigated; five studies
solely focused on cropland (studies 2, 3, 5, 13 and 18), two were on live-
stock (studies 6 and 9), and one combined both cropland and livestock
(study 1). Studies 3, 4, 7 and 8 captured issues on Soil Organic Carbon
(SOC), soil quality management was captured by Studies 5, 10, 11, 12, 17
and 20 and Conservation Agriculture (CA) (3, 14, 15 and 19) as shown in
Table 3.

3.3. Outcome of studies

The outcome of the studies was influenced by time and scale, geograph-
ical and weather conditions, as well as methodological approaches. The
livestock sector was observed to have some intensification practices that
were sustainable to the environment. Study 1 established that improved
livestock feeding resulted in a small increase in GHG emissions thereby de-
creasing emission intensity per produced energy.

Studies 1, 6 and 9 found that improved forage quality (FoCo) by
supplementing larger quantities of Napier grass (Pennisetum purpureum
Schumach.) with concentrates (FoCo) reduced GHG emission intensity
from 2.4 ± 0.1 to 1.6 ± 0.1 kg CO2eq per kg milk. Contrary, in-calf cross-
bred heifers' (Girinka) distribution in Rwanda increased GHG emissions by
1174 kg CO2eha−1 yr−1 hence it is not a promising option to reach CSA tri-
ple win goal (Study 1).
Additional records identified 

through other sources  

(n=6)  

ccumulated  

8)  

bstracts 
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8) (n=200) 
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Table 2
Summary results from selected studies.

Reference
Author (s)
Year,
Country/region

Agriculture
categorization

CSA alternative evaluated Methods,
design

Key findings

1
Paul et al.
(2018)
Rwanda

Cropland and
livestock

Improved livestock breed and feeding.
Soil and crop management

Ex-ante impact analyses across
different agro-ecologies

Improved livestock feeding resulted in a relatively small increase in
GHG emissions (50 kg CO2e hh−1 yr−1) thereby decreasing
emission intensity per produced energy. In-calf crossbred heifers'
(Girinka) distribution increased GHG by 1174 kg CO2ehh−1 yr−1

hence not a promising option to reach CSA triple win.
2
Bellarby et al.
(2014)
Kenya and
Ethiopia

Soil and
cropland

Organic Nitrogen (N) input Cool Farm Tool (CFT)
estimation of GHG emissions
from best practices

Found residue addition to contribute significant amounts of N to
the soil, lowering emissions than when N is supplied as synthetic
fertilizer only. Farmyard manure resulted in lower GHG emissions
compared to equal amounts of fertilizer in synthetic form.

3
Ambaw et al.
(2019)
Eastern Africa
(Tanzania,
Kanye &
Uganda)

Cropland (Soil
Organic Carbon)

Agroforestry, farm yard manure, soil and
water conservation

SOC analyzed using flash
combustion

Integration of CSA practices into land uses increased SOC stocks by
42–196% at the depth of 0–15 cm, and 19–110% at cumulative
one-meter depth soil profile compared to BAU. At the depth of
0–15 cm, improved agroforestry practices increased SOC by 42%
(Nyando), 119% (Hoima) and 185% (Lushoto) compared with the
corresponding BAU.

4
Powlson et al.
(2014)
Global

Soil Organic
Carbon (SOC)

No-till practice Standardized annual C
accumulation rate (0.3 Mg C
ha−1 yr−1) applied to global
regions

Found an annual global rate of SOC accumulation of 0.17 Gt C,
equal to 0.6 Gt CO2e for no-till practice for global cereal area of 559
Mha, and 0.4 Gt CO2e yr−1 for areas under wheat, maize, and rice
(where no-till can be most easily practised).

5
Powlson et al.
(2016)
IGP and SSA

Agro-ecosystems Conservation Agriculture Meta-analysis of Indo-Gangetic
Plains (IGP) and Sub-Saharan
Africa (SSA)

Predicted annual rates of increase of SOC stock by 0.37
± 0.045 Mg C ha −1 yr. −1 compared to conventional practice.
Individual rates of increase for reduce tillage (0.49 Mg C ha −1

yr. −1), residue retention (0.16 Mg C ha −1 yr.−1) and crop
diversification (0.47 Mg C ha−1 yr.−1). In SSA increases were
between 0.28 and 0.96 Mg C ha −1 yr.−1.

6
Thornton and
Herrero (2010)
Tropics

Livestock and
pasture
management

Improved pastures, intensifying ruminants
diets, changes in land-use practices and
changing breeds of large ruminants

Dynamic system modelling
(RUMINANT)

The sum of mitigation potentials of various livestock intensification
practices (improved pastures, intensifying ruminants diets, changes
in land-use practices and changing breeds of large ruminants)
amounted to 417 Mt. CO2-eq corresponding to approximately 12%
of the global livestock-related CH4 and CO2 emissions that are
associated mainly with extensive livestock systems.

7
Brown et al.
(2012)

East and West
Africa

Soil Carbon
Sequestration

Switching land use practices
(degraded-improve, reduced tillage-native
ecosystems etc.)

IPCC framework/carbon tool,
NASA MODIS and ESA MERIS

Change in practices (switching from severely degraded grazing
lands to those with improved management; switching from rain fed
cultivation with full tillage to reduced tillage and with different
level of nutrient inputs; switching from reduced tillage rain fed
cultivation to native ecosystems, and converting combined mosaic
vegetation (assumed to be shifting cultivation cycle) to native
ecosystems) resulted in carbon sequestration rates in the top 30 cm
of soil of about 0.4 to 5 t CO2e ha−1 yr−1 and for changes that
included in the soil and vegetation of about 6 to 22 t CO2e ha−1 yr.

8
Roobroeck
et al. (2015)
Sub-Sahara
África

Soil Organic
Carbon (SOC)

Integrated soil fertility management long-term multi-locational trials The content of organic C in the top 5 cm of soil at the end of many
years for trials of different input showed a change of C content from
12.2 g C soil kg−1 to 13.3 g C soil kg−1 when fertilizers and
organic inputs are combined as compared to exclusively fertilizers
or organic materials.

9
Brandt et al.
(2019)
Kenya

Livestock Improvements in forage quality (Fo), feed
conservation (Fe) and concentrate
supplementation (Co)

The Livestock Simulation Model
(LivSim)

Improved forage quality (FoCo) by supplementing larger quantities
of Napier grass (Pennisetum purpureum Schumach.) with
concentrates (FoCo) reduced GHG emission intensity from
2.4 ± 0.1 to 1.6 ± 0.1 kg CO2eq per kg milk; (b) using feed
conservation (FeCo) by producing maize silage and feeding
concentrates, closing the yield gap of fodder maize reduced it to
2.2 ± 0.1; and a combination of Napier grass, maize silage and
concentrates (Fo FeCo) increased it to 2.7 ± 0.2 kg CO2eq per kg
milk because of land-use change emissions.

10
Thierfelder and
Wall (2012)
Zimbabwe

Soil quality Conservation Agriculture (CA) Long-term on-farm and
on-station trial

Increased in SOC was observed by 46% in the first 20 cm on the
sandy soils in rip line-seeded (RS) and by 104% in direct-seeded CA
treatments in four cropping seasons, whereas it stayed at low levels
on the conventionally tilled control treatment.

11
Thierfelder
et al. (2012)
Zimbabwe

Soil quality CA Long-term on-farm and
on-station trial

Soil carbon was greater in intercropped treatment in the first
0–30 cm, suggesting additional carbon input from the intercropped
legumes. Bulk density was however lower in the top soil and in
deeper soil horizons.

12
Thierfelder
et al. (2013)
Zambia

Soil quality CA Long-term on-farm and
on-station trial

Greater SOC recorded under CA compared with conventional
agriculture in the top 30 cm soil depths. After five years' of CA
treatment, using direct seeding with a maize cotton rotation SOC
was 46% (9.7 Mg ha−1) greater compared with a conventional
plough treatment with sole maize.

(continued on next page)
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Table 2 (continued)

Reference
Author (s)
Year,
Country/region

Agriculture
categorization

CSA alternative evaluated Methods,
design

Key findings

13
Rusinamhodzi
et al. (2012)
Mozambique

Cropland Intercropping Additive and substitutive design Intercropped maize with pigeon pea (Cajanus cajan (L.) Millsp.)
For up to five years and showed huge increases in SOC, which
became larger the longer the intercropping lasted.

14
Ngwira et al.
(2012)
Malawi

Cropland Intercropping linear mixed effects model
(REML procedure)

Observed a 76% increase in SOC when maize was intercropped
with legumes.

15
Nyamangara
et al. (2014)
Zimbabwe

Cropland Tillage systems Paired plots analysis Observed that, after CA treatment for 5 years, there was about a
70% increase in SOC in sandy soils and a 40% increase in finer
textured soils compared with conventional agriculture.

16
Mujuru et al.
(2013)
Zimbabwe

Land use Rotational farming Farmer managed experiments Carbon increased in a maize-soybean rotation.

17
O'Dell et al.
(2015)
Zimbabwe

Soil
management

Cover cropping Micrometeorological methods:
Four Bowen ratio energy
balance (BREB)

Winter wheat cover crop produced a net accumulation of 257 g
CO2-C m−2 under no-tillage, while tilled plot with no cover crop
produced a net emission of 197 g CO2-C m − 2 and the untilled
plot with no cover emitted even higher rates of 235 g CO2-C m−2.

18
van Kessel
et al. (2013)
Global

Cropland Reduced-tillage Nonparametric weighting
function

There were no differences between conventional tillage and
reduced tillage systems on N2O emissions. However, when
disaggregated by climate, in experiments carried out over 10 years,
N2O emissions were 27% lower under reduced tillage than
conventional tillage in drier climates.

19
Ngwira et al.
(2013)
Malawi

Cropland Mulch, reduced-tillage, rotation etc. linear mixed effects model
(Restricted Maximum
Likelihood)

Observed no differences between CA and conventional practices
after six years of experimentation for SOC measured at 0–10,
10–20, 20–30 and 0–20 cm.

20
Abdalla et al.
(2016)
Arid regions

Soil
management

No-tillage Comparative evaluation Observed that conventionally tilled soils emitted 21% more CO2

than untilled soils, with greater emissions occurring in sandy soils
and arid climates.
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The combination of livestock practices (including improved pastures,
intensifying ruminants' diets, changes in land-use practices and changing
breeds of large ruminants) contributed in an estimated mitigation potential
of 417Mt CO2-eq corresponding to approximately 12% of the global
livestock-related CH4 and CO2 emissions associated mainly with extensive
livestock systems (studies 6 and 9).

For Soil Organic Carbon (SOC), integration of improved agroforestry in-
creased SOC stocks by 42–196% at the depth of 0–15 cm, and 19–110% at
cumulative one-meter depth soil profile compared to Business-As-Usual
(BAU) while no-till practice increased annual global rate of SOC accumula-
tion by 0.17 Gt C (3, 4).

Similarly, Study 7 found that changes in practices including; switching
from severely degraded grazing lands to thosewith improvedmanagement,
switching from rain-fed cultivation with full tillage to reduced tillage and
with different level of nutrient inputs, switching from reduced tillage
rain-fed cultivation to native ecosystems and converting combined mosaic
vegetation (assumed to be shifting cultivation cycle) to native ecosystems
resulted in carbon sequestration rates in the top 30 cm of the soil of about
0.4 to 5 t CO2e ha−1 yr−1, and for changes that included in soil and vege-
tation of about 6 to 22 t CO2e ha−1yr.

Further, soil carbon was observed to be greater in intercropped treat-
ment in the first 0–30 cm, suggesting additional carbon input from the
intercropped legumes but bulk density was however lower in the topsoil
and deeper soil horizons (study 11).

The implementation of multiple practices (minimum tillage, crop diver-
sification and soil cover) at the same time could increase the GHG mitiga-
tion potential for some of the practices. For instance, five years of
Conservation Agriculture (CA) treatment using direct seeding with a
maize cotton rotation, SOC was 46% (9.7 Mg ha−1) greater compared
with a conventional plough treatment with sole maize (studies 12 and
6

15). Five years of CA treatment also increased SOC by 70% in sandy soils
and 40% increase in finer texture soils compared to conventional agricul-
ture (studies 12 and 15).

In a similar finding, results from the study 17 shows that Winter wheat
cover crop produced a net accumulation of 257 g CO2-C m−2 under no-
tillage whereas tilled plot with no cover crop produced a net emission of
197 g CO2-C m−2 and the untilled plot with no cover emitted even higher
rates of 235 g CO2-C m−2. However, in an initial evaluation, study 18
found no significant differences between conventional tillage and reduced
tillage systems on N2O emissions. Reiterating the dilemma, study 19
found no differences between CA and conventional practices after six
years of experimentation for SOC measured at 0–10, 10–20, 20–30 and
0–20 cm in Malawi.

4. Discussion

CSA is a low carbon agriculture strategy that has the potential to trans-
form agricultural agriculture systems (Frank et al., 2019; Allen et al., 2018;
Feliciano et al., 2013). The data (presented in Table 2) indicates that CSA
mitigation potential is of interest to African countries. Nonetheless, a
huge gap exists in the actual quantification of the GHGmitigation potential
of CSA practices. As observed, few studies have taken into consideration the
rigorous quantification of the GHG mitigation balance of CSA practices. A
disproportionate number of studies were found across Africa. For instance,
Southern and Eastern Africa had themost studies conducted on CSAmitiga-
tion. Southern and Eastern Africa are considered the hub of CSA in Africa
due to the numerous CSA projects implemented (Ambaw et al., 2019;
Bellarby et al., 2014). Therefore, extensive trials and experiments to ascer-
tain the GHGmitigation potential of CSA in those areas are explored. Many
countries in Central,Western andNorth Africa are progressively integrating
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CSA into their agriculture value chain (FAO, 2020). The steady growth in
the number of projects requires in-depth scientific evaluations into the
GHG mitigation potential of climate-smart agriculture in those areas.

Greenhouse gas emissions from cropland management dominated the
studies. Cropland constitutes a significant source of GHG emissions. Never-
theless, cropland management presents several opportunities for GHG
emissions reduction (Mutenje et al., 2019; Paul et al., 2018). Most of the
studies concentrated on SOC, soil quality, land-use and soil fertility man-
agement with less emphasis on livestock management. Nevertheless,
while in several African countries livestock production represents a signifi-
cant GHG emitter, many of the CSA practices targeted cropland manage-
ment. Cropland cultivation is a primary practice for almost every farmer,
whereas livestock is considered a luxury in some communities and is con-
ducted by specific ones (Olorunfemi et al., 2019; Das et al., 2014). The com-
plexities of livestock management in Africa contribute substantially to its
low prioritization for climate change mitigation actions in some countries.
For instance, pastoralism in Central, Western and some parts of Eastern
Africa complicate CSA targets for the livestock sector. Constant movements
and unreliable sources of feed impede long-term intensification measures,
as well as monitoring and evaluation systems.

The specific CSA practices analyzed in the studies show that agrofor-
estry, organic manure application and switching from degraded lands to
improved lands have a vast potential of reducing GHG emissions. Agrofor-
estry increases tree cover and contributes to increased biomass above and
below ground including SOC (Ambaw et al., 2019). Tree litter enhances
soil microclimatic conditions, produces green manure and improves
fallowing practices. As observed in study number 3, the implementation
of improved agroforestry practices increased SOC in experimental areas
across the continent. Even though agroforestry presented a substantial
GHG mitigation potential, we found only one detailed assessment on this
CSA option. Degraded lands are lands with low carbon stocks (usually
less than 35 t of carbon per hectare) (WRI CAIT, 2015). Degraded lands
have less tree cover and peat, thereby unable to contain or sequester
much carbon. Land switching provides ample opportunities for land resto-
ration and mitigation benefits. Results from some of the studies (7, 16) af-
firm that switching from severely degraded lands to those with improved
management practices resulted in substantial carbon sequestration and
land restoration.

Integrated nutrient management, intercropping and reduced/no-tillage
were also effective in reducing GHG emissions. Even though analytical ap-
proaches varied across different countries, results were similar for these prac-
tices (integrated nutrient management, intercropping and reduced/no-
tillage). For instance, study number 8 concluded that C content increased
when fertilizers and organic inputs are combined compared to the exclusive
application of fertilizers or organic materials. Intercropping with nitrogenous
plants increased soil GHG sequestration potency, which became larger the
more extended the intercropping (13, 14). Management practices such as im-
proved pastures, intensification of ruminants' diets and changing breeds of
large ruminants have been proposed as practices with climate changemitiga-
tion benefits (Gerber et al., 2013). Improved pastures provide sufficient nutri-
tion to animals compared to native savanna pastures (Paul et al., 2018;
Thornton and Herrero, 2010). In the context of a cut and carry system, im-
proved pastures reduce CH4 emissions from livestock enteric fermentation
and promote spot collection of manure. Sustainable intensification of rumi-
nants' diets, including feed additives, increases digestibility, lowers CH4 emis-
sions from enteric fermentation and manure storage. For example, improved
forage quality by supplementing Pennisetum purpureum Schumach with con-
centrates reduced GHG emissions intensity in Kenya (9).

Methodological limitations were reported in several of the studies. For
instance, even though progressive interest was established on the contribu-
tion of CSA to GHG mitigation, methodological weaknesses resulted in less
robust analysis. Many of the studies relied on the IPCC Tier 1 hierarchical
model for GHG quantification. The Tier 1 approach is important in describ-
ing GHG situations, especially in developing countries where GHG mitiga-
tion experts and quantification materials are lacking (Hanle et al., 2019;
Briner and Moarif, 2017). Nevertheless, the approach is not robust enough
7

to present accurate picture and future scenarios. The few studies that
employed Tier 2 and “limited Tier 3” showed significantly different estima-
tions as compared to the Tier 1 studies. Amore specific methodological gap
observed in the studies was the absence of specific emission factors used in
the evaluations. The inability to employ area-specific emission factors af-
fected the establishment of key categories for some specific areas.

An area-specific analysis is expected to generate reliable information
that feeds into national circumstances. Key category analysis provides the
opportunity to identify themajor sources and sinks of GHG emissions. Iden-
tification of key categories in the Agriculture Forestry and other Land use
(AFOLU) sector helps to channel resources and technical expertise to
achieve GHG targets efficiently. Localization of GHG emission estimations
also helps to reduce uncertainties in national circumstances (Hanle et al.,
2019; Briner andMoarif, 2017). As CSA remains prominent in Africa, prog-
ress is expected to advance towards specific emission factors for key emis-
sion categories. The use of region-specific emission factors will lead to
reliable quantification and will inform appropriate mitigation actions.
However, the general lack of technical and financial capacity to conduct
the needed measurements and modelling hinders the ability of African
countries to budget their GHG emissions accurately.

5. Conclusion and policy implications

CSA is a relevant mechanism to support food system transformation in
Africa. Its' role in GHG mitigation is as recognizable as food security and
climate change adaptation. The systematic-narratives reveal that analysis
and interpretation of the GHG mitigation potential of CSA have become
relevant among the scientific community in Africa. A detailed search of
resources has outlined some important scientific studies on the topic.
However, there was a disproportionate distribution of the studies across
the continent, calling for more research in the lagging areas. Most of the
studies employed the IPCC lower-tier methodology (Tier 1), which is
not robust enough for accurate results. We thus, call for more robust
methodological approaches in CSA mitigation estimation. As limited ex-
perimental evidence exist on the GHG mitigation potential for some of
the CSA alternatives including agroforestry, rotational farming, improved
livestock breed and intensification of ruminants' diet, we recommend fur-
ther experimental studies into these alternatives in more locations/con-
texts in Africa. The limited studies may be insufficient for generalization
indicating a need for more studies that focus on the mitigation pillar.
Progress on this pillar is generally limited by a lack of the necessary ana-
lytical infrastructure to conduct the needed measurements. Hence, there
is an urgent need to invest in laboratory facilities and skills training to im-
prove data collection and quality. In policy context, we recommend devel-
opment of stronger collaborations among scientists in developed and
developing countries for efficient transfer of knowledge and technology
for GHG estimation. Financial investments into CSA emission targets are
relevant to advance interest in mainstreaming CSA into national develop-
ment plans and Nationally Determined Contributions (NDCs). Simulta-
neously, appropriate Measurement, Reporting, and Verification (MRV)
systems should be developed.
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