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Use of GEDI Signal and Environmental Parameters to Improve Canopy 
Height Estimation over Tropical Forest Ecosystems in Mayotte Island
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améliorer l’estimation de la hauteur de la canopée dans les écosystèmes 
forestiers tropicaux à Mayotte
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ABSTRACT
Canopy height is a fundamental parameter for describing forest ecosystems. GEDI is a 
spaceborne LiDAR system that was designed to measure vegetation’s vertical structure at a 
global scale. This study evaluates the accuracy of GEDI-derived canopy height estimates over 
complex tropical forests in Mayotte Island (Overseas France) characterized by moderate height 
and biomass levels as well as a relatively steep terrain. The influence of GEDI signal and 
environmental parameters (canopy height, beam sensitivity and slope) on height estimates 
was assessed. Linear as well as non-linear approaches were implemented using the GEDI L2A 
product to estimate canopy height. Empirical models were trained on reference data derived 
from airborne LiDAR scanning. The results showed that using regression models built on 
multiple GEDI metrics yielded improved accuracies compared to a direct estimation from a 
single GEDI height metric. Canopy height, beam sensitivity and terrain slope were found to 
have a significant impact on the height metrics derived from GEDI waveforms. Conversely, 
both linear and non-linear regression models produced unbiased and stable estimates.

RÉSUMÉ
La hauteur de la canopée est un paramètre fondamental pour décrire les écosystèmes 
forestiers. GEDI est un système LiDAR spatial conçu pour mesurer la structure verticale de la 
végétation à l’échelle mondiale. Cette étude évalue la précision des estimations de la hauteur 
de la canopée à partir de GEDI sur des forêts tropicales complexes de l’île de Mayotte (France 
d’outre-mer) caractérisées par des hauteurs et des niveaux de biomasse modérés ainsi que 
par un terrain relativement escarpé. L’influence du signal GEDI et des paramètres 
environnementaux (hauteur de la canopée, sensibilité du faisceau laser et pente du terrain) 
sur les estimations de hauteur a été évaluée. Des approches linéaires et non-linéaires ont été 
mises en œuvre en utilisant le produit GEDI L2A pour estimer la hauteur de la canopée. Des 
modèles empiriques ont été entraînés sur des données de référence issues d’acquisitions par 
LiDAR aéroporté. Les résultats ont montré que l’utilization de modèles de régression construits 
à partir de plusieurs métriques GEDI permettait d’améliorer la précision par rapport à une 
estimation directe à partir d’une seule métrique de hauteur GEDI. La hauteur de la canopée, 
la sensibilité du faisceau et la pente ont eu un impact significatif sur les métriques de hauteur 
dérivées des formes d’onde GEDI. Par ailleurs, les modèles de régression linéaire et non-linéaire 
ont produit des estimations stables et sans biais.

Introduction

Tropical moist forests play a critical role in maintain-
ing natural balances by serving as global carbon 

storage reservoirs. They are natural carbon dioxide 
sinks and account for more than 40% of the world’s 
terrestrial carbon stock (Pan et  al. 2011). Measuring 
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the standing aboveground biomass (AGB) in these 
forests is a fundamental step in assessing their carbon 
sequestration potential. AGB refers to the quantity of 
living vegetation above the soil, including stem, stump, 
branches, bark, seed and foliage. A number of studies 
have established allometric relationships that link the 
measurable structural characteristics of a forest to its 
AGB amounts (Asner and Mascaro 2014; Chave et  al. 
2005). Canopy height is a crucial parameter for quan-
tifying biomass, as most allometric equations rely on 
it to derive AGB (Lefsky et  al. 2005). Indeed, multiple 
authors have found that including canopy height in 
AGB prediction models can significantly reduce esti-
mation errors and improve accuracy (Lima et  al. 2012; 
Feldpausch et  al. 2012), and that allometric relation-
ships based on canopy height only may be used to 
predict AGB (Lefsky et  al. 2005).

Remote sensing data has been proven to be an 
effective means of estimating forest characteristics at 
both regional and global scales over large areas that 
would be difficult to study otherwise (Boyd and 
Danson 2005). Light detection and ranging (LiDAR) 
technology is particularly well-suited for characterizing 
forest height and vertical structures. By emitting laser 
pulses and retrieving return signals, LiDAR can mea-
sure the three-dimensional structure of the environ-
ment with precision. In particular, full waveform (FW) 
systems are able to record the complete profiles of 
the return signals by sampling them in constant time 
intervals (Wehr and Lohr 1999). These systems pro-
vide geolocated one-dimensional temporal signals 
(referred to as return or received waveforms) describ-
ing the vertical structure of the vegetation at specific 
geolocations, from which a variety of forest parame-
ters can be extracted. Airborne and spaceborne 
LiDARs are the two primary systems used to acquire 
data to describe forest vertical structures. The main 
advantage of airborne sensors is their high resolution 
(i.e., the number of returned points over a given sur-
face), but they come at a high financial cost for data 
users which restricts their usage to limited areas and 
dates. Conversely, spaceborne LiDAR data are freely 
accessible and provide global coverage, but they pro-
duce low density information (spatial coverage of 
about 4% of the Earth’s surface for the latest system) 
and their high operational altitudes make them more 
sensitive to difficult atmospheric conditions (Dubayah 
et  al. 2020; Baghdadi et  al. 2014). The latest operating 
spaceborne LiDAR system providing data at a global 
scale is the Global Ecosystem Dynamics Investigation 
(GEDI) embedded on the International Space Station 
(ISS). By emitting laser pulses that pass through the 
atmosphere and interact with the objects on the 

Earth’s surface, GEDI records the return signals result-
ing from backscattering. These received waveforms 
are a direct proxy of the vegetation’s vertical structure 
and descriptive metrics can then be extracted to char-
acterize vegetation parameters.

In tropical biomes, characterizing forest parameters 
from GEDI data poses important challenges due to 
the dense and complex nature of these ecosystems. 
To address these issues, statistical methods have been 
developed and implemented to predict canopy heights 
from GEDI data (Dorado-Roda et  al. 2021; Adrah 
et  al. 2022; Gupta and Sharma 2022). Accurately 
describing the vertical structure of forests from top-of-
canopy to the ground using GEDI depends directly 
on the system’s ability to penetrate through the veg-
etation all the way to the ground. The assessment of 
GEDI’s capability to measure canopy height has high-
lighted the importance of signal parameters such as 
beam sensitivity and intensity when dealing with 
densely vegetated areas (Adam et  al. 2020; Ngo et  al. 
2022). Wang et  al. (2022) concluded that the higher 
the waveform sensitivity, the lower the errors in GEDI 
canopy height estimation. More precisely, Fayad et  al. 
(2022) found that GEDI shots with beam sensitivity 
greater than 98% exhibited a significantly greater abil-
ity to detect the ground and canopy tops in a tropical 
context. Moreover, terrain configuration has a strong 
impact on the waveforms acquired by GEDI and the 
effects of slope on the waveforms need to be accounted 
for and compensated, especially over steep and rugged 
areas. Topographic slope is indeed a critical factor 
affecting the precision of canopy height estimates 
using spaceborne LiDAR GEDI (Liu et  al. 2021; Fayad 
et  al. 2021a). For example, the waveform extent may 
stretch over terrain with significant elevation differ-
ences, causing an overestimation of the relevant veg-
etation features (Chen 2010; Kutchartt et  al. 2022). 
Dhargay et  al. (2022) investigated the impact of ter-
rain slope on GEDI-derived canopy height in complex 
forest ecosystems of south-eastern Australia, revealing 
an increasing trend in estimation error with steeper 
slopes. Liu et  al. (2021) noted that regions character-
ized by dense canopy cover or steep slopes pose sig-
nificant challenge for retrieving accurate canopy height 
information from GEDI. Similarly, in a study over 
multiple Eucalyptus plantations, Fayad et  al. (2021b) 
observed a 14% increase in RMSE for the estimation 
of dominant height in areas with slopes exceeding 
20% compared to slopes ranging between 10 and 20%. 
Finally, the vegetation structure may also affect GEDI 
measurements and, in particular, tree heights and 
cover fraction have a direct impact on the metrics 
extracted from GEDI waveforms. Schlund et  al. (2022) 
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built empirical models from GEDI data to estimate 
vegetation heights and noted that structural attributes 
like the canopy height itself and forest cover had a 
significant effect on the accuracies of height estimates, 
with higher and denser vegetation generally resulting 
in higher errors. Reciprocally, when dealing with lower 
tree heights, the ground return may blend with the 
vegetation, also causing errors in canopy height esti-
mates. For example, Ilangakoon et  al. (2018) observed 
that using GEDI waveforms to differentiate bare 
ground from low-height vegetation such as shrubs 
could be challenging because the waveforms share the 
same characteristics.

This paper aims at evaluating the impact of vege-
tation height, beam sensitivity and slope on the esti-
mation of canopy heights over tropical forests in 
Mayotte Island (Overseas France), a particularly com-
plex context for GEDI measurements due to its spatial 
heterogeneity, terrain slope (mean slope of 20°), and 
relatively small tree height with an average height of 
15 m (Dupuy et  al. 2013). The first objective is to 
understand how these parameters impact the data 
retrieved by the GEDI sensor and, consequently, the 
height metrics derived from the received waveforms. 
The context of Mayotte Island is particularly interest-
ing as it is one of the last islands to have forest com-
plexes in this part of the western Indian Ocean. 
Secondly, in the light of this understanding, the sec-
ond objective is to evaluate how these parameters can 
be integrated as input of prediction models to improve 
canopy height estimates from GEDI data. Based on 
the results of this analysis, we aim at offering valuable 

recommendations to GEDI users on how to utilize 
their data effectively depending on their specific work 
configurations, goals and objectives. The information 
contained in GEDI products are indeed abundant and 
can be leveraged in various ways to derive indicators 
that describe the structure of forest ecosystems. In 
order to do so, GEDI-derived canopy height estimates 
are compared to reference values from a canopy height 
model (CHM) obtained from airborne LiDAR scan-
ning (ALS) data.

Materials and methods

Study area

The study was conducted over two forests in the 
island of Mayotte. Mayotte Island (Comoro 
Archipelago) is an overseas department of France 
located in the Indian Ocean. It is one of the few 
remaining islands in the western Indian Ocean with 
forest ecosystems. These ecosystems are primarily 
located in five forested areas. The areas of interest 
considered in this study are located over the Dapani 
state forest and the Majimbini departmental forest 
(Figure 1).

Dapani forest is a vital natural ecosystem that pro-
vides numerous ecological, economic and social ben-
efits to the region. Located in the southern part of 
the island, the forest covers an area of approximately 
340 hectares, on a relatively hilly terrain that ranges 
from sea level to 500 m above sea level (asl). The 
forest is a unique habitat characterized by a rich 

Figure 1. L ocation of the two study sites in Mayotte Island (ESRI Satellite®) and GEDI footprints over ALS canopy height.
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diversity of endemic and endangered plant and animal 
species, including several species of lemurs, bats and 
birds (Gargominy 2003). The climate in Dapani forest 
is typically tropical (group Aw according to Köppen 
climate classification), with two distinct seasons: the 
dry season from June to October and the wet season 
from November to May. The average annual rainfall 
in the southern regions of Mayotte amounts to about 
1,000 mm (Lachassagne et  al. 2014). The forest is 
dominated by shallow to deep soil and the vegetation 
is characterized by a dense canopy of evergreen trees 
and shrubs that provide vital carbon sequestration 
and oxygen production services (Pascal and 
Labat 2002).

Majimbini Forest, situated on the northeast part of 
the island, is also a crucial ecosystem for biodiversity 
conservation in the region. The forest covers an area 
of approximately 1,200 hectares and is characterized 
by a variety of vegetation types, including dense for-
ests, shrublands and grasslands (Pascal and Labat 
2002). Over 500 plant species are recorded in the 
area, including several endemic species (Gargominy 
2003). Majimbini forest is subject to a tropical climate 
(group Aw according to Köppen climate classification), 
although more humid than Dapani forest with an 
average annual rainfall of approximately 2,000 mm in 
the northern parts of Mayotte Island (Lachassagne 
et  al. 2014). The topography of Majimbini forest is 
characterized by a series of rolling hills, with the 
highest point in the forest reaching approximately 
500 m asl.

The two study sites correspond to zones with sim-
ilar structural properties in terms of average heights 
and biomass levels, with an average canopy height of 
15 m and a mean aboveground biomass (AGB) ranging 
between 100 and 150 Mg/ha (Santoro et  al. 2021). 
Even though global AGB maps such as the ones we 
considered are produced with quite large uncertainties 
(error between 50 and 100 Mg/ha in average), they 
still allow drawing conclusions on the relatively mod-
erate AGB levels that characterize Mayotte’s forest 
ecosystems and that are significantly lower than the 
known saturation levels of LiDAR spaceborne sensors 
(Duncanson et  al. 2022; Shendryk 2022). For the pur-
pose of this study, all the data related to each site 
were merged together to produce a single database 
describing forests in Mayotte’s tropical context.

Data and processing

GEDI data
GEDI is a FW LiDAR sensor that was specifically 
designed to measure the vertical structure of forest 

ecosystems (Dubayah et  al. 2020). Between April 2019 
and April 2023, GEDI has been gathering data using 
three 1064 nm lasers that emit 242 pulses per second. 
One laser is split into coverage beams and the other 
two remain as power beams. All the beams are then 
slightly dithered to create eight parallel tracks of 
observations over a 4.2 km swath on the ground. The 
beams illuminate circular footprints of 25 m in diam-
eter on the Earth’s surface and the waveforms of the 
return signals are recorded to measure the vertical 
structure of the vegetation. The profiles of the return 
signals are sampled at a fixed time interval of 1 ns 
which corresponds to a 15 cm sampling distance.

The GEDI data used in this study were processed 
by NASA’s Land Processes Distributed Active Archive 
Center (LP DAAC). The datasets consist of two pro-
cessing levels, namely L1B (Level 1) and L2A (Level 
2). The L1B product provides geolocated and smoothed 
waveforms along with their ancillary parameters, with 
an expected geolocation accuracy of about 10 m (Roy 
et  al. 2021). The L2A product provides elevation and 
height metrics at the footprint-level, such as ground 
elevation, canopy top height and relative height (RH) 
metrics. The L2A product is derived from the received 
waveforms in the L1B product using six possible sig-
nal processing configurations known as algorithm 
setting groups. These groups determine the thresholds 
and smoothing settings used to interpret the received 
waveforms, which in turn affects the height metrics 
computed in the L2A product. In the context of this 
study, we utilized the L2A metrics that were computed 
using algorithm setting group number 2.

GEDI shots (i.e., L1B and L2A data associated with 
a footprint on the ground) acquired in the period 
between April 2019 and March 2023 were downloaded 
over the two areas of interest considered in this study. 
To ensure the validity of the measurements obtained 
by the GEDI sensor and considering the potential 
negative impact of atmospheric conditions, various 
filters were applied to remove unusable and irrelevant 
shots before conducting the analysis:

•	 Shots with no mode detected (num_detected-
modes = 0) were removed. A signal with no 
mode is just pure noise and does not contain 
any information related to the vertical structure 
of the forest.

•	 Shots with a null SNR (SNR = 0) were removed. 
These shots also correspond to pure noise.

•	 Shots with an incorrect detection of the ground 
were removed. The quality assessment of the 
ground detection from GEDI data are per-
formed using the corresponding Shuttle Radar 
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Topography Mission (SRTM) digital elevation 
model (DEM). Even though a more accurate 
ALS DEM is available, we chose to use the 
SRTM product to place our study in an oper-
ational context where accurate products are not 
always available for users. Moreover, this fil-
tering step does not require a very accurate 
DEM product and the filtering performed with 
the ALS DEM did not change the output. If 
the absolute difference between the elevation 
of the GEDI lowest mode (elev_lowestmode) 
and the SRTM DEM (digital_elevation_model_
srtm) is greater than 100 m, then the shot is 
discarded.

•	 Shots with an incomplete waveform were 
removed. An incomplete waveform is a partial 
signal that does not have a sufficient number 
of bins to be interpretable. If the end location 
of the usable portion of the waveform (search_
end) is equal to the total number of bins in 
the waveform (rx_sample_count), then the 
waveform is considered incomplete.

•	 Shots with a distance between the canopy top 
and the ground return (rh_100) lower than 3 
m were removed. GEDI shows certain insen-
sitivity to estimate the height of short objects. 
In fact, GEDI’s lasers fire shots with a pulse 
width of about 15 ns, which corresponds to a 
distance between the first emitted photons and 
the last of approximately 4.5 m. In an ideal 
scenario (perfect reflectance and no atmo-
spheric perturbations), the returned waveform 
over a bare ground would have a distance 
between the toploc (first returned photons) and 
botloc (last returned photons) of approximately 
4.5 m, and the derived rh_100 would amount 
to about 2.25 m (distance between toploc and 
the ground which is located in the middle 
between toploc and botloc). Due to noise and 
other sources of perturbations, this insensitivity 
of GEDI may increase to around 3 m.

After the filtering steps, and considering the avail-
ability of ground truth data, a total of 3384 GEDI 
footprints were retained out of a total of 19,272 shots 
(about 17%) for the combined analysis of the two 
study sites.

ALS data
In order to evaluate the accuracy of GEDI data in 
predicting canopy heights, a CHM derived from ALS 
data was utilized as ground truth. ALS data were 

acquired through surveys conducted in October 2008 
by the French National Geographic Institute (IGN) in 
the context of the Litto3D project (Dupuy et  al. 2013). 
All the LiDAR echoes were recorded and IGN then 
used automatic and interactive filtering to extract the 
first and last returns from the point clouds. The first 
returns are typically associated with the canopy top 
in forested areas, while the last returns usually indi-
cate the ground, even though it is not always the case 
in densely vegetated areas. Therefore, IGN also con-
ducted significant interactive processing to verify and 
reclassify points. A digital surface model (DSM) and 
a digital terrain model (DTM) at a resolution of 1 m 
were finally produced using TerraScan software 
(Terrasolid Ltd., Finland). The CHM used in this 
study was obtained by firstly calculating the difference 
between the DSM and the DTM, and then applying 
a rank-order operator median filter to generate the 
final CHM product (Dupuy et  al. 2013).

Dapani and Majimbini forests are located in pro-
tected areas and consist mainly of mature old-growth 
and secondary woodlands. Nevertheless, given the time 
span between the acquisition of ground truth data and 
the GEDI mission, vegetation growth and changes 
occurred. There are no in-situ measurements of forest 
growth based on permanent inventory plots for these 
forests, which makes it impossible for a precise eval-
uation of changes in canopy height. Considering the 
rough estimate of forest AGB increase of about 1% 
per year in Mayotte Island (Requena Suarez et  al. 
2019), we expect an average height growth of 1 to 2 m 
in a ten-year time span considering simple allometric 
relationships for tropical forests (Chave et  al. 2014). 
Some studies have investigated canopy dynamics over 
extended time periods in old-growth tropical rainforest 
landscapes. Dubayah et  al. (2010) utilized two LiDAR 
datasets from 1998 and 2005 acquired over La Selva, 
a tropical biome in Costa Rica (Central America), and 
reported a net height loss of −0.33 m for old-growth 
forests and a net gain of 2.08 m for secondary forests 
over a 7-year time span. Similarly, Kellner et  al. (2009) 
analyzed two LiDAR datasets acquired over La Selva 
(in 1997 and 2006) and found a mean height change 
of −0.32 m for old-growth landscapes over an 8.5-year 
period. Although the height did not vary significantly 
in average, local variations can still occur. For example, 
Dubayah et  al. (2010) reported local variations of 
approximately +/−3 m for old-growth forests over a 
7-year time span.

To summarize, in the present study, the discrep-
ancies between GEDI-derived heights and ALS CHM 
include the possible evolutions of the forests between 
the acquisition dates, together with various other 
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factors, such as GEDI geolocation accuracy and mea-
surement uncertainties. In the following section, we 
describe a filter that was applied to exclude GEDI 
footprints over areas where disturbances (i.e., height 
decrease) occurred in the period between ALS and 
GEDI acquisitions.

Ancillary data
Even though Dapani and Majimbini forests are located 
in protected areas, they are still under threat from 
human activities such as logging, agriculture and 
urbanization. Moreover, intense climatic events such 
as cyclones, typhoons or fires can also cause signifi-
cant degradations to these ecosystems. Areas where 
such significant changes in height occurred need to 
be removed from the analysis to produce a relevant 
comparison between GEDI data and reference heights.

The dataset produced by the European Commission’s 
Joint Research Center (JRC) on forest cover change 
in tropical moist forests (TMF dataset) is a highly 
structured and comprehensive record of forest cover 
and land use change in these ecosystems (Vancutsem 
et  al. 2021). It is compiled from optical satellite imag-
ery spanning several decades and covers a vast area 
of the tropics, including the western Indian Ocean 
and Mayotte Island. The dataset includes information 
on forest area, forest cover change, and forest loss and 
degradation, as well as data on human activities and 
infrastructure that may be contributing to these 
changes. For the purpose of this study, we focused on 
the zones of the Dapani and Majimbini forests that 
remained undisturbed since the year 2008. An undis-
turbed zone is defined as an area that did not undergo 
any degradation or deforestation since a given year. 
In this way, our study focuses on old-growth and sec-
ondary undisturbed forested areas only and, therefore, 
the dispersion that will be observed between 
GEDI-derived heights and the reference CHM cannot 
be linked to potential major disturbances in forest 
cover during the time span between acquisitions.

The TMF dataset allowed restricting the study sites 
to the extent of undisturbed forested areas and, out 
of the 3384 GEDI shots that were firstly retained after 
the preliminary filters, a total of 2397 footprints are 
finally available for the assessment of canopy height 
estimates performed in this analysis.

Methods

The study presented herein has two main objectives. 
First, using a single GEDI height metric as a direct 
proxy of canopy height, a comparative assessment of 

GEDI’s capabilities in predicting canopy heights is 
performed. Canopy height, beam sensitivity and slope 
are studied independently from each other in order 
to evaluate their specific influence on GEDI data. 
Through this analysis, we aim at understanding how 
signal physical parameters as well as environmental 
configuration can impact the waveforms acquired 
through GEDI and thus the canopy height estimates 
resulting from their processing. Next, in the light of 
this preliminary analysis, we evaluate several regres-
sion approaches based on multiple GEDI metrics to 
improve the accuracy of canopy height prediction 
models. The aforementioned GEDI signal and envi-
ronmental parameters are also included in the con-
struction of these models to assess how their impact 
can be taken into account and how they can contrib-
ute to reaching better accuracies. Specifically for slope, 
a number of studies have been carried out to address 
this particular issue and to integrate slope information 
in estimation models. Some works retrieve terrain 
indices that describe the elevation configuration and 
directly utilize them as inputs in prediction models 
(Chen 2010; Xing et  al. 2010). Others rely on the 
computation of slope-corrected waveforms to mini-
mize the effects of slope and produce simulated met-
rics that are later used in prediction models (Wang 
et  al. 2019; Fayad et  al. 2021a). In the context of this 
study, a multilinear regression model and Random 
Forest (RF) estimators are implemented to take advan-
tage of the information contained in GEDI waveforms. 
Specifically, to investigate the possible outcomes 
related to the integration of slope information, we 
build a RF model based on actual GEDI metrics on 
one hand, and a RF model trained on simulated met-
rics on the other hand.

GEDI and ALS canopy heights
To determine the potential of GEDI for estimating 
canopy heights, a single metric from the L2A product 
was selected as the GEDI-derived height (referred to 
as GEDI-CHM). From all the available values, three 
relative heights were identified as potential candidates 
to be a direct proxy of canopy height: rh_100, rh_98 
or rh_95. Relative height metrics indicate the height 
relative to the ground at which a specific percentile 
of returned energy is attained. For instance, rh_95 
denotes the height at which 95% of the waveform 
energy is reached. Relative heights of high percentiles 
are therefore considered as good indicators of canopy 
heights. In this study, we assessed the use of rh_100, 
rh_98 and rh_95 as direct proxies of canopy height 
in order to select the most adapted one in accordance 
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with our results and previous assumptions in the lit-
erature review (Potapov et  al. 2021; Dorado-Roda 
et  al. 2021).

The accuracy of GEDI estimates is determined by 
comparing the relative height metric value with the 
corresponding reference canopy height, which is 
obtained from the reference CHM raster. The geolo-
cation of the received GEDI waveforms is used to 
overlay GEDI footprints with the CHM raster. For 
each usable footprint in the GEDI L2A product, zonal 
statistics of the CHM raster cells contained within 
the extent of the footprint (a 25 m circle) are extracted. 
We identified two statistical values as potential can-
didates to represent the reference canopy height 
(referred to as ALS-CHM): the maximum (als100) or 
the 95th percentile (als95). High statistics of the CHM 
raster cells were chosen because they are theoretically 
closer to the top-of-canopy signal obtained from 
GEDI waveforms. Given the point density of the ALS 
acquisition (2 points/m2) and the CHM raster reso-
lution (1 m), these statistics were directly computed 
from the raster. Adam et  al. (2020) supported the use 
of the maximum value by the fact that received wave-
forms begin at the highest point of vegetation within 
the footprints. In another study, Hilbert and Schmullius 
(2012) obtained better correlations between ALS ref-
erence heights and spaceborne LiDAR-derived height 
estimates when using the maximum rather than the 
mean value. Specifically in this study, we noted a 
significant difference between als100 and als95 for 
some GEDI shots, especially the ones over spatially 
fragmented and heterogeneous canopies. Therefore, 
we also assessed the use of each of these two statistics 
to select the one most correlated with the height 
information contained in GEDI waveforms.

In the end, the accuracy of GEDI estimates is 
achieved by comparing GEDI-derived heights 
(GEDI-CHM) with ALS reference heights (ALS-CHM). 
To perform statistical analysis and evaluate the accu-
racies of this approach, we calculated the root mean 
square error (RMSE) as well as the difference between 
GEDI-CHM and ALS-CHM (referred to as 
CHM-Differences). The rh_95 metric proved to be 
the most suitable indicator of canopy height and the 
maximum als100 appeared to be the most suited value 
for reference canopy height.

Influence of signal physical parameters
The performances of GEDI’s canopy height estimation 
depend on the laser’s ability to penetrate the vegeta-
tion and detect the ground. To estimate canopy 
heights using a relative height metric, it is crucial to 

identify the ground peak in the waveform signal. 
Incorrect ground peak detection could be due to the 
laser’s inability to reach the ground or to a difficulty 
in isolating the ground mode from the background 
noise that characterizes every numeric signal (Adam 
et  al. 2020). In this prospective, beam sensitivity is 
an important parameter that can help understand and 
characterize these situations. Sensitivity is defined as 
the maximum canopy cover that can be penetrated 
considering the SNR of the waveform. A high sensi-
tivity allows penetrating denser canopies and thus 
reaching the ground. This signal physical parameter 
is therefore of paramount importance when extracting 
canopy heights from GEDI data and its influence was 
assessed to understand how it may affect the obtained 
results.

Influence of environmental parameters
The forest variables and height metrics measured by 
the backscattered GEDI signals may contain uncer-
tainties due to the distortion caused by the topo-
graphic conditions within the footprints. In order to 
quantify the influence of terrain on canopy height 
estimates, a slope raster was derived from the DTM 
raster and resampled to a 5 m resolution. This upsam-
pling was done to minimize the impact of extreme 
slope values (Wang et  al. 2019; Adam et  al. 2020). 
The mean slope value within the extent of the foot-
print was then calculated for each GEDI waveform. 
To better visualize the influence of slope on GEDI 
measurement accuracies, three slope classes were cre-
ated to later group accuracy metrics by these catego-
ries: inferior to 15°, between 15 and 25°, superior to 
25°. Furthermore, vegetation and canopy characteris-
tics can also play a role in the shape of GEDI mea-
surements. Consequently, in order to highlight the 
impact of tree height, the accuracy of GEDI’s canopy 
height estimates was assessed depending on two 
classes of heights: inferior to 15 m and superior 
to 15 m.

Regression models for canopy height estimation
After assessing the use of a single metric to derive 
canopy height, we built regression models between 
the ALS-CHM reference height data and GEDI L2A 
waveform metrics, as well as acquisition and environ-
mental parameters.

In this study, three models were trained and eval-
uated: a Multilinear Regression (MRH), a RF regressor 
(RFH) based on GEDI metrics and a RF regressor 
(sRFH) based on simulated metrics computed from 
simulated ground returns (Wang et  al. 2019; Fayad 



8 LAHSSINI ET AL.

et  al. 2021a). Table 1 presents a list of the models 
along with the metrics used for their implementation. 
The goal is to understand how the parameters that 
impact canopy height estimation can be integrated to 
improve the obtained accuracies. To evaluate the per-
formances of the models, a ten-fold cross validation 
was used, and the RMSE and CHM-Differences were 
calculated.

Firstly, a MRH was implemented to predict canopy 
heights from a set of predictive explanatory variables. 
In this approach, a linear relationship is built between 
the target variable and the predictors. Secondly, can-
opy heights were also estimated through non-linear 
non-parametric regressions using Random Forest (RF) 
regressors. The RF method is a machine learning 
algorithm that leverages ensemble of trees through a 
bagging strategy to predict the target variable. 
Compared to MRH, RFH and sRFH have the advan-
tage of being able to model non-linear relationships 
between the predictors and the variable to predict. 
The importance of the predictors used as input vari-
ables can be quantified in order to understand the 
most contributing factors in the estimation task. In 
this analysis, RFH and sRFH differ by the way slope 
information is integrated to the model: the former is 
built on GEDI relative height metrics and mean slope 
of the footprints while the latter relies on metrics 

extracted from simulated waveforms that already take 
into account the slope effects. To generate new metrics 
from simulated waveforms, we used a method devel-
oped by Wang et  al. (2019). To begin with, for each 
GEDI footprint of the dataset, we simulated a wave-
form over a bare ground with the same slope value 
as the actual waveform acquired over forested area. 
The simulated waveform is based on a Gaussian signal 
such as the laser pulses emitted by FW LiDAR sensors 
(Fayad et  al. 2021a). Over steep terrain, the waveform 
extent increases with slope and the ground peak 
exhibits a broadening of its width. To account for 
this, the standard deviation used in the Gaussian func-
tion to simulate a bare ground return is broadened 
to reflect the slope of the terrain. Once the shape of 
the waveform over a bare ground with known slope 
is determined, the simulated ground return is finally 
overlaid on the actual waveform by aligning the posi-
tions of the signal end of both waveforms. The super-
position of the simulated ground return and the 
original waveform allows for the computation of new 
waveform metrics defined as follows:

•	 HT_n: height between the signal end and the 
position at which n% of the original waveform 
energy is reached.

•	 sim_HG_n: height between the signal end and 
the position at which n% of the simulated 
ground return energy is reached.

•	 sim_RHT_n: difference between HT_n and 
sim_HG_n.

Results

GEDI and ALS canopy heights

We first analyzed the simple correlation between 
GEDI-derived heights and ALS reference data. The 
results presented in Figure 2 are scatter plots of GEDI 

Table 1. L ist of the models used for the estimation of canopy 
heights and input data.
Model Input data

MRH rh_95
Slope
Sensitivity

RFH rh_n {10% ≤ n ≤ 100%, step 5%}
Slope
Sensitivity

sRFH sim_RHT_n {10% ≤ n ≤ 100%, step 
10%}

sim_HG_n {10% ≤ n ≤ 100%, step 
10%}

Sensitivity

Figure 2. GEDI -CHM estimates from rh_100 (a), rh_98 (b) and rh_95 (c) as a function of ALS-CHM (als100).
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relative height metrics (rh_100, rh_98 and rh_95) and 
ALS-CHM (als100). All RH metrics exhibit a quite 
limited linear correlation, with R2 coefficients around 
0.3. We note a tendency for rh_100 to overestimate 
canopy heights, while rh_98 and rh_95 appear less 
biased and result in point distributions that are more 
centered on the bisector line. These observations are 
also confirmed by the accuracy metrics given in Table 
2. In the light of these results, we chose for the next 
steps of this study to select rh_95 as the best metric 
to derive GEDI-CHM.

Regarding the value used to retrieve ALS-CHM 
from the reference raster data, we first compared 
CHM-Differences with the difference between als100 
and als95 for all GEDI footprints. Two main 

observations can be drawn from the results presented 
in Figure 3. On one hand, for GEDI shots with a 
relatively low difference between als100 and als95 
(inferior to 7 m, mostly corresponding to shots over 
homogeneous areas), CHM-Differences remain stable, 
and the comparison between GEDI-CHM and 
ALS-CHM exhibits a null bias and an RMSE of 6.3 m. 
On the other hand, when considering GEDI footprints 
with a higher difference between als100 and als95 
(superior to 7 m, corresponding to shots over spatially 
fragmented areas), CHM-Differences increase in abso-
lute value, with a significantly stronger bias of −3.6 m 
and an increased RMSE of 7.7 m. Therefore, the hor-
izontal heterogeneity of the vegetation proves to have 
an impact on the accuracy of canopy height estimates 
from GEDI data and ALS-CHM needs to be chosen 
accordingly.

Similarly to what was done for GEDI-CHM, Figure 
4 displays scatter plots of GEDI-CHM and the 
ALS-CHM candidates (als100 and als95). The use of 
als95 for reference data induces a tendency to over-
estimate canopy heights, even though it shows a 
slightly better correlation than when als100 is utilized. 
In terms of accuracy metrics, using the maximum 
value (i.e., als100) to calculate ALS-CHM allows for 
smaller errors and a less biased estimation, as con-
firmed by the results reported in Table 2.

Based on these findings, we decided to extract the 
maximum canopy height value als100 within a given 
GEDI footprint as the ALS-CHM used for reference 
in this study.

Influence of canopy height, sensitivity and slope

Focusing on the influence of beam sensitivity, GEDI 
shots with a mean slope superior to 15° were removed 
in order to suppress slope effects and thus concentrate 
on the impact of sensitivity.

Table 2. A ccuracy of GEDI-CHM estimates (rh_100, rh_98 and 
rh_95) against ALS-CHM (als100 and als95).
GEDI-CHM Bias (m) RMSE (m)

rh_100 vs. als100 2.1 7.4
rh_98 vs. als100 0.8 6.9
rh_95 vs. als100 −0.3 6.6
rh_95 vs. als95 3.9 7.5

Figure 3.  CHM-Differences as a function of the difference 
between als100 and als95. The difference between als100 and 
als95 is an indicator of spatial heterogeneity.

Figure 4. GEDI -CHM estimates (rh_95) as a function of als95 (a) and als100 (b).
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Boxplots in Figure 5 describe the distributions of 
CHM-Differences (i.e., the difference between 
GEDI-CHM and ALS-CHM) depending on four sen-
sitivity classes. We note that the overall 
CHM-Differences as well as the median value increase 
in absolute value when beam sensitivity decreases. 
Classes [0.90, 0.95] and [0.95, 0.98] display a similar 
behavior while GEDI shots with a sensitivity inferior 
to 0.90 appear to clearly underestimate canopy heights. 
Beam sensitivity values superior to 0.98 outperform 
all other classes in terms of accuracy and, contrary 

to them, do not show a tendency to underestimate 
canopy heights. These findings are confirmed by the 
performance metrics given in Table 3. All classes infe-
rior to a sensitivity value of 0.98 tend to underesti-
mate canopy heights, with bias values ranging from 
−3.2 to −1.8 m. Conversely, for sensitivity values supe-
rior to 0.98, rh_95 produces relatively unbiased esti-
mates and allow reaching the lowest error, with an 
RMSE value of 5.8 m. Sensitivity is linked to signal 
penetration and ground detection: a higher sensitivity 
allows for better detecting the ground and in the end 
produces better height estimates.

Similarly, to study the influence of tree height, we 
also kept GEDI footprints over steep areas (mean 
slope superior to 15°) out of the study. Figure 6 pro-
vides visual representations to understand the rela-
tionship between CHM-Differences and ALS-CHM. 
The main observation that can be drawn is that 
CHM-Differences increase significantly in absolute 
value with tree height. Moreover, we also observe two 
distinct behaviors depending on tree height class. On 
one hand, for heights ranging between 0 and approx-
imately 15 m, rh_95 generates unbiased estimates, with 
a moderate bias of 0.6 m and an RMSE value of 4.7 m 
(see Table 3). On the other hand, for ALS-CHM val-
ues superior to 15 m, estimates through rh_95 are 
negatively biased and GEDI strongly underestimates 
canopy heights, with a bias of −4.4 m and an RMSE 
of 7.6 m (see Table 3). This underestimation for 
heights superior to 15 m is still clearly observed when 
considering only high-sensitivity shots (sensitivity 
superior to 0.98).

Regarding the impact of slope, and in the light 
of our previous findings, we excluded GEDI foot-
prints with sensitivity values inferior to 0.98 as well 
as those with an ALS-CHM superior to 15 m. In that 
way, we can focus on the impact of slope only, with-
out adding the other effects that were previously 

Figure 5.  Boxplots of CHM-Differences depending on sensitiv-
ity class.

Table 3. A ccuracy of GEDI-CHM estimates depending on beam 
sensitivity, tree height and mean slope.

Bias (m) RMSE (m)

Sensitivity
< 0.90 −3.2 7.3
[0.90, 0.95] −2.3 6.6
[0.95, 0.98] −1.8 6.5
> 0.98 −0.5 5.8
Tree height
< 15 m 0.6 4.7
> 15 m −4.4 7.6
Slope
< 15° 1.1 4.8
[15°, 25°] 3.3 6.5
> 25° 5.9 9.4

Figure 6.  CHM-Differences as a function of ALS-CHM (a) and boxplots of CHM-Differences depending on ALS-CHM class (b).
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studied. Figure 7a exhibits the relation between 
CHM-Differences and mean slope. As highlighted 
by the trendline, CHM-Differences increase with 
mean slope and steeper slopes result in an overes-
timation of canopy heights. Indeed, when performing 
the analysis by slope classes, boxplots in Figure 7b 
show that the overall CHM-Differences mostly cor-
respond to positive values for slopes superior to 15° 
(i.e., an overestimation of canopy heights). On the 
contrary, GEDI footprints acquired over relatively 
flat terrain (mean slope inferior to 15°) allow reach-
ing unbiased and more accurate height estimates, as 
confirmed by the accuracy metrics displayed in 
Table 3.

Regression models

In order to improve the accuracy of canopy height 
estimates, we implemented several regression models 
based on GEDI waveform metrics, signal parameters 
and terrain conditions. In this section, we assess the 
performances of these models and how the integration 
of additional data to GEDI height metrics can help 
reach better estimations.

Multilinear regression for height estimation (MRH)
The MRH model allows linking ALS-CHM with pre-
viously selected explanatory variables through a linear 
relation. When considering all the available input data 
(i.e., 2397 GEDI footprints), the relation built by the 
MRH model is as follows:
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MRH produces an unbiased estimation with an 
RMSE of 5.7 m (see Table 4). These results highlight 
the fact that using a multilinear regression built on 
waveform metrics allows for improving the accuracy 
of the estimation task compared to the direct method 
when using only rh_95. More importantly, when the 
analysis is carried out according to the signal and 
terrain parameters that were previously assessed (sen-
sitivity, slope and tree height), we note that the impact 
of these factors is greatly lessened and that canopy 
height estimates are no longer dependent on them as 
well as completely unbiased. When considering 
CHM-Differences, boxplots in Figure 8a highlight that 
MRH displays the same behavior for all four sensi-
tivity classes. Similarly, Figure 8b and c show that the 
results given by MRH do not vary with slope and 
tree height.

Random Forest for height estimation (RFH 
and  sRFH)
Both RF models also produce unbiased canopy height 
estimates with an RMSE of 5.7 m (see Table 4). 
Similarly to MRH, building RF models based on wave-
form metrics results in a performance gain compared 
to the use of rh_95 only. All three estimators assessed 
in this study display equivalent accuracies in terms 
of bias and error (see Table 4). Additionally, RF 
regressors are also capable of lessening and erasing 
the impact of signal and terrain parameters. In the 
same spirit as what is observed for MRH, Figures 9a 
and 10a highlight the fact that canopy height estimates 
produced through RF models are not dependent on 
sensitivity. The same conclusion can be drawn 

Figure 7.  CHM-Differences as a function of slope (a) and boxplots of CHM-Differences depending on slope class (b).

Table 4. A ccuracy of GEDI-CHM estimates for rh_95 and the 
three regression models.
Estimator Bias (m) RMSE (m) rRMSE

rh_95 −0.3 6.6 44%
MRH 0.0 5.7 38%
RFH 0.0 5.7 38%
sRFH 0.0 5.7 38%
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Figure 8.  Boxplots of CHM-Differences depending on sensitivity class (a) and CHM-Differences as a function of slope (b) and 
ALS-CHM (c) for MRH and rh_95.

Figure 9.  Boxplots of CHM-Differences depending on sensitivity class (a) and CHM-Differences as a function of slope (b) and 
ALS-CHM (c) for RFH and rh_95.
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regarding slope and tree height, as exhibited in Figures 
9b, c, 10b and c.

The analysis of importance informs about which 
input variables have the most predictive power 
(Figure 11). In the case of RFH, when looking at 
the ten most important predictors, relative height 
metrics of high percentages appear as the most 
important variables, with rh_95 conveying the high-
est contribution to the estimation task. Slope and 
sensitivity also bring an interesting added value as 

input variables when estimating CHM through a RF 
model. Regarding sRFH, we note that the simulated 
RHT metrics (which contain slope information) all 
appear as the most contributing predictors whereas 
sRFH do not seem able to leverage the information 
given by the simulated HG metrics. Similarly, sen-
sitivity emerges as a contributing factor in the esti-
mation task through sRFH.

Overall, when comparing estimates with ALS ref-
erence data for the whole dataset, we note that both 

Figure 10.  Boxplots of CHM-Differences depending on sensitivity class (a) and CHM-Differences as a function of slope (b) and 
ALS-CHM (c) for sRFH and rh_95.

Figure 11. I mportance of input variables (ten most important) using mean decrease Gini (%IncNodePurity) for RFH (a) and 
sRFH  (b).
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models struggle to predict canopy heights at the edges, 
with an overestimation of low heights and an under-
estimation of high heights as shown in Figure 12.

Discussion

In the scope of our study, various methods were eval-
uated for estimating canopy heights from GEDI data. 
The results indicate that utilizing waveform 
metrics-based prediction models yield unbiased and 
relatively accurate height estimates, with a best RMSE 
value of around 5.7 m (38%).

The most straightforward approach for estimating 
canopy heights from GEDI data consists in using a 
specific L2A level metric as a direct indicator of 
CHM. The metric selected for this purpose is rh_95, 
which represents the 95th percentile of energy return 
height relative to the ground. Upper relative height 
metrics, such as the ones we considered in our anal-
ysis, are associated with the top of forest canopies. 
Previous studies have observed that rh_95 showed the 
highest correlation with ALS-derived reference heights 
in tropical forest biomes, while rh_100 tended to over-
estimate canopy height (Potapov et  al. 2021). 
Nonetheless, other works in the literature have also 
advocated for the use of rh_98 to derive forest heights, 
although in different contexts such as Mediterranean 
forests (Dorado-Roda et  al. 2021) and African savan-
nas (Li et  al. 2023). Given the forest type of Mayotte 
Island and in the light of the results we obtained, 
rh_95 was finally selected in this study to retrieve 
GEDI-CHM.

The reference heights used to assess GEDI accu-
racies and to build regression models were derived 
from a CHM obtained from ALS data. In this 
approach, each GEDI footprint is characterized by a 
distinct reference height, which is compared to the 
canopy height derived from rh_95. In this regard, 

the maximum CHM value within the footprint’s 
extent proves to have a stronger correlation with 
GEDI height metrics, as the top location of the wave-
form (i.e., the location where the highest detected 
return in the waveform occurs) is directly linked to 
the first interaction of the laser signal with the high-
est object within the footprint (Hilbert and Schmullius 
2012; Adam et  al. 2020). However, considering the 
uncertainty of GEDI geolocation, extracting relevant 
reference heights from CHM rasters can be particu-
larly challenging for canopies that exhibit fragmented 
spatial distributions or possess heterogeneous 
three-dimensional structures at scales similar to the 
25 m GEDI footprint dimension. For example, Roy 
et  al. (2021) observed that secondary forests in the 
western Democratic Republic of Congo are particu-
larly likely to produce unreliable canopy height 
retrievals associated with geolocation uncertainty 
because of their spatially fragmented and heteroge-
neous three dimensional structure. Specifically in this 
study, we note that a significant difference between 
als100 and als95 corresponds to GEDI shots over 
heterogeneous canopies, isolated trees and forest 
edges, amongst other cases. These shots prove to give 
less reliable canopy height estimates, with a stronger 
bias and a larger RMSE. The error increases with 
heterogeneity because the value extracted as reference 
data are probably off and do not really correspond 
to the associated GEDI waveform due to the geolo-
cation uncertainty. The impact of this uncertainty is 
lessened when dealing with homogeneous forests 
because the spatial variation of tree heights is 
smoother. On average, using als100 (i.e., the maxi-
mum height value within the footprint) still remains 
the better option, even though it may give less reli-
able results locally. All things considered, as high-
lighted before in this study, the dispersion that is 
observed between GEDI-derived heights and ALS 

Figure 12. GEDI -CHM estimates from RFH (a) and sRFH (b) as a function of ALS-CHM.
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CHM is linked to many factors, including GEDI geo-
location accuracy.

Like any remote sensing instrument, GEDI is sub-
ject to geolocation errors than can impact the accu-
racy of its measurements. Geolocation uncertainties 
in the context of GEDI refer to inaccuracies in deter-
mining precisely the spatial location of the laser foot-
print on the Earth’s surface. These errors can arise 
from various sources, including satellite orbital inac-
curacies, instrumental calibration imperfections and 
atmospheric effects that impact the propagation of 
the laser beam through the atmosphere (Roy et  al. 
2021). The quantification and mitigation of geoloca-
tion errors are critical for ensuring the reliability of 
GEDI’s data products and various approaches were 
developed in order to tackle this particular issue 
(Hancock et  al. 2019; Shannon et  al. 2022; Schleich 
et  al. 2023; Tang et  al. 2023). The GEDI geolocation 
requirement as provided in the version 2 of the data 
products is that each 25 m footprint center is hori-
zontally georeferenced to within 10 m, assuming nor-
mally distributed geolocation errors with a 0 m mean 
and a 10 m standard deviation (Dubayah et  al. 2021). 
To address geolocation errors in our dataset and 
understand how they could impact our results, an 
investigation was undertaken to quantify the contri-
bution of geolocation uncertainties in the dispersion 
and the errors observed in our study. The process 
involved a controlled spatial perturbation of each 
GEDI footprint center, systematically shifting them 
within both the X and Y directions across a range 
from −10 m to 10 m with a 5 m step size. This shifting 
process resulted in the creation of a comprehensive 
grid encompassing 25 distinct spatial locations for 
each footprint. Subsequently, for each possible spatial 
location within the grid, the associated ALS-CHM 
value was extracted from the reference canopy height 
raster. The optimal corrected spatial location and the 

corresponding reference ALS-CHM value were chosen 
based on the closest match to rh_95 relative height 
metric. As expected, this approach significantly 
reduced the canopy height estimation errors (Figure 
13). More interestingly, we quantified an improvement 
of RMSE value from 6.6 m for the initial geolocations 
to 3.8 m for the corrected geolocations, confirming 
a substantial positive impact in our analysis of geo-
location errors on the use of rh_95 as a direct proxy 
of canopy height. Moreover, the tendencies observed 
regarding the influence of key parameters (sensitivity, 
canopy height and slope) persisted when using cor-
rected spatial locations, albeit with reduced errors 
(not shown). Additionally, the implementation of 
regression models demonstrated a notable decrease 
in errors when using corrected geolocations. The 
RMSE value, which initially stood at 5.7 m (38%) 
decreased significantly to 3.2 m (21%) for both MRH 
and RFH. This new error on height estimation, cal-
culated by attempting to remove the geolocation error 
of GEDI shots, is similar in order of magnitude to 
the one observed in another study over Eucalyptus 
plantations in Brazil (Fayad et  al. 2021b), where 
GEDI geolocation uncertainty is less problematic 
given the fact these plantations present homogeneous 
heights on large areas. The enhancements we observed 
provide confirmation of the impact of geolocation 
uncertainties on canopy height estimates. They also 
offer insights into the maximum performance 
improvements achievable with refined geolocation. 
However, these enhancements may not be attainable 
within an operational context where ALS data are 
not available to correct GEDI spatial locations. 
Therefore, we retained the uncorrected results as the 
primary findings of this study.

The ability of a laser signal to penetrate through 
forest cover and reach the ground is directly linked 
to the laser’s physical properties. The interpretation 

Figure 13. GEDI -CHM estimates as a function of ALS-CHM when using initial geolocations (a) and corrected geolocations (b).
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of waveform data and the subsequent computation 
of metrics are heavily reliant on the quality and 
shape of the signal. This study highlights the impact 
of beam sensitivity and shows that it is a crucial 
parameter for forest height estimation, with lower 
sensitivities generally resulting in an underestimation 
of canopy heights while higher sensitivities favor a 
better penetration through vegetation and thus allow 
a better detection of the ground. In densely vege-
tated areas, the ground reflection that is recorded 
by GEDI sensors can be weak or mixed with the 
background noise. In that case, footprints charac-
terized by high sensitivities are better suited for 
ground detection since they can penetrate denser 
canopies. Fayad et  al. (2022) observed that footprints 
with sensitivities greater than 98% exhibited a deeper 
penetration of vegetation cover, with an average 
increase of 5 m in the rh_100 values compared to 
footprints with a sensitivity value inferior to 98%. 
Although a different height metric was considered 
in this study, the strong correlation between rh_95 
and rh_100 suggests that the same conclusion can 
be drawn regardless of the metric used to derive 
heights. Several other studies have also advocated 
for the use of only high-sensitivity data when deal-
ing with tall, dense or complex forests. The thresh-
olds vary depending on the forest type and the 
characteristics of the study site. Rajab Pourrahmati 
et  al. (2023) indicated that removing shots with sen-
sitivity inferior to 0.96 increased the accuracy of 
canopy height estimates over broadleaf and conifer-
ous forests in Germany. A threshold of 0.95 was 
proposed by Dhargay et  al. (2022) in the context of 
high-density complex forests located in the Central 
Highlands region of Victoria in Australia. Rishmawi 
et  al. (2021) also used the same threshold in their 
study on key forest structure attributes of large-extent 
forests across the United States.

This study also assessed the impact of slope on the 
information derived from GEDI waveforms. When 
estimating canopy heights from a relative height met-
ric such as rh_95, increasing slopes lead to an 
increased waveform extent, which leads to an increase 
of RH metrics and therefore results in an overesti-
mation of canopy heights (Adam et  al. 2020). Indeed, 
on steep forested terrain, LiDAR returns from the 
vegetation and the ground can coincide at the same 
height and, consequently, this effect leads to an over-
estimation of the vertical structure of the vegetation 
(Fayad et  al. 2021a). The results presented in this 
study show that for slopes greater than 15°, rh_95 
produces positively biased canopy height estimates 
with relatively higher errors than when considering 
slope values inferior to 15°. Some studies proposed a 
geometric correction of slope effects by applying an 
offset to GEDI RH metrics (Yang et  al. 2011). This 
offset is computed from the mean slope value as well 
as the footprint diameter, in order to account for the 
additional height seen in the increased waveform 
extents. Figure 14 shows the improvements obtained 
when applying this simple correction to the rh_95 
metric. We note that the dependency to slope is 
reduced and that the overall accuracies of canopy 
height estimates are improved. However, this approach 
also appears to over-correct slope effects, especially 
for steep slopes, and shows a tendency to underesti-
mate canopy heights in general. The way slope infor-
mation is integrated in prediction models is a key 
element toward reaching better accuracies for canopy 
height estimation.

In general, the accuracy achieved by using rh_95 as 
a direct substitute for GEDI-CHM is insufficient and 
cannot be deemed satisfactory. Other studies obtained 
similar accuracies in terms of errors when using a 
single GEDI metric to derive canopy height. For exam-
ple, Dorado-Roda et  al. (2021) reported rRMSE values 

Figure 14.  CHM-Differences as a function of slope (a) and boxplots of CHM-Differences (b) depending on whether a simple geo-
metric correction is applied or not.
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of up to 41% depending on tree species in 
Mediterranean forests. In their study over African 
savannas, Li et  al. (2023) presented rRMSE values 
between 29.8% and 40.9% depending on leaf condi-
tions. In a tropical context, V.C. Oliveira et  al. (2023) 
obtained a percent error of 36% when using rh_95 to 
derive canopy height over the Brazilian Amazon forest 
and, similarly, in an analysis conducted over a study 
site in the western part of Brazil, Urbazaev et al. (2021) 
presented an RMSE value of 7 m when estimating can-
opy height from GEDI data. Nevertheless, rRMSE was 
found to be much lower in the particular case of 
Eucalyptus plantations in Brazil (Fayad et  al. 2021b), 
which are characterized by a very large and homoge-
neous cover in terms of height, an absence of gaps as 
well as the availability of precise field measurements. 
In this prospective, statistical approaches that rely on 
GEDI L2A metrics have been found to lead to signif-
icant improvements in CHM estimates (Lahssini et  al. 
2022). Instead of relying on a single metric, these 
approaches utilize multiple predictors as inputs to cre-
ate and train empirical models. By doing so, the rich-
ness of the information contained in the waveforms 
can be leveraged, allowing for taking advantage of the 
interplay between all the predictors to estimate the 
target variable. The predictors selected in this study 
include height metrics that describe the canopy tops, 
the ground elevation and the vertical structure of the 
forest, which are known to be correlated with tree 
heights and are frequently used in canopy height esti-
mation. In addition, signal physical characteristics and 
terrain configuration were taken into account through 
the inclusion of beam sensitivity and slope as input 
variables, since they were found to have a significant 
impact on direct CHM estimation via rh_95.

Implementing regression models demonstrates that 
waveform metrics combined with other external 
parameters have the potential to yield improved accu-
racies for CHM estimates. The RMSE values remain 
significant (5.7 m, 38%) but are nonetheless consistent 
with observations made in other studies over tropical 
ecosystems. In the global forest canopy height map 
for the year 2019 released by Potapov et  al. (2021), 
RMSE values of 6.6 m and 9.1 m were documented in 
validations against GEDI validation data and ALS 
data, respectively. In another study over tropical forest 
ecosystems in French Guiana and Gabon, Ngo et  al. 
(2023) reported errors of about 5 m on canopy height 
estimation. Conversely, on the same Eucalyptus dataset 
(Fayad et  al. 2021b), several linear and non-linear 
approaches based on GEDI metrics produced much 
lower rRMSE values ranging between 7.8% and 12.4% 
depending on the model implemented. In our study, 

all three competitors assessed exhibit similar perfor-
mances and prove to remain stable regarding all the 
parameters of influence that were considered. MRH 
uses pre-selected predictors and produces a linear 
relationship linking explanatory variables with canopy 
height. RF is commonly used for the prediction of 
forest stand attributes when reference in-situ data are 
available for model training. In the context of this 
study, both RFH and sRFH show a robust ability to 
utilize the available inputs to generate accurate CHM 
estimates. These models differ by the way terrain 
information is integrated to account for slope effects. 
Examining the importance reveals which variables 
possess the most substantial predictive power. 
Regarding RFH, high-percentile relative heights 
emerge as important indicators of canopy height (see 
Figure 11). These RH metrics are linked with the 
characterization of canopy tops and are logically 
selected as major factors of CHM variability. Beam 
sensitivity and slope, which prove to have a direct 
impact on the interpretability of GEDI waveforms, 
also appear in the most contributing input variables 
for RFH. When integrating terrain parameters through 
simulated ground returns, sRFH is capable of lever-
aging the slope information to produce similar esti-
mates to RFH in terms of accuracy. Simulated RHT 
metrics of high percentiles are the most contributing 
factors in the estimation task and beam sensitivity is 
still an interesting variable to consider for model 
training and validation.

When looking at the performances of regression 
models depending on tree height, the scatter plots in 
Figure 12 highlight two specific tendencies for canopy 
height estimates through RF models. The same obser-
vations can be made for all the estimators assessed in 
this study. On one hand, for relatively high heights (i.e., 
superior to 25 m), GEDI tends to underestimate CHM. 
This is due to the fact this tree height range usually 
corresponds to higher AGB levels and denser vegetation 
covers. As discussed before, the laser penetration 
through vegetation is of paramount importance to mea-
sure the vertical structure of the forest, and it is more 
challenging for the signal to penetrate denser canopies. 
In these conditions, the ground peak in the waveform 
is extracted at a higher height than the actual ground, 
resulting in an underestimation of canopy height 
(Potapov et  al. 2021; Lang et  al. 2022; Lahssini et  al. 
2022). Conversely, for lower heights (i.e., inferior to 
5 m), GEDI exhibits a tendency to overestimate CHM 
in a quite significant way. This overestimation of low 
heights is due to the waveform extent and the natural 
broadening of the ground return, especially over steep 
terrain. Indeed, if we consider a bare soil with no 
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vegetation, the resulting echoed waveform will present 
a single peak with a width of about 3 m (Fayad et  al. 
2021a), even though the height for this specific footprint 
should be 0 m. This effect is exacerbated over steep 
terrain, leading to an even bigger overestimation of 
heights. Using RH metrics to derive canopy heights for 
low vegetated areas is therefore more challenging 
because of the impact of the ground peak width on the 
waveform extent.

Conclusions

In this study, we explored different methods for estimat-
ing canopy height from GEDI data while examining the 
impact of GEDI acquisition and environmental param-
eters on the precision of canopy height estimates.

In a heterogeneous forest environment, accurately 
assessing the precision of GEDI for height estimation 
poses challenges, primarily due to the geolocation 
error of GEDI data, even though geolocation uncer-
tainty can be considered low. Thus, in the context 
of Mayotte’s forests, we posit that about half of the 
error in height estimation is attributable to the geo-
location of GEDI shots. Taking all factors into con-
sideration, the accuracy of canopy height estimates 
from GEDI data are strongly influenced by signal 
parameters and environmental features. The issue of 
LiDAR beam penetration is crucial for canopy height 
estimation, particularly for dense canopies such as 
the ones that characterize tropical ecosystems. In 
this study, we illustrate a reduction in laser beam 
penetration depth starting at approximately 15 m, in 
contrast to findings from other studies that reported 
full penetration of the LiDAR waveform up to 
heights of about 30 m. Hence, LiDAR beam penetra-
tion capability is strongly dependent on forest char-
acteristics and penetration depth can differ between 
forests with the same height and biomass levels. 
Similar conclusions have been well documented in 
the literature regarding the penetration of L-band 
SAR data, with studies reporting different saturation 
levels of the radar signal for different forest types. 
Terrain slope also proves to significantly impact the 
received waveforms that are retrieved by GEDI sen-
sors and needs to be accounted for when dealing 
with data that was acquired over steep areas.

In general, using rh_95 as a direct indicator of 
CHM resulted in relatively low accuracies. However, 
rh_95 can still be utilized to estimate canopy heights 
under certain conditions, particularly when reference 
canopy height data are unavailable. In that case, it is 
recommended to only use high-sensitivity data, as it 
yielded better results compared to using all available 

footprints. When reference data are available (in our 
case ALS data), implementing regression models can 
improve canopy height estimation accuracies, espe-
cially when GEDI beam sensitivity and terrain slope 
are accounted for in the models. The primary require-
ment for building empirical models is having enough 
data for model training. GEDI information can be 
utilized in various ways to estimate canopy heights, 
depending on data availability, operational application 
and the expected accuracies.
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