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A B S T R A C T   

Vaccination is the most cost-effective tool to control contagious bovine pleuropneumonia. The vaccines currently 
used in Africa are derived from a live strain called T1, which was attenuated by passage in embryonated eggs and 
broth culture. The number of passages is directly correlated to the degree of attenuation of the vaccinal strains 
and inversely correlated to their immunogenicity in cattle. Current quality control protocols applied to vaccine 
batches allow the assessment of identity, purity, and titers, but cannot assess the level of genetic drift form the 
parental vaccine strains. Deep sequencing was used to assess the genetic drift generated over controlled in vitro 
passages of the parental strain, as well as on commercial vaccine batches. Signatures of cloning procedures were 
detected in some batches, which imply a deviation from the standard production protocol. Deep sequencing is 
proposed as a new tool for the identity and stability control of T1 vaccines.   

1. Introduction 

Contagious bovine pleuropneumonia (CBPP), caused by the bacte-
rium Mycoplasma mycoides subsp. mycoides (Mmm), is a severe infectious 
disease affecting Bovidae [1]. CBPP is a disease notifiable to the world 
organization for animal health (WOAH, founded as OIE). It is widely 
distributed in Africa, South of the Sahara, down to the north of the SADC 
(Southern African Development Cooperation) [2]. Its control is mainly 
based on vaccination, since antibiotic treatments are officially discour-
aged due to the risk of antimicrobial resistance. The efficacy of current 
control strategies relies on two conditions: (i) the vaccines are of good 
quality, and (ii) mass vaccination campaigns are correctly implemented, 
so that a significant proportion of the cattle population is able to develop 
the expected protective immune response. The most widely used vaccine 
strain, T1/44, recommended by the WOAH [1], was attenuated by 44 

serial passages in embryonated eggs [3]. T1/44 induces a protection 
lasting for approximately one year but, due to its residual virulence, it 
occasionally induces adverse post-vaccinal reactions at the injection site 
[4]. This local inflammation is known as the “Willems reaction” in 
memory of Dr Willems, who described this phenomenon resulting from 
“inoculation” trials with virulent strains [5]. A streptomycin-resistant 
derivative of T1/44, called T1sr, was developed by adding a few serial 
in vitro passages, and this strain was used when combined campaigns 
against rinderpest and CBPP were implemented in the 70ies [6]. The 
T1sr strain induces shorter protection, estimated at around six months 
but, conversely, it does not induce the Willems’ reaction at the injection 
site [7]. This illustrates the fact that the empirical development of an 
effective live vaccine strain is dependent on a delicate balance between 
achieving sufficient attenuation and preserving enough virulence to 
stimulate the immune system and induce protection [8]. This critical 
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point may be achieved after a variable number of passages, as illustrated 
by historical vaccine strains such as KH3J, obtained following 89 pas-
sages, and T2, after 32 passages. Interestingly, this delicate balance is 
still critical today for the successful development of genetically engi-
neered vaccines [9]. 

The current quality control of CBPP vaccines is mainly based on the 
verification of the identity, purity and titer of the final product [1]. The 
identity can be determined using a conventional PCR assay [10], the 
purity by culture in appropriate media, and the titer by mycoplasma 
titration procedures. In the case of CBPP vaccines, the potency of each 
batch is not verified, since there is no laboratory animal model allowing 
a cost-effective assay. The potencies of the T1/44 and T1sr grand- 
parental strains were re-evaluated in cattle some years back [7,11]. It 
is considered that the final vaccine batches should have a potency 

similar to the grand-parental strains, as long as producers strictly adhere 
to WOAH production guidelines [1]. These guidelines state clearly that 
(i) there must be a limited number of passages between the parental 
strain stock and the final vaccine batch and (ii) cloning procedures must 
be avoided, as the selection of variants may lead to products of unknown 
quality. Unfortunately, there is no quality control procedure available at 
present to verify that these guidelines are strictly respected and to reveal 
an eventual genetic drift of the vaccine strain. 

The objective of this study was to develop a quality control tool to 
evaluate the genetic drift that may occur when passaging T1/44 in vitro 
and to analyze a representative number of commercial CBPP vaccine 
batches using this tool. For this purpose, we adopted a deep sequencing 
approach for variant frequency analysis along the T1 strain genomes. 

Fig. 1. T1 strain history The origin and passage history of T1 strain stocks, passages and commercial batches analyzed in this study is shown. T1 strains are 
represented by star symbols, and those from which the whole genome sequence was obtained in this study are colored: in blue, T1/44/2K grand parental stock and 
commercial vaccine batches; in green, three independent cultures (named A, B and C) derived from the T1/44/2K grand-parental stock and their respective passages 
5, 10 and 15; and in yellow, T1sr parental strains and commercial vaccine batches. Dashed arrow lines indicate unknown passage history. Sequenced samples are 
numbered in orange. GenBank accession numbers of available whole genome sequences are provided. Abbreviations: ANSES: Agence Nationale de Sécurité Sanitaire 
de l’Alimentation de l’Environnement et du Travail; EMVT: Département “Elevage et Médecine vétérinaire du CIRAD”; IEMVT: “Institut d’élevage et de médecine 
vétérinaire des pays tropicaux”; INRA: “Institut National de Recherche Agronomique”; KARI: Kenya Agricultural Research Institute. 
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2. Materials and methods 

2.1. Strains and culture conditions 

The history of the T1 strains analyzed in this study is summarized in 
Fig. 1. T1, isolated in “Tanganyika”, Tanzania, was described by Sheriff 
and Piercy as an Mmm strain of mild virulence; it was passaged 44 times 
in embryonated eggs until it was sufficiently attenuated to be considered 
a safe attenuated vaccine, which was then named T1/44 [3]. In 1996, 
CIRAD was asked by the FAO to produce a grand-parental stock for 
potency re-confirmation and distribution to vaccine producing labora-
tories. For that purpose, a stock of T1/44, freeze-dried in 1970, was 
obtained from KARI Muguga, Kenya. It was passaged twice and freeze- 
dried before being submitted to AU-PANVAC for quality control. This 
stock, named T1/44/2K, is now considered the grand-parental stock. 

T1sr was developed at the “Institut d’élevage et de médecine 
vétérinaire des pays tropicaux (IEMVT), Maisons-Alfort, France” in 1972 
by passaging a stock of T1/44 (T1 M44 obtained from Pr. Lindley in 
1967) in a medium containing streptomycin. After 4 passages, the 
resulting streptomycin-resistant strain was called T1sr/48. In 1991 a 
stock of grand-parental strain was produced with an additional passage, 
T1sr/49 [6]. 

To study the in vitro evolution of T1/44 under vaccine production 
conditions [1], three independent cultures (named A, B and C) of a 
“parental stock (T1/44P)” produced by a single passage from the T1/44/ 
2K GP stock (Fig. 1) were performed and passaged fifteen times. Each 
passage consisted in applying a 1/100 dilution (50 µl in 5 ml) in 
modified Hayflick’s medium [12] and incubating it for about 24 h until 
turbidity was observed. Aliquots of passages 5, 10 and 15 were collected 
and stored at − 80 ◦C for whole genome sequence analysis. 

To study the level of genetic drift in CBPP vaccines presently used in 
Africa, the AU-PANVAC selected 7 batches of T1/44 and 2 batches of 
T1sr vaccines from different manufacturers that had been sent for 
quality control. One vial of each batch was sent to CIRAD, after being 
coded to respect confidentiality. 

2.2. Whole genome sequencing 

Five milliliters of end of exponential phase cultures in modified 
Hayflick’s medium were pelleted and washed in PBS, with centrifuga-
tion for 10 min at 12,000 g, and DNA was extracted using the DNeasy 
Blood & Tissue kit (Qiagen, Hilden, Germany). DNA samples were sent 
to Macrogen (Seoul, Republic of Korea) for analysis. Illumina TruSec 
DNA PCR-free libraries were constructed before analysis through an 
Illumina 2500 platform (2X250bp). 

2.3. Reference T1 genomes 

The T1/44 genome sequence available at NCBI prior to this study 
(CP014346) [13] was obtained from a T1/44 stock at INRAE, derived 
from the “T1 M44” stock held at CIRAD (Fig. 1). This stock was trans-
ferred via a third laboratory to INRAE-Bordeaux, where its chromosome 
was sequenced. Thus, the culture history of the sequenced stock differs 
from that of the grand-parental stock held at CIRAD. The genome 
sequence of the grand-parental strain (T1/44/2K GP) was obtained in 
this study, as described above, and reads were mapped on the T1/44 
INRAE genome sequence available at NCBI (CP014346). The T1/44/2K 
GP genome was annotated using Prokka [14], deposited in GenBank 
(CP054256.1) and used as reference for subsequent diversity analyses. 
The genome of T1 M44 (Fig. 1), also obtained in this study, was used as 
reference for diversity analysis concerning T1sr/49 grand-parental and 
T1sr commercial strains. 

The raw genomic sequences analyzed in this study were deposited in 
the NCBI Sequence Read Archive PRJNA1050060. 

2.4. Determination of allelic frequency variations among T1 stocks 

The pipeline grenepipe [15] was used to analyze raw Illumina 
sequencing data. Briefly, adapter and low-quality sequences were first 
removed with TRIMMOMATIC, reads were mapped on the genome 
sequence of the grand-parental strain T1/44/2K GP (CP054256.1) with 
BWA-MEM, duplicates were filtered with PICARD and variants were 
called using GATK HAPLOTYPECALLER, filtering variants with less than 
500X coverage and a calling quality of 100. Additional filtering steps 
were undertaken to remove variants with low frequency (5 % and 
below). The remaining SNPs were evaluated to remove those located on 
repetitive sequences. This was done by copying the 30 bases upstream 
the SNP and searching for duplicates in the original reference sequence. 
SNPs resulting from misalignments near tandem repeats or homopoly-
mers were also removed. The reads from T1sr/49 and commercial T1sr 
strains were mapped on the genome of T1 M44 (Fig. 1), also obtained in 
this study. 

3. Results and discussion 

The genome sequences of subsequent in vitro passages (5, 10 and 15) 
from three independent cultures of a T1/44 parental stock performed at 
CIRAD, as well as seven commercial batches of T1/44, were analyzed. 
SNP calling was performed using as reference the genome of the T1/44/ 
2K grand-parental strain (Fig. 2). 

The three independent control cultures of T1/44/ (A, B and C) un-
derwent a progressive genetic drift that was characterized by the accu-
mulation of a limited number of mutations. Such evolution is compatible 
with Mmm’s mutation rate, which was estimated around 10-8/base/ 
duplication [16].[11] Three identical polymorphic positions were 
detected in all passages of the three independent cultures (Fig. S1). Their 
frequency increased from around 30 % (after 5 in vitro passages) to 
82–89 % (after 10 and 15 passages). A few additional polymorphic po-
sitions were observed. However, these were all at very low frequencies. 
These results illustrate the stability of cultures when passages are per-
formed according to good manufacturing practices (i.e., reduced number 
of passages and no cloning procedures). 

Contrasted results were obtained on the commercial T1/44 vaccine 
batches (Fig. 2, Fig. S1). Two batches (11 and 15) retained high simi-
larity to the grand-parental stock. They only presented low numbers of 
low frequency SNPs (well below 50 %), similar to the results obtained in 
the 5th passage of cultures A, B and C, indicating that these vaccines 
were performed according to good manufacturing practices. The other 
five batches differed significantly from the original stock. Batch 17 was 
the least divergent, though the number and frequency of mutations in 
this batch were higher than in the 10th passage of cultures A, B and C, 
which may indicate the implementation of additional subcultures from 
the T1/44 parental stock before batch production. Batches 13 and 16, on 
the other hand, presented several SNPs at very high frequency (over 90 
%), which may either reflect the use of a different grand-parental stock 
or the rapid expansion of a variant within the culture. The other two 
(batches 12 and 14) presented several fixed SNPs (found at a frequency 
of 100 %). Batch 12 had the highest number of totally fixed mutations 
(N = 5). Mutations fixed in the population may indicate the selection of 
variants, which occur during population bottlenecks. This may happen 
when seeding a parental stock in primary dilution and selecting the last 
tube showing turbidity to seed the production medium. In such situa-
tions, the seed culture is likely to derive from a few mycoplasmas in 
which mutations may have been fixed. Again, the fixed mutations may 
also indicate the use of a different parental stock. 

Although T1sr is rarely used, commercial T1sr vaccine batches are 
still sent to PANVAC for quality control. Two batches were thus included 
in this analysis. However, since T1sr vaccines have a different origin, 
SNP calling analyses were performed using as reference the genome of 
T1 M44 (Fig. 1). The comparison of T1sr sequences (Fig. S2) revealed the 
presence, in the T1sr/49 grand-parental stock, of a fixed, non- 
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synonymous mutation affecting the rplS gene (HR079_04940; Tab. S1). 
In bacteria, mutations in this gene, encoding 30S ribosomal protein S12, 
are often correlated with streptomycin resistance, but also reduced 
growth rate and virulence [17]. Six additional mutations at frequencies 
ranging from 79 to 82 % were found in the T1sr/49 grand-parental stock 
in comparison with the T1 M44 reference genome. For what concerns 
the two T1sr commercial vaccine batches, they differed notably from the 
grand-parental stock by loss of the seven characteristic T1sr positions 
mentioned above, including the rplS mutation. This may be an indication 
that vaccine manufacturers are not adding streptomycin to the culture 
medium, presumably to improve the growth in culture. Again, the ge-
netic drift observed in these vaccines is not compatible with good 
manufacturing practices and indicates either the use of alternative 
parental stocks or excessive passage and cloning during vaccine 
production. 

4. Conclusion 

A live vaccine is not a genetically uniform entity but consists of a 
more or less heterogeneous population determined by the characteristics 
of the grand-parental vaccine stock, the production history of the 
batches, and the evolutionary mechanisms at stake for the organism. 
Analysis of deep sequencing data can elucidate strain diversity at very 
high resolution and enable the comparison of live vaccine stocks that 
may have evolved differently [18,19]. This is particularly important for 
attenuated vaccine strains, such as T1, since divergent populations may 
have different immunizing properties. In this work, we show that the 
genetic drift occurring in live CBPP vaccine batches can be easily eval-
uated by the proposed genome variant analysis. This is essential for 
vaccines that cannot be routinely checked for potency and for which 
quality control relies mainly in the evaluation of viable titers. Such 
genome variant analysis may lead to standardized procedures and be 
incorporated into regulatory frameworks for vaccine batch quality 
compliance. The cost of such analysis is certainly minimal compared to 
the cost of using vaccines with reduced potency. 
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