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ABSTRACT
The optimal allocation of crops to different parcels of land is a
problem of paramount practical importance, not only to improve
production, but also to address the challenges posed by climate
change. However, this optimization problem is inherently complex,
characterized by a vast search space that renders traditional opti-
mization techniques impractical without oversimplified assump-
tions. Compounding this challenge, climate change introduces con-
flicting objectives, as solutions aiming to just maximize total yield
may be more susceptible to extreme weather events, and thus ob-
tain more unpredictable year-by-year outcomes. In order to tackle
this complex optimization problem, we propose a multi-objective
approach, simultaneously maximizing the overall yield, minimizing
the year-on-year yield variance, and minimizing the total culti-
vated surface. The approach exploits an established multi-objective
evolutionary algorithm, and employs a machine learning model
able to predict yield from weather and soil conditions, trained on
historical data, making it possible to tackle allocation problems of
large size. An experimental evaluation focusing on the allocation
of soybean crops in the European continent for the years 2000-2023
shows that the proposed methodology is able to identify different
trade-offs between the conflicting objectives, that an expert analysis
later reveals to be realistic and meaningful for driving stakeholder
decisions.
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1 INTRODUCTION
The growth of crops for human and animal consumption is heavily
influenced by location-dependent conditions, such as quality of the
soil, weather patterns, or rainfall. The correct allocation of specific
types of crops to the most appropriate areas for maximizing yield
is a problem of clear practical importance, not only for commercial
purposes, but also to potentially mitigate the growing negative
impact of climate change [36]. The increased appearance of ex-
treme weather had strong repercussions on the variance of crop
yields, introducing high levels of production instability between
years and a previously unseen unreliability in the food supply. Soy-
bean production in particular is a major source of concern; it is the
world’s main source of protein for animal feed, but its production
is concentrated in South America, where it is the source of major
environmental impacts, notably due to deforestation. As Europe im-
ports large quantities of soybean from South America, a substantial
number of experts advise to relocate soybean production to Europe,
raising the question of the feasibility and sustainability of growing
this crop in the old continent. The use of optimization methods
would make it possible to determine where to grow soybeans in
Europe in order to obtain production that is both high on average
and stable over time, while minimizing the area cultivated to allow
other types of agricultural production.

Several approaches have been proposed for the optimization
of crop allocations, typically resorting to classical optimization
techniques from operational research [5]. However, the application
of such algorithms has important limitations, either requiring an
unrealistic linearization of the objective functions, or severely lim-
iting the number of variables considered. Furthermore, previous
approaches only take into account a single objective function, typi-
cally maximizing yield, while given the rising importance of climate
change, it would be extremely valuable to also take into account
other objectives, such as minimizing between-year variance in yield
and minimizing land occupation.
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In this work, we propose to apply a multi-objective evolutionary
algorithm (MOEA) to the problem of crop allocation. Relying upon
a machine learning model trained on historical data for the pro-
duction of soybean, we generate time series of crop yields values
from 2000 to 2023 in each cell of a spatial grid covering croplands
in Europe. Based on this dataset, a multi-objective optimization is
performed to generate a set of land use allocations approximating a
Pareto front, combining three objectives: maximizing mean yearly
soybean production, minimizing inter-year production variance,
and minimizing the total cultivated soybean area. After obtaining
a set of non-dominated candidate solutions in the space of the
objectives, we perform an expert analysis of four scenarios, repre-
senting different trade-offs. These candidate solutions offer new
perspectives to improve the level of food self-sufficiency in Europe.

The rest of the paper is organized as follows. Section 2 introduces
the scope of this work. The proposed approach is described in
Section 3. The experimental evaluation, presenting a case study
on the allocation of soybean crops in the European continent, is
detailed in Section 4. Finally, Section 5 delineates some conclusions
and outlines future works.

2 BACKGROUND
This section summarizes the minimal information necessary to
introduce the scope of the work.

2.1 Forecasting of crop yields
Crop yield predictions at large scales play a significant role for com-
modity trading and implementation of food security policies [14].
Yield predictions are essential to prevent food shortages in case of
harvest losses or failures, and are frequently used to make projec-
tions about the impact of climate change on crops [37].

Historically, crop yield predictions were obtained with process-
based models which intended to integrate biophysical mechanisms
underlying plant growth and development [2]. However, these
models are not always reliable, due to the major issues related to
the estimation of their numerous parameters [26]. Previous research
showed that these models may provide inaccurate forecasts [28, 32]
which can lead to contradictory conclusions depending on the type
of model used [29].

In parallel, statistical linear regression models are simpler and
less costly to implement compared to process-based models [2]. For
these reasons, they were frequently used in crop yield prediction
as well [4, 25]. Standard regression models do not perform well
when their inputs are highly correlated and do not always capture
all the possible interactions between predictors [4]. Because of
their greater flexibility, more modern machine learning algorithms
are now commonly used to forecast yields of crops from climatic
predictors [2, 40] and often show better performances compared to
traditional statistical methods such as linear regression, in particular
to predict soybean yields [3, 18, 24].

2.2 Optimization of crop allocation
Globally, the demand for food is expected to increase by 35% to
56% between 2010 and 2050 [39], and so far the actual trend has
closely followed the predictions. In the last decades, crop yield (the
production by unit of cultivated land) generally increased, due to

genetic advancements and better crop management practices; the
intensive use of fertilizers and pesticides, as well as improvements
in mechanization of agriculture also had a strong positive impact on
yield [1], albeit with negative repercussions. Some studies suggest
that there is still some potential to intensify production on existing
land [41], but this could also lead to more adverse environmental
effects. In addition, there is a considerable amount of uncertainty
on potential crop yield changes under climate change, whose effect
are hard to model and predict [32].

A different approach to increasing yield is to allocate larger pro-
portions of cropland on remaining arable lands, while preserving
natural ecosystems (such as forest, permanent grasslands or wet-
lands) and without increasing global cropland areas. Several studies
used machine learning or statistical models to make projections
in new areas where the crop is not yet grown, and examine the
consequences of different choices (e.g. [21, 38]). The same approach
is used to simulate the yields in various climate change scenarios,
to investigate the suitability of production in the context of global
warming (e.g. [15, 18]).

In these studies, the geographical allocation of crops is generally
based on the average or maximum productivity of the examined
regions. An important limit of this approach is that it neglects the
instability of the production, i.e., the year-by-year variability of
the productivity due to contrasted weather conditions. Thus, the
variability of production is a second aspect to be simultaneously
considered when allocating crops, especially in the context of cli-
mate change. Only one study quantified the trade-off between these
two dimensions for maize, rice, soybean, and wheat using quadratic
optimization [5]. Although useful, this approach only provides esti-
mates at a low geographical resolution (i.e. at a continental scale)
and does not provide information on how to allocate crop lands
locally. Thus, an optimized allocation of crops that simultaneously
maximizes both overall amount and stability of agricultural pro-
duction while limiting the total surface dedicated to production is
needed to identify, at a finer scale, suitable areas to produce crops.

2.3 Multi-objective optimization in agriculture
Multi-objective optimization (MOO) is a branch of optimization
dealing with problems featuring multiple conflicting objectives [9,
12]. Differently from single-objective optimization, where the goal
is to find a single solution with the best possible value of the tar-
get cost function, the aim of MOO algorithms is to find a non-
dominated front of candidate solutions, each one representing a
different trade-off between the multiple objectives. More formally,
in a minimization problem, a candidate solution 𝐼𝑖 is considered
non-dominated if there is no 𝐼𝑘 such that:

𝐹 𝑗 (𝐼𝑘 ) ≤ 𝐹 𝑗 (𝐼𝑖 ) ∀𝑗 (1)

where 𝐹 𝑗 are the fitness functions for the 𝑗 different objectives,
and 𝐼𝑘≠𝑖 are all other candidate solutions considered as a compari-
son, usually the ones inside the population at the current generation,
plus the ones stored in a dedicated archive.

Multi-objective evolutionary algorithms (MOEAs) currently rep-
resent the state of the art in the MOO domain. While the most
recent research in the field is exploring complex problems with 10
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or more objectives [10, 20], for applications with up to three objec-
tives the most established algorithm is arguably the Non-Sorted
Genetic Algorithm II (NSGA-II) [11], which is used in this work.

Not surprisingly, multi-objective approaches are popular choices
for framing optimization problems in agriculture, where each can-
didate solution is often a trade-off between multiple conflicting
needs. For example, in [8], the authors use NSGA-II to find optimal
strategies for the management of rice fields, finding compromises
between irrigation events, use of rainfall, and yield. [27] proposes
the use of different crop and water use models to solve a multi-
objective optimization problem of crop and irrigation allocation
at the level of a single farm, solving sub-problems using a Particle
Swarm Optimization algorithm and then calling the MOEA Ev-
MOGA [30] to find non-dominated solutions for the global problem.
Finding optimal combinations of crops in greenhouses is the subject
of [34], where the multi-objective problem is framed as maximizing
global yield while at the same time minimizing water use, em-
ploying both NSGA-II and the msPESA [17] algorithms. The work
presented in [23] proposes to take into account multiple factors to
evaluate agricultural policies in the Miandarband Iranian region,
from production using crop models, to environmental impacts us-
ing Life Cycle Assessment tools, to societal impacts using expert
models obtained interviewing local farmers, a three-objective opti-
mization approach that was also applied to the evaluation of the
production in insect farms [31]. In [22], the authors aim to find
the mix of crops to plant over the Telangana Indian region that
maximizes economic returns and minimizes the use of fertilizers,
using a novel ad-hoc stochastic multiobjective algorithm; however,
the optimization problem is framed so that the exact locations of
the crops in a candidate solution are not considered, and only the
total area dedicated to each species of plant is taken into account.
To the best of the authors’ knowledge, multi-objective optimization
has never been used to address the problem of crop allocation over
vast geographical areas, for example at the level of whole countries
or continents, using fine-grained geographical locations.

3 PROPOSED APPROACH
In this work, we propose to use a MOEA to perform a multi-
objective optimization of geographical allocation of soybean. Given
a map of a large-scale territory, for example a country or a con-
tinent, divided into cells with a spatial grid, a candidate solution
represents the amount of land allocated to soybean in each grid
cell. The objectives include maximizing the total production over a
given number of years; minimizing the between-year variability;
and minimizing the total amount of land allocated. As all objective
functions require a prediction of the amount of soybeans produced
given specific weather conditions, we employ a machine learning
model trained on historical data to provide time series of yield
forecast in each grid cell.

3.1 Machine learning forecast of yield
We train a random forestmodel [6] to predict yearly yield of soybean
in Europe. The choice of the model was guided by previous works,
comparing and ranking various machine learning and statistical
models [18], exploiting different ways to aggregate climate features
to predict soybean productivity [7].

The model is trained on historical soybean yield grided data of
resolution of 0.5° and covering period from 1981 to 2016 [19] on
2, 626 cells spread in major producing areas (i.e. Argentina, Brazil,
Canada, China, India, Italy, and United-States). To improve model
prediction accuracy, additional cells located in geographical areas
unsuitable for crop productionwere randomly selected. The number
of these grid-cells is determined so that they represented 20% of the
full training dataset. In total, 3, 286 grid-cells constitute the training
data (Figure 1).

For each site, yield data are detrended using splines to avoid any
confusion with technological progress due to improved cultivars
and technological progress. Using the ERA5-Land database [33],
we derive monthly averages of six climate variables for each com-
bination of sites and year (hereafter referred to as "site-year"). The
variables considered in this study are: minimum and maximum
temperatures (both in°C), precipitation (in mm), solar radiation (in
MJ), reference evapotranspiration (mm/day), and vapor pressure
deficit (kPA) during soybean growing season. Growing of soybean
was defined country-by-country according to the crop calendars
provided by the Agricultural Market Information System1.

Several models based on climate predictors are tested. First, a
random forest model including monthly averages of climate data is
considered (𝑎𝑣𝑔.𝑚). Second, we fit a random forest model based on
seasonal averages (i.e., average over the whole growing season of
soybean) (𝑎𝑣𝑔.𝑠). Third, we apply principal component analysis to
capture the largest variation in monthly averages of climate data,
and we use the scores associated with the two (𝑝𝑐𝑎.𝑚.2) or three
(𝑝𝑐𝑎.𝑚.3) principal components as climate predictors of yield in
the last two random forest models considered. Each model also
includes irrigation fraction (in %) as a predictor.

For each model, performance in predicting yearly yield of soy-
bean from climate and irrigation predictors was assessed using the
Root of the Mean Squared Error (RMSE, in tons/hectare), computed
as:

𝑅𝑀𝑆𝐸 =

√√√√
1

𝑋 · 𝑌

𝑋∑︁
𝑥=1

𝑌∑︁
𝑦=1

(𝑝𝑥𝑦 − 𝑜𝑥𝑦)2 (2)

where 𝑝𝑥𝑦 and 𝑜𝑥𝑦 represent the predicted and observed yields
in the grid-cell 𝑥 and the year 𝑦; 𝑋 and 𝑌 are the total number of
grid-cells and years, respectively. The lower the RMSE, the lower
the difference between predictions and observations, which corre-
sponds to a better performance of the model.

A second performance metric used is the 𝑅2 (unitless), computed
as:

𝑅2 = 1 −

𝑋∑
𝑥=1

𝑌∑
𝑦=1

(𝑝𝑥𝑦 − 𝑜𝑥𝑦)2

𝑋∑
𝑥=1

𝑌∑
𝑦=1

(𝑜𝑥𝑦 − 𝑜)2
(3)

where 𝑜 is the mean value of observed yield over all years 𝑦 and
grid-cells 𝑥 .

For 𝑅2, a value of 1.0 corresponds to a perfect match of predic-
tions to observed data, a value of 0.0 indicates that predictions are

1Available at: http://www.amis-outlook.org/amis-about/calendars/soybeancal/en/
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Figure 1: Map of the grid-cells where data was collected for the training set of the machine learning algorithm, later used to
predict yield in the European area. The cells include both historical soybean fields with high yield (green dots), and areas that
are considered unsuitable for soybean cultivation (black dots).

as accurate as the mean of observed data. In contrast, a value of 𝑅2

lower than 0.0 occurs when the observed mean is a better predictor
than the tested model.

𝑅2 and RMSE were computed for each model following two
separate cross-validation procedures:

• First, a year-by-year cross-validation was performed, to as-
sess model’s capability in predicting yields in a new year,
which is not included in the training dataset (temporal ex-
trapolation).

• Secondly, a group-wise cross-validationwas employed, wherein
10 groups of randomly selected sites were used to evaluate
the model’s ability to forecast yields in novel geographic
regions not encompassed within the training dataset (spatial
extrapolation).

Models’ performances estimated from each cross-validation pro-
cedure and the mean over both procedures are presented in Table 1.
Values of 𝑅2 equal or higher than 0.90 highlight good performances
of all tested models. RMSE values were also comparable across mod-
els. The model presenting the best performance on average (i.e.,
the highest 𝑅2 and the lowest RMSE values) was the random forest
using the scores associated with the two first principal components
(𝑝𝑐𝑎.𝑚.2). On average, this model shows a mean 𝑅2 of 0.93 and a
RMSE of 0.38 tons/hectare.

Cross-validation results

year-by-year group-by-group
of sites average

R2 RMSE R2 RMSE R2 RMSE
pca.m.3 0.91 0.41 0.94 0.34 0.92 0.38
pca.m.2 0.92 0.39 0.93 0.36 0.93 0.38
avg.m 0.90 0.44 0.94 0.33 0.92 0.38
avg.s 0.91 0.41 0.90 0.44 0.91 0.42

Table 1: Comparative performance of random forest mod-
els to predict soybean yield, using different features. Higher
values of R2 correspond to higher predictive performance.
Lower values of root mean square error (RMSE) correspond
to higher predictive performance. Details on the cross-
validation procedures used to compute 𝑅2 and RMSE val-
ues can be found in the main text. Abbreviations: 𝑝𝑐𝑎.𝑚.3:
model based on the scores associated with the three first
components derived from monthly averages of climate data;
𝑝𝑐𝑎.𝑚.2: model based on the scores associated with the two
first components derived from monthly averages of climate
data; 𝑎𝑣𝑔.𝑚: model based onmonthly averages of climate data;
𝑎𝑣𝑔.𝑠: model based on seasonal averages of climate data.
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Figure 2: Mean annual amounts of predicted soybean yields for each grid-cell in Europe, between 2000 and 2023 (panel a., on
the left); Maximum possible surface that could be allocated to soybean for each grid-cell in Europe (panel b., on the right).

3.2 Multi-objective optimization framework
3.2.1 Structure of a candidate solution. A candidate solution I in
the problem is a vector of continuous values, each in [0.0, 1.0]:

I = {𝐼0, 𝐼1, ..., 𝐼𝑁 } (4)
where each value 𝐼𝑥 represents the fraction of available soil

surface allocated to soybean for grid-cell 𝑥 . It is important to notice
that 𝐼𝑥 is only the fraction of the maximal surface that can actually
be dedicated to soybean in grid-cell 𝑥 , so a value of 1.0 does not
correspond to the entire surface of the cell.

3.2.2 Fitness functions. We propose to treat the problem as a multi-
objective optimization task where the three objectives considered
are (i) maximizing the mean of the annual crop production, (ii)
minimizing the between-year production variability, and (iii) mini-
mizing the total surface allocated to soybean.

We start from a matrix P of crop production projections, where
each row corresponds to a grid-cell, and each column corresponds
to a year; thus, P𝑥,𝑦 contains the crop production projection for
grid-cell 𝑥 and year𝑦, measured in tons (1 ton = 1,000 kg) of soybean
produced. Given a candidate solution I, the corresponding projected
production 𝑝𝑦 for a specific year 𝑦 can be defined as:

𝑝𝑦 =

𝑁∑︁
𝑥=0

𝐼𝑥 · P𝑥,𝑦 (5)

where I𝑥 is the fraction of land surface allocated to the produc-
tion of soybeans for grid-cell 𝑥 .

The mean annual production for a candidate solution can then
be computed as:

𝑝 =
1
𝑌

𝑌∑︁
𝑦=0

𝑝𝑦 (6)

with 𝑌 the total number of years considered. As the optimization
task will be framed as a minimization problem, the first fitness
function 𝐹1 will be thus defined as:

𝐹1 (I) = −𝑝 = − 1
𝑌

𝑌∑︁
𝑦=0

𝑁∑︁
𝑥=0

𝐼𝑥 · P𝑥,𝑦 (7)

The second fitness function, to be minimized, is the inter-year
standard deviation of the crop production, defined as:

𝐹2 (I) =

√√√√
1
𝑌

𝑌∑︁
𝑦=0

(𝑝 − 𝑝𝑦)2 (8)

The third fitness function, to be minimized as well, is simply the
total surface taken by the soybean fields represented by candidate
solution I, expressed as:

𝐹3 (I) =
𝑁∑︁
𝑥=0

𝐼𝑥 · S𝑥 (9)

where S is a vector containing the value of the maximum surface
available for soybean crops associated to each grid-cell 𝑥 , expressed
in hectares (ha).
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3.2.3 Genetic operators. The genetic operators used in the pro-
posed approach are a classic one-point crossover and a Gaussian
mutation with mean 𝜇𝑀 = 0.0 and standard deviation 𝜎𝑀 = 0.1.
The crossover is applied with probability 𝑝𝐶 = 0.8 and the mutation
is applied with element-wise probability 𝑝𝑀 = 0.1.

3.2.4 Evolutionary framework. The MOEA employed for the multi-
objective optimization is the Non-Sorting Genetic Algorithm II
(NSGA-II) [11], which still represents the state of the art for multi-
objective problems with up to three objectives. NSGA-II is set with
a (𝜇 + 𝜆) replacement scheme, a tournament selection of size 𝜏 =

0.02 · 𝜇, and a stop condition triggered after a maximum number of
function evaluations 𝐸𝑚𝑎𝑥 .

4 CASE STUDY
The territory considered for the allocation of soybean corresponds
to Continental Europe, including the 27 members of European
Union (EU27), added with Albania, Armenia, Azerbaijan, Bosnia
and Herzegovina, Belarus, Switzerland, United Kingdom, Geor-
gia, Moldovia, Montenegro, Macedonia, Norway, Serbia, Kosovo,
Turkiye, and Ukraine. Following a common domain methodology,
the territory is divided into 0.5° grid-cells, for a total of 3, 509 grid-
cells. For each grid-cell, we compute soybean yield projections from
climate data from 2000 to 2023 using the 𝑝𝑐𝑎.𝑚.2 machine learning
model trained on historical yield data. These projections are used
in the MOEA to optimize the allocation of soybean cultivation to
maximize mean production, to minimize between-year variability
of production as well as the total surface allocated over in the 3, 509
grid-cells. Panel a. of Figure 2 shows the mean of projected yields
in the area considered for our case study.

Wemake the hypothesis that the land allocated to soybean would
be highly constrained in Europe, given that cropland is already used
to grow other major crops and that soybean cannot be grown in
place of natural areas (e.g. permanent pastures), in line with the
Common Agricultural Policy of the European Union aiming at their
protection. Thus, we limit soybean area for each grid-cell to the
minimum between (i) 5% of the total grid-cell area or (ii) 20% of
the available cropland of each grid-cell can be allocated to soybean
crops. The threshold of 20%was selected to simulate a crop sequence
where soybean is grown every four years. The maximum available
area is represented in panel b. of Figure 2.

After a few preliminary runs, the MOEA used for the proposed
approach is set with hyperparameters 𝜇 = 1, 000, 𝜆 = 2, 000, and
𝐸𝑚𝑎𝑥 = 106 for all experimental runs. The code for the experiments
is implemented in Python and R, using the inspyred [16] library for
the evolutionary engine, scikit-learn [35] for the machine learn-
ing part, and the R packages terra2 and randomForest3 for raster
data manipulation and yield prediction model fitting. The data and
the code necessary to reproduce the experiments are freely avail-
able on the GitHub repository: https://github.com/albertotonda/
optimization-crop-allocation.

4.1 Regular conditions
The final non-dominated front found by the proposed approach is
presented in Figure 3. A candidate solution of the multi-objective
2https://cran.r-project.org/web/packages/terra/index.html
3https://cran.r-project.org/web/packages/randomForest/index.html

optimization problem is thus represented by an array of 3, 509 float-
ing point values, representing the percentage of land allocated to
soybean for each cell in the grid. Each candidate solution was char-
acterized by the total surface allocated to soybean, the mean and
the between-year variability (i.e., standard deviation of production)
of soybean production over 2000 − 2023 period in Europe.

Variability of production and total allocated surface tend to be
both higher in solutions presenting the highest mean production.
On the reverse, mean production seems to decrease in candidate
solutions that are more stable (i.e. with lower between-year vari-
ability) and with lower total allocated surface. Among all candidate
solutions, the overall production ranges from 2.5 to 24.5 Megatons
(Mt, 1 Mt = 106 tons) of soybean, with a mean of 12.3 Mt. This result
shows that none of the candidate solution induce enough soybean
to fill 100% of the needs of EU27 in soybean (i.e. 44.5 Mt on average
between 2017 and 2022, according to FAOSTATS data [13]). Among
all solutions, the between-year variability ranges between 0.1 and
1.1 Mt and is on average 0.5 Mt. Minimum and maximum surface
allocated to soybean are 11, 733 and 107, 301 𝑘𝑚2, respectively. It
is interesting to note that the total surface allocated to soybean
in candidates solutions is higher than the current total soybean
area in Continental Europe (i.e., 25, 804.2 𝑘𝑚2 in 2021, according
to FAOSTATS data [13]) in 80% of the candidate solutions. Finally,
51, 494 𝑘𝑚2 are on average allocated to soybean crops.

4.2 Experts analysis
Among all candidate solutions, agronomists identify four relevant
scenarios. The first is the solution yielding to the highest produc-
tion, but also to the lowest stability of production ("Scenario A -
High production, high risk"). The second scenario considered is the
solution showing the highest stability among those with production
covering at least 50% of soybean needs of the EU27, i.e. 22.5 Mt
of soybean, according to FAOSTATS data [13] ("Scenario B - Pro-
duction covering 50% EU27 needs"). Third, the solution presenting
the highest production and a median variability of production is
selected ("Scenario C - Median variability"). Finally, the solution
characterized by a total allocated area equivalent to current sur-
faces in Continental Europe based on FAOSTATS data [13] and with
highest production and stability is included ("Scenario D - Current
surface"). Each scenario is represented on the final non-dominant
front as colored diamonds (Figure 3). Geographical allocation of
soybean in Europe in each scenario is represented in Figure 4.

4.2.1 Scenario A - High production, high risk. In scenario A, mean
production, variability of production, and total allocated surface
reach 24.5 Mt, 1.1 Mt, and 107, 300.8 𝑘𝑚2, respectively. In this sce-
nario, soybean covers almost all territory used for this case study,
preferably from North-East of Spain to South of Scandinavian coun-
tries. In this scenario, the allocation seems to be driven by the
maximum available area for soybean rather than potential yield in
the cell (Figure 2b).

4.2.2 Scenario B - Production covering 50% EU27 needs. Geograph-
ical allocation is similar is scenarios A and B, although the latest
one exhibits lower production (22.5 Mt), between-year variability
(1.0 Mt), and total surface (96, 981.3 𝑘𝑚2), compared to the former.
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Figure 3: Final non-dominated front found by the proposed approach at the end of the first experimental run, under the
hypothesis of regular climate conditions. Candidate solutions in the front are presented as a 2D projection in the space of the
first two objectives, with the color of the candidate solutions describing the third objective; the x-axis is reversed for readability,
with higher (better) values of the mean yield towards the left. Mean and standard deviation of production are expressed in
Megatons (Mt, i.e. 106 tons), and total surface in 𝑘𝑚2. Four scenarios chosen by expert agronomists and detailed in this article
are identified as colored diamonds.

Also, scenario B shows slightly lower area allocated to soybean in
Spain, the United Kingdom, and Turkiye, compared to scenario A.

4.2.3 Scenario C - Median variability. In scenario C, character-
ized by a median variability of production, soybean production is
concentrated in the South-West and North-East of France, Italy,
Belgium, Central Europe until East of Poland, and covers a part of
Belarus, Ukraine and Turkiye. This third scenario produced 12.9

Mt in average, which corresponds to more than 25% of EU27 needs
in soybean, while production variability and total allocated are
maintained at 0.5 Mt and 54, 595.6 𝑘𝑚2.

4.2.4 Scenario D - Current surface. If we consider the scenario
corresponding to current area of soybean, i.e. roughly 25, 000 𝑘𝑚2,
we see that the production would be even more reduced and con-
centrated mainly in Italy and Germany, with lower areas in the
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Figure 4: Geographical allocation of soybean in Europe in four scenarios identified by agronomists. Abbreviations: EU 27: 27
members of the European Union.

rest of Europe. In this scenario, production is halved compared to
scenario D (mean and standard deviation in scenario D: 6.3 and 0.3
Mt, respectively).

5 CONCLUSIONS AND FUTUREWORKS
This work presents a first multi-objective optimization approach
to the problem of allocating crops over large land areas, aiming
at simultaneously maximizing annual yield, minimizing between-
year variability, and minimizing the surface dedicated to crops.
The case study presented deals with the allocation of soybean over
the European continent, using a relatively high-resolution grid, a
machine learning model to predict yield for each cell in the grid,
and an established MOEA to generate a non-dominated front of
candidate solutions. An analysis of selected trade-offs on the front
obtained at the end of the experimental run shows that the results
are sensible and describe realistic scenarios. Four scenarios are
analyzed in terms of overall production, between-year variability,
total allocated surface, and geographical allocation of soybean.

In the majority of candidate solutions identified by our approach,
the total allocated surface is higher than the surface currently al-
located to this crop in Continental Europe. This suggests that the
area allocated to soybean should be increased to reach these levels
of production, as suggested in previous publications [18]. In this
case study, the crop frequency of soybean was set to one year every
four years: It is possible that the production could be increased
by more frequent cultivation. This would also make it possible to
reduce the total area dedicated to this particular crop, which is
interesting considering that an increase of surface could probably
be achieved only at the expense of other crops (e.g. maize) or of nat-
ural areas. Another solution that could be considered to save land
is intercropping, i.e., the simultaneous growth of multiple crops in
the same field. Previous meta-analyses estimate that, compared to

monocropping, maize-soybean intercropping might considerably
increases the efficiency of land use [42].

Thus, future works will explore the optimization of the simulta-
neous allocation of multiple species of crops (for example, maize
and soybeans), with more complex yield models, able to take into
account synergies and competitions between plants, and more sep-
arate objectives for each type of crop.
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