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Abstract— With the huge variety of Earth observation satellite
missions available nowadays, the collection of multisensor remote
sensing information depicting the same geographical area has
become systematic in practice, paving the way to the further
breakthroughs in automatic land cover mapping with the aim
to support decision makers in a variety of land management
applications. In this context, along with the increase in the volume
of data available, the availability of ground-truth (GT) data to
train supervised models, which is usually time-consuming and
costly, may even be more critical. In this scenario, the possibility
to transfer a model learned on a particular time span (source
domain) to a different period of time (target domain), over the
same geographical area, can be advantageous in terms of both
cost and time efforts. However, such model transfer is challenging
due to different climate, weather, or environmental conditions
affecting remote sensing data collected at different time periods,
resulting in possible distribution shifts between the source and
target domains. With the aim to cope with the multisensor
temporal transfer scenario in the context of land cover map-
ping, where multitemporal and multiscale information are used
jointly, we propose a Multisensor, Multitemporal, and Multiscale
SPatially Aware Domain Adaptation (M3SPADA) framework,
a deep learning methodology that jointly exploits self-training
and adversarial learning to transfer a multisensor land cover
classifier (MSLCC) from a time period (year) to a different one
on the same geographical area. Here, we consider the case in
which each domain (source and target) is described by a pair of
remote sensing datasets: a satellite image time series (SITS) of
optical images and a single very high spatial resolution (VHR)
scene. Experimental evaluation on a real-world study case located
in Burkina Faso and characterized by operational constraints
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shows the quality of our proposal to deal with the temporal
multisensor transfer in the context of land cover mapping.

Index Terms— Data fusion, deep learning, multisensor land
cover mapping, satellite image time series (SITS), temporal
domain adaptation, very high spatial resolution (VHR) imagery.

I. INTRODUCTION

TODAY, an unprecedented multitude of satellite missions
continuously acquires remotely sensed images, thereby

opening up new opportunities to monitor the Earth surface at
different spatial and temporal scales. Therefore, the same area
can be effectively covered by a rich, multifaceted, multisensor,
and diverse set of information [1]. For example, a study site
can be described by very high spatial resolution (VHR) optical
imagery that finely describes the underlying spatial patterns
as well as high spatial resolution (HR) satellite image time
series (SITS), such as the ones provided by the European
Space Agency’s Sentinel-2 mission [2], that allows to capture
the temporal dynamic of spatiotemporal phenomena (i.e., crop
phenology for agricultural land cover).

The remote sensing community has been focusing its efforts
for a while now to demonstrate the benefit to leverage mul-
tisensor information provided by diverse sensors via recent
deep learning approaches [3], [4]. With a particular emphasis
on land use and land cover (LULC) mapping, several recent
studies [5], [6], [7] have demonstrated superior performances
through the combination of multiscale and multitemporal
information via modern neural network approaches.

Nonetheless, the majority of the efforts done, to date, in the
analysis of multisensor remote sensing data mainly cover the
supervised machine learning setting [3], [4]. In this setting,
a large amount of reference [or ground truth (GT)] data is
required to train the classification model, hence posing serious
challenges to its use in contexts where a reduced amount of,
or no, reference data is available. For instance, when a land
cover map (LCM) has to be updated from previous years,
costs and resources related to new field campaigns can prevent
the possibility to collect new reference data, thus hindering
either the evolution or the train of an updated land cover
classification model [8].

A straightforward approach would be to use the existing ref-
erence data collected by previous field campaigns or released
by public/government agencies, to save time and money for
the production/updating of LCMs. This possibility can, on the
one hand, take advantage of prior endeavors and, on the other
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Fig. 1. Multisensor temporal domain adaptation setting. In our context, each
domain is described by a multisensor dataset composed of a high-resolution
optical (Sentinel-2) SITS and a VHR optical (Spot-6/7) single-date image.
Only the source domain is associated with GT (labeled samples) data.

hand, mitigate the necessity of up-to-date reference data on a
study area whose accessibility may be compromised.

Here, we start from the fact that directly transferring a
multisensor land cover classifier (MSLCC) trained on a par-
ticular year (the source domain) to another period of time
(the target domain) is challenging, since the two time periods
can be affected by different climate, weather, or environmental
conditions [9], [10]. This results in shifts or differences in the
distributions of the underlying remote sensing data.

In the general field of computer vision and machine learn-
ing, addressing the distribution shift problem to adapt a model
trained on a source domain to an unlabeled target domain
is referred as unsupervised domain adaptation (UDA) [11].
Concerning the field of remote sensing, several approaches
have been introduced to cope with UDA in the context of
VHR imagery analysis [12], [13], and only few strategies
are available for SITS data [10], [14], [15], while, to the
best of our literature review, no approach has been proposed,
as of now, to cope with the challenging UDA problem in
the context of multisensor remote sensing data analysis for
the LULC downstream task. More precisely, multiscale and
multitemporal optical imagery is jointly exploited in order to
take the most out of the complementary of these two sources
of information.

Here, we consider the multisensor temporal UDA
(MStUDA) problem where both source and target domains
are characterized by multisensor information (i.e., a high-
resolution optical SITS and an optical single-date VHR image,
both available for each domain), while only the source domain
is featured by GT (labeled samples) data. This setting is
depicted in Fig. 1. The goal is to train an MSLCC from
the labeled samples from the multisensor source domain
and, subsequently, make inference on the multisensor remote
sensing data describing the target domain where no GT
reference is available at training time. More precisely, we focus
on the specific case of temporal domain adaptation that is
a special UDA case in which data shifts happen between

information coming from different periods of time over the
same area. Other kind of UDA setting can involve shifts
related to the use of different sensors between source and target
domains [16] as well as source and target domains covering
different geographical areas [10], but they are out of the scope
of the research work proposed in this manuscript.

In addition, we focus our attention on the case of sparse
GT data [17] where a limited quantity of annotated surface
(with respect to the extent of the area under study) is avail-
able. This situation meets operational constraints related to
field campaigns [18], [19], thus limiting the use of standard
semantic segmentation approaches that require a fully dense
reference annotation.

With the aim to cope with the MStUDA problem, in the con-
text of land cover mapping from multitemporal and multiscale
remote sensing data, we propose a Multisensor, Multitem-
poral and Multiscale SPatially Aware Domain Adaptation
(M3SPADA) framework, a novel deep learning framework able
to temporally transfer, over a particular geographical area,
an MSLCC from a period of time (source domain) featured
by reference data to a different period of time (target domain),
still described by multisensor information, where no reference
data are available.

M3SPADA combines both self-training and adversarial
learning for MStUDA under sparsely annotated GT data. More
precisely, we consider, as multisensor remote sensing data, the
simultaneous availability, for both source and target domains,
of optical SITS data at HRs (i.e., Sentinel-2 data at 10 m of
spatial resolution) and a VHR imagery (i.e., Spot-6/7 image at
1.5 m of spatial resolution). Methodologically speaking, our
framework exploits adversarial learning with the goal to learn
domain-invariant features and gradually transfer the underlying
MSLCC from the source to the target domain via pseudo-
labeling. The pseudo-labeling process selects pseudo-labels
on the target domain as stable spatial areas between the two
considered years using them as tie points to connect the two
domains, thus decreasing the distribution gap between them.

Experimental evaluation is carried out on a rural study site
located in Burkina Faso, referred as Koumbia site and charac-
terized by a mostly agricultural land cover nomenclature (crop
types as well as natural and built-up classes). We consider
multisensor data coming from two different years (2018 and
2021) and performing a transfer assessment considering both
2018 toward 2021 and vice versa. We underline that each
year (domain) is characterized by multisensor information:
1) a high-resolution optical (Sentinel-2) SITS and 2) a VHR
optical (Spot-6/7) single-date image. To assess the behavior
of M3SPADA, we conduct both quantitative and qualitative
investigations considering state-of-the-art UDA frameworks
that were adapted to the case of multisensor land cover
classification.

The rest of this manuscript is organized as follows. The
related literature on multisensor land cover classification and
domain adaptation is described in Section II. Section III
describes the MStUDA problem and introduces M3SPADA.
Study site and the associated multisensor remote sensing data
are introduced in Section IV. The experimental evaluation is
reported in Section V. Section VI concludes this article.
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II. RELATED WORK

A. Multisensor Land Cover Classification

Multisensor land cover classification is getting more and
more attention due to the unprecedented availability of hetero-
geneous sensors data covering the same study area [1]. Several
recent surveys has discussed such growing topic [3], [4].
Hong et al. [3] provide a categorization and a baseline frame-
work to cope with the multisensor analysis of remote sens-
ing data via convolutional neural networks (CNNs). The
research study focused on “what,” “where,” and “how” to fuse
several pairs of remote sensing modalities mainly address-
ing mono-temporal imagery for land cover mapping. More
recently, [4] analyzes the current trends in the field of multi-
sensor remote sensing data fusion and discussed the different
applications, among the other land cover mapping, that can
benefit from the fusion of multisensor Earth observation data.
Considering multisensor remote sensing land cover mapping,
when both modalities are SITS, [20], [21], [22], and [23]
combine together synthetic aperture radar (SAR) and optical
SITS with the aim to leverage the complementarity between
active and passive sensors. While the pioneer work presented
in [20] adopts an early fusion mechanism (optical and radar
data are first combined together, and subsequently, a deep
learning architecture is deployed on the stack of multisensor
data), the more recent strategies adopt a late fusion mechanism
(an encoder per modality is used, and the combination is
internally implemented by the neural network through an end-
to-end process). In addition, the research works conducted
in [21], [22], and [23] differ between each other by the type of
the encoder they adopt to process the multitemporal informa-
tion (recurrent, convolutional, or transformer neural network).
Focusing on the combination of multitemporal and multiscale
information via deep learning strategies, [5], [6], and [7]
propose to combine optical SITS with a mono-temporal VHR
optical imagery with the objective to jointly exploit multitem-
poral as well as multiscale information. While [5] and [6]
exploit recurrent neural networks to model the time-series
information recently, [7] adopts 1-D CNN to analyze mul-
titemporal imagery, demonstrating that 1-D CNN seems more
appropriate to manage multitemporal information in the fusion
process. In all the proposed approaches, the VHR imagery is
managed by means of a 2-D CNN encoder.

B. Multisensor UDA

UDA [11] methods belong to the family of transfer learning
approaches [24], which has the main objective to trans-
fer a model trained on a labeled source domain to an
unlabeled target domain. Recent advances in UDA focus
their efforts to align domains through data transformation
and/or extract domain-invariant features to reduce the dis-
tribution gap between the source and target domains [11].
Ganin et al. [25] introduce the domain-adversarial neural net-
work (DANN) model where a standard neural network model
is augmented with a domain classifier that may distinguish
between source and target samples in a multitask learning
setting. The domain classifier is associated with a gradient
reversal layer (GRL) that enforces the features extracted by

the encoder to be invariant with respect to the domains.
The work described by Tzeng et al. [26] still considers an
adversarial training setting: here, they define the adversarial
discriminative domain adaptation (ADDA) method. Inspired
by the concept of generative adversarial network (GAN), this
approach set up a two-player game where a discriminator
network tries to distinguish between source and target sample
representations derived by the generator, while the generator
tries to fool the discriminator network. Currently, adversar-
ial learning is one of the main trends when it comes to
UDA [27], [28], [29]. When multiple modalities come into
the picture, still a limited amount of research work has been
conducted in the general field of computer vision and machine
learning that exploits the opportunities related to modern deep
learning frameworks. Qi et al. [30] introduce a multisensor
domain adaptation neural network based on the attention
mechanism with the aim to learn domain-invariant features
among modalities and domains. The proposed methodology
is evaluated on cross-domain applications related to emotion
recognition and cross-media retrieval. The involved modalities
cover visual and acoustic information. With the aim to tackle
fine-grained action recognition classification, [31] defines a
deep learning-based framework that exploits both adversarial
learning (GRL) and self-supervised alignment to cope with
multisensor UDA. In this context, the multisensor information
is characterized by RGB images and optical flows depicting
human actions. The case of multisensor UDA for RGB and
depth data has been tackled in the study proposed in [32].
Here, the authors have exploited collaboration among mul-
tiple modalities, pseudo-labeling, and generative models to
capture modality-specific and modality-integrated information
in order to transfer the neural network classification model
from a multisensor source domain to a mono-sensor target
domain. At the intersection of remote sensing analysis and
UDA, early research focused on proposing UDA strategies
for VHR imagery [33] with a major focus on semantic
segmentation tasks [12] that require costly and time consuming
dense annotations. While moving to the context of SITS
data, only, in recent times, some strategies emerged, which
address both spatial [10], [14] and temporal [9] transfer
learning. Nonetheless, none of them cover the possibility to
manage simultaneously multitemporal and multiscale remote
sensing information in a multisensor data fusion setting.
The extensive literature review we have performed clearly
underlines that recent UDA approaches, especially the ones
based on deep learning strategies, are still unexplored in
the context of multisensor UDA for remote sensing anal-
ysis considering both spatial as well as temporal transfer
tasks.

III. M3SPADA

In this section, we introduce our framework, M3SPADA,
designed to cope with MStUDA for land cover mapping.
First, we define the problem setting; then, we provide a
general overview of our framework. Subsequently, we describe
the different components on which M3SPADA is built on.
Finally, we describe the multisensor classifier used in our
framework.
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Fig. 2. Overview of our framework. M3SPADA takes as input multisensor (SITS and VHR) source data (Ds ) with its associated reference GT and
multisensor (SITS and VHR) target data (Ds ) with the objective to learn a multisensor classification model to predict land cover labels for target data. During
the self-training iterative process, M3SPADA alternates domain-invariant feature learning via adversarial training and pseudo-labeling with the objective to
gradually adapt the underlying classification model from the source to the target multisensor data to cope with the MStUDA problem.

A. Problem Setting

In this work, we consider the problem of MStUDA. A mul-
tisensor source domain Ds

= {(ms
i , ys

i )}
ns

i=1 and a multisensor
target domain Dt

= {m t
i }

nt

i=1 are given, with ns and nt the
number of samples for the source and target domains, respec-
tively. We indicate with M s , Y s , and M t the set of multisensor
source samples, source labels, and multisensor target samples,
respectively, Ds

= {M s, Y s
} and Dt

= {M t
}. In our case, each

multisensor sample mi is a pair of datasets describing the same
geospatial location; more precisely, mi = (sitsi , vhri ), where
sitsi is a SITS pixel and vhri is a patch of a VHR imagery
centered around the SITS pixel. The land cover information
(ys

i ) is only available for the multisensor source domain. The
number of land cover classes equals K , ys

i ∈ {1, . . . , K }.
The set of multisensor samples belonging to the two

domains cover exactly the same spatial extent but at different
periods of time (i.e., different years). This means that the
same geospatial location is covered by a multisensor sample
coming from the source as well as one from the target
domain. Thus, ns is equal to nt , and location(ms

i ) is equal to
location(m t

i ), where location(·) supplies the geospatial location
(geographical coordinates) of a multisensor sample.

Here, the goal is to train a multisensor land cover mapping
model on labeled multisensor source data as well as unlabeled
multisensor target data to overcome possible distribution shifts
between the two domains (i.e., differences in environmental,
weather, or climate acquisition conditions) in order to effec-
tively classify samples belonging to the multisource target
domain considering the same set of land cover classes, under
a closed-set scenario [34].

B. General Overview of M3SPADA

Fig. 2 visually depicts how M3SPADA behaves. M3SPADA
leverages both adversarial learning and self-training with the

goal to do the following: 1) learn a domain-invariant feature
space with the aim to overcome possible data distribution
gaps between the source and target domains and 2) gradually
transfer the MSLCC from the source to the target domain via
spatially aware pseudo-labeling.

Regarding the adversarial learning strategy, we adopt the
GRL model proposed in [25]. Concerning the pseudo-labeling
selection procedure, it is based on the fact that the multisensor
remote sensing data from the source and the target domains are
spatially aligned (i.e., they cover exactly the same geographical
extent).

More precisely, given two multisensor samples ms
i (coming

from the source domain) and m t
i (coming from the tar-

get domain), we indicate with location(ms
i ) = location(m t

i )

the fact that they are spatially aligned. If the multisen-
sor classifier provides the same decision for both samples
[Cl(ms

i |WF , WL) = Cl(m t
i |WF , WL)] and the predicted class

for the source sample (ms
i ) is the right one, then the target

sample (m t
i ) is associated with the pseudo-label generated

by the MSLCC. As the iterative training procedure goes on,
more importance is attributed to pseudo-label information
transferring the focus of the multisensor classifier from the
source to the target data.

C. Learning Domain-Invariant Feature Space
With the aim to extract a domain-invariant feature space

for multisensor remote sensing data, we leverage the strategy
proposed in [25], namely, DANN, as backbone block of our
framework.

The network structure has three parts, a multisensor encoder
network F, relying on the WF parameters; a domain classifier
head D, with parameters WD; and a classifier head L, for the
land cover classification task, with parameters WL . The mul-
tisensor encoder network is described later, in Section III-F.
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The backbone network of our framework is a multitask
network that has the objective to generate a new data represen-
tation via the multisensor encoder F ensuring high land cover
classification accuracy and, simultaneously, making difficult
to distinguish between the domain each multisensor sample
comes from. While the loss associated with the land cover
classification task is defined as follows:

Lc
(

M s, Y s
|WF , WL

)
(1)

where Lc(M s, Y s
|WF , WL) is modeled with standard categor-

ical cross-entropy loss, the adversarial loss function is defined
as follows:

LAdv
(

M s, M t
|WF , WD

)
(2)

where LAdv(M s, M t
|WF , WD) is the loss related to the domain

classifier head modeling a binary classification problem in
which class label represents the possibility to belong exclu-
sively to the source or the target domain. Also, in this case, the
categorical cross-entropy function is employed. The two losses
are combined together for the domain adaptation process as
follows:

LDA
(

M s, Y s, M t
|WF , WL , WD

)
= Lc

(
M s, Y s

|WF , WL
)

− γ LAdv
(

X s, X t
|WF , WD

)
(3)

where the hyperparameter γ balances the contribution of
the loss related to the domain classifier head in the
domain-invariant feature learning process.

While the Lc(M s, Y s
|WF , WL) loss is optimized as com-

monly done for general neural network models, in order to
leverage standard stochastic gradient descent to optimize the
LDA loss function, the LAdv(X s, X t

|WF , WD) loss employs
the GRL trick [25]. More in detail, the GRL acts as the
identity transform during the forward propagation pass, while
it reverses the gradient (the gradient is multiplied by −1)
during the backward propagation (backpropagation) for the
update of the multisensor encoder parameters F. In this way,
the GRL trick permits to implement the adversarial training
strategy with standard backpropagation avoiding any extra
parameter. More in detail, while the domain classifier head
parameters are updated as usual, the reversed gradient is only
applied to the multisensor encoder network with the aim
to generate domain-invariant features and fool the domain
classifier [14].

D. Spatially Aware Self-Training

In order to further adapt the multisensor land cover model to
effectively classify samples belonging to the unlabeled target
domain, we exploit a pseudo-labeling strategy that introduces
pseudo-labels for a subset of samples coming from Dt . Com-
monly, in the context of self-training learning [35], given a set
of unlabeled samples, the model output distribution is used to
select high-confidence samples from which pseudo-labels are
derived to enrich the current training set. The pseudo-labeling
mechanism is usually implemented via thresholding on the
model output softmax in such a way that all the samples on
which the most probable prediction value is greater than the

defined threshold are retained as pseudo-labeled samples. The
main issue related to this procedure is related to the way in
which this hyperparameter is fixed [36], since it can negatively
affect the performance of the underlying sampling process.

In our case, we leverage the specificity of the land cover
mapping MStUDA problem defining a procedure based on
the spatial consistency between the two samples ms

i and
m t

i sharing the same geospatial location [location(mt
i ) =

location(ms
i )]. Such a strategy overcomes the standard issue

related to pseudo-labeling procedure allowing our framework
to avoid the definition of any threshold selection step. More
in detail, the set of target samples to which pseudo-labels will
be associated are chosen based on two criteria that need to
be simultaneously met. Let Cl(·|WF , WL) be the prediction of
the MSLCC; the first criterion is based on spatial consistency
as described below: Cl(ms

i |WF , WL) = Cl(m t
i |WF , WL), such

that location(m t
i ) = location(ms

i ), and the second criterion
requires that the MSLCC provides the correct prediction for
the source sample: Cl(ms

i |WF , WL) = ys
i .

The rationale behind this process is related to selecting
target samples that exhibit a stable behavior, in terms of model
output prediction, with respect to the corresponding source
sample in terms of geospatial location, and, at the same time,
we require that the MSLCC predicts the correct class on the
source sample ms

i . In this way, the procedure allows to choose
pseudo-labeled samples that act as tie points between the
source and target domains leveraging, on the one hand, the
model output stability and, on the other hand, target samples
that are, in principle, characterized by a small distribution gap;
thus, they are more useful to pave the classification model
transfer from the source to the target domain.

More formally, we can define the loss associated with the
pseudo-labeled samples as follows:

L p(M s, M t , Y s, Ŷ t
|WF , WL)

=

∑
mt

i ∈M t

1{Cl(ms
i )=Cl(mt

i ) and Cl(ms
i )=ys

i )}
H(ŷt

i , Clprob(m t
i )) (4)

where 1cond is an indicator function that returns 1 if the
condition cond is verified and 0 otherwise, Clprob(·) provides
the classifier output distribution over the possible set of land
cover classes, H(·, ·) is the categorical cross-entropy loss, Ŷ t

is the whole set of pseudo-labels for the target domain, and
ŷt

i is the pseudo-label land cover class with the highest model
output probability with respect to Clprob(m t

i ) for the sample
m t

i coming from the target domain.

E. Training Procedure of M3SPADA

Algorithm 1 depicts the pseudo-code of the training pro-
cedure for our framework. The inputs of the procedure are
constituted by the data coming from the source [Ds

=

(M s, Y s)] and the target [Dt
= (M t )] domains and E , the

number of epochs for the neural network model training.
At the beginning, the classification model is deployed on

the target data M t in order to obtain the set of pseudo-labels
Ŷ t (line 3). Then, (line 4) the trade-off value λ is computed
as linear function of e (the current number of epochs) and E
(the total number of epochs).
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Fig. 3. MSLCC model we have employed as backbone of M3SPADA. The model as two input encoders, one for the SITS sensor and one for the VHR
sensor; and two output heads, one for the land cover classification task and one for the domain classification task. This latter support the implementation of
the adversarial learning strategy. At inference time, only the former head is retained, while the latter is ignored.

Algorithm 1 Training Procedure of M3SPADA
Require: M s (the source samples), Y s (the source labels), M t

(the target samples), E (the number of epochs).
Ensure: WF (the encoder parameters), WL (the land cover

classifier parameters).
1: e = 0
2: while e < E do
3: Ŷ t = Clprob(M t )

4: λ = e
E

5: L O SS = (1-λ) × L D A(M s, M t , Y s
|WF , WL , WD)

+ λ × L p(M s, M t , Y s, Ŷ t
|WF , WL)

6: ∇WF ,WL ,WD L O SS with mini-batch SGD
7: e = e + 1
8: end while
9: return WF , WL

Subsequently (line 5), the λ value is employed to dynam-
ically combine the LDA and the L p losses with the aim to
vary their contribution during the learning procedure. More
precisely, the λ value starts from zero and linearly increases
with the objective to gradually provide more importance to the
L p term.

This is done, since at the early iterations, we force the model
to exploit as much information as possible from the labeled
source domain while learning samples’ representations that are
invariant with respect to the specific domain. The reason is that
at the beginning of the training process, the model is not yet
effective, so that the prediction on the target data could be
highly biased. As the learning procedure advances on, the λ

value increases, hence decreasing the importance of the first
term (LDA) while increasing the importance of the second one
(L p). This mechanism implements a gradual transfer from the

first to the second term during the learning procedure, allowing
the underlying classification model to smoothly focus on the
specificity of the target domain via the use of the pseudo-labels
chosen as described in Section III-D. After that, the current
loss LOSS is computed (line 6); the network parameters WF ,
WL , and WD are updated by mini-batch stochastic gradient
descent. At the end of the training procedure (line 9), the
network parameters WF and WL related to the multisensor
encoder F and the land cover classifier L, respectively, are
returned as a result of the training process of M3SPADA.

F. MSLCC Architecture

Fig. 3 sketches the architecture of the MSLCC we have used
as backbone for the M3SPADA framework. We name such
model as MSLCC. The model as two input branches, one for
the SITS data and one for the VHR imagery; and two output
heads, one for the land cover classification task (L) and one
devoted to discriminate between samples from the source and
the target domains (D) in order to implement the adversarial
learning strategy. At inference time, only the former head is
considered, while the latter is ignored.

Concerning the SITS encoder, it is inspired by the archi-
tecture of the TempCNN [37] model, a well-established 1-D
CNN model especially tailored to cope with SITS land cover
mapping. The SITS encoder is composed of three identical
blocks followed by a flatten operation to extract the feature
representation for this sensor. Each of the blocks is composed
by a 1-D convolutional operator with 64 filters and a kernel
equals 5, a batch normalization layer, a nonlinear activation
function [rectifier linear unit (ReLU)], and a dropout layer.

Regarding the VHR encoder, this module is inspired by
the one used in the architecture previously introduced in [5].
Such module is built on three identical blocks followed by a
global average pooling operation. Each block is composed by
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a 2-D convolution operator with 128 filters and a kernel with
size equals 5 × 5, a batch normalization layer, a nonlinear
activation function (ReLU), and a dropout layer.

Once the per-sensor features are extracted, they are fused
together by concatenation. Then, the fused multisensor rep-
resentation is used to feed both the land cover classification
(L) and the domain classification (D) heads. These two clas-
sification heads have the same structure, a fully connected
layer of 256 neurons followed by batch normalization, ReLU
activation function, dropout, and a final output layer with as
many neurons as the numbers of land cover classes for the
land cover classification head and two output neurons for the
domain classification heads (source versus target).

According to recent advances in multisensor land cover
classification [5], [23], we equip our backbone with auxiliary
classifiers in order to take the most out of the fusion of
different sensor data. More precisely, to enforce the multisen-
sor deep learning model into fully leveraging the inter-sensor
relationships, an additional classifier head per branch is used
at training stage with the aim to strength as much as pos-
sible the discriminative power of the extracted per-source
representations. At inference time, the per-source classification
heads are discarded. Since the contribution of the per-source
classification heads must be combined with the contribution
of the main classification head, at training stage, we adopt the
weighting schema proposed in [5].

IV. STUDY AREA, MULTISENSOR REMOTE SENSING
DATA, AND GT REFERENCE

The study site is located around the commune of Koumbia,
in the Province of Tuy, Hauts-Bassins region, in the southwest
of Burkina Faso. This area has a surface of about 2338 km2

and is situated in the subhumid Sudanian zone. The surface is
covered mainly by forests and natural savannah (herbaceous
and shrubby), interleaved with a large portion of land (around
35%) used for rainfed agricultural production, mostly small-
holder farming. The main crops are cotton and cereals (maize,
sorghum, and millet), followed by leguminous and oleaginous.

Fig. 4 presents the study site with the 2018 reference data
(GT) superposed on a Sentinel-2 image of September 12, 2018.
A more detailed view corresponding to the red box in the
overview is also depicted on the bottom right of the figure.
A specific analysis of the GT is provided in Section IV-B.

A. Multisensor Remote Sensing Data Description

Here, we describe the multisensor remote sensing data
associated with both 2018 and 2021 years.

1) Sensor 1: HR Optical SITS: We have collected
Sentinel-2 SITS data spanning the years 2018 and 2021,
amounting for a total of, respectively, 35 and 39 available
scenes. According to the available acquisitions, we conducted
a visual analysis and selected 24 images for each year account-
ing for an uniform temporal sampling among the two years.
The main selection criteria were as follows: 1) discard images
that were visually impacted by strong cloud coverage and
2) keep a sufficient amount of acquisitions over the rainy
(cropping) season, occurring between May and October. Fig. 5
depicts the acquisition dates of the two Sentinel-2 SITS.

Fig. 4. Koumbia study area. The GT data coming from the year 2018 are
superposed to a Sentinel-2 image covering the whole area. In the red box
(bottom right), a detail of the study site is depicted, showing the complex
structure of the underlying landscape.

Fig. 5. Acquisition dates of sentinel-2 SITS.

Fig. 6. Acquisition dates of Spot-6/7 satellite images.

All images were obtained by the value-adding products
and algorithms for land surfaces (THEIA) Pole platform1 at
level 2A, which consist in atmospherically corrected surface
reflectances via the Maccs-Atcor joint algorithm (MAJA)
processing chain [38] with associated cloud/shadow masks.
Only 10-m spatial resolution bands (blue, green, red, and
near infrared spectrum) were considered in this analysis.
Leveraging the method proposed in [39] and the available
cloud masks, as preprocessing, cloudy pixels were imputed
by means of linear interpolation considering precedent and
posterior acquisitions.

2) Sensor 2: Optical VHR Imagery: The VHR imagery we
consider in our research study is acquired via the Spot-6/7
satellite constellation, and they cover the whole study site.
Fig. 6 illustrates the acquisition dates of the Spot-6/7 satellite
images for 2018 and 2021. More precisely, for the year 2018,
we exploit a Spot-7 image acquired on October 3, 2018, and
for the year 2021, we exploit a composite image derived by
the mosaicking of the Spot-6 and Spot-7 images acquired
on October 5 and 6, 2021, respectively. All the Spot-6/7
images originally consisting of a 1.5-m panchromatic band and
four multispectral bands (blue, green, red, and near infrared)
at 6-m resolution were pansharpened to produce a single
multispectral image at 1.5-m resolution. Images from both
years are first orthorectified using ancillary data and a common

1http://theia.cnes.fr
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TABLE I
GT STATISTICS FOR YEARS 2018 AND 2021

DEM and then manually co-registered using a rigid transform
(translation) to enforce geographical colocation.

B. GT Data

GT data for 2018 and 2021 have been derived from a
large agricultural land cover dataset available online [40],
mainly consisting of field data collected by local experts on
several sites all over the tropics. GPS waypoints were gathered,
following an opportunistic sampling approach along the roads
or tracks according to their accessibility, while ensuring the
best representativity of the existing cropping practices in place.
Records were also provided on different types of non-crop
classes (e.g., natural vegetation, settlement areas, and water
bodies) to allow differentiating crop and non-crop classes.
Moreover, some additional non-crop reference polygons are
also provided, obtained by photointerpretation.

Our final GT has been assembled in a geographic infor-
mation system (GIS) vector file, containing a collection of
polygons, each attributed with a land cover class based on
information reported in the original database. Statistics about
the yearly reference datasets used here are summarized in
Table I. In order to ensure consistency with the proposed
method, we kept the exact same surface for the two reference
years by performing a year by year intersection of the polygons
of the original database.

V. EXPERIMENTS

Here, we describe the experimental evaluation we have
conducted on the study site presented in Section IV. With
the aim to assess the behavior of M3SPADA, we investigate
different dimensions: 1) we conduct a quantitative evaluation
of the performances achieved by M3SPADA with respect to the
UDA competitor we have adapted for the multisensor remote
sensing scenario; 2) we perform a qualitative investigation
of the LCMs generated by M3SPADA; and 3) we inspect
the internal representation learned by our multisensor neural
network model, and we visually compared them with some of
the best performing competitors.

A. Competing Methods

With the goal to assess the performance of M3SPADA with
respect to state-of-the-art UDA strategies, we consider the
following.

1) The DANN method originally introduced in [25]. This is
a well-known and largely employed UDA approach that
exploits GRL with the aim to obtain data representations
that are invariant to the particular domain they come
from.

2) The conditional adversarial domain adaptation with
entropy conditioning (CDAN + E) approach [27]. This
method upgrades DANN by conditioning the domain
discriminator on the classification output and minimiz-
ing an entropy loss on target data.

3) The margin disparity discrepancy (MDD) method intro-
duced in [28]. This theory-inspired technique measures
the distribution discrepancy between domains, and it
internally leverages the DANN strategy.

4) The Wasserstein distance guided representation learn-
ing (WDGRL) method described in [41] that learn
domain-invariant feature representations by using a
domain critic neural network to estimate empirical
Wasserstein distance between the two domains and
optimizing the feature extractor network to minimize the
estimated Wasserstein distance in an adversarial manner.

5) The adversarial-learned loss for domain adaptation
(ALDA) method presented in [29]. ALDA combines
domain-adversarial learning and self-training to mini-
mize the domain gap and aligns the feature distributions
by means of a noise-correcting domain discriminator.

We couple all the previous competing strategies with the
same backbone neural network we have employed in our
framework. On the one hand, this permits to directly extend
all the competing frameworks to the scenario of multisensor
land cover mapping, since no previous approach has been
proposed for MStUDA in the context of remote sensing data
analysis, and, on the other hand, it allows to fairly compare the
framework performances between each other, since the same
internal multisensor classifier is adopted.

Furthermore, we also consider two baseline strategies in
which the following hold: 1) the multisensor backbone classi-
fier is trained with only source data and directly deployed on
target data, referred as “only Ds” and 2) the multisensor back-
bone classifier is trained on labeled target data and deployed
on the rest of the target samples referred as “only Dt .” The
former constitutes a direct baseline that does not take into
account the necessity to deal with temporal data distribution
shifts, while the latter represents the performances we can
(theoretically) achieve if we have labeled data associated with
the target domain Dt .

For the two baseline strategies, we consider, as supervised
classification method, the multisensor deep learning classifier
we have introduced in Section III (the same as the backbone
of M3SPADA) as well as its per source ablations. We name
such strategies MSLCC, MSCCSITS, and MSLCCVHR that
indicate the multisensor deep learning classifier, the ablation
considering only SITS data, and the ablation considering only
VHR imagery, respectively.
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Furthermore, we also consider the per-source ablations of
M3SPADA in order to have a direct overview of the benefit
related to the joint use of multitemporal and multiscale infor-
mation. We indicate with M3SPADASITS the ablation that only
leverages SITS and with M3SPADAVHR the ablation that only
leverages VHR imagery.

B. Experimental Settings

1) Baseline Strategies Evaluation: Regarding the first base-
line (only Ds), the supervised classification model is trained
over all the source data and then deployed on the target data.
Concerning the second baseline strategy (only Dt ), solely,
the target data are involved. More precisely, target data are
split into three sets: training, validation, and test sets with a
proportion of 70%, 10%, and 20% of the whole target dataset,
respectively. With the aim to avoid possible spatial bias in
the evaluation procedure [42], we force that all the pixels
belonging to the same object will be exclusively associated
with one of the data partition (training, validation, or test).
The splitting procedure is repeated ten times, and the average
results are reported.

2) UDA Competing Methods Evaluation: All the UDA
frameworks are trained exploiting the whole set of source and
target samples with the sole access to label information coming
from the source domain.

Regarding the evaluation tasks, according to the information
presented in Section IV, we set up two temporal transfer
tasks (Ds → Dt ) where the right arrow indicates the transfer
direction from the source (Ds) to the target (Dt ) domain:
(2018 → 2021) and (2021 → 2018).

The SITS, both 2018 and 2021, are rescaled, per band,
considering the 2nd and 98th percentile of the data distribution
as minimum and maximum values. Similarly, we also rescale
the values of the VHR imagery, per band, considering the same
procedure adopted for SITS data.

For the VHR imagery, we consider image patches of size
15 × 15 pixels following the findings reported in the related
literature [5]. Note that, as in this reference work, all images
used are properly georeferenced by the provider and projected
onto a common coordinate system; hence, a regular sampling
through geographical coordinates ensures the correct super-
position of data from different sensors, net of differences
in the geometric precision of the respective orthorectification
processes, which are, by the way, negligible in our case. More
precisely, for each Sentinel-2 pixel sample, the coordinates of
its centers are used to identify the corresponding pixel over
the SPOT-6/7 image on which the patch sample is centered.
A multisensor sample mi = (sitsi , vhri ) can be, hence, built as
a pair of Sentinel-2 pixel-level time series sitsi and SPOT-6/7
image patch vhri .

The assessment of the model performances was done con-
sidering the following metrics: accuracy (global precision) and
weighted F1 score.

3) Details of the Implementation: For the neural net-
work approaches, the training stage has been conducted for
400 epochs, with a learning rate of 10−4 and a batch size
of 32. Batch normalization layers has been inserted after
each fully connected or convolutional layer (except for the

TABLE II
WEIGHTED F1 SCORE AND ACCURACY OF THE COMPETING APPROACHES

FOR THE TRANSFER TASK (2018 → 2021). THE BEST SCORE, FOR
UDA METHODS, IS HIGHLIGHTED IN BOLD

classification layer). The dropout rate is set to 0.5. For
M3SPADA, we set the value of the hyperparameter γ as
suggested by Ganin et al. [25]. In addition, domain-specific
batch normalization [43] by processing the source and target
mini-batches separately is implemented. This is similar to what
commonly done in the related literature [10].

Concerning ALDA, we set the threshold of pseudo-labels
to 0.9 according to the recent literature on self-training in the
context of land cover mapping [10].

Experiments are carried out on a workstation with a dual
Intel2 Xeon2 CPU E5-2667v4 (@3.20 GHz) with 256 GB of
RAM and four TITAN X (Pascal) GPU. All the deep learning
methods are implemented using the Python TensorFlow library
except ALDA that was implemented in PyTorch based on the
original open source implementation.3 The DANN, CDAN +

E, MDD, and WDGRL competitors are implemented via the
Python awesome domain adaptation python toolbox (ADAPT)
library [44]. All the models run on a single GPU. The code
implementation of M3SPADA is available at this link.4

C. Quantitative Results

The results, in terms of F1 score and accuracy, are reported
in Tables II and III for the (2018 → 2021) and (2021 → 2018)
transfer tasks, respectively.

We note that the lowest performances are achieved for
the models that are directly transferred from the source to
the target multisensor domain for both transfer tasks (only
Ds scenario). Nevertheless, we observe that, in this direct
transfer scenarios, the model exploiting the multisensor infor-
mation outperforms, in terms of classification performances,
the mono-sensor counterparts.

Regarding the UDA approaches, we see that M3SPADA
clearly outperforms all the competitors by more than ten
points in terms of both F1 score and accuracy. This fact
underlines the quality and the value of the proposed framework

2Registered trademark.
3https://github.com/ZJULearning/ALDA
4https://github.com/ecapliez/M3SPADA



5405716 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

TABLE III
WEIGHTED F1 SCORE AND ACCURACY OF THE COMPETING APPROACHES

FOR THE TRANSFER TASK (2021 → 2018). THE BEST SCORE, FOR
UDA METHODS, IS HIGHLIGHTED IN BOLD

that effectively combines together both adversarial learning
and pseudo-labeling in order to take the most out of the
two approaches. We can further highlight that the multisen-
sor information appears to be beneficial to the downstream
land cover mapping task due to the fact that M3SPADA
exhibits higher classification performances than its mono-
sensor ablations M3SPADAVHR and M3SPADASITS, with the
latter achieving, generally, the second best performances.

Finally, we observe that M3SPADA achieves better perfor-
mance results than the classifiers trained and tested on the
target domain (only Ds scenarios). This can be explained by
the fact that our framework can exploit more training data
(both labeled source and pseudo-labeled target samples) to
learn its internal parameters as well as focus on domain-
invariant characteristics. This last point allows M3SPADA to
overcome possible per domain biases and domain distribution
shifts due to radiometric and gap-filling preprocessing and
differences in data acquisition conditions related to environ-
mental, climatic, and weather phenomena.

1) Per-Class Analysis: Here, we report and describe the
per-class analysis regarding the competing methods on the two
transfer tasks we have considered. We first report per-class
F1 score, and subsequently, we discuss the different confusion
matrices to understand possible interclass mistakes. For this
analysis, we focus our attention on the supervised multisensor
methods MSLCC under the two scenarios (only Ds and only
Dt ) as well as M3SPADA, its mono-sensor ablations, and the
best competing UDA approach CDAN + E.

The per-class F1 score is depicted in Figs. 7 and 8 for the
(2018 → 2021) and (2021 → 2018) transfer task, respectively.

In general, we observe that M3SPADA achieves the best (or
comparable to the best) per-class score for all the nonagricul-
tural classes (grassland, shrubland, forest, bare soil/built-up,
and water) no matter the transfer task.

Regarding agricultural classes (cereals, cotton, and
oleaginous/leguminous), we note different behaviors
depending from the transfer task.

Concerning the cereals land cover class (the agri-
cultural class that is the most represented in terms of

Fig. 7. Per land cover class F1 score of the different competing approaches
considering the direct transfer strategy for the MSLCC (only Ds ); the
multisensor classification model trained on the target domain (only Dt ); and
M3SPADA, M3SPADASITS, M3SPADAVHR, and the best UDA competitor on
the transfer task (2018 → 2021).

Fig. 8. Per land cover class F1 score of the different competing approaches
considering the direct transfer strategy for the MSLCC (only Ds ); the
multisensor classification model trained on the target domain (only Dt ); and
M3SPADA, M3SPADASITS, M3SPADAVHR, and the best UDA competitor on
the transfer task (2021 → 2018).

samples), M3SPADA outperforms (or behaves comparable)
to all the other methods. Conversely, for the cotton and
oleaginous/leguminous land cover classes, M3SPADA exhibits
better performance results for the (2021 → 2018) transfer task
than for the (2018 → 2021) one. This is probably due to
the highly unbalanceness in class distribution characterizing
2018 with respect to 2021 related to these two agricultural
classes. When 2018 is used as source domain (2018 → 2021),
the under representation of the oleaginous/leguminous land
cover class negatively impacts the ability of M3SPADA to
transfer the multisensor land cover classification from the
source to the target domain. Nevertheless, M3SPADA still
remains successful compared with the best competing UDA
method, CDAN + E.

Focusing on the multisensor versus mono-sensor approaches
(M3SPADA versus M3SPADASITS and M3SPADAVHR), we see
that the joint exploitation of multitemporal and multiscale
information systematically permits to improve the classifica-
tion performances no matter the land cover class with respect
to the exclusive use of either multitemporal or multiscale
information. Despite the fact that the multitemporal informa-
tion is clearly the most important remote sensing source for
the considered land cover mapping task, introducing VHR
imagery systematically ameliorates the results over all the
land cover classes with some evident gain related to the
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Fig. 9. Confusion matrices of the land cover classification for the transfer task (2018 → 2021). True class (rows). Predicted class (columns). (a) (Only Ds )
MSLCC. (b) CDAN + E. (c) M3SPADAVHR. (d) M3SPADASITS. (e) M3SPADA. (f) (Only Dt ) MSLCC.

Fig. 10. Confusion matrices of the land cover classification for the transfer task (2021 → 2018). True class (rows). Predicted class (columns). (a) (Only Ds )
MSLCC. (b) CDAN + E. (c) M3SPADAVHR. (d) M3SPADASITS. (e) M3SPADA. (f) (Only Dt ) MSLCC.

oleaginous/leguminous land cover class for the transfer task
(2018 → 2021) and for the baresoil/built − up land cover
class for the transfer task (2021 → 2018).

Figs. 9 and 10 depict confusion matrices for the (2018 →

2021) and (2021 → 2018) transfer tasks, respectively.

Globally, the confusion matrices confirm the trend observed
in the per-class F1-score analysis. All the methods have
some issues in discriminating among the different agricul-
tural classes. As discussed before in Section V-C1, the UDA
approaches suffer from class unbalanceness related to the
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TABLE IV

F1 SCORE AND ACCURACY OF THE M3SPADA ABLATIONS FOR THE
TRANSFER TASK (2018 → 2021)

transfer task (2018 → 2021). We also note that all the
methods exhibit some confusions between grassland/shrubland
and shrubland/forest land cover classes. This is not surprising,
since these three classes refer to three different degrees of
density of woody vegetation in natural areas, which vary in a
continuous way over the site, making a neat discrimination
more challenging. However, M3SPADA (and its ablations)
seems more robust to this issue compared with all the other
evaluated approaches.

Nevertheless, M3SPADA provides a more visible diagonal
structure (the dark red blocks concentrated on the diagonal)
than the other methods alleviating some of the major confu-
sions exhibited by the competitors.

2) Ablation Analysis: Here, we inspect the added value of
the different components on which M3SPADA is built on.
Table IV summarizes the behavior of the different ablations
of M3SPADA for the (2018 → 2021) task. More precisely,
we consider three specific ablations of M3SPADA.

1) The DANN approach previously introduced as standard
competitor. This approach can be seen as a direct
ablation of M3SPADA, since it is the first method that
introduces the GRL strategy.

2) M3SPADATh, an ablation of our framework where the
selection of pseudo-labeled samples is achieved by the
traditional thresholding approach [45]. More precisely,
during the iterative process, samples from the target
domain are associated with pseudo-label if the most
confident class predicted by the MSLCC has an asso-
ciated confidence greater than a specific threshold θ .
We set θ equal to 0.9 similar to what done for the ALDA
approach.

3) M3SPADAOnlyC1, an ablation of the proposed method
that removes the pseudo-label condition requiring that
the predicted class on source domain is equal to the true
class (Cl(ms

i ) == ys
i ) for the pseudo-labeling selection

stage. Here, the L p loss is redefined as follows:
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We first notice that M3SPADA provides by far better behav-
iors than DANN, its baseline ablation. Second, we observe
that choosing pseudo-labels based on a traditional threshold-
ing mechanism (M3SPADATh) results in a dramatic decrease
in terms of classification performances. This is due to the
fact that too many samples are pseudo-labeled, and, among
the selected samples, spurious ones negatively affect the

Fig. 11. Qualitative investigation of LCMs produced by CDAN + E,
M3SPADAVHR, M3SPADASITS, and M3SPADA for the transfer task (2018 →

2021): zoomed-in view on the Koumbia city. (a) Sentinel-2 image acquired on
September 26, 2021. (b) CDAN + E. (c) M3SPADAVHR. (d) M3SPADASITS.
(e) M3SPADA. (f) Land cover classes legend.

transfer process. The ablation related to the spatial consis-
tency (M3SPADAOnlyC1) still exhibits lower performances with
respect to the complete framework. As conclusion, the ablation
analysis underlines that the pseudo-labeling mechanism we
have introduced allows to focus on reliable pseudo-labeled
samples selected from the target domain, thus positively
enhancing the current training set. M3SPADA always outper-
forms all its ablations, highlighting that the interplay among
the different components on which it is built on provides
an effective strategy for the MStUDA land cover mapping
problem.

D. Visual Analysis

In this section of the experimental assessment, we pro-
vide qualitative analyses to further evaluate the behavior of
M3SPADA in the case of the transfer task (2018 → 2021).
More precisely, we first examine some extracts related to the
LCMs provided by M3SPADA and some of the competing
approaches, and then, we visually examine the internal repre-
sentations learned by our framework and the most competitive
approaches.

1) Land Cover Maps: In Fig. 11(b)–(e), maps correspond-
ing to the (2018 → 2021) transfer task are compared with
respect to the scene subset shown in Fig. 11(a). The maps



CAPLIEZ et al.: MULTISENSOR TEMPORAL UDA FOR LAND COVER MAPPING 5405716

Fig. 12. Qualitative investigation of LCMs produced by CDAN +

E, M3SPADAVHR, M3SPADASITS, and M3SPADA for the transfer task
(2018 → 2021): zoomed-in view on area n◦1. (a) Sentinel-2 image
acquired on September 26, 2021. (b) CDAN + E. (c) M3SPADAVHR.
(d) M3SPADASITS. (e) M3SPADA. (f) Land cover classes legend.

shown here are those obtained using the following methods:
CDAN + E, M3SPADAVHR, M3SPADASITS, and M3SPADA.

In line with what was reported in the quantitative anal-
ysis, the visual investigation confirms that the transfer of
knowledge from 2018 to 2021 is a challenging task, probably
due to longer term changes in seasonal vegetation dynamics
that appear after a three-year delay, as well as a redistribu-
tion of proportions between the different crop classes. The
main observation concerns the strong underestimation of the
oleaginous/leguminous class, regarding all the maps, using as
transfer approach the mono-sensor strategies: M3SPADAVHR
and M3SPADASITS [see Fig. 11(c) and (d)], to the ben-
efit of the cereals and cotton classes. In this case, the
M3SPADAVHR method is particularly destructive. However,
it seems quite evident that both CDAN + E and M3SPADA
[Fig. 11(b)–(e)] appear to effectively restore the extent of
the oleaginous/leguminous class. Furthermore, the M3SPADA
map is less noisy than those processed by the other approaches,
further demonstrating that it has greater potential to recover
spatial structure than its competitor.

With the aim to evaluate the spatial precision of the
M3SPADA maps compared with its competitors, we also report
some zoomed-in areas in Figs. 12 and 13. In both cases,
the spatial details provided by the M3SPADA are of higher

Fig. 13. Qualitative investigation of LCMs produced by CDAN +

E, M3SPADAVHR, M3SPADASITS, and M3SPADA for the transfer task
(2018 → 2021): zoomed-in view on area n◦2. (a) Sentinel-2 image
acquired on September 26, 2021. (b) CDAN + E. (c) M3SPADAVHR.
(d) M3SPADASITS. (e) M3SPADA. (f) Land cover classes legend.

quality than the ones supplied by the competitors, both over
agricultural fields, with more structured and less noisy plots
(in terms of salt and pepper errors), especially over the cotton
and cereals classes, and over natural areas.

The underestimation phenomena related to the oleaginous/
leguminous class can be related to the imbalance of the
crop classes that characterizes the 2018 reference data. More
precisely, as shown in Section IV, the 2018 reference data
collected for oleaginous/leguminous are much smaller in
terms of surfaces than those collected for the cereals class.
This apparent imbalance between crop classes affects both
the direct transfer and the domain adaptation strategies, thus
introducing a class distribution bias with respect to the source
domain into the target domain.

2) Visualization of Internal Model Representations: In this
last stage of our experimental assessment, we provide a visual
inspection of the internal feature representation learned by
CDAN + E, M3SPADAVHR, M3SPADASITS, and M3SPADA
on the transfer task (2018 → 2021). To this end, we randomly
chose 200 samples per land cover class from the target domain,
and we extracted the corresponding feature representations,
per method. Subsequently, we applied truncated stochastic
neighbourhood embedding (t-SNE) [46] to reduce the feature
dimensionality for visualization purposes. Results are depicted
in Fig. 14.
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Fig. 14. t-SNE visualization of internal feature representation learned by
(a) CDAN + E, (b) M3SPADAVHR, (c) M3SPADASITS, and (d) M3SPADA
over 200 randomly selected samples per class from the target domain
considering the transfer task (2018 → 2021). (e) Land cover classes legend.

We note that the CDAN + E method mainly separates
the water class from all the other ones. This is consistent
with results described in Figs. 7 and 9(b). Conversely, the
M3SPADAVHR approach makes a step further also distin-
guishes the bare soil/built-up class in addition to the water
samples from the rest of the data. These two methods clearly
mix samples from all the other land cover classes together.
Considering M3SPADASITS and M3SPADA, they partially alle-
viate the visual clutter problems of the remaining classes with
the latter providing slightly better visual behavior. This can be
observed, for instance, for the grassland, scrubland, and forest
land cover classes.

Overall, the visualization of internal features representation
is coherent with the quantitative as well as qualitative findings
we previously discussed.

VI. CONCLUSION

We have presented M3SPADA, a new framework to cope
with temporal UDA for multisensor land cover classification
from multitemporal and multiscale remote sensing data. More
precisely, we consider as multisensor input data, for both
source and target domains: 1) optical HR Sentinel-2 SITS
and 2) VHR Spot-6/7 optical imagery. Our framework jointly
exploits adversarial learning and pseudo-labeling with the aim
to gradually transfer/adapt a multisensor neural network model
from a source domain (a specific year featured by GT data) to a
target domain (an unlabeled different year) with the aim to pro-
duce an LCM on the latter. While domain-invariant features are
extracted by means of adversarial learning, a spatially aware
pseudo-labeling procedure is conceived and implemented to
effectively transfer the multisensor classification model from
the labeled source to the unlabeled target domain.

The obtained results on the Koumbia study site have under-
lined that our framework, taking explicitly advantage of the

spatiotemporal features related to the underlying multisensor
remote sensing data, clearly outperforms all the UDA com-
petitors we have considered in the quantitative evaluation.

Several future works can be planned as possible extensions
of our M3SPADA. Regarding the multisensor aspect, we can
go a step further involving additional remote sensing sources
as, for instance, radar SITS information coming from the open
Sentinel-1 mission.

Concerning methodological extensions of M3SPADA,
we can consider a scenario in which multiple labeled source
domains are available (i.e., multiple years of previous field
campaign over the same study area), and the goal is still
to transfer a classification model toward a single target
domain. This kind of setting is referred as multisource UDA.
The main challenge related to this setting will be how to
make values of multiple labeled source dataset in order to
enhance the extraction of invariant features from multiple
domains.

Another possible methodological future works can be
related to make the reasonable and realistic assumption to
have limited, but still worthy of interest, reference data on
the target domain to integrate in the transfer learning process
and move our research effort to extend M3SPADA toward a
semi-supervised domain adaptation scenario.
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