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Abstract
High-dimensional climate data collected on a daily, monthly, or seasonal time step are now
commonly used to predict crop yields worldwide with standard statistical models or machine
learning models. Since the use of all available individual climate variables generally leads to
calculation problems, over-fitting, and over-parameterization, it is necessary to aggregate the
climate data used as predictors. However, there is no consensus on the best way to perform this
task, and little is known about the impacts of the type of aggregation method used and of the
temporal resolution of weather data on model performances. Based on historical data from 1981 to
2016 of soybean yield and climate on 3447 sites worldwide, this study compares different temporal
resolutions (daily, monthly, or seasonal) and dimension reduction techniques (principal
component analysis (PCA), partial least square regression, and their functional counterparts) to
aggregate climate data used as inputs of machine learning and linear regression (LR) models
predicting yields. Results showed that random forest models outperformed and were less sensitive
to climate aggregation methods than LRs when predicting soybean yields. With our models, the
use of daily climate data did not improve predictive performance compared to monthly data.
Models based on PCA or averages of monthly data showed better predictive performance
compared to those relying on more sophisticated dimension reduction techniques. By highlighting
the high sensitivity of projected impact of climate on crop yields to the temporal resolution and
aggregation of climate input data, this study reveals that model performances can be improved by
choosing the most appropriate time resolution and aggregation techniques. Practical
recommendations are formulated in this article based on our results.

1. Introduction

Large scale crop yield predictions play a significant
role for commodity trading and implementation of
food security policies [1]. At national scale, they are
essential to prevent food shortages arising from har-
vest losses or failures, while forecasts spanning con-
tinental and global scales are used in projecting the
impact of climate change on crops yields [2]. Accurate
prediction of yield variations, which can impact the
price of commodities traded intensively on interna-
tional markets, is particularly strategic [3]. Notably,
Brazil and the United States (US) emerge as primary

producers [4] and exporters [5] of soybean, a crop
upon which China [6] and the European Union [7]
heavily rely. For these countries, forecasting soybean
yields inmajor producers is crucial for addressing dis-
ruption in their respective supply chains [8].

The time resolution of climate variables used
for yield prediction presents a challenge: while daily
global-scale datasets, such as ERA5-land [9], provide
numerous potential predictors (e.g. temperature, pre-
cipitation, solar radiation), only one crop yield obser-
vation is usually available every year. There is thus
a sharp contrast between the number of yield data
and the number of potential predictors available. An
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additional issue is that climate predictors are often
correlated either across dates for a given variable (e.g.
temperatures during successive days) or between dif-
ferent types of climate variables at a given date (e.g.
rainfall and solar radiation).

In order to reduce the number of predict-
ors of annual crop yields, daily climate data are
often aggregated over temporal intervals such as
months [8, 10] or seasons [11], or condensed
into indices based on a priori knowledge of soy-
bean physiology [12]. While this approach effectively
diminishes the number of climate predictors, facil-
itating parameter estimation and mitigating over-
fitting risks, it is somewhat arbitrary in determ-
ining the optimal temporal resolution for deriving
average climate variables. An alternative approach
is to transform the high-dimensional climate data
into a low-dimensional representation which retains
some meaningful properties of the original (high-
dimensional) data. For instance, principal compon-
ent analysis (PCA) produces linear combinations of
original predictors, summarizing data without signi-
ficant loss of information [13]. Another technique
for dimensionality reduction is partial least square
regression (PLSR), which replaces both the initial pre-
dictors and predicted outcome by a reduced number
of latent variables added iteratively [14].

Climate data are commonly regarded as finite,
discrete, and independent observations, thereby over-
looking the temporal structures inherent in climatic
patterns which can also influence crop yield [15].
Compared to usual PCA and PLSR, techniques based
on functional data analysis such as functional PCA
(FPCA) [16], multivariate FPCA (MFPCA) [17], and
functional PLSR (FPLSR) [18] explicitly incorporate
the temporal sequencing of observations. By assum-
ing that observed discrete time series arise from
smooth functions of time, these functional tech-
niques can be seen as continuous counterparts of PCA
and PLSR [19].

The influence of daily climate time series aggreg-
ation method on crop yield predictions was explored
in several studies [10, 20, 21] which focus on a lim-
ited number of dimension reduction techniques, con-
sider specific temporal resolutions of climate data,
and do not compare functional to more traditional
approaches to take into account the temporal struc-
ture of climate data to predict crop yield. To date,
these approaches were only assessed in France [22]
or in the US [23] at the region or county level. In
addition, none of these studies was conducted at a
larger scale, thereby constraining our comprehension
of the impending challenges confronting agricultural
production. This limitation is particularly critical as
production zones are anticipated to undergo shifts in
response to climate change [24].

To fill this gap, we simultaneously evaluate (i) the
impact of the temporal resolution of climate data, (ii)

a large range of dimension reduction techniques to
aggregate climate data, and (iii) modeling techniques
to predict soybean yields from climate data. These
analyses were first conducted at the global scale and
then at a national scale (i.e. separately in theUS and in
Brazil), in order to examine the robustness of our con-
clusions. Using data of historical soybean yields [25]
and climate [9] on 3447 sites worldwide from 1981
to 2016, we identified the best data-driven approach
to predict soybean yields from climate inputs and
to examine the impact of climate data aggregation
method on predictive performances.

2. Material andmethods

2.1. Data
2.1.1. Soybean yield
Using the Global Dataset of Historical Yields [25],
grid-wise data covering the 1981–2016 period were
derived for locations representative of global soy-
bean production (Argentina, Brazil, Canada, China,
India, Italy, and US). A set of grid-cells located in
these major soybean producers and with substan-
tial soybean area was constituted. To avoid any con-
fusion with technological progress due to improved
cultivars and technological progress, yield data were
detrended. See further details on data sources and
pre-processing steps in supplementary material 1. In
soybean producing sites, detrended yield ranged from
0.1 to 6.7 t.ha−1. Mean (standard deviation) yield was
2.6 (1.1) t.ha−1.

Previous work showed that increasing the range
of environmental conditions in the training dataset
improves predictive models accuracy [26]. Following
the procedure employed in previous work [8], sev-
eral grid-cells located in areas characterized by cli-
mate deemed inappropriate for soybean cultivation
and resulting to zero yields (such as deserts and arc-
tic areas) were included. The selection process was
designed to ensure a balanced distribution of sites
across climate zones, with the objective of includ-
ing 20% of zero yield values in the global yield data-
set. Consequently, the final dataset covered 3447 sites,
including 663 located in unsuitable climate condi-
tions for soybean production (figure 1).

2.1.2. Irrigation fraction
Using the SPAM dataset [27], the proportion of soy-
bean cultivation under irrigation (i.e. fractional area)
was retrieved for each grid-cell. A fractional area of
0 indicates that 100% of soybean grown within the
considered grid-cell is rainfed. Rainfed soybean was
exclusively grown in 856 sites (i.e. fractional area of
irrigated soybean in 2010 is equal to 0% in these sites).
Within sites with fractional area of irrigated soybean
exceeding 0%, irrigated soybean production covered
54.4% of soybean production in average.
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Table 1.Mean (standard deviation) and range [minimum–maximum] of seasonal climate data over the 1981–2016 period.

Soybean producing areas
(98 361 sites-year)

Full dataset
(122 229 sites-year)

Seasonal climate data

Maximum temperature, ◦C 25.37 (3.64)
[14.26–34.85]

22.16 (10.15)
[−20.81–42.42]

Minimum temperature, ◦C 15.69 (4.21)
[3.34–25.19]

12.68 (9.21)
[−27.60–28.41]

Cumulated average precipitation, mm 35.84 (14.55)
[4.09–123.35]

30.84 (17.09)
[0.00–155.01]

Cumulated net surface solar radiation, MJ m−2 135.20 (12.33)
[87.79–180.83]

126.64 (28.99)
[21.20–213.59]

Reference evapotranspiration, mm.day−1 1.73 (0.44)
[0.69–5.07]

1.73 (0.86)
[0.19–8.17]

Vapor pressure deficit, kPA 0.74 (0.22)
[0.24–2.34]

0.75 (0.53)
[0.02–5.04]

Notes: Sites located in soybean producing areas are displayed as green dots in figure 1. Seasonal refers to the mean over

soybean growing season.

Figure 2.Modeling framework implemented in this study. Abbreviations: PCA: principal component analysis; FPCA: functional
principal component analysis; MFPCA: multivariate functional principal component analysis; PLSR: partial least square
regression; FPLSR: functional partial least square regression.

2.1.3. Climate data
Climate data aggregated at daily frequency from
1981 to 2016 and realigned with the yield dataset
was derived from ERA5-land dataset, a product of
the European Centre for Medium-Range Weather
Forecasts atmospheric reanalysis of the global climate
[9]. Six variables were computed for each grid-
cell: maximum and minimum temperatures (both
in ◦C), net surface solar radiation (MJ.m−2), aver-
age precipitation (mm), reference evapotranspiration
(mm.d−1), and vapor pressure deficit (kPa). Detailed
information regarding on climate variables computa-
tion is provided in supplementary table 1. Data were
computed for each day of soybean growing season,
delineated on a country-specific basis according to
crop calendars sourced from the Agricultural Market

Information System [28]. Given that the number
of days in the growing season varied from 1272 to
1284 depending on the country (i.e. Brazil/Argentina
vs. other countries) and the type of year (i.e. bis-
sextile vs non-bissextile years) and considering that
six climate variables were considered in this study,
each site-year was characterized by numerous climate
predictors (ranging from 7632 to 7704).

The range of climatic conditions covered by the
dataset is showed in table 1.

2.2. Statistical analyses
Analyses were conducted in three steps, presented
in figure 2 and in the following paragraphs: 1)
aggregation of climate predictors; 2) prediction of
soybean yield based on predictors obtained from the
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Table 2. Climate data aggregation methods considered in this study.

Temporal resolution of climate data

Standardized seasonal Seasonal Monthly Cumulative daily

Dimension reduction technique

No dimension reduction avg.zscore.s avg.s avg.m
Principal component analysis (PCA) pca.m pca.d
Functional PCA fpca.m fpca.d
Multivariate functional PCA mfpca.m mfpca.d
Partial least square regression (PLSR) plsr.m plsr.d
Functional PLSR fplsr.m fplsr.d

previous step; 3) assessment of models’ predictive
performances.

2.2.1. Aggregation of daily climate predictors
Several temporal resolutions were considered.
Cumulative daily values over the growing season were
computed for each climate variable, as done in pre-
vious work [22]. Additionally, non-cumulative daily
climate data were averaged, either on a monthly basis
or over the entire soybean growing season. Finally, an
alternative approach involved rescaling climatic data,
so that each climate variable had a mean of zero and
a standard deviation of one, and to use the mean of
all rescaled data. The four temporal resolutions are
hereafter denoted as ‘daily’, ‘monthly’, ‘seasonal’, and
‘standardized seasonal’, respectively.

Five different dimension-reduction techniques
were then applied to cumulative daily data and
monthly averages: PCA, FPCA, MFPCA, PLSR, and
FPLSR (see supplementary material for method-
ological and computational details). The different
combinations of temporal resolutions and dimen-
sion reduction techniques examined in this study are
shown in table 2.

The cumulative variance explained by the com-
ponents obtained through each dimension reduction
technique is presented in figure 3. Across PCA, FPCA,
MFPCA, or PLSR, the two first components gener-
ally accounted for 90% of the variability both in daily
and monthly climate data, excluding monthly pre-
cipitations. Data transformation by FPLSR was less
effective than other techniques of dimension reduc-
tion (figure 3).

2.2.2. Models for soybean yield prediction
In this study, two modeling approaches were con-
sidered for soybean yield prediction: linear regres-
sion (LR) and random forest (RF). LR assumes
that the relationship between climate predictors and
soybean yield is linear (supplementary material 3).
On the contrary, RF [29] is a tree-based machine-
learning method that makes no assumption regard-
ing the distribution and relationship between pre-
dictors and yield. Briefly, RF algorithm consists in
building an ensemble of independent decision trees
from bootstrapped samples. Individual trees have the

properties to have low bias but high variance, and
when combined together, produce an output with
lower variance. RF was chosen because this machine
learning algorithm showed good performance com-
pared to other algorithms in predicting yield of crops
[30], especially soybean [8].

For each approach, predictive models based on
aggregation methods presented in table 2 were fit-
ted. For each dimension-reductionmethod (i.e. PCA,
FPCA, MFPCA, PLSR, and FPLSR) applied on daily
or monthly climate data, models including the scores
associated with one, two, three, or all components as
predictors were considered. In total 43 RFmodels and
43 LR models were compared.

2.2.3. Evaluation of predictive performances
Nash–Sutcliffe model efficiency (NSE, unitless) and
root mean square error (RMSE, in t.ha−1) were used
asmeasures of predictive performances, as commonly
used for agricultural systems and crop models [8, 31,
32]. An efficiency of one corresponds to a perfect
match of predictions to observed data, an efficiency
of zero indicates that predictions are as accurate as the
mean of observed data, whereas an efficiency lower
than zero occurs when the observed mean is a bet-
ter predictor than the tested model. The lower the
RMSE, the lower the difference between predictions
and observations, which corresponds to a better per-
formance of the model.

Previous articles emphasized the importance of
rigorous cross-validation strategies to ensure that the
predictive performance of a given model is evalu-
ated on a dataset independent from the one used
to train that algorithm [30, 33]. NSE and RMSE
were computed for each model following two separ-
ate cross-validation procedures. First, a year-by-year
cross-validation was performed, to assess model’s
capability in predicting yields in a new year, not
included in the training dataset (temporal extrapol-
ation). Secondly, a group-wise cross-validation was
employed, wherein 10 randomly selected site groups
were used to evaluate the model’s ability to forecast
yields in novel geographic regions not encompassed
within the training dataset (spatial extrapolation). A
visual representation of these cross-validation pro-
cedures is provided in supplementary figure 1.

5
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Figure 3. Cumulative variance of climate data explained by the different dimension reduction techniques. Representation limited
to the first 10 components. Abbreviations: PCA: principal component analysis; FPCA: functional principal component analysis;
MFPCA: multivariate functional principal component analysis; PLSR: partial least square regression; FPLSR: functional partial
least square regression. Horizontal dotted line corresponds to 90% of explained variance.

The variations in predictive performance accord-
ing to models’ characteristics were examined using
a separate LR model, which related NSE to model
family, temporal resolution of climate predictors,
dimension reduction techniques (all included as
categorical variables), and number of predictors.
This separate model was fitted using results from
both cross-validation procedures (on years and on
sites). Thus, to estimate the independent effect of
all other factor on NSE, the model additionally
included cross-validation procedure as confounding
factor.

2.2.4. Interpretation of the best model
To examine the compatibility of the optimal data-
driven model with existing knowledge regarding
the influence of climate on soybean physiology, the
importance of predictors and their partial depend-
ency profiles were computed. The importance of a
predictor in a model is measured by the increases of
prediction error resulting from a random permuta-
tion of its values [34]. Partial dependence plot sum-
marizes the effect of a particular predictor on the pre-
dicted outcome, showing how the predicted value of a
model behaves as a function of a given predictor [35].
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2.3. Sensitivity analyses
Sensitivity analyses were conducted to assess (i) the
robustness of the ranking of the different approaches
to the geographical region considered and (ii) the
sensitivity of yield projections under global warm-
ing based on the employed modeling techniques. The
full procedure presented in figure 2 was repeated sep-
arately at the scale of the US and Brazil. Distinct
sets of grid-cells located areas with unsuitable cli-
mate conditions were selected, ensuring that the total
number of zero-yield values constituted 20% of the
respective yield datasets in each country (see proced-
ure detailed previously and in supplementary mater-
ial 1). Models’ ranking was compared to the one
obtained in the analysis conducted at the global scale.
The model that performed the best in each analysis
was identified as the ‘reference model’. Subsequently,
four variants of this model, varying in temporal res-
olution of climate data, dimension reduction tech-
niques (functional or otherwise), or both aspects,
were selected for further investigation (supplement-
ary material 4). These models were used to project
soybean yields from climate inputs re-computed in
simulated climate scenarios where daily temperatures
from 1981 to 2016 were incrementally increased by
+1, 2, 3, or 4 ◦C while keeping other climate para-
meters unchanged. For each site, the relative differ-
ence between the median of predictions in each cli-
mate scenario and the median of estimations under
historical climate conditions (i.e. climate spanning
1981–2016) was computed. The resulting predictions
were also compared to those from one RF and one LR
model based onmonthly averages, an approachwhich
has been used in previous studies to predict soybean
yield [8].

All relevant scripts and documentation are avail-
able via the project repository (https://github.com/
MathildeChen/SOYBEAN_PRED_COMP).

3. Results

3.1. Predictive performance of soybean yield
forecasting models
Figure 4 shows the performance of predictive models
according to model family, climate data aggregation
technique, and temporal resolution of climate data.
NSE values of each individual model are displayed in
figure 5, along with mean NSE values over the two
cross-validation procedures.

Overall, predictive performance was systematic-
ally higher for RF models (mean [standard devi-
ation (SD)] NSE: 0.82 [0.14]) compared to LR mod-
els (mean [SD] NSE: 0.44 [0.17]) irrespective of tem-
poral resolution of climate data anddimension reduc-
tion technique (figure 4(a)). Models incorporating
climate data as averages, or as scores derived from
PCA, FPCA, or PLSR showed higher NSE compared
to those relying on standardized means, MFPCA,
or FPLSR scores (figure 4(b)). Generally, models

based on monthly climate data performed better
compared to those based on daily cumulative or
seasonal climate data (figure 4(c)), but the reverse
was observed among models based on MFPCA
(figures 5(a) and (b)). FPCA and MFPCA meth-
ods showed equivalent or lower performance com-
pared to PCA (figures 4(b) and 5). Similarly, FPLSR
exhibited lower and highly variable predictive accur-
acy compared to PLSR (figures 4(b) and 5). Among
RF models employing the same dimension reduction
technique (i.e. averages, PCA, FPCA, MFPCA, PLS,
or FPLS applied on daily or monthly climate data),
most parsimonious RF models demonstrated bet-
ter performances in the year-by-year cross-validation
(figure 5(a)), while the contrary was observed in
cross-validation across groups of sites (figure 5(b)).
The statistical analysis of NSE differences accord-
ing to models’ characteristics confirmed most of the
trends observed in figure 4, with the exception of
the number of predictors which showed not signific-
ant effect on NSE (p-value = 0.252, supplementary
table 2).

3.2. Characteristics of the best predictive model
At the global scale, the pca.m.2, pca.m.3, and avg.m
RFmodels showed equivalent predictive performance
(mean NSE: 0.92 for the three models; figure 5(c)).
Ranking remained consistent when considering
RMSE as predictive performance metric (mean
RMSE ranging from 0.37 to 0.38 for the three mod-
els; supplementary figure 2). The pca.m.2 model,
demonstrating the highest parsimony among these
alternatives, was selected as the ‘best’ predictive
model. Predictions strongly correlated with observed
yields with both year-by-year and site-by-site cross-
validation procedures (Pearson correlation coeffi-
cients between observed yields andmodel predictions
in year-by-year [ρyear] and site-by-site [ρsite] cross-
validation procedures: 0.957 and 0.967, respectively;
supplementary figure 3). In contrast, pca.m.2 LR
model showed lower and sometimes suboptimal per-
formance in predicting soybean yields (ρyear and ρsite:
0.753 and 0.752, respectively). Notably, in sites where
no production had been recorded, frequent negative
yield values were predicted by this model, which falls
outside the realistic yield range. Similar results were
obtained for the pca.d.2 LR model. Predictions from
the pca.d.2 RF model were more accurate (ρyear and
ρsite: 0.933 and 0.942, respectively) compared to LR
model with similar temporal resolution, but did not
reach the precision achieved by the pca.m.2RFmodel.

Although both models tended to underestim-
ate higher yields while overestimating lower values
(figures 6(a) and (b), supplementary figure 3), this
phenomenon was more pronounced for the pca.d.2
model. Finally, the residuals of the pca.m.2 RF model
were symmetrically distributed (figure 6(c)).

Predictors showing highest importance in the
pca.m.2model were the scores associatedwith the first

7
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Figure 5.Models’ performance estimated by cross-validation (a) on years or (b) on sites, and (c) averaged. Higher value of
Nash-Sutcliffe efficiency indicate better performance. For each column, model’s ranking is indicated above corresponding dots
and the best model is highlighted by a ∗. Number of predictors is indicated on the right of the figure. See table 1 for models’ name
abbreviations.

principal components (hereafter referred to as ‘score
1’) derived from monthly precipitation, minimum
temperature, and maximum temperature (supple-
mentary figure 4). In terms of importance, irrigated
soybean area ranked after all scores 1 but before all
scores associated with the second principal compon-
ents (hereafter referred to as ‘scores 2’).

Figure 7(a) shows the correlations between
monthly climate averages and scores of the first
principal component (score 1) for each type of cli-
mate variable (precipitation, minimum temperature,

maximum temperature etc.) included in the pca.m.2
model (i.e. themodelwith highest predictive accuracy
in your study). Results show that score 1 is strongly
positively correlated with all monthly climate vari-
ables but net solar radiation. A positive (negative)
correlation indicates that an increase in the corres-
ponding monthly climate variable would increase
(decrease) the value associated to the first principal
component (score 1). For example, an increase of
precipitation on month 4 would increase the value of
score 1 but, on the contrary, an increase of net solar
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Figure 7. Contribution of climate data to the most important predictors in the best model (a) and partial dependency plot
associated with each predictor (b). Best model was the random forest model including the scores associated with the first and
second components derived from principal component analysis applied on monthly data. Panel a: for each climate variable,
height, direction of the bars, and the number at the top of the bars indicate Pearson correlation coefficient between monthly
averages and the score associated with the first principal component (i.e. ‘score 1’). Panel b: the expected value of model yield
prediction is plotted as a function of each predictor.

radiation will decrease score 1 because the correla-
tions are negative in all months for this variable.

According to partial dependency plots presen-
ted in the figure 7(b), predicted yield increased with
higher values of scores 1 for temperatures and precip-
itation; this suggests that warmer and wetter environ-
ments are more favorable to soybean yield, consid-
ering the positive correlations between these scores
and monthly climate averages. Regarding solar radi-
ation, reference evapotranspiration, and vapor pres-
sure deficit, higher score values are associated with
lower soybean yields. Negative correlations between
the scores 1 and monthly radiation averages suggest

that soybean yield would benefit of higher radiation.
Conversely, lower reference evapotranspiration and
vapor pressure deficit would be detrimental for soy-
bean production. Note that irrigation is associated
with higher values of yield soybean compared to
absence of irrigation (supplementary figure 6).

By comparison with scores 1, scores 2 correl-
ated less importantly with climate through the
season (absolute value of Pearson coefficient ran-
ging from 0 to 0.65), and correlation values var-
ied between months. The interpretation of the
effects of climate variables is more complex for
scores 2 because the sign of the correlations
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depends on the month, as shown in supplementary
figure 6(a). However, as all scores 2 had a much
lower importance in the model, their impact on
model prediction is very small (supplementary
figure 7(b)).

3.3. Sensitivity analyses
Sensitivity analyses conducted at US and Brazil scales
included 1004 and 527 sites (supplementary figure
8), corresponding to 37 147 and 18 429 sites-year,
respectively. Higher yields were observed in the US
compared to Brazil. Higher temperatures, precipita-
tions, and amounts of solar radiation were observed
in Brazil (supplementary table 5). For both countries,
PCA, FPCA, MFPCA, and PLSR were able to capture
most of the variability in climate data, with lower per-
formance for monthly precipitation (supplementary
figures 9 and 10).

Similar to analysis at the global scale, RF mod-
els based on scores derived from month-based PCA
performed better on average at national scale. The
pca.m.3 and pca.m.2models ranked first and second-
best models to predict soybean yield in the US (mean
NSE values for both models: 0.94; supplementary
figure 11(c)) and third and first best models in Brazil
(NSE values: 0.9315 and 0.9305 respectively, supple-
mentary figure 12(c)). Similar ranking was obtained
when using RMSE as an indicator of predictive per-
formance (supplementary figures 13 and 14). The RF
model based onmonthly averages (avg.m) performed
poorly in both US and Brazil analyses (ranked at
the 8th and 12th position, respectively; supplement-
ary figures 13(c) and 14(c)), compared to the results
obtained at the global scale (figure 5(c) and supple-
mentary figure 2(c)).

The scores associated with component derived
frommonth-based PCA had similar interpretation as
in global analysis, i.e. score 1 being strongly correlated
to the overall trend in climate data and subsequent
scores highlighting specific months of the growing
season (supplementary figures 15 and 16). The scores
1 of precipitation, minimum temperature, and max-
imum temperature were among the most important
climate predictors in the models fitted on US and
Brazil (supplementary figure 17). Other important
climate predictors were reference evapotranspiration
in the US and vapor pressure deficit in Brazil. In the
USmodel, the fractional area of irrigated soybean had
the highest importance, followed by all first scores
derived frommonth-based PCA, while in Brazil it was
less important.

3.3.1. Impact of climate data aggregation method on
model predictions under global warming
In both US and Brazil, the RF pca.m.3 and pca.m.2
models showed higher performance, respectively
(supplementary figures 11–14). The model variants

considered to assess the sensitivity of yield projec-
tions according to the chosen modeling techniques
are presented in supplementary material 4. In addi-
tion, themodels based onmonthly averages of climate
data (avg.m) was included because this approach is
widely applied in many predictive models of crop
yield. For each model variant and each climate scen-
ario, the difference between the median of predicted
yields under increased temperature and the median
of yields predicted in 1981–2016 climate (+0 ◦C) was
computed for each site located in the US (figure 8)
and in Brazil (figure 9).

Major differences in yield predictions were
obtained between the different types of model and
temporal resolution of climate data. While month-
based LR predictions generally suggest that soybean
yields could uniformly increase over the US or over
Brazil with temperature increase, month-based RF
identified areas in both countries where decreases in
soybean yieldwould be expected, especially in the case
of extreme temperature increase (+4 ◦C). Areas with
higher yield losses would be mainly located in the
South-West coast and in the South. Contradictory
projections were obtained for the North-Center of
the US. Projected yields increased according to the
month-based RF models, while the reverse was pre-
dicted by the daily-based RF models (figure 8). For
Brazil, areas with increased or decreased yields were
consistent when considering projections of RF mod-
els, although daily-based models tended to attenuate
the detrimental effect of temperature increase on
yield. Contrasted conclusions were obtained by LR
month-based and daily-based models (figure 9).

4. Discussion

This study examining the impact of climate data
aggregation methods for predicting soybean yield
presents four key findings. First, RF models outper-
formed LR in predictability and was less sensitive
to the temporal resolution and aggregation method.
Second, there was no evidence that using daily cli-
mate data combined with a dimension reduction
technique improved predictive performances com-
pared to using monthly climate predictors. Three,
more sophisticatedmethods based on functional data
analyses (i.e. FPCA, MFPCA, or FPLSR) to aggreg-
ate climate data did not improve models’ predict-
ive performances compared to simpler aggregation
techniques (i.e. mean, PCA, or PLSR). Finally, the
RF model with climate predictors derived from PCA
applied on monthly climate data showed superior
predictive performances at the global scale as well as
at the national scale.

Climate variables such as temperature and precip-
itation are commonly used in crop yield forecasting
[36], yet evidence about the impact of climate data
aggregation methods on predictive performances
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comes from few studies [10, 20–23] focusing on lim-
ited dimension reduction techniques and/or tem-
poral resolution. The study extends previous liter-
ature by comparing a wide range of aggregation
techniques to efficiently incorporate climate data
in yield forecast models. The good performances
obtained with aggregated climate data align with
prior findings indicating equivalent [20] or lower
[10] prediction performance of models with finer
time resolution compared to their monthly coun-
terparts. Although applying PCA to monthly cli-
mate data slightly improved predictive performance,
concerns about reduced interpretability of climate
variable effects arise. However, PCA-based models
can be easily interpreted, for two reasons. First, the
low number of selected principal components (here,
two) in the yield forecasting models ensures parsi-
mony. Moreover, the orthogonality of principal com-
ponents, in contrast to the often highly correlated
monthly averages, enhances interpretability (supple-
mentary figure 5). Secondly, standard graphical rep-
resentations can be used to interpret the effects of cli-
mate variables on yields when the forecasting mod-
els rely on principal components. Specifically, correl-
ations between the original climate variables and the
principal components can be conveniently displayed
graphically, while the relationship between scores of
principal components and yields can be visualized
using partial dependence plots. By combining these
two types of graphic, it is possible to analyze the
effects of the climate variables on yield.

Thanks to their greater flexibility, machine learn-
ing algorithms such as RF [29], (extreme) gradient
boosting [37, 38], and deep learning [39] are widely
employed to predict yields of crops from climatic
predictors [36, 40] and often outperform traditional
methods such as LR or process-based models, par-
ticularly in soybean yields predictions [8, 41, 42].
Among these techniques, RF was found to be one of
the best algorithm in soybean yield prediction [8, 41,
42] as well as in other major crops including wheat
[43] or maize [44]. Previous articles report that other
algorithms which have not been considered in our
study such as neural networks [12] also perform well
to forecast yield of soybean. Guilpart and colleagues
[8], who used similar data as in the present study,
demonstrated the best prediction performances of RF
in soybean prediction over other machine learning
and deep learning techniques (i.e. neural networks,
generalized additive models, and gradient boosting).
Additionally, differences between deep learning and
machine learning techniques were proved to be neg-
ligible in crop yield prediction [45].

In this study, RF models showed highest predict-
ive performances compared to LR models. These dif-
ferences can be explained by the inherent inability of
LR to extrapolate to data dimensions where no train-
ing has been done, which is not the case of RFmodels.

In other words, RF models would not make predic-
tions outside the range of the data used to train the
model, while LR can predict for the conditions bey-
ond this range. This prevents overfitting issues, but
can lead to unrealistic estimations (supplementary
figure 3). In addition, situations where multiple pre-
dictors correlated with (and within) each other and
drive the response similarly affect LR, which is not the
case of the RF.

Several types of data exist to develop crop yield
predictive models, such as survey data on yields,
which are available in many countries for long time
periods. However, these data are generally aggreg-
ated at large administrative scales, such counties or
countries. Experimental or on-farm data are also a
valuable source of information [46], because they
are more precisely located than the gridded-cell data
and provide information regarding farm manage-
ment However, these data cover restricted spatial area
and time period, and are thus not suitable for model-
ing yields at the continental or global scale. The reana-
lysis data used in this study combines the advantages
to span large scale in space and time while covering
a large diversity of yield and climate conditions, as
shown in table 1. The climate data used in the present
study were able to explain a large share of the spatial
variability of yields, as showed by the good predictive
performance of our models. However, such datasets
can suffer from uncertainties [47, 48]. Examining the
impact of these uncertainties on the predictive accur-
acy ofmodels deserves a full investigation on itself and
is beyond the scope of this study, which aims to com-
pare different modeling approaches and techniques
for aggregating climate data to predict crop yield.

Sensitivity analyses were conducted to assess the
impact of increasing temperature scenarios on yields.
The results align with studies simulating soybean
yield under climate change in theUS [49] and in some
regions of Brazil [50]. Although highly unrealistic
because temperature will not be the only climate fea-
ture that would change in a context of global change,
this analysis contributed to evaluate the compared
models and approach, as done in previous studies
[51]. To precisely project the impact of climate change
on soybean productivity in these countries, our find-
ings need to be consolidated using more elaborated
climate change scenarios [8].

5. Conclusion

This study simultaneously evaluates the impact of
temporal resolutions and aggregations of climate pre-
dictors on the performance of machine learning and
LR models predicting crop yields. Key results indic-
ate that (i) RF outperformed and was less sensitive to
climate aggregation than LR; (ii) there was no evid-
ence that using daily climate data improves predictive
performance over using monthly data in our models;
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(iii) employing PCA on monthly data, coupled with
a RF algorithm, yields the most accurate predictions
for crop yields. These results highlight the significance
of temporal resolution and climate data aggregation
in projecting climate impacts on crop yields. Thus,
careful consideration of optimal time resolution and
aggregation techniques is imperative when develop-
ing models for crop yield prediction, particularly for
future climate projections.

Data availability statements

Datasets are fully available online:

- Soybean 0.5◦ grid-wise yield data covering the
1981-2016 period: https://doi.pangaea.de/10.
1594/PANGAEA.909132

- Proportion of soybean irrigated area in each grid-
cell was retrieved from the SPAM2010 v2.0 dataset:
http://mapspam.info/

- Climate variables at a resolution of 0.1◦ covering
the period from January 1950 to present: https://
cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-land?tab=overview.

- Crop calendars provided by the Agricultural
Market Information System: www.amis-outlook.
org/amis-about/calendars/soybeancal/en/

- No new data were created or analysed in this study.
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