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Abstract
1. Shade trees in agroforestry systems confer ecosystem services, such as enhanced 

soil fertility from diverse litter inputs, microclimate regulation via shade, and dis-
ease mitigation through trophic and abiotic interactions. With this thriving role of 
agroforestry in sustainable agriculture, particularly for tree crops, systematic and 
reliable methods to select shade trees for specific agroecosystem outcomes are 
crucial.

2. Plant functional traits offer a framework to describe, select and manage shade 
trees. Over the last decade, shade tree leaf functional traits and whole plant traits 
have been assessed in agroforestry systems. Yet, we lack amalgamated informa-
tion on (i) what we know about shade tree trait relationships with functions to 
achieve desired agroecosystem outcomes, (ii) how decades of shade tree selec-
tion by farmers impacts agroforests inter-  and intraspecific trait diversity, and (iii) 
which shade tree traits should be considered for achieving farmer priorities.

3. We consolidate literature on Coffea arabica (coffee) and Theobroma cacao (cocoa) 
agroforestry systems to summarize the role of shade tree functional traits in 
three key ecosystem functions: soil fertility, microclimate modification and crop 
productivity. We compile global and regional datasets on tree functional trait di-
versity to show the functional space of agroforestry tree species compared with 
the overall functional space observed in plants.

4. Despite, or maybe because of, high shade tree diversity, shade tree trait char-
acterization remains coarse and commonly measured at the community scale in 
the literature. Based on published trait data, we show that farmers adjust the 
functional composition of shade trees to increase the recycling of soil nutrients 
(high leaf nitrogen), the production of wood (skewing towards lower wood densi-
ties) and the production of fruits (tendency towards high seed size). Common 
shade trees in coffee and cocoa systems fall in the mid- range of leaf acquisitive to 
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1  |  INTRODUC TION: TREE 
CHAR AC TERIZ ATION IN AGROFORESTRY 
SYSTEMS

The integration of trees into agricultural landscapes, or agroforestry, 
addresses many of the most pressing issues of our time (Jose, 2009; 
Tscharntke et al., 2011; Somarriba et al., 2012). Increasing biodiver-
sity in agricultural systems is associated with improved ecosystem 
functions (Tamburini et al., 2020), and specifically, agroforestry prac-
tices can result in enhanced local soil fertility, reductions in green-
house gas emissions, positive microclimate modification, and disease 
mitigation through various trophic and abiotic interactions (Kim & 
Isaac, 2022; Malézieux et al., 2009; Muchane et al., 2020).

Defining the optimal tree species to achieve specific functions in 
agroforestry systems, notably in shaded Coffea arabica (coffee) and 
Theobroma cacao (cocoa) systems, is a common theme within agro-
forestry research. Tree characterization in agroforestry has relied 
heavily on tree biology or tree diversity, such as shade tree phenol-
ogy, canopy exposure or climatic envelope (Asare & Anders, 2016; 
Abdulai et al., 2018; Sauvadet, Asare, et al., 2020; Sauvadet, Saj, 
et al., 2020). Some approaches focus on reducing the number of key 
characteristics for tree selection, by narrowing to a singular shade 
tree parameter, for instance, based on tree height (e.g. Blaser- Hart 
et al., 2021). Other approaches use shade composition (number of 
shade tree species) and level (quantity of shade) as the common met-
rics for describing shade in agroforestry systems, with approximately 
half of these studies including shade tree functional type (Piato 
et al., 2020). Modelling has proven a popular approach to selecting 
optimal shade trees in both coffee and cocoa agroforestry systems. 
Such models tend to focus on the impacts of shade trees on alleviat-
ing water and temperature stress of crops (e.g. Rahn et al., 2018) or 
on light competition between species (e.g. Charbonnier et al., 2013). 
Locally developed and highly nuanced knowledge of shade trees un-
derpins much of tree selection (Cerdan et al., 2012; Isaac et al., 2018; 
Sauvadet, Asare, et al., 2020; Sauvadet, Saj, et al., 2020). While sum-
marizing farmers' shade tree preference information into platforms 
for shade tree selection has been done (see ShadeTreeAdvice plat-
form; Rigal et al., 2022 or agroforestry switchboard; ICRAF), the 
output of these approaches tends to remain at the taxonomic level, 
suggesting specific species over specific functions.

Beyond taxonomy, plant functional traits offer a framework to de-
scribe, select and manage shade trees. Plant functional traits include 
any morphological, anatomical, physiological, biochemical and phe-
nological characteristic that is measurable at the individual plant level 
(Kattge et al., 2020; Violle et al., 2007). The expression of these traits 
is determined by genetic and community assembly processes (Kraft 
& Ackerly, 2014) and reflects how plants adapt to biotic and abiotic 
constraints. Plant traits have opened new possibilities to understand 
ecological processes by using them as a common currency to assess 
plant communities from different ecosystems irrespective of their 
taxonomic composition (McGill et al., 2006). For instance, plant trait 
studies have helped to shed light on how plants (i) respond to broad 
environmental conditions (Moles et al., 2007; Ordoñez et al., 2009; 
Wright et al., 2005), (ii) are linked to other trophic levels (Loranger 
et al., 2012) and (iii) affect ecosystem processes (for instance nutri-
ent cycling; Aerts & Chapin, 2000; Cornwell et al., 2008; Weedon 
et al., 2009), which are the basis of ecosystem services.

A growing body of literature exists on using functional traits as 
a way to describe and predict agroecosystem function in agricul-
tural systems (cover crops—Blesh, 2018; Finney & Kaye, 2016; ce-
reals and legumes—Ajal et al., 2021; Nimmo et al., 2023; vegetable 
crops—Rolhauser et al., 2022; and weeds—Archibald et al., 2022). 
And multiple papers have suggested plant functional traits as key to 
generalizing the selection of shade trees (Isaac & Borden, 2019; Rigal 
et al., 2022; Sauvadet, Asare, et al., 2020; Sauvadet, Saj, et al., 2020). 
Shade tree traits are increasingly used in the agroforestry literature, 
with over 150 papers published in the last decade on ‘agroforestry’ 
and ‘functional traits’. Yet, a cumulative assessment of the agrofor-
estry literature on which shade tree traits are measured in agrofor-
estry systems, and more importantly, which leaf trait expression 
drives ecosystem functions, remains absent. As diversifying agricul-
tural systems continues to be an essential component to achieving 
sustainability (Blesh et al., 2023), establishing clear trends between 
diversity and function remains critical to successful transitions.

Here, we conduct a review of the literature and consolidate in-
formation on shade tree traits and ecosystem function relationships, 
specifically in Coffea arabica (coffee) and Theobroma cacao (cocoa) 
agroforestry systems. From this information, we summarize what 
we currently know about the role of shade tree functional traits in 
conferring three key ecosystem functions: soil fertility, microclimate 

conservative strategies, providing evidence that expanding shade tree portfolios 
can improve, or even accelerate, functions.

5. Synthesis and applications: Based on the agroforestry literature and on trait- 
environment relationships, we propose a matrix of shade tree traits that influence 
desirable agroecosystem outcomes for farmers, which can guide fine- scale coor-
dination of trait expression and agroforestry functions.

K E Y W O R D S
agrobiodiversity, agroecosystems, Coffea arabica (coffee), functional space, functional traits, 
leaf traits, shade trees, Theobroma cacao (cocoa)
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modification and crop productivity. We then use global and regional 
datasets on tree functional trait values to show how shade tree se-
lection by farmers (in four of the most common agroforestry sys-
tems in Central America) impacts the overall trait space compared 
with plants in general, and how functional trait trade- offs may influ-
ence optimal agroforest functioning. Finally, we propose a matrix of 
shade tree traits that influence desirable agroecosystem outcomes 
for farmers to fine- tune the functional reasoning behind agrofor-
estry design and inform recommendations that are promoted by 
various stakeholders.

2  |  WHAT WE KNOW—FUNC TIONAL 
TR AITS AND ECOSYSTEM FUNC TION

Plant traits are related to different ecosystem processes and prop-
erties, but also as syndromes of trait covariation. These syndromes 
describe important trade- offs in plant functioning as a continuum 
(Westoby et al., 2002). Three of the most studied examples show 
how plants balance: growth versus conservation of resources 
(leaf economics spectrum, including specific leaf area [SLA], leaf 
dry matter content, leaf nitrogen [LNC]; Reich et al., 1997; Wright 
et al., 2004); seed size vs their capacity to colonize, compete and 
persist (life history spectrum; Falster & Westoby, 2005; Moles & 
Leishman, 2008); and wood density versus water conductive ef-
ficiency and mechanical strength (Chave et al., 2009; Westoby & 
Wright, 2006). Other syndromes involving other traits, such as plant 
roots, likely exist but have been less studied.

Plant traits are generally measured at the individual level, but 
can be upscaled to species within communities, and to the whole 
plant community level. Commonly, studies of plant trait effects on 
ecosystem processes are carried out with aggregated trait values of 
plant communities, since plant- mediated impacts will depend on the 
combined effects of the traits of all species that compose a given 
community (Funk et al., 2017; Lavoral & Garnier, 2002). To account 
for differences in the dominance of species, species trait values are 
weighted by the contribution of the species to the total biomass of 
the community (community- weighted means, CWM). Thus, the trait 
values of the most dominant contributors will drive the trait value 
of the community and the instantaneous functioning of ecosystems 
(Garnier et al., 2004; Grime, 1998). Ideally, community means should 
be weighted by dominance (considering biomass or basal area in 
the case of woody species), but approximations using abundance 
are also accepted in the absence of biomass data (Funk et al., 2017; 
Lavorel et al., 2008).

Instead, functional diversity indicators characterize the inter-
specific variability in trait values within a community. Functional 
diversity has been used mainly to understand the mechanisms 
underpinning the relationship between diversity and ecosystem 
functions (Gross et al., 2017; Mason et al., 2005), and community 
assembly and niche partitioning (Cornwell & Ackerly, 2009; Kraft & 
Ackerly, 2014; Kraft et al., 2008). Approaches assessing functional 
diversity have been designed similarly to the methods to quantify 

taxonomic diversity, for instance by estimation of alpha and beta 
trait diversity (Ackerly & Cornwell, 2007), by assessment of func-
tional groups (Petchey & Gaston, 2006) or by various diversity in-
dexes that summarize the richness, evenness and divergence within 
a community as a continuous index (Mason et al., 2005).

These functional trait- based approaches have made significant 
contributions to understanding the effects of trait expression on 
ecosystem function. Over the last decade, this approach has been 
applied to assess the impact of shade tree selection on ecosystem 
processes and to define a repeatable method to establish widely 
applicable recommendations for suitable shade trees in diverse 
agroecosystems. To date, an array of studies have made these links, 
specifically in shade- grown coffee and cocoa agroforestry systems, 
where a large pool of shade species is accommodated by farmers in 
smaller assemblages within production plots. Within these plots, the 
functional characteristics of species affect various ecosystem pro-
cesses. Here, we provide evidence of the main relationships between 
shade tree characteristics, including whole plant and leaf functional 
traits and three dominant functions in agroforestry systems: soil fer-
tility, microclimate modification and crop performance.

2.1  |  Shade tree traits and impacts on soil fertility

Numerous studies on the benefits of agroforestry on soil fertility 
exist (Albrecht & Kandji, 2003; Beillouin et al., 2021; Dollinger & 
Jose, 2018; Lal, 2004; Tscharntke et al., 2011). Studies on soil fer-
tility in cocoa and coffee agroforestry systems commonly highlight 
null to positive impacts on soil carbon (C) and soil fertility (Getachew 
et al., 2023; Isaac et al., 2007; Sauvadet, Asare, et al., 2020; Sauvadet, 
Saj, et al., 2020; Wartenberg et al., 2020), as well as on soil biodiver-
sity (Muleta et al., 2007; Sauvadet et al., 2019; Sewnet & Tuju, 2013) 
under shade tree canopies. Over the last decade, data have emerged 
on the impacts of specific shade tree traits on soil functions. When 
measured, litter traits such as N, phosphorus (P) and calcium (Ca) 
content have been shown to have direct impacts on soil properties in 
coffee and cocoa agroforestry systems (Isaac et al., 2007; Sauvadet 
et al., 2019; Sauvadet, Asare, et al., 2020; Sauvadet, Saj, et al., 2020; 
Wartenberg et al., 2020). Specific litter traits have also been linked 
to soil biodiversity under shade tree canopies (Moço et al., 2010), 
where enhanced soil fertility is, broadly, associated with shade tree 
leaf litter decomposability, thus influencing soil biological activity. 
However, this influence may vary with management intensity in 
agroforestry systems (Sauvadet et al., 2019) and is mostly observed 
directly under shade tree canopies (e.g. Blaser et al., 2017).

Instead, the impacts of shade tree presence on soil fertility ex-
hibit less marked trends when studied at the plot scale, and often 
find low to no impacts of agroforestry systems compared with mono-
culture on soil properties (Abou Rajab et al., 2016; Romero- Alvarado 
et al., 2002; Siles et al., 2010). Indeed, a tree's impacts on soil fertility 
present a high spatial heterogeneity, with decreasing influence with 
the distance to their trunk (Cardinael et al., 2019; Guillot et al., 2021). 
The spatialization of a tree's influence on soil fertility, unfortunately 

 13652664, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2664.14652 by IN

R
A

E
 - D

ipSO
-PA

R
IS, W

iley O
nline L

ibrary on [09/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4  |    ISAAC et al.

often overlooked (Cardinael et al., 2017), has also been shown in 
cocoa agroforestry systems by Blaser et al. (2017) and Wartenberg 
et al. (2020); localized benefits of shade trees were not detectable at 
the plot scale or away from shade tree canopies. Nonetheless, several 
studies at the plot scale did find significant soil fertility enhancement 
in agroforestry systems, such as Méndez et al. (2009) who observed 
that soil fertility increased with shade tree species richness within 
agroforests, while Rousseau et al. (2021) found that soil macrofauna 
was rather responding to the density of specific tree species with the 
community. Furthermore, Häger and Avalos (2017) found that soil 
organic C increased with higher CWM wood density and with higher 
variability in tree maximal height across the systems studied. Such 
analyses could be extended to a wider range of functions including 
survivorship or of other traits by leaning on the global TRY database, 
as Wallwork et al. (2022) did to link naturally regenerating tropical 
forest traits with increases in soil organic C. Wallwork et al. (2022) 
were thus able to find strong relationships between CWM traits with 
soil C, which were of the same nature with those found with local-
ized shade tree impacts—that is, positive relationships between soil 
C, leaf N content and SLA.

These contrasting trends suggest that while shade tree benefits 
in soil fertility may be harder to detect at the plot scale than under 
their canopies, this objective may still be achievable by increasing 
trait characterization at the shade tree community scale. Indeed, 
studies comparing soil properties at the plot scale generally lean 
on a coarse characterization of shade tree community traits, mostly 
related to light transmission regulation (such as canopy cover) or C 
storage in tree biomass (deduced from allometric equations based on 
tree height and DBH for instance; Abou Rajab et al., 2016; Romero- 
Alvarado et al., 2002; Siles et al., 2010), which may not always be 
fine- scale enough to understand the presence or absence of shade 
tree benefits on soil fertility. Refining shade tree community char-
acterization, and testing more contrasting community compositions, 
may help improve our understanding of shade tree impacts on soil 
fertility at the plot scale.

2.2  |  Shade tree traits and impacts on microclimate 
modification

One of the principal objectives of agroforestry is the capacity to 
modify microclimate at various scales. We know that coffee and 
cocoa agroforestry systems moderate air temperatures and rela-
tive humidity (Vaast et al., 2008), increase soil moisture (Lin, 2007), 
reduce irradiance levels (Charbonnier et al., 2017) and change 
throughfall characteristics (Siles et al., 2010), leaf wetness dynam-
ics (López- Bravo et al., 2012) and wind speed (Cleugh, 1998). Much 
of this knowledge comes from analyses of specific tree species and 
their leaf traits within agroforestry systems (most commonly SLA 
and LNC; van Oijen et al., 2010).

More commonly reported in the literature is the role of tree can-
opies in microclimate modifications, namely canopy geometry and 
canopy foliage density. Yet, it is clear from the literature that traits 

at the canopy and leaf- level work in tandem. For instance, leaf traits, 
such as thicker leaves, reduce wind speeds together with canopy 
characteristics (Gagliardi et al., 2020), likely because they are more 
resistant to reconfiguration in strong winds (Vogel, 1989), and so are 
better able to maintain their windbreak effect. The slowing of wind 
speeds has important implications for various agroecosystem pro-
cesses, including microclimate modifications, but also maintaining 
soil integrity to prevent soil erosion processes (Meylan et al., 2017) 
and preventing pests and disease diffusion (Avelino et al., 2023). 
At the edge of agroforests, shade trees can control the spread of 
airborne pests and diseases (e.g. fungal coffee pathogen Hemileia 
vastarix; Gagliardi et al., 2020), and prevent agrochemical drift (an 
important consideration for neighbouring organic parcels). To con-
fer these effects, trees at the edge of agroforests require adequate 
canopy height, density and numerous thick leaves with particle- 
capturing capacities (Avelino et al., 2023). Small- shaped leaves, such 
as needles, can capture airborne particles more efficiently due to 
their increased surface areas and contact probability with airborne 
particles (Jin et al., 2021). Other leaf traits that can augment par-
ticle capture include rough, wrinkled, ridged, furrowed, hairy and 
waxy leaves (Chiam et al., 2019; Corada et al., 2021; Dzierżanowski 
et al., 2011), while smooth leaves can indirectly capture airborne 
particles via water droplets that tend to adhere to their surfaces 
(Barthlott & Neinhuis, 1997).

Similarly, rainfall dynamics are largely shaped by the presence or 
absence of tree canopies, yet within treed systems, specific canopy 
and leaf- level traits together play a distinguishing role. Throughfall 
kinetic energy (TKE), though consistently greater beneath tree 
canopies than in open stands, is lower under canopies with greater 
leaf area index (LAI) values (likely due to enhanced redistribution 
of rainfall and re- interception and splitting of raindrops in multi- 
layered canopies), and under canopies with shorter canopy base 
heights (likely due to raindrops not reaching their terminal veloc-
ity; Geißler et al., 2013; Gómez et al., 2001; Liu et al., 2018). Total 
throughfall amounts are also reduced beneath canopies of greater 
LAI, likely due to the greater storage capacity of such canopies (Liu 
et al., 2018). Simultaneously, leaf traits, such as greater leaf area and 
specific leaf shapes, can reduce throughfall amounts and increase 
TKE through greater raindrop pooling that results in either greater 
canopy storage or greater leaf drip size (e.g. Nanko et al., 2006; 
Zhang et al., 2021). These interactions with rainfall dynamics have 
larger implications, as high TKE can promote splash erosion of bare 
soils (Geißler et al., 2013) and pathogen dispersal from infected sur-
faces, while reduced throughfall amounts can lead to poor wash- 
off of diseased surfaces (Avelino et al., 2023) and exacerbate water 
stress conditions (Vaast et al., 2016).

Considering air temperature and relative humidity, research 
has demonstrated that taller trees with lower canopy base heights, 
larger leaves and dense, homogenous canopies can better moder-
ate air temperature extremes and increase relative humidity (e.g. 
Blaser- Hart et al., 2021; Gagliardi et al., 2021; Merle et al., 2022). 
This is likely due to such trees more effectively isolating layers of air 
beneath their canopies, preventing moisture loss and excessive air 
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mass heating (Merle et al., 2022). These changes can have both pos-
itive (e.g. enhanced microclimates for crops, which can extend opti-
mal growth regions; Beer, 1987) and negative effects on perennial 
crops in the understorey (e.g. modifying pest and disease dynamics; 
Avelino et al., 2023). The detailed nuances between shade tree trait 
expression have important implications for the suitability of certain 
species for distinct functions, as well as the potential for such details 
to inform tree management regimes (i.e. pruning practices).

2.3  |  Shade tree traits and their impacts on crop 
productivity

Coffee and cocoa are widely considered as shade- tolerant species, 
which express strong plastic responses to environmental variability 
(Chaves et al., 2008; DaMatta, 2004; Jaramillo- Botero et al., 2010; 
Rodríguez- López et al., 2014) that may influence reproductive 
output (Gagliardi et al., 2015; Martin & Isaac, 2021). While much 
has been explored regarding leaf traits of sun leaves and shade 
leaves of individual coffee and cocoa plants and impacts on yield 
(DaMatta, 2004), we have a coarser understanding of the interac-
tions between shade tree species composition and yield. These 
interactions are predominantly related to light regulation, and sub-
sequently photosynthesis rates, where yield is highly correlated with 
the incident light received, but not necessarily linearly, rather with 
an optimal shade level. This relationship between shading and coffee 
and cocoa productivity depends on shading intensity, but also crop 
age and cultivar, and spatial/environmental conditions (e.g. Asare 
et al., 2019; Niether et al., 2020). Among ~30 studies on robusta 
coffee agroforestry, Piato et al. (2020) showed clear relationships 
between shade and yield, highlighting that older agroforests exhibit 
higher coffee growth and productivity with shade, with inverse ef-
fects in younger agroforests. In many cases, agroforestry systems 
tend to decrease crop raw productivity when light interception per 
shade tree is high (e.g. Ramírez- Argueta et al., 2022), as evidenced 
by the positive relationship between cocoa plant individual yield and 
their distance to shade trees, found in Koko et al. (2013) and da Silva 
Neto et al. (2018).

It is notable though that in each of these studies relating shade 
tree taxa to productivity, shade tree characterization stops short of 
describing traits linked with function, rather studies rely on descrip-
tions such as height and canopy cover. While these characteristics 
are important, they reflect plant ecophysiological processes occur-
ring at the leaf level, for instance, the LAI, which is important for 
canopy scale processes, such as photosynthesis and precipitation 
interception, can be calculated from the key leaf functional trait SLA 
(Fang et al., 2019).

Nonetheless, many studies also find higher yields in agroforestry 
systems compared with monocultures (e.g. Asare et al., 2019). For 
instance, Asitoakor et al. (2022) reported higher cocoa yield under 
the shade of four out of eight candidate species in Ghana, suggesting 
this is due to shade tree morphological structure (open canopies that 
promote aeration and light penetration and enhance photosynthesis, 

flowering, fruiting and crop production). Yet, such higher yields in 
agroforestry compared with monocultures may be due to other 
functions provided by shade trees, such as microclimate regulation 
(e.g. Niether et al., 2018), especially facing extreme climatic events, 
pest regulation (Daghela Bisseleua et al., 2013; Djuideu et al., 2021) 
and soil fertility enhancement (e.g. Sauvadet, Asare, et al., 2020; 
Sauvadet, Saj, et al., 2020). Shade tree traits related to these func-
tions also ensure yield, depending on local environmental constrains 
(e.g. Haggar et al., 2011; Sauvadet et al., 2019). Agroforestry systems 
may even provide higher yield than monocultures when fruit species 
are used as shade trees, given the additional contribution of food and 
other goods (Armengot et al., 2016; Niether et al., 2020), and thus 
should also be taken into account in shade tree trait selection.

3  |  WHAT TR AIT SPACE IS AVAIL ABLE 
FOR FARMERS? FUNC TIONAL TR AIT 
DIVERSIT Y IN AGROFORESTS

To illustrate the functional space of shade species in agroforestry 
systems, we compared the functional diversity of agroforestry sys-
tems in Central America (shaded coffee, cocoa, silvopastures and 
live fences, n plots = 2517) versus the overall functional diversity 
of plants globally, using the TRY database (Kattge et al., 2020), as 
detailed in Supporting Information. The four main agroforestry 
systems in Central America harbour across the region ~460 shade 
species that include trees, shrubs, palms, and other species such as 
large monocots and herbs (Esquivel et al., 2023). These agroforestry 
plots have a median of ~23 shade species ha−1 (range 1–800), but 
with a high species turnover between plots and regions. If we assess 
the gamma functional space by selecting the most abundant species 
(that account for >80% of species abundance within plots), the pool 
of the most abundant species in these Central American agrofor-
estry systems corresponds to 338 species that include mainly trees, 
but also other growth forms. When these agroforestry taxa are 
compared with the overall functional diversity of plants (as recorded 
in the global TRY database (Kattge et al., 2020); see Supporting 
Information), we show that farmers adjust the functional composi-
tion of the shade component to increase:

1. the recycling of nutrients in the soil (Figure 1a,b)—particu-
larly for LNC, with SLA and leaf phosphorus content (LPC) 
values as intermediate. Of the 10 agroforestry species with 
the highest LNC, eight correspond to legumes species, whose 
LNC ranged between 38.7 and 50.8 mg g−1, and included Albizia 
guachapele, Albizia niopoides, Chloroleucon mangense, Erythrina 
poeppigiana, Inga sapindoides, Inga vera, Leucaena leucocephala, 
Senegalia polyphylla and Vachellia collinsii.

2. the production of wood (Figure 1c)—farmers seem to favour, par-
ticularly fast- growing and easy- to- work species. We show a slight 
skewing towards low to intermediate wood densities and

3. the production of food (edible fruits) (Figure 1d)—the active selec-
tion of trees and palms with edible fruits with large seeds is shown 
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by the higher average seed mass (969.1 mg per seed), and a clear 
tendency in the trait distribution towards high seed size in trees 
selected for agroforestry systems. Out of 10 agroforestry species 
with the heaviest seeds, eight correspond to edible fruits such as 
Acrocomia aculeata, Artocarpus altilis, Casimiroa tetrameria, Juglans 
regia, Mammea americana, Mangifera indica, Persea americana and 
Pouteria sapota.

Many of the most common species across these four agro-
forestry systems fit these objectives. For instance, within the 10 
most common shade species across all systems (see methods in 
Supporting Information), there are two legume species (Gliricidia 
sepium and Inga vera), four timber species (Cedrela odorata, Cordia al-
liodora, Pachira quinata and Swietenia macrophylla), and one fruit spe-
cies (Persea americana). All these species have relatively high values 
of LNC in plants (17–39 mg g−1) and wood with intermediate densities 
(0.41–0.59 g cm−3), ideal for producing timber products. The active 
selection of fruit trees reinforces natural processes of seed dispersal 
in tropical forests, where zoochory is one of the main mechanisms 
(Correa et al., 2023). Although the conservation of fauna is not an 
objective per se for farmers, by favouring the production of fruit 
trees in agroforestry systems, they inadvertently create suitable 
habitats and biological corridors for wild fauna (Estrada- Carmona 
et al., 2019; Harvey et al., 2008).

Moreover, it is clear from this analysis that there is a wide space 
where natural processes have a great influence on the species that 
make up the shade component of agroforestry systems. On the 
one hand, within the 10 most common species, there were two 
fast- growing and highly proliferating species, Bursera simaruba and 
Guazuma ulmifolia (18–30 mg g−1 LNC), low to intermediate wood 
densities (0.35–0.52 g cm−3), and light seeds (4.3–110.3 mg per seed) 
dispersed by birds and small mammals. Although they do not offer a 
direct benefit to farmers in terms of food production, they do offer 
benefits such as shade or biomass production for firewood. These 
species are not actively planted by farmers (Ordonez et al., 2014), 
but their functional profile coincides with tree characteristics that 
farmers look for in a shade tree species (Cerdan et al., 2012), through 
both observation and advice (Isaac et al., 2021). On the other hand, 
it seems that there are also remnants of natural forest species 
characterized by more conservative functional strategies (Lohbeck 
et al., 2012). Although very low values of SLA, leaf nutrient con-
tents or wood density (reflective of conservation and persistence 
strategies) are not observed for the most common species found in 
agroforestry systems, these species can cover a large spectrum of 
trait values for these three traits (Figure 1a,b), increasing the overall 
functional diversity of agroforestry systems.

While there is large functional space through interspecific trait 
variation, there is also considerable intraspecific variation (ITV) that 

F I G U R E  1  Comparison of the functional trait distribution of the most common species that are present in 2015 plots across four 
agroforestry systems in Central America, versus the overall distribution of all plant species for which information is available in the TRY 
database, along with important axes of plant specialization. Panels (a and b) show the bivariate distribution of different combinations 
of leaf traits that are related to the leaf economics spectrum. The size of the symbols corresponds to the relative frequency X relative 
plot abundance of shade species across 2517 plots. Species with high values represent species that are abundant in a plot and occur in a 
high number of plots. Panels (c and d) show the univariate distribution of wood density (c) and seed mass (d). Panels (e–g) represent the 
proportional prevalence of seed dispersal strategies: (e) For overall seed dispersal strategies, (f) The mechanisms of animal seed dispersal and 
(g) The vector of animal seed dispersal. Comparisons are made using species means. The number of observations for each comparison varies 
following data availability. For a full explanation of methods, see Supporting Information.

(a) (b) (c)

(d)

(e) (f) (g)

 13652664, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2664.14652 by IN

R
A

E
 - D

ipSO
-PA

R
IS, W

iley O
nline L

ibrary on [09/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7ISAAC et al.

is important for different reasons. Many studies warn about the im-
portance of ITV in understanding the relationships between plant 
community assembly and ecosystem functioning (Shipley et al., 2016; 
Siefert et al., 2015; Westerband et al., 2021). Indeed, while ITV re-
mains hard to predict since its amplitude varies widely between spe-
cies, traits and environmental conditions, its general extent makes its 
consideration essential in trait- based decision frameworks (Martin & 
Isaac, 2015). It is well known that environmental conditions, such as 
light incidence (Buchanan et al., 2019; Miyaji et al., 1997), water avail-
ability (Acheampong et al., 2015; Carminati & Javaux, 2020; Tezara 
et al., 2020) or soil fertility (Borden, Anglaaere, et al., 2020; Borden, 
Thomas, et al., 2020; Maire et al., 2015) will impact both shade trees' 
and perennial crops' ITV. These variations are often expressed rela-
tive to changes in resource acquisition strategy (Blasini et al., 2021; 
Westerband et al., 2021), based on the concept of the LES—and later 
the Plant Economic Spectrum—the same principle as the LES but in-
cluding stem and root traits and their importance for water, C and 
nutrient acquisition strategies (Reich, 2014).

As a consequence, shifts in resource acquisition strategies lead 
to changes in different sets of traits, widely observed at several 
levels—phenotypic plasticity, genetic correlation, population- local 
adaptation—and factors, including adaptations to environmental 
constraints (Agrawal, 2020). For instance, increased shading will 
induce more investment from the plants for light acquisition, by in-
creasing their SLA to improve their light acquisition potential, but 
also their leaves' N content (Gagliardi et al., 2015) to build more 
photosynthesis- related enzymes such as Rubisco (Ávila- Lovera 
et al., 2016), leading to frequent coordination between these traits 
(e.g. Shipley et al., 2005). Knowing such common trait syndromes 
can reduce the number of traits required to select appropriate tree 
species, yet it should be taken cautiously, as the traits and organs' 
sensitivity to ITV varies. Indeed, the global meta- analyses of Siefert 
et al. (2015), and Westerband et al. (2021), highlight greater ITV ex-
tent for whole plant traits than organ- specific traits, but also higher 
leaf chemical ITV than morphological ITV. These differences in 

amplitude were attributed to varying degrees of phenotypic plas-
ticity and genetic regulation.

To illustrate shade tree ITV, Figure 2 depicts the mean and 
standard deviation of SLA and LNC from the TRY database (Kattge 
et al., 2020) of eight common shade tree genera derived from www. 
shade treea dvice. org. The range of trait expression within a genus 
is variable but large. For instance, individuals in the genus Ficus ex-
press very high plasticity in LNC but restricted plasticity in SLA. 
Timber genera, Terminalia, Ceiba and Khaya express a nearly equal 
range of plasticity for both traits. What is also clear is a systematic 
and expected trait trade- off between LNC and SLA. This trade- off 
is well documented among species (Wright et al., 2004) and within 
species (Martin et al., 2017). This reliance on trait trade- offs pro-
vides an opportunity to reduce the trait dimensionality for shade 
trees. For instance, we know that higher LNC is typically correlated 
with higher SLA, confirming trait syndromes. These syndromes can 
be used by farm managers to focus on one or two key traits that 
predictably covary with other traits.

4  |  SHADE TREE TR AITS FOR ACHIE VING 
FARMER PRIORITIES

The application of traits and trait research in agroforestry systems 
represents an important opportunity to further inform agrofor-
estry design and on- farm practices. Based on our review of evi-
dence and data consolidation from the literature, we summarize 
key functions and services and their association with specific leaf 
and whole plant shade tree traits (Table 1). When farmers select 
shade trees, they can prioritize a specific service or multiple ser-
vices from a basket of options that can be traced back to associ-
ated functions and shade tree traits that achieve those functions. 
The selection of trees based on specific traits can enhance certain 
functions more accurately than taxa- based selection alone. These 
links between traits and functions are moderated by specific 

F I G U R E  2  Leaf nitrogen (LNC mass 
mg1 mg−1) to specific leaf area (SLA 
mm2 mg−1) with 8738 species data from 
the TRY database and 8 of the most 
common shade tree genera for coffee 
and cocoa agroforestry (determined with 
shade tree advice platform) with their 
confidence limits, derived from the TRY 
database. These two functional traits 
are key indicators for rates of nutrient 
cycling and soil nutrient availability and 
location on the trade- off axis indicates 
conservative to acquisitive leaf strategies.
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management practices and the degree of trait plasticity. For in-
stance, litter decomposition, a key function that strongly influ-
ences nutrient cycling and the directionality of soil C storage, is 
controlled by a suite of leaf traits (such as LNC, leaf lignin content 
and SLA) with high plasticity. Farmers can select shade trees that 
express a certain range of traits to achieve specific outcomes.

Given the dynamic nature of agroforests, there is a level of flu-
idity in desirable traits, spatially and temporally, that must be con-
sidered during agroforest design and re- design (i.e. species selection 
and spatial planting arrangements), and when determining best tree 
management practices (i.e. timing and extent of pruning practices). 
For instance, in regions or seasons where temperature and humidity 
moderation are vital for perennial crop health, such as when planting 
crops outside of their optimal climate range, tall, dense, homogeneous 
canopies with large leaves are better suited to creating optimal micro-
climate conditions (Avelino et al., 2023). However, shade tree cano-
pies expressing such leaf traits could also enhance the erosive ability 
of rainfall and the potential short- distance dispersal of pathogens via 
rain, and exaggerate humidity levels in the understorey, thus making 
shade trees with more open canopies and small leaves better suited in 
regions or seasons where these concerns are a priority.

We show that farmers tend to adjust the functional composition 
of shade trees to increase the recycling of soil nutrients (high leaf N), 
the production of wood (skewing towards lower wood densities) and 
the production of fruits (tendency towards high seed size; Figure 1). 
Furthermore, common shade trees in cocoa and coffee systems fall 
in the mid- range of acquisitive to conservative strategies (Figure 2), 
providing evidence that expanding shade tree portfolios can improve 
or accelerate functions. While recommendations for shade tree se-
lection are well developed, agriculture extension agencies, sustain-
ability programmes, practitioners and researchers can benefit from a 
theory- based and evidence- supported shade tree taxa selection for 
agroforestry systems that rely on functional traits.

5  |  AN AGENDA FOR FUTURE RESE ARCH

There are a few key areas of departure between the use of functional 
traits in agroforestry systems and functional traits in natural systems. 
First, disease management commonly used in agroforestry systems, 
but not active in natural systems, shapes trait expression (Gagliardi 
et al., 2023). Given that trait handbooks (Pérez- Harguindeguy et al., 
2013) recommend avoiding diseased leaves for assessments of 
functional traits, this creates an entirely unexplored aspect of trait 
trade- offs and trait space, but an overwhelmingly critical aspect of 
agroecosystems as the role of pest and disease management is es-
sential. Second, following this, trait handbooks designed for natural 
systems may not be completely transferrable to agroecosystems. 
For instance, along with disease management, pruning is an essential 
practice in agroforestry systems, with undoubted impacts on plant 
growth and trait expression. Trait collections in agroforestry sys-
tems must account for the effects of pruning on all organs, leaves, 
canopy and trunk, of shade trees. Third, plant trait plasticity and 

genetic by environment interactions in agricultural systems are criti-
cal in shaping crop functional traits (Rolhauser et al., 2022), crop trait 
space (Sauvadet et al., 2021), and the role of ontogeny in crop trait 
trade- offs and reproductive onset (Martin & Isaac, 2021). Further 
work is needed on shade tree genetics and ontogeny for a complete 
understanding of shade tree traits in ecosystem functions. Finally, 
as described above, the number of trait measurements needed to 
understand trait impacts in agroforestry may very well vary from 
natural systems. Given that tree introduction to a farm is predomi-
nantly through species selection and planting, filtering is already oc-
curring, and therefore, key trait indicators for a subset of candidate 
species may be all that is needed to accurately assess shade tree 
function. Therefore, updating trait collection handbooks is required 
to account for practices in agroforestry systems to retrofit protocols 
for managed systems, and to guide fine- scale coordination of traits 
and agroecosystem functions.

Functional traits offer a framework to describe and select shade 
trees beyond taxonomy, but it is hard for farmers to make an ex-
plicit selection of species based on characteristics that are difficult 
to observe, such as leaf chemistry. We suggest that enhancing the 
quality of shade tree trait analyses and combining functional trait ap-
proaches with local knowledge to establish co- learning approaches 
between functional ecologists and farmers are necessary to define 
the most desirable shade tree characteristics and to inform the best 
strategies to optimize desired functions within their fields.
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