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ABSTRACT 

Increasing demand for water, food and energy has led to dramatic competition for land, 

resulting in a global land rush in the form of large scale agricultural investments (LSAI). Due 

to their many potential negative impacts and the opacity of their surroundings, accurate 

detection and characterisation of LSAIs in space and time is required. The increasing 

availability of dense satellite imagery time series (SITS), together with ever-improving change 

detection algorithms, is useful in this task. While SITS change detection algorithms are efficient 

at detecting abrupt and gradual changes phenological time series, there is still much room for 

improvement when it comes to detecting seasonal changes. 

The primary objective of this research was to automatically detect, in an unsupervised manner, 

the implementation of  LSAIs in Senegal based on remote sensing data. This work is structured 

around three interrelated papers. The first presents a fast and unsupervised approach 

(BFASTm-L2) developed to detect, in full MODIS NDVI SITS at the pixel level, the breakpoint 

associated with the largest pattern (i.e. mostly seasonal) change of the time series. Compared 

to other change detection algorithms (BFAST Lite, EDYN and BFAST monitor), BFASTm-L2 

proved to be particularly sensitive to seasonal changes and efficient in highlighting LSAIs in 

Senegal. This supports the hypothesis that changes induced by land use systems such as 

LSAIs are very often of a seasonal type. The second paper sought to differentiate the 

contribution of LSAIs from the main drivers of change (climatic, natural and anthropogenic) at 

a national-scale, relying mainly on three time series-based change metrics calculated at the 

pixel level (magnitude of change, direction of change, dissimilarity), which, when combined 

into a unique composite map, provided insights into land dynamics. LSAIs were shown to have 

a specific ecoregional signature of change. Finally, the third paper aims to refine the detection 

of the deals by automatically locating potential hotspots of change related to LSAIs in two 

contrasting ecoregions of Senegal through the segmentation of a BFASTm-L2-based 

magnitude of change map combined with object-based K-means clustering. In this last study, 

key discriminative metrics (textural and structural) derived from higher resolution imagery 

(Landsat) were combined with the spectro-temporal ones coming from MODIS NDVI SITS to 

provide a generic characterization of LSAIs. 

Through its specific focus on large-scale detection of LSAIs, this project contributed to the land 

change community by improving the understanding of land dynamics and the drivers of change 

behind the detected changes. 
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RÉSUMÉ 

Pendant les deux dernières décennies, la demande croissante en eau, en alimentation et en 

énergie a généré une ruée mondiale vers les terres sous la forme d'investissements agricoles 

à grande échelle (IAGE). En raison de leurs nombreuses incidences potentiellement négatives 

et de l'opacité entourant les données disponibles, la détection et la caractérisation de ces 

IAGEs dans le temps et dans l’espace sont nécessaires. La disponibilité croissante de séries 

temporelles d'images satellitaires (STIS), associée à l'amélioration constante des algorithmes 

de détection des changements, est particulièrement intéressante dans cette tâche. Bien que 

les algorithmes de détection des changements soient efficaces dans la détection des 

changements brusques et graduels dans les séries temporelles phénologiques, des progrès 

restent nécessaires en ce qui concerne la détection des changements saisonniers. 

L'objectif principal de cette recherche est la détection automatique, de manière non 

supervisée, des IAGEs implantés au Sénégal à partir des données de télédétection. Ce travail 

est structuré autour de trois articles interdépendants. Le premier présente une méthode rapide 

et non supervisée (BFASTm-L2) développée pour détecter, dans les STIS de NDVI issues du 

satellite MODIS, le point de rupture associé au plus grand changement de forme 

(principalement saisonnier) dans la série temporellede chaque pixel. Comparé à d'autres 

algorithmes de détection des changements (BFAST Lite, EDYN et BFAST monitor), BFASTm-

L2 s'est révélé particulièrement sensible aux changements saisonniers et efficace pour mettre 

en évidence les IAGEs au Sénégal. Cela confirme l'hypothèse selon laquelle les changements 

d'utilisation des terres tels que ceux générés par l’implantation de IAGEs sont très souvent de 

type saisonnier. Le deuxième article a cherché à différencier la contribution des IAGEs de 

celles des principaux facteurs de changement (climatiques, naturels et anthropiques) dans les 

changements détectés. L'approche mise en place s'est basée sur l'identification de trois 

variables spectro-temporelles issues des séries temporelles de NDVI MODIS de chaque pixel 

(la magnitude du changement, la dissimilarité induite par le changement et la direction du 

changement), lesquelles, une fois combinées dans une image composite RVB, ont permis 

l’obtention d’un meilleur aperçu de la dynamique des terres et de leur possible facteur de 

changement. Il a ainsi été démontré que les IAGEs ont une signature de changement 

particulière au niveau éco-régional. Enfin, le troisième article vise principalement affiner la 

détection des transactions en  à localisant automatiquement les hotspots de changement 

potentiellement liés aux IAGEs dans deux écorégions contrastées du Sénégal. Cette 
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localisation s'opère grâce à la segmentation d'une carte des magnitudes de changement 

basée sur BFASTm-L2, combinée à un clustering K-means à l’échelle de l’objet. Dans cette 

dernière étude, des métriques discriminantes clés texturales et structurelles), dérivées 

d'images à plus haute résolution (Landsat), ont été combinées aux métriques spectro-

temporelles issues des série temporelles de NDVI MODIS pour l’étape de clustering, et ainsi 

fournir une  caractérisation les IAGEs.  

En privilégiant la détection non supervisée et l’analyse du type de changement induit dans les 

séries temporelles phénologiques, cette recherche contribue significativement à une meilleure 

compréhension de la dynamique des terres et des facteurs de changement à l'origine des 

modifications détectées. 

 

Mots clés: Séries Temporelles d'Images Satellitaires, SITS, MODIS NDVI, changement 

d'utilisation des sols, IAGE, BFASTm-L2,  détection non supervisée de changements, 

métriques de changement 

Titre : De l’image satellite au système d’utilisation des terres: détéction et caractérisation des 

investissements agricoles à grande échelle (IAGE) à partir de données d’Observation de la 

Terre. Etude de cas du Sénégal 
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« Land can be a major engine of shared prosperity 

or one of the most pervasive drivers of inequality” 

 Guereña and Wegerif, 2019 
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RÉSUMÉ ÉTENDU EN FRANÇAIS 

INTRODUCTION 

Depuis la fin des années 2000, les acquisitions de terre à grande échelle (ATGE ou Large 

Scale Land Acquisition en anglais) ont connu une forte augmentation alimentée par la volatilité 

croissante des marchés des matières premières, une population mondiale en croissance 

rapide, des évolutions dans les modes de consommation et le changement climatique. Ces 

acquisitions foncières à grande échelle, souvent appelées "accaparements de terres", font 

référence à l'occupation de vastes étendues de terres par des individus, des États ou des 

sociétés (nationales ou étrangères), principalement à des fins agricoles, mais également pour 

la sylviculture, le tourisme, la conservation, l'exploitation minière, l'expansion urbaine ou de 

grands travaux d'infrastructure. Les données rapportées montrent une forte concentration 

géographique des investissements, la majorité des acquisitions de terres arables étant 

concentrées dans le Sud global et particulièrement en Afrique subsaharienne.  

On estime que les transactions ATGE (ou IAGE pour Investissements Agricoles à Grande 

Echelle) pour la production végétale représentent 83 % de toutes les transactions dans le 

monde, soit l’équivalent d’environ 27 millions d’hectares en 2016 (Nolte et al., 2016) .  

Différentes études montrent que la plupart des projets d'IAGE ont des investisseurs étrangers 

(principalement de l'UE et d'Asie) et ciblent la production de biocarburants (63 %), en 

particulier le Jatropha.  Cependant, n’atteignant souvent pas la rentabilité escomptée, de 

nombreux projets ont fait faillite ou suspendu leurs opérations, réduit leur surface ou changé 

de culture, démontrant l’énorme dynamique spatio-temporelle de ces acquisitions. Toujours 

d’après la Land Matrix (2021), entre 30% et 73 % des terres sous contrat ont été mises en 

production. Cette incertitude sur les chiffres montre la grande méconnaissance sur le nombre, 

l’état et la répartition géographique des IAGEs dans le monde.  

Les investissements agricoles à grande échelle peuvent affecter négativement la sécurité 

alimentaire, bouleverser les moyens de subsistance ruraux, notamment en affectant des zones 

coutumières ou protégées souvent sans possibilité de retour à leur état initial, et dégrader 

l'environnement par des pratiques agricoles intensives (monocultures, produits 

agrochimiques, irrigation, mécanisation...) (D'Odorico et al., 2017; Schoneveld, 2014). 

Parallèlement à ces impacts négatifs, certains auteurs ont souligné les faibles opportunités 

d'emploi que ces investissements peuvent générer en raison de leur fort taux de mécanisation 

(Davis et al., 2014). L'importance croissante des IAGEs a suscité de nombreuses études pour 

évaluer leurs impacts socio-économiques et environnementaux, mais la quantification précise 

de ces investissements reste difficile en raison de données peu fiables et difficiles d'accès. Il 
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est donc urgent de développer des systèmes capables de détecter, caractériser et surveiller 

automatiquement les acquisitions de terres à grande échelle dans l'espace et le temps. A cette 

fin, les données d’observation de la terre représentent un outil intéressant pour la détection et 

la caractérisation des IAGE. 

Etat de l’art des méthodes en télédétection pour détecter les IAGE 

Alors que la détection des changements d’occupation des sols a été largement étudiée, des 

progrès restent à faire pour détecter les changements plus complexes d'utilisation des terres 

(Verburg et al., 2019). Jusqu'à présent, la plupart des recherches se sont concentrées sur le 

développement d'approches supervisées pour détecter les IAGEs ou les caractéristiques 

associées aux IAGEs basées sur des techniques d'apprentissage automatique, et plus 

récemment, avec la disponibilité croissante de données à très haute résolution spatiale, sur 

des techniques d'apprentissage profond. Les approches proposées pour détecter les 

systèmes agricoles intensifs sont principalement basées sur : (1) des schémas phénologiques 

distincts (souvent basés sur le nombre de cycles de culture), (2) les spécificités des objets du 

paysage en termes de taille et d'arrangement dans l'espace (taille des champs, géométrie des 

champs, homogénéité...). Ces techniques reposent cependant sur la disponibilité d'un jeu de 

données d'entraînement vaste, fiable et représentatif. Or, les bases de données existantes sur 

les IAGEs sont incomplètes et les données de référence sont souvent obtenues par 

interprétation visuelle d'images satellites. Les approches supervisées sont aussi 

particulièrement sensibles aux conditions d’acquisition des images, et sont souvent liées à une 

région et/ou à une culture spécifique, avec des hypothèses difficilement transférables à 

d'autres zones d'étude. Enfin, les études existantes se concentrent généralement sur des 

régions qui subissent un seul type de changement (déforestation par exemple).  

Ces nombreuses limites justifient le besoin d'approches non supervisées, basées sur la 

détection de caractéristiques spatio-temporelles et spectrales induites par les changements 

dans les systèmes d'utilisation des terres. Bien que cruciaux pour détecter les schémas de 

changement, ces algorithmes peinent à repérer les nuances des changements d'utilisation des 

terres en raison des variations saisonnières, liées au climat ou à d'autres facteurs, masquant 

souvent des changements saisonniers plus significatifs. Ainsi, distinguer les variations dues 

aux IAGEs des autres facteurs de variation naturels ou anthropiques représente un défi crucial 

pour une gestion des ressources efficace et des prises de décision éclairées. 

En résumé, il y a un besoin croissant de méthodes non supervisées et génériques, pour 

s'adapter à la diversité des systèmes agricoles et au suivi de leurs changements. L'analyse 

des séries temporelles d'images satellites longues et denses (SITS) offre de grandes 
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perspectives à cet égard, car elles peuvent fournir de nouveaux éclairages sur la dynamique 

des systèmes agricoles intensifs.  

Objectifs et objets de recherche 

L'objectif principal de cette thèse est d’explorer le potentiel des séries temporelles 

d’images de télédétection pour détecter et caractériser de manière non supervisée les 

investissements agricoles à grande échelle (IAGEs) à différentes échelles. 

Les IAGEs sont ici définis comme des exploitations agricoles compactes, avec une surface 

minimale de 30 hectares et pratiquant l’agriculture intensive (mécanisée, avec de forts 

intrants), quel que soit leur régime foncier (par exemple, les agro-industries, les coopératives, 

etc.). La portée de cette étude, tout en cherchant à être aussi générale que possible, est limitée 

au Sénégal en tant que démonstration de faisabilité. Le choix de ce pays est lié à la 

disponibilité d’une base de données de référence sur les ATGEs (incluant les IAGEs), et à la 

diversité de ses éco-régions. Trois éco-régions contrastées, et concentrant 92% des 

transactions foncières en cours et 100% des installations actuelles et prévues dans le pays 

(Bourgoin et al., 2019), ont été particulièrement étudiées : la vallée du fleuve Sénégal dans le 

nord, la zone sylvo-pastorale du Ferlo et une zone étendue des Niayes, près de Dakar (Figure 

1). La période d'étude, couvre la disponibilité temporelles des données MODIS et est comprise 

entre 2000 et 2021. 

 

Figure 0. Répartition des investissements  agricoles à grande échelle (IAGEs) en cours et prévus dans les trois 
principaux hotspots au Sénégal : la vallée du fleuve Sénégal (zone hachurée), le Ferlo (zone verte) et la zone 
étendue des Niayes (zone orange). Source: (Bourgoin et al., 2019). 
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Cadre conceptuel et structuration de la thèse 

Etant attendu que les IAGEs mis en production (i) induisent des changements d'utilisation des 

terres qui peuvent se refléter dans les séries temporelles d'indices de végétation, (ii) occupent 

de vastes zones et (iii) pratiquent une agriculture intensive, nous avons développé un cadre 

conceptuel de détection des IAGEs à partir de variables de télédétection basées sur ces 

caractéristiques. La stratégie adoptée découlant de ce cadre conceptuel se compose de trois 

étapes principales (Figure 2) : 

(1) La première étape consiste en la détection automatique et la sélection, au sein de longues 

et denses séries temporelles d’indices de végétation, du changement qui est le plus 

susceptible d'être associé à des changements d'utilisation des terres. La sélection du point de 

rupture associé à ce changement est basée sur l'hypothèse que la plupart des changements 

anthropiques induisent un changement dans le motif spectro-temporel de NDVI du pixel 

concerné. La détection des changements saisonniers est ainsi réalisée au niveau du pixel, à 

partir de séries temporelles du produit NDVI de MODIS dont la résolution temporelle (16 jours) 

et spatiale (250 m) est optimale pour la détection des IAGEs.  

(2) Comme les changements détectés ne sont pas exclusivement liés aux IAGEs, la deuxième 

étape, toujours au niveau du pixel, vise à mieux comprendre les relations entre les principaux 

facteurs du changement et les types de changement (tels que révélés dans les séries 

temporelles,i.e., graduels, abrupts, saisonniers…), et à trouver un ensemble de métriques de 

changement discriminatives pouvant aider à identifier les changements d'usage des terres liés 

aux IAGEs.  

(3) La dernière étape vise à affiner la discrimination et la caractérisation des IAGEs en 

incorporant des informations contextuelles à l'aide d'images satellites à plus haute résolution 

spatiale (Landsat). 
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Figure 2. Cadre conceptuel de la thèse et structure du manuscrit. 

L’objectif de recherche principal a été divisé en trois sous-objectifs interdépendants:  

• Sous-objectif 1 : Détection automatique (non supervisée) des hotspots de 

changements anthropiques potentiels à l'aide d'un algorithme de détection de 

changement et de séries temporelles satellites à résolution moyenne (MODIS 250 m) 

appliqué à l'échelle nationale. 

• Sous-objectif 2 : Affiner la détection des IAGEs en identifiant et spatialisant les facteurs 

de changements d’usage des terres : climatiques, naturels, anthropiques non agricoles 

et agricoles (incluant les IAGEs)  

• Sous-objectif 3 : Identifier et caractériser les hotspots de changements   d'utilisation 

des terres liés aux IAGEs à différentes échelles. 

 

La thèse est structurée en cinq chapitres distincts. Après cette introduction, les chapitres 2, 3 

et 4 présentent les résultats obtenus pour chaque sous-objectif (sous la forme d’un article 

scientifique), et le chapitre 5 expose les conclusions majeures et les implications et 

perspectives des résultats de la thèse. 
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DÉTECTION NON SUPERVISÉE DE CHANGEMENTS D’UTILISATION DES TERRES 

BASÉS SUR LES CHANGEMENTS SAISONNIERS : BFASTM-L2  

Ngadi Scarpetta, Y., Lebourgeois, V., Laques, A.-E., Dieye, M., Bourgoin, J., Bégué, A., 2023. 

BFASTm-L2, an unsupervised LULCC detection based on seasonal change detection – An 

application to large-scale land acquisitions in Senegal. International Journal of Applied Earth 

Observation and Geoinformation 121, 103379. 

 

Dans cet article (chapitre 2), nous proposons une méthode simple pour sélectionner 

automatiquement dans des séries temporelles d’images de télédétection, le point de rupture 

lié au plus grand changement saisonnier. Cette approche - nommée BFASTm-L2 - repose sur 

l'association d'un algorithme rapide (BFAST monitor) avec une métrique de similarité de séries 

temporelles (distance euclidienne L2) sensible aux changements saisonniers. La capacité de 

BFASTm-L2 à identifier la date de changement dans différentes situations a été testée sur 

deux jeux de données et comparée aux performances de trois autres algorithmes de détection 

de changement (BFAST monitor, BFAST Lite et Edyn). Ces jeux de données sont (i) un jeu de 

données de référence publié (Awty-Carroll et al., 2019), composé de 25 200 SITS simulés 

avec différents types (longueur de la saison (LOS), nombre de saisons (NOS), tendance, 

changement abrupt) et amplitudes de changement, et (ii) les STIS MODIS de NDVI de 2000 à 

2020 sur une zone de 200 x 200 pixels au Sénégal comprenant différents sites d'étude ayant 

subi des changements dd’utilisation des terres liés à des acquisitions de terres à grande 

échelle pendant la période étudiée, et rapportés dans la base de données terrain utilisée dans 

cette étude. 
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Figure 3. Diagrammes en violon de la plus forte magnitude normalisée pour chaque point de rupture, par type de 
changement pour : BFASTm-L2 (vert), BFAST Lite (orange), BFASTmonitor (blanc) et Edyn (bleu). Les points 
représentent la moyenne de chaque distribution. 

Les résultats obtenus à partir des jeux de données simulés montrent que BFASTm-L2 est 

efficace pour détecter dans le temps la plupart des changements saisonniers qui sont 

caractéristiques des changements d’utilisation des terre liés à des activités agricoles (les 

moyennes des distributions de BFASTm-L2 sont les plus fortes pour deux (LOS et NOS) des 

trois types de changements saisonniers (Figure 3) en lien avec une activité agricole). Les 

résultats obtenus à partir des jeux de données réels montrent que, contrairement à BFAST 

Lite et BFAST monitor, les changements induits par les IAGEs sont spatialement mieux 

discriminés par BFASTm-L2. 

L'algorithme proposé, plus rapide que BFAST Lite et Edyn, et avec une paramétrisation légère, 

peut donc être facilement mis en œuvre dans des pipelines non supervisés pour cartographier 

et analyser les changements génériques d’occupation et d’utilisation des sols à l'échelle 

nationale. 
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CARTOGRAPHIE DES TYPES DE CHANGEMENTS PAR ANALYSE DES POINTS DE 

RUPTURE DANS LES SERIES TEMPORELLES D’IMAGES 

Ngadi Scarpetta, Y., Lebourgeois, V., Laques, A.-E., Dieye, M., Bégué, A., 2024. Insight into 

large-scale LULC changes and their drivers through breakpoint characterization – An 

application to Senegal. International Journal of Applied Earth Observation and Geoinformation 

(submitted) 

 

Cet article (chapitre 3) vise à apporter un éclairage sur les facteurs de changement des terres 

au Sénégal, via une carte composite RVB basée sur les changements détectés par BFASTm-

L2 et caractérisés par trois métriques de changement dérivées des séries temporelles de NDVI 

MODIS. Ces métriques, choisies pour discriminer différents types de changements, sont la 

magnitude du changement, la direction du changement (ratio de NDVI) et la dissimilarité de la 

forme des séries temporelles.  

La sensibilité de chaque métrique à différents types de changement a d'abord été testée sur 

jeu de données simulées (Awty-Carroll et al., 2019). Les mêmes métriques ont ensuite été 

extraites à partir de STIS NDVI MODIS (2000-2021) sur le Sénégal. La carte de changement 

RVB (Figure 4) a permis la visualisation de différentes "signatures" de changement, qui, 

combinées aux informations terrain, aux données de précipitations, à l'analyse des séries 

temporelles NDVI de pixels pour lesquels les changements sont connus et aux images Google 

Earth, ont contribué à les relier à différents facteurs de changement (Figure 5). Ainsi, ont pu 

être discriminer visuellement les changements liés à des facteurs climatiques de ceux liés à 

des facteurs anthropiques, tels que ceux induits par les investissements à grande échelle dans 

les systèmes agricoles intensifs ou l'exploitation minière 
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Figure 4. Carte composite RVB des métriques de changement avec en rouge : la magnitude du changement, en 
vert : le ratio NDVI et en bleu : la métrique de dissimilarité (valeurs étalées entre le 1er et le 99ème percentile). Les 
distributions annuelles de NDVI MODIS 2000-2019 et de précipitations TRMM sont présentées pour trois pixels 
d’écosystèmes différents : 1 (zone humide), 4 (savane arbustive), 11 (forêt tropicale sèche). 
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Figure 5. Tableau d'association entre les couleurs de la carte composite RVB (Figure 4) et les potentiels facteurs 
de changement (CLIM pour variabilité climatique ; NAT pour les changements biotiques naturels ; MIN/INF pour les 
mines/infrastructures ; LSAI pour les systèmes agricoles intensifs ou IAGEs).  
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CARTOGRAPHIE ET CARACTÉRISATION DES INVESTISSEMENTS AGRICOLES À 

GRANDE ÉCHELLE AU SÉNÉGAL 

Ngadi Scarpetta, Y., Lebourgeois, V., Laques, A.-E., Dieye, M., Bégué, A.. Mapping and 

characterization of large-scale agricultural investments in Senegal. In preparation. 

 

Ce dernier article (chapitre 4) repose sur les résultats obtenus dans les chapitres précédents 

et vise à affiner la détection d’ IAGEs au Sénégal par extraction (segmentation) des hotspots 

de changement, et classification et interprétation de ces hotspots. La méthodologie implique 

un processus en trois étapes, appliqué de manière indépendante aux régions des Niayes et 

de la vallée du fleuve Sénégal (SR pour Senegal River) : 

1. Les changements d’occupation et d’usage des terres sont détectés à l'échelle nationale 

en utilisant l'algorithme non-supervisé BFASTm-L2 appliqué aux données NDVI 

MODIS. La magnitude du changement est ensuite pondérée en utilisant la dissimilarité 

de forme des séries temporelles et le ratio de NDVI pour mettre en évidence les IAGE 

potentiels.  

2. Une analyse de contour est utilisée pour extraire les hotspots de changement, et des 

images Google Earth et des données de terrain d’IAGEs sont mobilisées pour identifier 

le facteur le plus probable du changement d’occupation et d’utilisation des terres, ainsi 

que pour labelliser les objets extraits servir de base de donnée de validation dans une 

étape ultérieure.   

3. Pour chaque hotspot, des métriques spectro-temporelles (issues des STIS de NDVI 

MODIS) sont extraites à l’échelle de l’objet et compétées par des métriques spectrales 

(NDBal), texturales (indices d’Haralick) et structurelles (liées aux lignes détectées et 

aux formes rectangulaires/circulaires) issues d’images à haute résolution spatiale 

Landsat. Leur efficacité dans la discrimination des IAGEs est étudiée à l'aide de 

méthodes d’analyse non supervisée et évaluée à l'aide de la base de donnée de 

validation créée en point 2. . 
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Figure 6. Pourcentage de détection des IAGEs rapportés dans la base de données de terrain (DB LSAIs) pour a) 
la région de Niayes et b) la région du SR. Les flèches verticales indiquent le pourcentage d’IAGE non détectés (pas 
de recouvrement entre les hotspots et les IAGEs de la BD). Les IAGEs détectés (flèches horizontales) sont lors de 
l’analyse non supervisée répartis dans 2-3 clusters et identifiés en tant que LSAI (rouge) et Non-DB LSAI (bordeaux, 
pour ceux n’apparaissant pas dans la DB. Les autres facteurs de changement identifiés comprennent : SA (petite 
agriculture, vert fluo), WET (zones humides, bleu), FLOOD (plaines d’inondation, orange), NAT (changements 
environnementaux autres que ceux liés aux zones humides, vert), ANTH pour mines, infrastructures et urbanisation 
(rose) et MIX (classe mixte, gris).  

 

Les résultats montrent que les hotspots de changement issus de la segmentation d’image 

recoupent 53 % (dans les Niayes) et 24 % (dans le SR) des IAGEs rapportés dans la base de 

données de validation (Figure 6). Le faible taux d’IAGEs détectés dans le SR est à relier à la 

relative petite taille des investissements (16% des investissements font moins de 50 ha, 

comparés à 5% dans les Niayes) et à la présence de zones humides et de plaines d’inondation 

dont la dynamique provoque des changements du même ordre ou supérieurs à ceux des 

IAGEs. Une analyse non supervisée des hotspots montre que les IAGEs dans chaque région 

peuvent être distingués des autres dynamiques de surface par leurs caractéristiques spectro-

temporelles et structurelles. Les résultats d’un clustering de K-means basé uniquement sur les 

caractéristiques spectro-temporelles montrent que les taux de précision des clusters 

recombinés, comprenant les clusters les plus pertinents pour les IAGEs, sont de 65 % (dans 

les Niayes) et 75 % (dans le SR). Notons que les tests effectués dans différentes régions ont 

révélé que les caractéristiques structurelles ont un pouvoir discriminatoire variable selon la 

région analysée. Étant donné que toutes les IAGEs ne présentent pas des formes 
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géométriques distinctives (comme illustré dans l'exemple des plantations de caoutchouc au 

Laos dans l'annexe B.1), ces caractéristiques ont été exclues de l'analyse de classification 

pour assurer la robustesse et généricité méthodologique. Par ailleurs, les caractéristiques 

texturales ont également été exclues de la classification non supervisée en raison de leur faible 

pouvoir discriminatoire. 

DISCUSSION ET CONCLUSIONS 

Ce travail de recherche méthodologique permet de répondre au besoin de suivi automatisé de 

l’utilisation des terres à grande échelle pour une gestion plus efficace des ressources et une 

prise de décision éclairée. L'accent est mis sur la détection des Investissements Agricoles à 

Grande Échelle (IAGEs) dans les zones tropicales, en raison de leur importance stratégique 

pour le développement territorial et de leurs impacts socio-économiques et environmentaux.  

Les IAGEs sont des systèmes complexes, avec une grande diversité de pratiques agricoles et 

d’environnements d’implantation, qui demeurent insuffisamment documentés à l’échelle 

nationale. Face à la complexité de collecte des données de terrain sur ce sujet sensible, l'effort 

principal s’est orienté vers le développement d'une méthode automatique, générique et 

interprétable pour détecter les IAGEs à échelle nationale. 

Pour répondre à la question de recherche « Peut-on détecter automatiquement l'émergence 

d'investissements agricoles à grande échelle sans données de référence (c'est-à-dire de 

manière non supervisée) ? », un modèle conceptuel a été établi, reliant des métriques de 

télédétection (spectro-temporelles et spatiales) aux caractéristiques des systèmes d’utilisation 

des terres étudiés, et une stratégie en trois points a été proposée : 

• Le développement d’un algorithme de détection de changement non supervisé, qui 

se concentre sur la détection automatique de changements significatifs liés à des 

activités anthropiques, principalement saisonniers, dans les séries temporelles NDVI 

de MODIS à 250 m.  

• L'identification de trois métriques spectro-temporelles et leur combinaison dans une 

carte composite RGB, afin de relier les signatures et les changements d'utilisation 

des terres susceptibles d'être induits par des facteurs climatiques, naturels, 

anthropogènes (non agricoles) et agricoles (dont les IAGEs) à l'échelle nationale.  

• L’extraction, l'analyse et la classification non supervisée de zones de changement 

potentiellement liées aux IAGEs. Ce point intègre des méthodes et des résultats des 

deux sous-objectifs précédents, en utilisant principalement des caractéristiques 

spectro-temporelles (issues des STIS de NDVI MODIS) et structurelles (issues de 

Landsat).  
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Ces trois points sont alignés sur le cadre proposé par Zhu et al. (2022) pour caractériser les 

changements dans l'utilisation des terres à partir de cinq facettes : Où (l'emplacement du 

changement), Quand (la date du changement), Quoi (ce qui change), Comment (les métriques 

du changement) et Pourquoi (le moteur du changement). La discussion résume les principales 

conclusions des travaux de thèse à travers le prisme de ces facettes du changement, en 

commençant par Où et Quand, puis en explorant les facettes Comment et Pourquoi qui en 

découlent. 

Où et Quand ? 

L'algorithme BFASTm-L2 est un outil de détection de changements rapide et non supervisé, 

axé sur l'identification des points de rupture associés aux changements saisonniers 

significatifs dans les séries temporelles NDVI de MODIS. Cet outil comble principalement deux  

lacunes identifiées dans les algorithmes existants, à savoir : 1) l'ambiguïté quant au type de 

changement détecté par les algorithmes plus rapides qui ne procèdent pas à la décomposition 

des séries temporelles et 2) l'évaluation de la magnitude du changement, souvent basée sur 

les déviations par rapport à la moyenne, non adaptée à la détection et à la quantification de 

changements saisonniers. Les comparaisons avec d'autres algorithmes confirment la capacité 

de BFASTm-L2 à mettre en évidence les changements saisonniers associés aux 

investissements à grande échelle. 

Comment et Pourquoi ? 

Pour répondre à ces questions, deux produits ont été développés : 

• La carte composite RVB des métriques de changement, un outil de visualisation 

utile à l'échelle nationale : La carte nationale des changements d’occupation et 

d’usage des sols produite est basée sur les changements détectés par BFASTm-L2. 

Cette carte seule ne permet pas de distinguer exclusivement les changements dûs 

aux IAGEs. Pour identifier les influences climatiques, naturelles, anthropiques et 

agricoles, trois métriques spectro-temporelles (la magnitude de changement, la 

dissimilarité de forme dans les séries temporelles et le ratio NDVI) sont calculées pour 

le plus grand changement détecté par BFASTm-L2 et combinées en une carte RVB 

permettant de caractériser les changements détectés (abrupt, graduel, saisonnier) et 

de les relier aux principaux facteurs de changements. Les résultats montrent que les 

IAGEs induisent principalement des changements saisonniers, confirmant les 

hypothèses sur les types de changements associés à différents moteurs.  

• Des cartes sous-nationales montrant les hotspots de changement détectés de 

façon automatique à  partir de la carte de magnitude des changements (détectés 
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par BFASTm-L2 et pondérée par la métrique de dissimilarité), ainsi que les clusters 

résultants d’une analyse non supervisée.  Bien que l'intervention de l'utilisateur soit 

toujours nécessaire pour l'étiquetage des clusters, les résultats démontrent la 

faisabilité de la détection non supervisée des IAGEs. L’analyse des hotspots révèle 

quand à elle des caractéristiques distinctes pour les IAGEs, celles-ci se regroupant 

généralement en 2-3 clusters. 

En conclusion, ces travaux ont permis le développement d’un algorithme efficace (BFASTm-

L2) pour détecter les changements d’usage des terres, de caractériser ces changements en 

fonction des moteurs, et à distinguer les IAGEs des autres dynamiques terrestres. Les 

résultats contribuent à la compréhension des changements environnementaux à différentes 

échelles spatiales. 

Limites et perspectives 

Les conditions requises pour une détection efficace des IAGEs avec BFASTm-L2 et MODIS 

sont les suivantes : 1) les objets cibles doivent présenter des surfaces de changement 

supérieures à 50 hectares ou être situés à distance des écosystèmes instables, 2) les IAGEs 

doivent impliquer des cultures à croissance rapide, et 3) l'approche doit être appliquée à des 

écorégions spécifiques. Lors de l'éventuelle extension de cette approche à des données 

provenant de satellites autres que MODIS, l'efficacité de BFASTm-L2 repose sur certains 

critères, notamment : 1) une fréquence temporelle élevée suffisante pour une représentation 

phénologique précise, 2) une durée minimale de 8 ans, et 3) l'absence de « trous » dans les 

données, avec un lissage visant à minimiser les fausses détections. 

En ce qui concerne les perspectives de recherche visant à améliorer les produits, plusieurs 

recommandations sont avancées. Il s'agit notamment d'améliorer la vitesse d'exécution de 

BFASTm-L2, d'explorer de nouvelles métriques spectro-temporelles, et de conduire une 

analyse spatiale à l'échelle des objets pour une distinction plus précise des IAGEs. 

Enfin, sur le plan opérationnel, la thèse vise à combler les lacunes d'informations sur le foncier, 

notamment dans les pays du Sud global, en soutenant la transparence de la gouvernance 

foncière et la prise de décisions. L'approche proposée, bien que ne fournissant pas une 

estimation complète de la superficie des investissements agricoles à grande échelle, 

représente une avancée cruciale. Des outils opérationnels et des programmes de formation 

pour accompagner cette démarche sont en cours de développement pour faciliter l'adoption 

de la méthode et accompagnerles campagnes de terrain pour évaluer les résultats. 

 



Chapter 1 
 

Y. Ngadi Scarpetta, 2024. Detection and characterization of LSAIs from EO data 

 

1 INTRODUCTION 

1.1 WHAT ARE LARGE-SCALE AGRICULTURAL INVESTMENTS (LSAIS)? 

1.1.1 The Large Scale Land Acquisitions (LSLAs), a global process 

For more than two decades, there has been an intense debate in the media and literature 

about the number, evidence and distribution of Large-Scale Land Acquisitions (LSLAs), 

more pejoratively known as "land grabs" (Batterbury, S., & Ndi, F., 2018; Borras et al., 2022; 

Bourgoin et al., 2019; Cotula, 2012; Davis et al., 2014; Schoneveld, 2014). This broadly refers 

to the occupation of large tracts of land by individuals, states or corporations (domestic or 

foreign), mainly for agricultural purposes (food crops, fodder crops, biofuels), but also for 

logging, tourism, conservation, mining, urban expansion or major infrastructure works. 

Although the phenomenon is not new, since the late 2000s there has been a growing global 

rush for land, driven by the confluence of increasingly volatile commodity markets, a rapidly 

growing global population, changing consumption patterns and climate change (see Figure 

1.1).  

 

 

Figure 1.1: Cumulative global contract size under production (left axis, bars) and share of concluded deals size 
under production (right axis, dashed line)(adapted from Lay et al. (2021)) 
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The reported figures show a high geographical concentration of investments, with most of the 

rush for arable land concentrated in the global South and particularly in sub-Saharan Africa, 

which has become one of the main targets for LSLAs for plantation agriculture and forestry 

(Nolte et al., 2016; Schoneveld, 2014) (see Figure 1.2). Key target countries in Africa include 

(situation in 2016): Sudan, Mozambique, Ethiopia and Ghana. Interest in this region can be 

explained by the availability of favourable biophysical resources, low land and labour costs, 

the absence of strong land tenure systems and a strong government commitment to the 

development of commercial agriculture (Bourgoin et al., 2019; Schoneveld, 2014). 

 

Figure 1.2: Global heat map of agricultural LSLAs contained in the Land Matrix in 2016.  High densities of 943 
concluded LSLAs are shown in orange, transitioning into yellow for lower densities.  Projection: Mollweide. Source: 
M. Abebe (Nolte et al., 2016).   

The LSLAs for agriculture, here referred to as LSAIs (Large-Scale Agricultural 

Investments ; Box 1.1.1), represent the vast majority accounting for about 83% of 

concluded deals (Nolte et al., 2016). According to the analysis of the global Land Matrix 

dataset 1, an independent land monitoring initiative launched in 2012 in response to the thick 

opacity of related data, these LSAIs would account for 26.7 million hectares (represented by 

422 deals) globally in 2016. Of these hectares, 37% would be located in Africa, representing 

approximately 42% of all concluded deals (Nolte et al., 2016). These figures, which differ 

                                                 

1 https://landmatrix.org/ 
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significantly from various estimates found in the literature (Bourgoin et al., 2019; Schoneveld, 

2014), only include concluded deals (leaving out ‘intended’ and ‘failed’ deals).  

Schoneveld (2014) provided a detailed insight into the 'anatomy' of LSAIs in sub-Saharan 

Africa for the period 2008-2011. His study identified 353 projects larger than 2000 ha, covering 

about 8% of the region's annual harvested area. The vast majority (around 87%) had foreign 

investors (mostly from the EU and Asia), and most LAIs (63%) were for the production of 

biofuel feedstocks, particularly jatropha (around half of biofuel projects). However, as most of 

these rarely achieved the expected returns, many projects went bankrupt, temporarily 

suspended operations, scaled down or switched to other crops, demonstrating the high 

spatio-temporal dynamics of these land objects. Overall, investment in food crops was 

found to be much more limited, with sugarcane and rice being the main targets and other 

southern economies being the main investors (i.e. Asia and the Arab world, while North 

America and the EU dominated biofuel projects). 

In terms of landscape characteristics, LSAIs typically cover much larger areas  than average 

farms in the region (the size threshold used to distinguish them from smallholders can be as 

low as 20 ha locally and is often set at 200 ha for global analysis (Bourgoin et al., 2019)). They 

tend to use high levels of inputs (technology, agrochemicals, mechanisation...) compared to 

smallholders, leading to intensive farming practices, and often invest in irrigation systems and 

monocultures (Batterbury, S., & Ndi, F., 2018; Bey et al., 2020; Kuemmerle et al., 2013; 

Stefanski et al., 2014). As a result, and because of the larger field sizes, LSAIs landscapes are 

often less complex, more homogeneous, and less fragmented than in smallholder agriculture 

(Vogels et al., 2019). 

 

Box 1.1.1- On the terminology used in this study   

This study focuses on the detection of LSLA for agricultural purposes using satellite 

remote sensing data. Although the primary focus of this study is on agricultural LSLA, 

the term LSAI for "Large-Scale Agricultural Investment", or the terms "Intensive 

Agricultural Systems" and “agribusinesses”, which are closely related to agricultural 

LSLA, are used interchangeably in this study. The use of the term LSAI allows 

emphasis on the type of production system rather than on the land tenure which is not 

directly observable by remote sensing.  
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1.1.2 Importance of monitoring Large-Scale Agricultural Investments (LSAI) 

Due to  the growing importance of the LSAIs worldwide, many studies have focused on 

assessing their socio-economic and environmental impacts, which could be broader and more 

significant than previously thought, especially if 'non-operational' land deals are included in the 

analysis (Borras et al., 2022).   

As the total area of alienated land in some countries can be huge relative to the amount of 

available arable land (e.g. Ghana: 61.6%, Ethiopia: 42.9% (Schoneveld, 2011)), these 

investments may undermine food security, with implications for rural livelihoods (e.g. disturbing 

social changes) and the environment (D'Odorico et al., 2017; Lay et al., 2021). Indeed, most 

of the land would come from customary or protected areas, with in some countries the 

impossibility of reverting to the previous status, leading to a long-term concentration of land 

resources and dispossession of vital livelihood resources (Nolte et al., 2016; Schoneveld, 

2014). These impacts are all the more important given that markets are generally export-

oriented, products are predominantly non-food, and the share of domestic investors is small, 

making the contribution of LSAIs to domestic market needs unlikely to be significant 

(Schoneveld, 2014). Alongside these negative impacts, some authors have highlighted the 

positive, albeit minimal (Davis et al., 2014) employment opportunities that some land 

investments can generate. Overall, the paucity of accurate data on the size, scope and 

distribution of land investments, particularly in sub-Saharan Africa, makes it difficult to assess 

their socio-economic and environmental impacts (Bourgoin et al., 2019; Schoneveld, 2014). 

Since official data are difficult to obtain (for a variety of reasons, including non-existence, 

limited access to data, decentralized administrations, and lack of consolidated data), most 

information comes from media reports, which carry a risk of bias, crowd-sourcing, and 

organizations with different working methods and definitions (what types of objects are actually 

included? For what period? Are planned/under negotiation/failed projects included?). All this 

has led to large discrepancies in quantifying the size and distribution of large-scale agricultural 

investments (Bourgoin et al., 2019; Cotula, 2012; Nolte et al., 2016; Schoneveld, 2014), as 

illustrated by the Senegalese case in Figure 1.3. 
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Figure 1.3: Status of reported LSLAs in Senegal from different sources  (IPAR: Initiative Prospective Agricole et 
Rurale; COPAGEN: Coalition pour la Protection du Patrimoine GéNétique Africain, GRAIN : international non profit 
organisation that support small farmers ). Source : (Bourgoin et al., 2019)  

In Senegal, NGOs have decided to tackle the problem of the opacity surrounding LSLAs, by 

conducting two national inventories in order to quantify the LSLAs dynamics (Faye et al., 2011; 

Sy et al., 2015). Unfortunately, where inventories exist, they are often not up-to-date, 

incomplete and contain limited information (e.g. only point data, unknown implementation 

status, unknown type of crop) (Bourgoin et al. 2019; Schoneveld 2014).  This is also observed 

in the Land Matrix global dataset, where accurate geospatial information is mostly missing or 

is not precise enough and is provided at an administrative level (region, village name, etc.). 

There is therefore an urgent need for systems that can automatically detect, 

characterize and monitor large-scale agricultural investments in space and time. This 

requires unsupervised (to be applicable in regions where training field data doesn’t 

exist or is scarce), tuning free (for genericity, transferability and operationality / ease of 

use) and fast approaches (to be applicable at national scale). 

The ever-increasing availability of remote sensors, which have the advantages of monitoring 

the Earth's surface at repeated short intervals, providing consistent image quality, and being 

available free of charge, represents an interesting tool for the detection and characterization 

of LSAIs. The next chapter provides an overview of some satellite-based methods for the 

detection of LSAIs and related characteristics. 
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1.2 REVIEW OF EXISTING SATELLITE-BASED METHODS TO DETECT LSAIS AND 

RELATED FEATURES 

The signal detected by satellites is the result of the interaction between an electromagnetic 

wave and the constituent elements of a surface, such as vegetation and soil. Because remote 

sensing measurements are closely related to the biophysical and chemical properties of 

surfaces, these properties tend to be consistent for the same type of land cover in a given 

environment, be it forest, annual crop, surface water, bare soil, etc. Based on this premise, 

land cover maps are created using remotely sensed data. While land cover addresses the 

description of the land surface in terms of soil and vegetation, land use mapping, which 

refers to the purpose for which humans use the land cover, does not have a one-to-one 

relationship with land cover, which makes it more difficult to capture. In fact, a single 

land use can be associated with many types of land cover (and vice versa), as in the example 

of rice paddy, which represents an agricultural land use associated with a sequence of land 

covers throughout the year (i.e., vegetated land, barren soil, and flooded land) (Setiawan and 

Yoshino, 2014). As a result, land use often requires thematic and/or local expertise and 

additional data (e.g. socio-economic data) to interpret land cover classes, which in some 

cases may be based on observable activities (e.g., grazing) or structural elements in the 

landscape (e.g., pivot irrigation structures). Because the terms "land cover" and "land use" are 

closely related, they are often used interchangeably, and the commonly accepted term - LULC 

for Land Use Land Cover - recognizes that a mixture of the two is actually captured through 

remote sensing techniques. Even more challenging is the capture of land use systems (the 

coupled human-environment system) that describes how land, as an essential resource, is 

being used and managed.  In the case of agricultural land use systems, this includes the 

ensemble of temporal and spatial cropping practices (Bégué et al., 2018). 

LSAIs represent a specific agricultural land use system that cannot be directly derived from 

remotely sensed imagery. They are complex land use systems with almost as many different 

forms as there are crops, environments, management techniques and practices. As a result, 

various strategies have been used to detect the LSAIs, most of which are based on the 

detection of agricultural intensification practices, through a set of satellite-derived spatio-

temporal proxies (Kuemmerle et al., 2013):  

(i) Cropping intensity, defined as the number of cropping cycles observed per year on 

a unit area of cropland (i.e., the number of peaks in a pixel's vegetation index time 

series) (Hentze et al., 2017); 
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(ii) Irrigation (Ozdogan et al., 2010). Since irrigated agricultural land is expected to be 

more productive, temporal differences in biomass and greenness indices are 

exploited, especially during the dry season (Eckert et al., 2017). Besides the impact 

of irrigation on vegetation, some studies have also focused on the detection of 

irrigated structures (Tang et al., 2021); 

(iii) Field size (Graesser et al., 2018; Kuemmerle et al., 2009). While most of the 

spectral features used are derived from visible and near infrared (NIR) bands (e.g. 

NDVI being the most common), Synthetic Aperture Radar (SAR) has also been 

successfully used to derive metrics related to the geometry and topology of 

croplands (Ajadi et al., 2021; Liu et al., 2019; Stefanski et al., 2014).  

As the implementation of LSAI is often associated with changes in land use (i.e. the adoption 

of intensive agricultural practices (see Section 1.1.1)) and land cover (e.g. the conversion of 

natural vegetation to bare soil) at large spatial scales, some strategies have introduced LULC 

change techniques that aim to exploit the temporal dimension and add change characteristics 

to the analysis. This reduces the complexity of the analysis by focusing on first identifying areas 

of LULC change that may be associated with LSAIs. Although many methods have been 

developed for detecting LULC change, many of which have been discussed in various reviews 

(Chughtai et al., 2021; Lu et al., 2004), the use of remote sensing to detect and analyse land 

use systems such as LSAIs is still in its infancy (Verburg et al., 2019; Weiss et al., 2020).  

With this in mind, and with the aim of better understanding the challenges and opportunities in 

detecting LSAIs using remote sensing data, this subsection outlines the evolution of some 

satellite-based methods, starting with LULC classification techniques to detect intensive 

agricultural systems (1.2.1.), and progressing to monitoring LULC changes in a supervised 

(1.2.2.1) and unsupervised (1.2.2.2) manner. 

1.2.1 Mapping intensive agricultural systems 

The simplest, but most time intensive and expensive method of mapping intensive agricultural 

systems has been the manual digitisation of satellite imagery (Degife et al., 2018) or computer-

assisted photointerpretation (CAPI). Due to the difficulty of applying CAPI over large-scale 

areas, (semi-)automated approaches have been developed to assess agricultural 

intensification by extracting agricultural fields and assessing their size and extent 

(Graesser and Ramankutty, 2017; Kuemmerle et al., 2009; Yan and Roy, 2014). These are 

often image processing methods (combining edge-based methods, segmentation and image 

morphology) applied at a regional scale, either to predominantly agricultural regions (Yan and 

Roy, 2014) or to filtered pixels after applying a crop mask (Ajadi et al., 2021; Graesser and 

Ramankutty, 2017). Indeed, it is generally accepted that field size is positively correlated with 
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agricultural intensity (Degife et al., 2018; Kuemmerle et al., 2009; Vogels et al., 2019). These 

methods are therefore highly dependent on field size, shape, configuration and crop type 

between neighbouring fields to accurately identify field boundaries (Graesser and Ramankutty, 

2017). 

A different and very popular strategy that has been used to map specific cropping systems, is 

the use of supervised classification techniques that rely on the separability of specific crop 

types based on their phenological patterns and seasonal dynamics observed in satellite-

derived vegetation indices (Arvor et al., 2011; Sedano et al., 2019). The number of crop cycles 

is often used as a proxy for agricultural intensification. For example, these approaches have 

allowed the mapping of specific major land-use systems, such as double-cropping systems of 

commercial soybean, maize and cotton crops over large areas in the USA (Wardlow et al., 

2007) and Brazil (Arvor et al., 2012; Bellón et al., 2017; Chen et al., 2018).  In Asia, many 

studies have been conducted to map specific boom crops such as rubber (Fan et al., 2015; 

Xiao et al., 2020). A different approach is the one developed by Sedano et al. (2019), who 

developed a LULC mapping framework specifically designed for agricultural systems of the 

Sudan-Sahel region, based on a Knowledge-Based Expert System (KBES) (i.e.,a type of AI 

system that incorporates human knowledge often in the form of a set of rules ) on the region 

phenological cycles.  

While very successful, pixel-based methods do not integrate spatial contextual information. 

Since intensive agricultural practices (e.g., mechanization, irrigation...) often result in 

distinctive spatial arrangements and homogeneous landscape textures (Kuemmerle et 

al., 2009; Özdoğan et al., 2018), the Object-Based Image Analysis (OBIA) (Blaschke, 2010) or 

GEographic OBIA (GEOBIA) approach has also been implemented as it takes advantage of 

these spatial features. It involves segmenting satellite images (generally having a high / very 

high spatial resolution) into homogeneous discrete objects or regions, and analyzing various 

attributes (eg. shape, texture, geometry, adjacency, etc) and spectro-temporal information to 

classify land use. For example, Vogels et al. (2019) applied a GEOBIA classification approach 

to map LSAIs in a highly contrasting landscape in the Central Rift Valley of Ethiopia using high 

spatial resolution satellite imagery (SPOT6, 6m). In their study, texture and shape information 

appeared to be essential for the identification of LSAIs. This correlated with previous studies 

showing a strong relationship between field size and texture metrics (Kuemmerle et al., 2009). 

While these approaches have advantages over the pixel-based approaches presented above 

in terms of capturing spatial patterns, GEOBIA in addition to requires temporal stability of the 

object for reliable classification results. Furthermore, since GEOBIA is not data-driven, it 

requires adjustment for each region of interest. Since this adjustment involves several 
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parameters (including segmentation, spatial, spectral...), the analysis is not directly applicable 

to regions with different LSAI characteristics, limiting the genericity of the approach. 

More recently, the increasing availability of free remote sensing data and the overwhelming 

increase in computing power have led to the development of new machine and deep learning 

algorithms for image supervised classification. Tang et al. (2021), were able to accurately 

map pivot irrigation systems in the state of Mato Grosso, Brazil, based on an object-based 

deep learning detection approach, combined with a deep learning image classifier capable of 

distinguishing pivots from other circular objects in Sentinel-2 images. Accurate object 

delineation was then achieved using a a shape detector (Hough transform). Ajadi et al. (2021), 

based on optical and SAR data, used a combination of deep learning approach to extract large-

scale field boundaries across Brazil, with a spatially adapted supervised classifier to map the 

crop type. While these methods are data-driven and very powerful in capturing spatial patterns, 

they are still underexploited in their ability to consider both spatial and temporal (historical data) 

contextual information (Molinier et al., 2021). Furthermore, an important challenge is to build a 

large high-quality training dataset that represents not only the spatial and temporal variability 

of the target, but also of the observation conditions, including the noise and biases to ensure 

their generalization capability (Weiss et al., 2020). However, as with GEOBIA, the 

transferability of these approaches to regions with different spatial characteristics is not 

guaranteed (e.g. regions with less contrasting structures between smallholder and large-scale 

agriculture).  

In summary, while these approaches have been able to map some large areas of major land 

use systems at a given point in time with high accuracy, they are mostly supervised 

approaches that rely on large amounts of training data, are crop and region specific (Estel et 

al., 2016; Graesser et al., 2018), and overall are not easily transferable to other regions. Most 

importantly, these methods provide a static representation of land cover at one point in 

time and are not designed to capture temporal changes in LULC, limiting the ability to 

analyze trends and transformations over time. For this reason, and with the increasing 

availability of long stacks of satellite imagery, methods that can accurately capture land 

dynamics over time are sought and are the subject of the next section. 

1.2.2 Monitoring LULC changes associated to LSAIs 

1.2.2.1 Supervised approaches 

The methods presented so far have been shown to accurately map land use systems at a 

given point in time. However, they do not take advantage of the full temporal depth available 

in long and dense satellite imagery time series (SITS) and, in the case of the object-based 
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studies, they may miss detections due to selection of the timing of image acquisition (Tang et 

al., 2021). As a result, recent studies have focused on detecting LULC changes associated 

with LSAI, even at the pixel level. This shift in focus is significant as it allows for a more detailed 

and dynamic understanding of LSAI-driven transformations in the landscape.  

Land change detection has been defined by Singh (1989) as "the process of identifying 

differences in the state of an object or phenomenon by observing it at different times". Among 

the various methods used, image differencing change detection and especially post-

classification change detection, which compares LULC (often supervised) classification 

results at different times, have been most widely implemented (see examples of  Chen et al. 

(2023a) and  Özdoğan et al. (2018) for rubber plantation detection), although these methods, 

designed for one-time classification, are not suitable for monitoring changes over time, as 

errors in the initial classification are propagated to the results (Zhu, 2017). Transitioning from 

the detection of specific crops such as rubber crops to the detection of specific land use 

systems, Bey et al. (2020) used a random forest-based approach that integrates contextual 

(i.e. textural) features to identify land use trajectories between smallholdings and large-scale 

croplands in the Gurué district of Mozambique, assuming that field size and field homogeneity 

of LSAI are greater than those of smallholdings. Detection of change was achieved by 

comparing classified land use maps derived from three-year composite images. Similarly, 

Eckert et al. (2017) assessed land change associated with large-scale commercial agricultural 

systems in the foothills of Mt. Kenya using a post-classification method based on contextual 

information. The "irrigated agriculture" class was defined as "large-scale commercial 

agriculture" if greenhouses and water bodies covered more than 3% of a land unit (2 km x 2 

km).  

With the increasing availability of long and dense SITS, recent studies have shifted from post-

classification approaches, which limit analysis to a few pairs of classified LULC maps, to 

trajectory classification approaches of SITS. These supervised approaches aim to classify 

different types of LULC change based on time series trajectories learned from a training 

dataset. According to Zhu (2017), these methods are mainly designed to detect abrupt 

changes. An example is the study by Hurni et al. (2017), who used long and dense SITS to 

train a support vector machine (SVM) supervised classification to map land transitions to 

specific 'boom' crops (rubber, cashew, eucalyptus, sugarcane and coffee) in Southeast Asia.  

At the global scale, Curtis et al. (2018) focused on drivers of deforestation and using decision-

tree models mapped the contribution of 'commodities' (including agriculture with oil palm 

plantations, mining and energy infrastructure) to deforestation, assuming that commodity-led 

deforestation is characterised by permanent conversion of forest/shrubland to non-forest land 

use. More specifically, they distinguished commodity-driven deforestation from shifting 
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agricultural deforestation by temporally assessing forest/shrub regrowth after deforestation, 

using a land unit size of 10 x 10 km. 

In addition to the commonly used post-classification and trajectory classification approaches, 

different methods have been tested, such as that introduced by Chen et al. (2023b) whose 

objective was to assess the main drivers of large-scale forest disturbance in Laos (among 

them: “new plantations” and “shifting agriculture”). In this study, change was first detected in 

the time series using Continous Change Detection and Classification - Spectral Mixture 

Analysis (CCDC-SMA). The category of interest (i.e. “New plantations”) was then identified 

using a post-disturbance classification combined with a thresholding on the magnitude of 

change.  

As observed, many different strategies have been used to monitor LSAIs with Earth 

Observation data, with varying degrees of accuracy and automation, gradually taking 

advantage of the increasing availability of new data. So far, most relied heavily on the 

availability of reliable training data sets. As will be discussed in more detail in section 1.3.1, 

these data are difficult to obtain for LSAIs and, in most cases, far from perfect, which affects 

the accuracy and generalisation capability of the classifiers. For this reason, unsupervised 

approaches are sought. Progress and challenges in this area are presented in the next section. 

1.2.2.2 Unsupervised approaches  

Automatic approaches are sought that do not require training data, rely on a small number of 

parameters, and are computationally efficient to be scalable to large scales. Such studies using 

unsupervised techniques for LSAI detection are still scarce. 

To date, most of these unsupervised approaches have been applied to detect major land 

cover changes happening on forested ecosystems (Ochtyra et al., 2020), and few to 

detect changes associated with agricultural systems. These studies, often crop-specific 

and using multi-temporal satellite data, have focused on detecting distinctive phenological 

patterns associated with specific agricultural land use systems. Among these, several studies 

were found that mapped the target land use system in two different time periods, and compared 

them for change detection. This is the case of Kontgis et al. (2015), who detected rice fields at 

two different time periods, first discriminating rice from other land cover types at the pixel level 

based on the variability of Vegetation Indices (VIs) spectral indices and defined hard 

thresholds. Then, after transforming the pixel-based map into an object-based map, a 

trajectory approach was used to discriminate rice objects with multiple cropping cycles per 

year - a proxy of agricultural intensification. Changes related to agricultural intensification were 

then detected by comparing maps between two different time periods. Despite the use of multi-

temporal data, these approaches still capture crop fields at a single point in time, typically 
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relying on three-year imagery epoch data. This requires pixel stability, meaning that land use 

has not changed within the three-year timeframe of the imagery used for classification. In these 

approaches, multi-temporal data are often used to mitigate data gaps and reduce spatial and 

spectral ambiguity, as well as to extract temporal descriptive statistics related to specific 

phenologies. In addition, and as consequence of not using training datasets, they often require 

prior differentiation of cropland to perform their analysis.  

Rather than looking at change through multi-date comparisons,  recent studies have focused 

on detecting change directly within full stacks of satellite imagery. This is the case of (Ye 

et al., 2018), who used the presence of persistently low values in annual aggregated NDVI 

time series to detect rubber plantations (these values are characteristic of the implementation 

of new plantations; i.e. land clearing/planting preparation). Focusing on the characteristics of 

some specific land use systems rather than specific crops, Hentze et al. (2017), using a 

Seasonal Trend Analysis (STA) combined with the BFAST change detection algorithm 

detected changes in the number of crop cycles characteristic of changes in agricultural 

intensity (i.e. irrigation) in Zimbabwe. However, this again required prior crop masking with a 

third-party land cover classification product.  

To summarize, although many unsupervised approaches to land use system detection avoid 

the need for a training dataset, they often require user intervention, rely on intermediate 

products such as crop masks, or are tailored to specific crops (and region specificities), making 

their application in different regions challenging.  

1.2.3 Synthesis 

As can be seen, methods for detecting intensive agricultural systems are becoming 

increasingly complex, ranging from LULC classification approaches representing land cover at 

a single point in time, to more complex approaches using extensive satellite imagery time 

series. Proposed approaches for detecting intensive agricultural systems are mostly based on: 

(1) distinctive phenological patterns over time (often based on the number of cropping cycles 

or related to the implementation of irrigation systems), (2) specificities of landscape objects in 

size and arrangement in space (field size, field geometry, homogeneity...). However, these 

existing methods are not without limitations. 

1.3 IDENTIFIED CHALLENGES IN REMOTE SENSING TO DETECT LSAI RELATED 

CHANGES 

Chapter 1.2 highlighted the limitations that characterize most LSAI detection approaches to 

date. These limitations can be categorized as: 
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• The limitations imposed by the spatial and temporal resolutions of available remotely 

sensed data, as well as the challenges posed by the presence of data gaps; 

• The limitations related to the different underlying assumptions about what defines an 

LSAI (see study cases in Appendix A) ;  

• The limitations  related to the methodological choices, such as: (i) the chosen 

classification scheme, where the number of classes directly affects intraclass variability 

and interclass similarity (Hurni et al., 2017), (ii) the careful selection of appropriate 

spatial and temporal satellite imagery representing key phenological windows (Bey et 

al., 2020; Chen et al, 2023a; Vogels et al., 2019), (iii) the compositing method used to 

derive the texture metrics (if any) used in the classification (Bey et al., 2020), and (iv) 

the area of the cells used to extract contextual information (if integrated) (Curtis et al., 

2018). All of these explain the different results that can be obtained for the same region, 

as shown in Box 1.3.1. In addition it worth highlighting that these studies often focus 

on a specific crop or regions dominated by a specific disturbance type, potentially 

overlooking other disturbance types (Li and Fox, 2011). Consequently, it remains 

uncertain whether these methods are effective when applied to larger regions with a 

variety of change types. 

 

 

Box 1.3.1– The role of rubber plantations in deforestation in Laos 

Methodological choices and assumptions can lead to large differences in the results 

obtained. This is particularly true for supervised approaches, which can be very 

sensitive to many different parameters (see Section 1.3.). For example, Hurni et al. 

(2017), using a SVM classifier found that 7 360 km2 (or 3.6% of the study area 

consisting of seven Landsat footprints in Southeast Asia, four of which cover Laos and 

three of which are exclusively in Laos) were converted from forest to rubber plantations 

between 2000 and 2014. Although not directly comparable, a much lower figure was 

found by S. Chen et al. (2023) who, using a CCDC-based change detection algorithm 

combined with a post-disturbance classification on Landsat imagery , found that less 

than 1% (only 969 km2) of  forest disturbance in all the national territory of Laos 

between 1991 and 2020 was due to "new plantations", while the Land Matrix reported 

about 4 000 km2 dedicated to rubber alone in 2020 (Land Matrix, 2023). 
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In addition, important limitations specific to supervised or unsupervised approaches have 

been identified. The first one, specific to supervised approaches, is represented by the 

difficulty of obtaining a large and reliable ground truth dataset of LSAIs that ideally fully 

represents their spatio-temporal heterogeneity. This dataset must not only be large enough, 

but also well balanced, as class imbalance can lead to under/overclassification problems. In 

contrast, unsupervised approaches face a critical challenge in selecting an appropriate change 

detection algorithm and distinguishing detected changes of interest from other drivers of 

change.  

These last three challenges, i.e. (i) the acquisition of representative ground truth data, (ii) the 

change detection algorithm, and (iii) the identification of change drivers, critical to the choice 

between a supervised/unsupervised approach, are discussed in more detail in the next 

subsections.  

1.3.1 Difficulties in obtaining reliable training and validation data, and implications 

As observed throughout the implementation of this work and evidenced by the Land Matrix 

Initiative, obtaining field data (with digitized land deals) on LSAIs is challenging. And when 

available, field datasets are often incomplete, not up-to-date and imperfect due to inaccuracies 

associated with survey interviews, the high spatio-temporal dynamics of LSAI objects and 

issues such as: (i) the reported date of change is often the date of the transaction and not the 

date of actual implementation, (ii) the reported areas under contract are often underused or 

abandoned, (iii) the areas under contract do not correspond to the areas in the field (Özdoğan 

et al., 2018). Because of the difficulty in obtaining ground truth data, many studies rely on 

visual interpretation from high-resolution satellite imagery (Bey et al., 2020; Chen et al., 2023a; 

Curtis et al., 2018; Özdoğan et al., 2018; Ye et al., 2021) to derive LSAIs. However, this method 

is not straightforward, since: (i) land use is not directly inferable from land cover, (ii) some 

crops/plantations are visually indistinguishable from their surroundings, making it difficult to 

identify boundaries (e.g. forestry deals embedded within forested areas), (iii) unavailability of 

high-quality images  (sensor characteristics, gaps) suitable to accurately digitized LSAIs, (iv) 

infer the current status (still active?) may be very difficult, as illustrated by the results of the 

Mapathon coordinated by the Land Matrix in 2020 (see Box 1.3.2).  
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This justifies the need for unsupervised approaches based on the detection of spectral 

and spatio-temporal features typically induced by changes in land use systems such as 

LSAIs. The massive amount of temporal information carried by SITS, in addition to its temporal 

depth, makes SITS a promising material to work with.  

1.3.2 Adequacy of existing time series unsupervised change detection algorithms 

Unsupervised time series change detection algorithms play a crucial role in revealing patterns 

of land use and land cover (LULC) change, but their effectiveness is not without limitations. 

Primarily designed to detect abrupt changes (e.g. deforestation) and gradual changes (e.g. 

logging or afforestation), very often in forested areas (Ochtyra et al., 2020), these algorithms 

face challenges in detecting more subtle changes that may characterize shifts in land 

use. As shown in Section 1.2, newly established LSAIs, when active, most of the time induce 

changes in cropping practices (if the previous land use was already agricultural) and, if 

significant enough, in land cover. These changes often manifest as pattern change in 

phenological time series such as those represented by vegetation indices (Mardian et al., 

2021; Setiawan and Yoshino, 2014). More particularly, these include changes of seasonal type 

such as the number of cycles (the basis of many of the studies focused on detecting intensive 

agriculture of Section 1.2), the amplitude of the growing cycle peak and the length of the 

growing cycle.  

Box 1.3.2– Insights from the 2020 Mapathon on the difficulty of digitizing land 

deals using satellite imagery 

In 2020, Land Matrix launched a mapathon with a group of 38 participants who received 

training and support from technical advisors. Their task was to delineate 1159 LSLAs 

boundaries, representing 20% of all transactions registered in the Land Matrix global 

database, using high-resolution Google Earth imagery (Bourgoin and Harding, 2021). 

Although these deals were initially classified as "highly accurate" in the database, 

meaning that they were geolocated (with a point) or associated with a village/hamlet 

name, only 34% of them had identifiable field boundaries that could be digitized. The 

remaining deals could not be digitized, mainly due to the inability to visually discern 

boundaries or because the transaction no longer existed. A very small fraction (2%) 

could not be reached due to image blur. This highlights the challenges of obtaining 

accurate geospatial information for land transactions and maintaining an up-to-date 

field database. 
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Detecting changes in time series is not an easy task, as periodic seasonal changes can mask 

sporadic yet meaningful changes. To mitigate the impact of these seasonal changes, various 

approaches have been developed. These include  temporal aggregation of time series data, 

the use of specific time windows (e.g. growing season), and the normalisation of reflectance 

values per land cover type (Verbesselt et al., 2010a). Among unsupervised algorithms that use 

full temporal data, three main strategies are commonly employed to account for seasonality in 

time series: 

• The segmentation-based algorithms (e.g. LandTrend (Kennedy et al., 2010), Continous 

Change Detection and Classification (CCDC) (Zhu and Woodcock, 2014), Detecting 

Breakpoints and Estimating Segments in Trend (DBEST) (Jamali et al., 2015)) , which 

divide the time series into distinct segments that show consistent behaviour (Jamali et 

al., 2015). Changes (usually abrupt and gradual) between these segments are then 

assessed. 

• The seasonal-trend decomposition techniques such as STL (Seasonal-Trend 

decomposition using LOESS), which separates the time series into seasonal, trend and 

residual components, facilitating the identification of changes within each component 

(e.g.  Breaks For Additive Seasonal and Trend (BFAST) (Verbesselt et al., 2010b)). 

Although effective for the detection of abrupt/gradual changes, this is a computationally 

expensive procedure less well performant in the detection of seasonal changes (Zhao 

et al. 2019).  

• The algorithms that incorporate adaptive modelling to dynamically adjust for 

seasonality (e.g. BFAST monitor (Verbesselt et al., 2012), Exponentially Weighted 

Moving Average Change Detection (EWMACD) (Brooks et al., 2014)). These are often 

faster than those that perform seasonal trend decomposition and are often part of 

online change detection algorithms that, unlike offline algorithms such as those 

mentioned in the previous two paragraphs, are able to detect changes in the data as 

they become available over time in near-real time. Changes are usually detected in the 

residuals and correspond to significant deviations between actual observations and 

predicted values. Since larger deviations from the mean are caused by abrupt changes 

or changes in amplitude, these types of changes can be expected to be selected over 

more subtle seasonal ones. 

The analysis is further complicated by the use of long and real time series. Indeed, the 

longer the time series, the greater the likelihood of detecting a combination of several 

types of change, in which case selecting the most representative breakpoint becomes 

a non-trivial task. This is even more true for LSAI induced changes, which, as mentioned 

above, very often induce seasonal changes, but also abrupt changes (e.g., due to increases 
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in biomass productivity or deforestation). Therefore, approaches that only respond to  seasonal 

changes (as in (Hentze et al., 2017; Mardian et al., 2021) are not appropriate in this context. 

Furthermore, accurately identifying the point at which the pattern changes the most does not 

guarantee that it is related to LSAI. This requires a better understanding of the changes 

induced by different key drivers. This challenge is outlined in the next section. 

1.3.3 Discrimination of LSAIs induced changes from other drivers of change  

Differentiating the main drivers of LULC change is essential for effective resource management 

and informed decision making. Although essential, distinguishing them from inter-annual 

climate-related variability and trends is not an easy task. To date, many unsupervised 

approaches have been developed, primarily relying on correlations between vegetation 

productivity and meteorological data (e.g. pluviometry, temperature...) (Anchang et al., 2019; 

Leroux et al., 2017; Xiao and Moody, 2005). One popular approach is the Residual Trend 

Analysis (RESTREND), designed to disentangle climatic and anthropogenic drivers of land 

degradation using temporally aggregated data (Evans and Geerken, 2004; Wessels et al., 

2012). However, RESTREND has limitations tied to the assumption of a strong relationship 

between vegetation production and rainfall, making it suitable only under specific conditions 

(e.g. not too severe land degradation), and its effectiveness is influenced by the choice of the 

assessment period (Wessels et al., 2012). Based on the same assumption, Dutrieux et al. 

(2015), using the BFAST change detection algorithm, introduced an external precipitation-

based regressor to their model to account for natural variability in a dry tropical forest area in 

Bolivia. However, contrary to expectations, this modification diminished the model's predictive 

power, showing that the relationship may be more complex than assumed.  

Approaches based on vegetation productivity need to be treated with caution when considering 

the identification of LSAIs due to their high spatio-temporal dynamics and high variability in 

agricultural practices. Assuming that all LSAIs  practice intensive agriculture, high values of 

NDVI as a proxy for Net Primary Production (NPP) cannot be universally relied upon, as they 

depend on the climatic condition, specific crop types used and are not exclusive to LSAIs. In 

fact, depending on the region studied, smal farms may also use intensive practices (e.g. 

countries in the northern hemisphere). Therefore, with the availability of long and dense SITS, 

it may be more appropriate to focus on the pattern of change and change metrics to 

disentangle different drivers of change, rather than solely relying on NPP/NDVI trends. While 

this aspect of change is implicit in supervised change detection approaches, it remains 

underexplored in unsupervised approaches. Indeed, it is generally accepted that within time 

series, long-term trends usually result from slow, gradual processes such as climate 

change or forest degradation, abrupt changes are due to environmental disturbances 
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to land cover such as fires, deforestations, or floods, and seasonal changes due to 

changes in vegetation phenology, composition or management practices (Hentze et al., 

2017; Mardian et al., 2021; Setiawan and Yoshino, 2014). However, a more in-depth study of 

this facet of change research could be beneficial, for example, to explore whether changes 

associated with climate variability or climate change are primarily manifested as changes in 

amplitude and trends, and to assess the likelihood of impacts on variables such as the number 

of growing cycles. This finer analysis of the type of pattern change induced in the time 

series, combined with different change metrics derived from the time series and spatial 

contextual information, should help to differentiate the main drivers of LULC change.  

1.4 RESEARCH OBJECTIVE 

1.4.1 Scope 

While substantial research has been dedicated to the detection of land cover change, there 

remains a lot to be done to detect more complex land use (system) change (Verburg et al. 

2019). LSAIs are part of such land use systems that need to be monitored on a global scale 

for improved transparency, efficient resource management and informed decision-making. 

Current research on LSAIs detection has predominantly focused on supervised approaches 

based on machine learning techniques and, more recently on deep learning techniques, given 

the increasing availability of high to very high spatial resolution data. However, these 

techniques rely on the availability of a very large, representative and difficult-to-obtain training 

dataset, and they are particularly sensitive to the conditions under which the dataset was 

acquired (i.e. geometry of acquisition, atmospheric conditions, crop conditions…). In addition, 

these approaches are often region- and/or crop-specific, and based on assumptions that may 

not be transferable to other regions. For all these reasons, this study aims to develop an 

unsupervised and generic framework designed to detect LULC changes at large scales 

potentially associated with Large Scale Agricultural Investments (LSAIs), using satellite 

imagery and gathering evidence through identification of drivers of change and 

landscape analysis. 

LSAIs are defined here as compact farms that occupy at least 30 hectares of land used for 

intensive agriculture (i.e. mechanized), regardless of their land tenure (e.g. agribusinesses, 

cooperatives...). The scope of this study, while attempting to be as general as possible, focuses 

on Senegal as a case study and covers the period between 2003 and 2018. Senegal's diverse 

ecoregions, ranging from arid in the north to semi-humid in the south, provide a rich landscape 

for study. The country experiences two distinct climatic seasons: a dry period from November 

to May and a rainy season from June to October. Steppe, savanna and sub-humid dry forests 
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dominate the land cover, as documented by various researchers (Budde et al. (2004), Sultan 

and Janicot (2003; Tappan et al.) and Tappan et al. (2004)).   

In addition, Senegal has a unique advantage with its National Land Observatory, supported by 

the Land Matrix, which contains a comprehensive database on large-scale land acquisitions 

(LSLAs). In 2019, the Senegalese Institute of Agricultural Research (ISRA) conducted a field 

campaign on LSLAs, recording more than 700 polygons in a spatial database (M. Dieye, 

personal communication, 2022). The database includes deal information such as deal type 

(agribusiness, mining, etc.), size, year of transaction/negotiation, or implementation status 

where available. While valuable, this database is not exhaustive and inherently contains a 

degree of uncertainty due to the dynamic nature of LSLAs, including new installations, 

abandonments, and expansions. As a result, it requires ongoing updates that are both time 

consuming and costly. 

In this work, we focused specifically on three regions where 92% of ongoing land transactions 

and 100% of current and planned installations (Bourgoin et al., 2019) are concentrated (see 

Figure 1.4):  

1- In the north, the arid Senegal River Valley is an important agricultural region with a growing 

number of LSAIs, mainly focused on horticulture, sugarcane production, and cereals, mainly 

rice.  

2- In the center, the sylvopastoral area of Ferlo, composed mainly of tree and shrub savannah, 

is home to most of the LSAIs focused on gum arabic production. 

3- Close to Dakar, the Niayes includes many LSAIs dedicated to horticulture. The vegetation 

consists mainly of open agricultural parkland. 
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Figure 1.4: Distribution of on-going and intended agricultural LSLAs in the three main hotspots in Senegal : the 
Senegal River Valley (hatched area), the Ferlo (green area) and the extended area of the Niayes (pale orange). 
Source: (Bourgoin et al., 2019)  

1.4.2 Research Objectives and conceptual framework 

This thesis aims to develop an unsupervised and generic framework designed to detect 

LULC changes at large scales potentially associated with Large Scale Agricultural 

Investments (LSAIs).  

As a result of the literature review conducted in Section 1.2, some common characteristics of 

LSAIs have been identified and are briefly described below. Newly implemented LSAIs are 

expected to: (i) induce changes in land surface vegetation composition, which may be reflected 

in vegetation index time series; (ii) rapidly occupy large areas, which may appear spatially as 

large hotspots of change; and (iii) practice intensive agriculture, which may be reflected in 

geometric shapes and a particular and ordered spatial arrangement of fields. 

The strategy adopted (see Figure 1.5), based on these characteristics, consists of three main 

steps:  

(1) the first one is the automatic detection and selection of the most significant pattern (i.e. 

mostly seasonal) change in long and dense VI time series that is most likely to be associated 

with anthropogenic LULC changes. This is based on the hypothesis that most 
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anthropogenic changes induce a change in the time series spectro-temporal pattern. 

Change detection is first performed at the pixel level, using MODIS 250-m NDVI time series 

whose temporal (16 days) and spatial resolution (250 m) is optimal for LSAI detection.  

(2) As the detected changes are not exclusively related to LSAI, the second step, still at the 

pixel level, aims to better understand the relationships between the main drivers of change and 

the time series types of change and to find a set of discriminative change metrics that can help 

to differentiate hotspots of LSAI-related changes.  

(3) The final step is to automatically extract, classify, and characterize large hotspots of change 

through unsupervised classification to identify those potentially associated with LSAIs. This 

process relies mainly on evidence derived from the previously mentioned MODIS NDVI SITS 

derived spectro-temporal change metrics, associated with structural and textural features 

computed from higher spatial resolution satellite imagery (Landsat) for each change hotspot. 

The final product is a map of potential LSAIs and characterization. 

 

 

Figure 1.5: Thesis conceptual framework 
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The main research objective has been subdivided into three interrelated sub-objectives 

aimed at progressively building a body of evidence capable of refining the identification 

of LSAI-related LULC changes. The sub-objectives are as follows: 

Sub-objective 1: Automatic detection of potential anthropogenic changes using a change 

detection algorithm and medium resolution satellite (MODIS 250m) time series applied at a 

national scale 

- RQ 1.1: Which method allows the detection and selection of the breakpoint causing the 

largest pattern (i.e.motstly easonal) change in NDVI time series within long and dense 

time series?  

Sub-objective 2: Gain insight and understanding of the changes most likely to be induced by 

climatic, natural, anthropogenic (non-agricultural) and agricultural LULC changes (including 

LSAIs) 

- RQ 2.1: Are the main drivers of LULC change (i.e. climate variability, anthropogenic 

(non-agricultural), agricultural and natural changes) more likely to cause a particular 

type of change in NDVI time series? 

- RQ 2.2: Which time-series derived change metrics may be useful to differentiate the 

different time series types of change? 

Sub-objective 3: Identify and characterize potential LSAI-related hotspots of LULC change at 

different scales 

- RQ 3.1: How can we automatically extract potential LSAI related hotspots of change?  

- RQ 3.2: What spectro-temporal (from medium spatial resolution MODIS time series) 

and spatial features (from high spatial resolution Landsat imagery) are common to 

LSAIs and may distinguish them from other land dynamics? 

1.4.3 Thesis outline 

This thesis consists of six chapters, including this introductory chapter. Chapter 2 (first 

accepted scientific paper) addresses the first research question (RQ 1.1) by proposing a 

change detection approach, BFASTm-L2, which uses a high-speed algorithm (BFAST monitor) 

combined with a time-series similarity metric (Euclidean distance L2) sensitive to seasonal 

change to select the breakpoint associated with the largest seasonal change (hereafter 

referred to as magnitude of change) in long and dense SITS with multiple breakpoints. The 

proposed method was tested on two datasets (a published benchmark dataset composed of 

simulated SITS to test its sensitivity to different types of changes, and MODIS NDVI SITS over 

200x200 pixel study sites with LSAIs in Senegal). 
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Chapter 3 addresses RQ 2.1 and RQ 2.2 to gain insight and understanding of the LULC 

changes most likely to be driven by climatic, natural, anthropogenic (non-agricultural), and 

agricultural (including LSAIs) changes. To do this, an RGB composite map was proposed that 

was created from three metrics of change whose sensitivity to different types of change was 

also tested on the aforementioned benchmark dataset: a time-series shape dissimilarity metric, 

an NDVI post/pre-change ratio, and the BFASTm-L2 magnitude of change. Map color (i.e., the 

signature of change), observed patch sizes and geometries, and ancillary data (including field 

information, precipitation data, NDVI time series analysis, and Google Earth imagery) were 

used to relate major drivers of LULC change to different types of VI time series change. 

Chapter 4 tackles RQs 3.1 and 3.2 through a three-step process applied independently to 

the Niayes and Senegal River (SR) regions, known for their high LSAI presence. First, 

indiscriminate LULC changes were detected at the national scale using the BFASTm-L2 

algorithm applied to MODIS NDVI data. The magnitude of change was then weighted using 

the change metrics proposed in a previous work: the time series shape dissimilarity and the 

NDVI ratio, to highlight potential LSAIs. Second, hotspots of change were extracted using data-

driven contour analysis, and the main drivers of LULC change were identified using Google 

Earth imagery as well as field data on LSAIs. Finally, for each of the extracted hotspots, 

spectro-temporal, and textural/structural features were computed from MODIS and Landsat 

data respectively and their effectiveness in discriminating LSAIs was investigated through 

unsupervised analysis. 

Chapter 5 presents the main findings of this thesis and reflects on the implications of the 

findings. Finally, Chapter 6 concludes the thesis. 
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2 BFASTM-L2, AN UNSUPERVISED LULCC DETECTION BASED 

ON SEASONAL CHANGE DETECTION – AN APPLICATION TO 

LARGE-SCALE LAND ACQUISITIONS IN SENEGAL 
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BFASTm-L2, an unsupervised LULCC detection based on seasonal change detection – An 

application to large-scale land acquisitions in Senegal. International Journal of Applied 

Earth Observation and Geoinformation 121, 103379. 
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2.1 HIGHLIGHTS 

- Change maps based on breakpoint magnitudes often highlight abrupt/amplitude 

changes 

- Land use changes induced by Large-Scale Land Acquisitions are mostly seasonal 

- BFASTm-L2, a fast and unsupervised new method to timely detect seasonal changes  

- BFASTm-L2 over performed BFASTm, BFAST Lite, Edyn mapping regional LSLAs 

- BFASTm-L2 may be used to highlight important land use changes at regional scale 

2.2 ABSTRACT 

In the context of Global Change Research, detection, monitoring and characterization of land 

use/land cover (LULC) changes are of prime importance.  The increasing availability of dense 

satellite image time series (SITS) has led to a shift in the change detection paradigm, with 

algorithms able to exploit the full temporal information laid down in SITS. So far, most of these 

algorithms have focused on the detection of abrupt and gradual changes, and thus developed 

breakpoint detection based on significant deviations from the mean. However, LULC changes 

may manifest themselves in other patterns, particularly changes in seasonality (amplitude, 

number and length of the growing seasons) that are harder to detect.  In this paper, we propose 

a simple method to automatically select the breakpoint linked to the biggest seasonal change 

in long and dense SITS with multiple breakpoints. This approach - BFASTm-L2 - relies on 

linking a high-speed algorithm (BFAST monitor) with a time series similarity metric (Euclidian 

distance L2) sensitive to seasonal changes. The capacity of BFASTm-L2 to identify the date 

of change in different situations was tested on two data sets, and compared to the 

performances of three other algorithms (BFAST monitor, BFAST lite, and Edyn). The data sets 

are 1. a published benchmark data set composed of 25 200 simulated SITS with different 

change types and change magnitudes, and 2. the 2000-2020 MODIS NDVI SITS over a 

200x200 pixels area in Senegal including different study sites which have undergone recent 

LULC changes due to agricultural large-scale land acquisitions (LSLAs) (as reported in the 

ground field database used in this study). The results show that BFASTm-L2 is efficient in 

accurately detecting in time most of the changes, and, in contrast with BFAST Lite and 

BFASTmonitor, to spatially highlight LSLAs-induced changes without the need of any prior 

knowledge. The automatic proposed approach, faster than BFAST Lite and Edyn, and with 

very few tuneable parameters, may thus be easily implemented in unsupervised pipelines to 

map and analyse generic LULC changes at regional scale.  
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2.3 INTRODUCTION 

In the context of Global Change Research, detection, monitoring, and characterization of land 

use/land cover (LULC) changes are of prime importance. Global satellite-based Earth 

observation, with its repetitive coverage at short intervals and consistent image quality, has led 

to major advances in the field by providing insights into the land dynamics of large and remote 

areas. Recent studies have benefited from the increasing availability of free remote sensing 

data and the overwhelming increase in computing power to identify changes that occur over 

time. In particular, the availability of dense Satellite Image Time Series (SITS) has led to a shift 

in the change detection paradigm, with ever-increasing approaches and algorithms exploiting 

the full temporal information contained in SITS. Changes detected are usually categorized as 

“abrupt”, “gradual” and “seasonal”. While “abrupt” refers to short-term, large magnitude date-

to-date changes (e.g., deforestation, fire, or urbanization), “gradual” (also referred as trends) 

refers to long-term (i.e. inter-annual), small magnitude date-to-date changes (e.g. land 

degradation, forest recovery) (Zhu, 2017). “Seasonal” changes are those affecting time series 

seasonality (i.e., vegetation phenology), and refer more explicitly to changes in the number of 

growing cycles (i.e., number of “peaks” of vegetation activity), in the season amplitude and in 

the length of season (i.e., growing season baseline length).  

So far, change detection algorithms have mostly been used to detect significant deviations 

from the mean in forest ecosystems (Ochtyra et al., 2020) . This is explained by the fact that 

discrimination between phenological changes driven by climatic variability and disturbances is 

easier in stable seasonal environments such as evergreen temperate or tropical forests than, 

for example, in drier ecosystems (Browning et al., 2017; Gao et al., 2021; Zhu and Woodcock, 

2014).  Less focus has been given to other land surface dynamics such as changes in land 

use (Verburg et al., 2009). Land use, which refers to the purposes for which human exploit the 

land cover, is hardly inferred directly from remote sensing images and very often needs 

ground-knowledge to be accurately assessed. For this task, temporal series of Vegetation 

Indices (such as the Normalised Difference Vegetation Index or NDVI) are often used. While 

remote assessment of a single land use may be difficult to achieve, land use changes may 

however be assessed by detecting persistent seasonal changes (e.g. changes in the 

amplitude, length of season and/or number of seasons) within VI’s time series, as  

homogeneous land practices are expected to present  typical intra-annual patterns (Setiawan 

and Yoshino, 2014).   

This is how, Hentze et al. (2017), focusing on the detection of specific seasonal changes (from 

unimodal to bimodal distributions and vice-versa) in the NDVI, jointly with a seasonal-trend 

analysis, were able to identify agricultural land tenure transitions (from large-scale to small-



Chapter 2: Introduction 
 

Y. Ngadi Scarpetta, 2024. Detection and characterization of LSAIs from EO data 

53 

scale and vice-versa) in Zimbabwe using BFAST (Breaks For Additive Season and Trend; 

(Verbesselt et al., 2010a)). However, their method has the drawback of not being up-scalable 

because of the algorithm used (BFAST is computationally expensive), and because their need 

of external data (crop mask).  

Speed, automaticity and accuracy of the detection of seasonal changes are thus crucial for the 

development of generic approaches to land use change detection. This is particularly relevant 

when using long and dense temporal series, in which a mix of different types of changes with 

different intensities may occur. As a consequence, approaches that perform temporal 

segmentation (such as DBEST (Jamali et al. (2015) ) or LandTrendr ( Kennedy et al. (2010))) 

which aim to find major abrupt and gradual changes without considering the seasonality are 

out of the scope of this study. The same applies to the deep learning methods, despite the 

growing interest in the remote sensing community due to their ability to automatically extract 

spectral-spatial features from satellite imagery (Tuia et al., 2021; Yuan et al., 2020; Zhu et al., 

2017). Because 1- the unsupervised/ semi-supervised deep learning approaches for LULC 

change detection are still at early stage of development (Leenstra et al; Meshkini et al., 2021), 

in addition to the 2- poor interpretability of the models, and the 3- low generalization 

performance linked to the highly contextual-dependent methods, the labeled-data scarcity 

(hampering the method’s scalability at regional scale), and the huge spectral-spatial variability 

of the targeted object (land use changes), these approaches are not considered in this study. 

They however should be the object of further research.  

To continue with the change detection characteristics sought in this study, to be applicable on 

large scale, change detection approaches need to be ease to use (i.e number of parameters), 

and preferably integrated on cloud-computing platforms. Amongst the well-established 

statistical-based algorithms implemented on big data platforms, BFASTmonitor (Verbesselt et 

al., 2012) stands out from the rest because of its simple configuration, speed and massively-

parallel GPU implementation (Gieseke et al., 2020), and its relative good performance in 

detecting seasonal changes (Awty-Carroll, 2019). Its major drawback lays in its high 

commission error (false positives). Minimization of false positives in long and dense time series 

is often performed using a threshold on the breakpoint magnitude (Gao et al., 2021), or by 

using some statistical tests such as the Chow test (Bullock et al., 2020). When more than one 

true breakpoint is found, selection of a unique breakpoint for mapping purpose may be difficult, 

unless when looking for specific changes (in magnitude, sign or pattern) in a specific period of 

time.   

Selection of a unique breakpoint may be more difficult when using algorithms that do not 

perform a season-trend decomposition (e.g. BFAST monitor, EWMACD). These latter, usually 
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faster (and thus suitable for large-scale applications), are often able to detect any type of 

change, including the seasonal ones, within the same non-decomposed time series. However, 

because the computed breakpoint’s magnitudes are linked to deviations from the model, 

selection of a unique breakpoint based on its magnitude may disfavour the selection of 

seasonal changes, particularly those modifying the time series “shape” (i.e. number of growing 

cycles per year, length of season) without heavily impacting its amplitude.  

In this study, we propose a simple, fast, generic and unsupervised approach (hereafter referred 

to as BFASTm-L2) to select, in long and dense NDVI time series with multiple breakpoints, the 

optimal breakpoint linked to the most important land use change (i.e., linked to the most 

important seasonal or “pattern” change within the time series (in amplitude, length of season, 

NOS, or a mix of them)).  

Two sets of research questions aimed to be answered in this paper: 1- The first one is broad 

and concerns the temporal accuracy (does the breakpoint correspond to the year of change?) 

and the sensitivity (how likely are different type of changes detected?) to different types and 

intensities of change of BFASTm-L2 and three change detection algorithms tested for 

comparison purposes: BFASTmonitor, BFAST Lite, Edyn. 2- The second set of questions 

concerns an application case, which is the detection (are the different change detection 

algorithms able to detect in long and dense time series, with likely multiple changes of different 

types and intensities, the land use changes related to LSLAs?) and mapping (which types of 

changes are most likely to be highlighted in maps using the breakpoint magnitude as mapping 

variable? Can LSLAs be pinpointed in such maps?) of Large-Scale Land Acquisitions (LSLAs) 

in Senegal.   

More details on the material and methods used are given in the next section. 

2.4 MATERIAL AND METHODS 

2.4.1 Global approach 

In this study BFASTm-L2 is proposed as a method to select, in long and dense NDVI time 

series with multiple breakpoints, the optimal breakpoint linked to the most important land use 

change, that is the one related to the most important “pattern” change within time series.  

Because the breakpoint selection is based on the breakpoint magnitude, we tested a 

magnitude metric based on the Euclidean distance (L2), a time series similarity metric 

proposed by Lhermitte et al. (2011) ,  which is prone to be more sensitive to seasonal changes 

than to abrupt and gradual changes. BFASTm-L2 relies thus on the sequential running of 
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BFASTmonitor for the fast detection of breakpoints, jointly with the Euclidean distance (L2) for 

the breakpoint selection.  

Because long and dense time series most of the time include multiple changes of different 

types (often combined) and intensities, a benchmark dataset of simulated seasonal time series 

including a unique change was used to answer the first research set of questions, aiming to 

assess the temporal accuracy and sensitivity of the tested change detection algorithms to 

different types and intensities of change. More specifically, a sub-sample of the benchmark 

dataset provided by Awty-Carroll et al. (2019) composed of 25 000 simulated SITS was used, 

including different single change types and multiple noise/change intensity levels (see Table 

1). To answer the second set of questions, related to the performance of the change detection 

algorithms in detecting and mapping LSLAs in Senegal, the MODIS 16-day NDVI time series 

(MOD13Q1 v.6) acquired over the 2000-2021 period in different study areas with known LSLAs 

were used.  Results were validated with ground observations. The flowchart of the data and 

methods is illustrated here below in Figure 2.1. 
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Figure 2.1: Flowchart of the data and methods 

2.4.2 Data 

2.4.2.1 Benchmark dataset and preprocessing 

This study made use of the simulated NDVI time series (10-year 2006-2015 at 16-day temporal 

resolution) data set created by Awty-Carroll (2019) and available at https://osf.io/taf9y/. The 

16-day temporal frequency makes this dataset suitable for the purposes of this study which 

uses the MODIS satellite imagery. In this study, only the gap-free simulations were used 

consisting of 25 200  seasonal time series generated to represent a large range of ecosystem 

dynamics based on the previous work of  Verbesselt et al. (2010b). This dataset includes a 

large range of unique trend, abrupt (positive and negative), seasonal (amplitude, length of 

https://osf.io/taf9y/


Chapter 2: Material and Methods 
 

Y. Ngadi Scarpetta, 2024. Detection and characterization of LSAIs from EO data 

57 

season (LOS) and number of seasons (NOS)) changes, with eight levels of noise (random 

value from a normal distribution with a mean of 0 and a standard deviation ∈ [0: 0.01: 0.07]), 

and 50 replicates (Table 2.1).The LOS changes are changes that move back the start of the 

season from 13 to 49 days. All changes  were placed in January 2011. 

 

Table 2.1.Types of change, levels of intensities and number of samples present in the simulated data set (Awty-
Carroll et al., 2019). For the break/trend set, each abrupt change in NDVI is followed by either no trend or one of 
the six levels of trend present in the trend only set. 

 

Because of the presence of noise hindering the detection of change, in this study the simulated 

time series were, as for the real MODIS time series smoothed using the Savitzky-Golay 

smoothing filter (Chen et al., 2004). A moving window length of 9 observations and a 

polynomial order of 3 were used.   

2.4.2.2 Study case dataset  

2.4.2.2.1 Study area and ground dataset 

Senegal is in the west part of the Sudano-Sahelian zone and is characterized by an overall 

low average annual rainfall, but with high inter- and intra-annual variability that constrains the 

vegetation growth. The precipitation shows an increasing gradient along the 

North-South direction. A distinct seasonality is present, with a long dry season and a short 

rainy season spanning from late June to early October (Abel et al., 2019). 

Type of changes Levels (units) Number of 

simulations 

- No change 

 

- 400 

T
re

n
d
 Trend only 

±  [0.001, 0.0015, 0.002]  

(NDVI / year) 
2 400 

Break (abrupt) / trend ±  [0.1, 0.2, 0.3] (NDVI) 16 800 

 

S
ea

so
n

al
     Amplitude  ±  [0.1, 0.2, 0.3] (NDVI) 2 400 

LOS (length of season)  −  [13, 22, 30, 37, 43, 49]  

(days) 

2 400 

NOS (number of season)  

 

1 to 2, 2 to 1 800 

 Total - 25 200 
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As many African countries concerned by Large Scale Land Acquisitions (LSLAs) 

(https://landmatrix.org), Senegal had in 2016 around 3% of its total arable land (270 908 

hectares) declared under contract by foreign investors from 12 countries (Harding et al., 2016). 

However, as more than 50% of those deals have an area under contract smaller than 5 000 

ha, the country is less affected by the so called “megadeals” (>50 000 ha, only 2 out of 19 in 

2016). Because of those climatic and LSLA characteristics, Senegal represents an interesting 

and difficult study case for the detection of land use system changes such as those induced 

by LSLAs.   

Figure 2.2. Study area (red box) and study cases (red dots) in Senegal  located within agro-industrial concessions 
(red polygons) (source: ISRA-BAME field data base).  

The Senegalese Institute of Agricultural Research (ISRA) conducted in 2019 an extensive field 

campaign on LSLA. More than 700 records and corresponding attributes were initially recorded 

in a database (M. Dieye, personal communication, 2022). Attributes consist in all kinds of 

information related to the identified deals, such as: name, deal type, coordinates, negotiation 

status, implementation status, year of transaction, size, previous land use, previous land 

tenure etc. From this database, and using observations from Google Earth/Sentinel Hub 

images, a selection was done to keep only active agricultural deals with growing crops (some 

deals are abandoned, others are still in negotiation), and with an implementation date after 

2003 (year as from which changes may be detected from MODIS SITS, considering the training 

period length needed by the detection algorithms).  

https://landmatrix.org/
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From this ground-field database subsample, four individual (points) LSLA study cases with 

different land processes under different ecoregions (see Figure 2.2) were selected for 

algorithm testing purposes. Point 1 is an example of a conversion from small agriculture to 

LSLA, points 2 to 4 are examples of conversions from natural vegetation to LSLA.   

More specifically, study case 1 (16.1118°N, 15.9954°W) and 2 (16.1159°N, 16.0230°W) are in 

the Senegal river valley (rainfall: 150-600 mm; (Tappan et al., 2004)) and are within pivot 

irrigation areas belonging to a concession growing vegetables. Changes occurred from the 

end of 2011 for point 1, and the start of 2016 for point 2. Point 3 (14.6444°N, 17.0271°W), in 

the “Agricultural Expansion Region” as defined in Tappan et al. (2004) (rainfall: 600-700 mm), 

is within one of the production blocks belonging to a concession specialized in vegetable 

production, and changes are observed as from 2008. Finally, the southern point 4 (13.0104°N, 

14.1766°W), in the Anambé basin (Casamance; rainfall: 800-1400 mm), is in the area of a 

concession specialized in irrigated rice. Field preparation is observed as from the start of 2007.  

In addition to the LSLA study cases, an area of 200x200 MODIS pixels close to Dakar (red box 

in Figure 2.2), including six production blocks of different concessions (see red polygons in 

Figure 2.7, was selected for mapping purposes (see section 2.4 for more details). The area is 

spatially contrasted, with urban/rural areas and natural vegetation (see Figure 2.7 ). 

2.4.2.2.2 MODIS NDVI data and pre-processing 

With its global coverage, moderate spatial resolution (250 m) and high temporal resolution (1 

to 2 days), the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor allows for 

the detection of subtle changes in land cover. A set of MODIS NDVI 16-day composites at 

250 m resolution (MOD13Q1, collection 6) acquired over Senegal for the period 2000-2021 

was pre-processed in Google Earth Engine. The 16-day composite NDVI product was chosen 

to reduce NDVI variability due to meteorological distortions like clouds. Series were gap-filled 

with linear interpolations and smoothed using an optimized weighted Savitzky-Golay filter 

(Chen et al., 2004) in order to reduce the noise. Weights were computed following the 

approach developed in Piou et al. (2013a), and are function of the pixel’s reliability (i.e. quality 

flag, view zenith angle), and position in the moving window (exponentially decreasing weights 

with the distance to the window’s centre). After some testing, a moving window length of 13 

observations, and a polynomial order of 3 (in order to keep the ratio w/p close to 3-4) were 

used.  
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2.4.3 Methods 

2.4.3.1 Statistical-based change detection algorithms  

Up to now, the LULC change community has benefited from an ever-increasing emergence of 

change detection algorithms exploiting the full temporal information contained in SITS 

(Matthieu Molinier et al., 2021). Some of them are now well-established and implemented on 

big data platforms enabling fast processing of large volume data.   

Change detection algorithms mainly differ in their approach to process time series and detect 

changes in them. In their approach to process time-series, two main groups of algorithms exist:  

While offline algorithms operate retrospectively on the complete time series, online (or real-

time) algorithms aim to detect changes as soon as they occur (Bullock et al., 2020). Because 

offline methods make use of the entire time series, there are often more robust than online 

methods. In turn, online methods are often faster than offline methods as they only use some 

of the data preceding the real-time observation (i.e., training period). They are however prone 

to false positives and require a stable training period (limiting its use in places frequently 

disturbed (e.g.  agriculture (Zhu et al., 2020)). As the length of the training period may have an 

impact on the quality of the fit - risk of overfitting when training periods are too short vs risk to 

include breakpoints in the training period when those are too long (Brooks et al., 2017))- , 

algorithms that are able to automatically select the optimal training period length (such as Edyn 

(Brooks et al., 2017), BFAST monitor (Verbesselt et al., 2012) or CCDC (Zhu and Woodcock, 

2014)) are preferred.  

In their approach to detect changes, while some algorithms provide the option of selecting an 

optimal model with one unique breakpoint (e.g. BFAST Lite (Masiliūnas et al., 2021)), almost 

all of them detect multiple breakpoints. Changes may be detected in the trend and seasonal 

component separately (e.g. BFAST (Verbesselt et al., 2010a), BEAST (Zhao et al., 2019)) or 

in the undecomposed time series (e.g. BFAST Lite, BFAST monitor , EWMACD (Brooks et al., 

2014)), using temporal segmentation approaches based on residual-errors and angle criterion 

(e.g. DBEST ( Jamali et al. (2015)), LandTrendr ( Kennedy et al. (2010) )), or model-deviation 

seeking approaches (e.g. BFAST monitor, CCDC ( Zhu and Woodcock (2014)), EWMACD). 

Decomposition may be interesting for end-users with an a priori knowledge of the type of 

change foreseen. As an example, Mardian et al. (2021) assuming that pasture/rangeland 

conversions to cropland mostly impact VIs’ seasonal component, applied a modified version 

of BFAST that constrained the model to detect only seasonal changes and obtained higher 

change detection accuracy compared to BFAST and BEAST.  However, it is worth noting that 

algorithms that perform decomposition are usually slower than those that do not. In addition, 

errors in the decomposition (because of using an inappropriate model) may be translated in 
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errors in the accuracy of the changes detected in both SITS components (Mardian et al., 2021; 

Zhao et al., 2019). To avoid selection of a single-model algorithm, focus is recently given to 

ensemble learning algorithms such as BEAST (Zhao et al., 2019), that are however 

computational cost expensive. As one can see, selection of a single-model algorithm highly 

depends on the application scale, targeted type of change, environment, SITS source and 

frequency. 

The approach proposed in this study for the selection of a single breakpoint linked to the 

biggest seasonal change in long and dense time series, is based on existing algorithms. For 

the selection of the change detection algorithm, focus was first given on speed, followed by 

the algorithm’s sensitivity to seasonal changes and its ease of use (number of tuneable 

parameters).  On these criteria, BFASTmonitor was chosen as the base algorithm for the 

change detection approach. For comparison purposes, in addition to BFASTmonitor, two other 

algorithms were selected: BFAST Lite, because of its robustness and speed (Masiliūnas et al., 

2021), and Edyn, because of its speed and ability to capture seasonal changes (Awty-Carroll 

et al., 2019). 

More details on the different change detection algorithms used and developed in this study are 

given in the next subsections and summarized in the Table 2.2 below.
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Table 2.2 : Main characteristics of the change-detection algorithms used in this study, their strengths and limitations  

 

 
Algorithm 

 

Speed Parameter 

number * 

Model Decomposition  Strengths Limitations (others than speed and 

number of parameters) 

O
ff

li
n

e 

BFAST Lite  

(Masiliūnas 

et al., 2021) 

++ + 
Model-

deviation 
None 

Detection of abrupt and trend changes. 

Possibility to select a model with a 

unique (the highest-magnitude) 

breakpoint. 

Low performance in capturing seasonal 

changes  

O
n

li
n

e 

BFAST 

monitor 

(Verbesselt 

et al., 2012) 

+++ + 
Model-

deviation 
None 

Sensitivity to seasonal changes (Awty-

Carroll, 2019). 

High false positive rate (Masiliūnas et al., 

2021) 

EDYN  

(Brooks et 

al., 2017) 

++ - 
Model-

deviation 
None 

Detection of subtle (sub-pixel) changes 

in long time series (model dynamically 

retrained); Able to capture seasonal 

changes 

High sensitivity to algorithm parameters 

(Saxena et al., 2018) 

 
 
* Number of key parameters (others than (if applied) the order of the harmonic term, the probability threshold/ statistical significance level and the training period length):   
<=2:  +,  >=3:  - 
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2.4.3.1.1 BFASTmonitor (BFASTm) 

The BFASTmonitor (Breaks For Additive Season and Trend Monitor; (Verbesselt et al., 2012)) 

is an online (near real-time) unsupervised change detection algorithm that flags abnormal 

observations within a monitoring period, based on a stable history period. More specifically, 

once the start of the monitoring period has been defined, a stable history period is automatically 

selected using the reversed-ordered-cumulative sum (CUSUM) of residuals (default 

approach). Then, a regression model (here a linear harmonic regression model) is fitted based 

on the history period. Finally, the moving sums (MOSUM) of residuals are used (bandwidth 

defined by the h parameter) in the monitoring period to determine whether the model remains 

stable for new observations. A break is detected when the absolute value of the moving sums 

exceeds a probability threshold. The magnitude of change recorded represents the median of 

the difference between the data and the model prediction in the monitoring period. Because 

BFASTmonitor only needs a single observation to exceed the threshold, the algorithm is prone 

to false positives (Awty-Carroll, 2019; Ghaderpour and Vujadinovic, 2020) and magnitude 

thresholds are often applied to minimize them (Gao et al., 2021; Hamunyela, 2017). However, 

its massively-parallel GPU implementation (Gieseke et al., 2020), that makes it 14.5 times 

faster than the newly launched BFAST Lite (Masiliūnas et al., 2021), its implementation on 

Google Earth Engine (Hamunyela et al., 2020) and its good performance in detecting seasonal 

changes (Awty-Carroll, 2019), make of BFASTmonitor a potential change detection algorithm 

for the purposes of this study. This study made use of the Python package bfast0.7, available 

at https://pypi.org/project/bfast/, that provides a parallel implementation of the BFASTmonitor 

algorithm. The parameters used were: h=0.25 (the MOSUM bandwidth), k=3 (default and 

minimal number of harmonic terms possible), and threshold level=0.05. To detect multiple 

breakpoints, the algorithm was iteratively run on the MODIS NDVI 2000-2021 image stack, 

each 3 months, using a 3-year training period (after testing of two training period lengths hl=2 

vs. hl=3 years) and a monitoring period of one year given that the BFAST monitor change 

magnitude is relative to the monitoring period length. No “penalty” period after each detected 

breakpoint (as opposed to Awty-Carroll (2019)) was applied to avoid missing significant 

changes. It is worth to note that this implementation of BFASTmonitor does not include the 

automatic determination of a stable training period yet.  

2.4.3.1.2 BFAST Lite 

The newly BFAST Lite unsupervised algorithm is built upon the BFAST algorithm (Verbesselt 

et al., 2010a) with the aim to improve its speed and flexibility (Masiliūnas et al., 2021). 

Compared to BFAST, this offline approach avoids the seasonal-trend decomposition and 

performs the model fitting in a single step, using a multivariate piecewise linear harmonic 

regression. In addition, it provides more robust statistics for breakpoint magnitude calculation, 

https://pypi.org/project/bfast/
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such as the Root Mean Squared Deviation (RMSD) and the Mean Absolute Deviation (MAD), 

which are computed between the predicted values of the adjacent segments over the time 

span of one year before and after the detected break, as opposed to BFAST that computes 

the difference of the fitted value immediately before and after the break  (Masiliūnas et al., 

2021).  

This study used the BFAST 1.6.1 R package available at https://cran.r-

project.org/web/packages/bfast/index.html. Default parameters were used, with the number of 

harmonic terms equals to 3. The biggest breakpoint in magnitude was selected using the root 

mean squared deviation (RMSD).  

2.4.3.1.3 Edyn: the dynamic version of EWMACD 

EWMACD (Exponentially Weighted Moving Average Change Detection) is an online 

monitoring algorithm that aims to detect persistent subtle changes, such as forest degradation 

or thinning (Brooks et al., 2014). As BFASTmonitor, EWMACD uses a statistical control chart 

(here, the EWMA) on the residuals to detect deviations from the mean. In the original version, 

the algorithm does not retrain after having flagged a breakpoint. In Edyn, the dynamic version 

of EWMACD (Brooks et al., 2017), the harmonic model coefficients are dynamically updated, 

and the optimal training period length is automatically found based on the quality of the model 

fit. 

Global parameters defined by the end-user are: 1- the parameter 𝜆  which defines the 

algorithm’s robustness to low signal-to-noise ratios, and 2- the persistence that refers to the 

number of times flagged deviations must be successively detected for a change to be 

considered (in Edyn it is given as a proportion of a year).  Finally, and with respect to the 

breakpoint magnitude, while originally given as a standardized value (i.e. the residual value 

divided by the chart’s control limits, and then rounded down to the nearest integer value), the 

magnitudes in this study correspond to the residual values at the breakpoints’ location. The 

reason for this choice is that, when ran continuously, more than one breakpoint may have the 

same standardized value impeding the selection of a unique breakpoint. 

In this study the same values as in Awty-Carroll (2019) were applied (𝜆 = 0.3,persistence=6). 

Their R version of Edyn (available at: https://github.com/klh5/season-trend-

comparison/tree/master/ewmacd) was used, adapted from the original R script (Brooks et al., 

2014) and Edyn (Brooks et al., 2017). This version enables selection of stable (without 

breakpoints) sliding windows of fixed length (2 years) that are used as training periods, thus 

allowing continuous monitoring. Compared to the original Edyn this adaptation does not find 

the optimal training period length based on the model fit quality.  

https://cran.r-project.org/web/packages/bfast/index.html
https://cran.r-project.org/web/packages/bfast/index.html
https://github.com/klh5/season-trend-comparison/tree/master/ewmacd
https://github.com/klh5/season-trend-comparison/tree/master/ewmacd


Chapter 2: Material and Methods 
 

Y. Ngadi Scarpetta, 2024. Detection and characterization of LSAIs from EO data 

65 

2.4.3.2 BFASTm-L2: a new approach 

The procedure to select the BFASTmonitor breakpoint linked to the biggest pattern change in 

long-term NDVI SITS is detailed in this section. The approach (hereafter BFASTm-L2) is based 

on the Euclidean distance (L2 distance) and is schematized in Figure 2.3.   

 

Figure 2.3.  Flowchart of the BFASTm-L2 approach  (in this example with L2-w=3 years). Blue lines represent the 
NDVI time series subsamples (dark blue before breakpoint, and light blue after breakpoint). Detected BFASTmonitor 
breakpoints are presented with dashed red vertical lines.  

In step 1 of Figure 2.3, BFASTmonitor is successively run each 3 months over the entire time 

series. Then, for each detected breakpoint, the time series segments L2-w (L2-w =3) before 

and after the breakpoint are extracted (step 2), and monthly averaged in annual subsamples 

(step 3). In step 4, the Euclidean distance between the 2 annual subsamples is computed 

using the Python numpy.linalg.norm function. Finally, the breakpoint with the highest L2 

distance is selected (step 5).  
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This selection procedure is somehow similar to the method in  Setiawan and Yoshino (2012), 

where a mean-based distance measure is computed between each two successive annual 

segments. It however differs in many aspects: 1- The distance metric is computed only where 

BFASTmonitor breakpoints are detected; 2- The segment length used here is 3 years (instead 

of 1 year), enabling to skip non-persistent changes mainly due to climate variability; 3- The 

(L2) distance used is more representative of an overall pattern change than the mean-based 

distance used in Setiawan and Yoshino (2012). 

2.4.3.3 Evaluation of the algorithms’ performance  

2.4.3.3.1 Temporal accuracy to different types and intensities of change 

The temporal accuracy of the single breakpoint detected by the four algorithms 

(BFASTmonitor, BFAST Lite, Edyn, and BFASTm-L2) was performed as following: 1- Each 

algorithm was run on each simulated time series, 2- the highest-magnitude breakpoint was 

selected (no selection performed for BFAST Lite), and 3- the absolute difference between the 

breakpoint date and the date of change (January of 2011) was recorded. Finally, bar charts of 

the selected breakpoints’ date per type of change relative to the true date of change were 

plotted to assess the performance of each algorithm to accurately detect in time the different 

types of change.  

2.4.3.3.2 Breakpoint-magnitude sensitivity to different types and intensities of change 

The breakpoint magnitude is often used to spatially detect significant hotspots of change. To 

unravel the type of change most likely detected by each algorithm (and thus spatially 

highlighted), the sensitivity of each algorithm to different types and intensities of change was 

assessed. For that, the distributions of the magnitude of the detected breakpoint were 

calculated per type of change, and represented using violin plots. Absolute values were used 

and normalized for each algorithm to allow comparisons between them. For all the change 

types (except the change in trend only, and the no-change category), only the breakpoints 

comprised between 2010 and 2012 (included) were used.  

2.4.3.3.3 Running times of the algorithms  

The 5-run average times of BFASTmonitor, BFAST Lite, Edyn and BFASTm-L2, but also of 

the L2 distance metric alone computed sequentially each 3 months, were reported for areas 

of different sizes: 50x50, 100x100, 150x150, 200x200 pixels (the whole red box of Figure 2.1), 

using the MODIS NDVI 2000-2021 data set. Six CPU cores (parallel processing) were used 

on a 64 GB RAM computer. 
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2.4.3.3.4 Detection and mapping of LSLAs induced LULC changes: individual study cases 

Evaluation of the change detection accuracy on the four real study cases presented in 2.1 was 

performed for: BFASTmonitor (training period of 3 years), BFAST Lite, Edyn (with lambda = 

0.3) and BFASTm-L2 (using a training period length and L2-w size of 3 years), which were run 

continuously every 3 months. All the detected breakpoints, and selected highest-magnitude 

breakpoint were recorded (date and magnitudes). 

Change maps based on the highest-magnitude breakpoint found in the 2000-2020 MODIS 

NDVI time series by BFASTm-L2, BFAST Lite, BFASTmonitor and Edyn were produced over 

the 200 x 200 MODIS pixels study area.  The magnitudes for each map were then normalized 

between 0-1 in order to allow comparison. To quantitatively assess the performance of each 

method in detecting LSLAs induced changes, the average breakpoint magnitude within and 

outside the LSLAs (represented by red polygons in the study area) were computed and are 

presented in Table 2.3. 

2.5 RESULTS 

2.5.1 Temporal accuracy and magnitude sensitivity of the single 

breakpoint 

2.5.1.1 Temporal accuracy of the breakpoint 

BFASTmonitor, BFAST Lite, Edyn and BFASTm-L2 were tested on the benchmark dataset (cf. 

section 2.1) to assess the performance of each method to accurately detect in time the different 

types of change (occurring in January of 2011). The breakpoints with the highest-magnitude 

were selected, and their temporal distributions relative to the true change are presented in 

Figure 2.4 (cf. section 3.3.1). 
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Figure 2.4. Temporal distributions of the highest-absolute magnitude breakpoint detected by BFASTmonitor  (4.a), 
BFAST Lite (4.b), Edyn (4.c) and BFASTm-L2 (4.d), for six types of change (amplitude, length of season (LOS), 
number of season (NOS), monotonic trend (Trend), abrupt change (Break/trend) and no- change (None)). The x-
axis represents the absolute difference in months between the breakpoint’s date of change and the real date of 
change (January of 2011). The y-axis represents the proportion of samples detected at each x-axis unit. The 
stacked bars colours indicate the different intensities of change (see Table 2.1). The second y-axis (in orange) 
represents the cumulative percentage of the number of samples within each change type. A bar at 6 months was 
arbitrarily added to allow comparisons (% of samples with date of change ≤6 months from real date of change). The 
NA class represents the cases for which no breakpoint was detected.   

As a first observation one can see that most of the highest-magnitude breakpoints (of almost 

any change intensity), and with the exception of BFASTmonitor (4.a), are close in time to the 

true real change (less than 6 months). The algorithms have however slightly different sensitivity 

to the different types of changes:  

- Regarding the seasonal changes (amplitude, LOS and NOS), BFASTm-L2 breakpoint 

magnitudes (4.d) are the most responsive to this type of change (>76% of the breakpoints in 

each subcategory of change are located ± 6 months of the true change). When looking more 

in detail, and compared to the other algorithms, BFASTm-L2 breakpoint magnitude is 

particularly sensitive to LOS changes (84.6% vs 70.1% for BFAST Lite and 41.6% for Edyn, at 

± 6 months), and is as good as BFAST Lite in detecting NOS changes (98% vs. 100% at 6 

±months) and amplitude changes (76.8% for both at ± 6 months).  

- In what concerns gradual changes (Trend), all the algorithms have at least one breakpoint 

induced by this type of change, mostly occurring one year before/after the true date of change. 

-  BFAST Lite (4.a) breakpoint magnitude is very responsive to the break/trend changes (99% 

of the changes detected within 6 months vs. 83.4% for both BFASTm-L2 and Edyn). 

- Finally, regarding the no-change type, Edyn (4.c) was the only algorithm to correctly detect 

no change in almost 80% of the cases (as seen with the NA class).  

Those first results show that selecting the BFASTm-L2 highest-magnitude breakpoint to 

correctly detect in time seasonal changes is effective. However, as one can expect multiple 

breakpoints detected in long and dense time series triggered by different types of change, the 

next question that comes up is: how comparable are the breakpoint magnitudes induced by 

the different change types?  

As a small parenthesis, it is worth to note that the performances of Edyn, BFAST Lite and 

BFASTmonitor are different than in Awty-Carroll et al. (2019). This is explained by the fact that: 

1- A subsample of the original dataset was used (dataset without missing data), and smoothed; 

2- BFASTmonitor was run continuously without considering any “penalty” period after each 

detected breakpoint; 3- Only the distributions of the highest-magnitude breakpoints were 

evaluated; 4- The “correct” detection period considered here for the abrupt changes is larger 
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than in  Awty-Carroll et al. (2019), who considered a maximum period of 3 months for the 

abrupt changes and 1 year for the seasonal ones.  

2.5.1.2 Breakpoint-magnitude sensitivity to the type and intensity of change 

Figure 2.5 shows the violin plots of the breakpoint’s magnitude for each algorithm and type of 

change, as explained in 2.4.2.  This type of representation helps in the identification of the type 

of change that will most likely be highlighted on a map when using the breakpoint magnitude 

as the mapping variable.  

 

Figure 2.5. Violin plots of the normalized highest-magnitude breakpoint, per type of change for: BFASTm-L2 (green), 
BFAST Lite (orange), BFASTmonitor (white) and Edyn (blue). Dots represent the mean of each distribution. “Abrupt” 
refers to the Trend/break data subset without any trend change (refer to section 2.2.1).  

Some general findings can be drawn from Figure 2.5. First, one can observe that all the 

algorithms, with the exception of Edyn, have their highest breakpoint magnitudes (>0.4) 

induced by medium to large abrupt changes (i.e. the trend/break data subset without any 

associated trend change) (>0.2 NDVI units; cf. Table 2.1). Detection of seasonal changes will 

therefore very likely be hindered in time series with large abrupt changes. Second, and with 

the exception of the no-change category, the lowest magnitudes are globally associated to the 

LOS changes. As such, one can expect LOS changes to be hardly detected in breakpoint-

magnitude change maps. 
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Going more in depth with the algorithms’ analysis, one can see that the BFASTm-L2 

distributions means are the highest for two out of three (LOS and NOS) of the seasonal 

changes, with a remarkably high average for the NOS changes. In addition, the LOS and NOS 

distributions are well separated from the “No-change” category. This is important as it ensures 

the ability of the algorithm to highlight seasonal changes in breakpoint magnitude-based 

change maps. As a reminder, this remains possible as long as there are no large abrupt 

changes, or moderate to larger gradual changes (trends). Indeed BFASTm-L2, contrarily to 

BFASTmonitor or BFAST Lite, is sensitive to trends. Regarding the seasonal changes, 

BFASTmonitor, BFAST Lite and Edyn respond much better (higher magnitudes) to the 

amplitude changes than to NOS/LOS changes. This is particularly true for Edyn and even more 

for BFASTmonitor, which distribution base (for the smallest change intensity) is at almost 0.3.  

Finally, it is important to remember that the values represented in Figure 2.5 were obtained 

from short and smoothed simulated time series, containing a unique change. As a result, the 

“No change” values for the different algorithms could in fact be higher in real time series with 

multiple small types of change, thus impacting the performance of each algorithm. To assess 

this, the different algorithms were tested on real time series and over a small area. Results are 

presented in the next section.   

2.5.2 Detection of LSLAs LULC driven changes   

2.5.2.1 Assessment on individual (pixel) study cases  

In this section, the capacity of the four algorithms to detect real seasonal changes on the four 

study cases (distributed from arid to humid conditions, see Figure 2.1) is evaluated. The 

overview of Figure 2.6, on which are overlaid the 2000-2021 MODIS NDVI time series and the 

period of change (grey boxes) for each study case, shows the diversity of type and intensity of 

changes found in the dataset: seasonal changes (all study cases present changes in 

amplitude, and study cases 1 to 3 show important NOS changes), an extreme abrupt change 

(~+0.25 NDVI units) for study case 1 in 2018, and a strong positive trend (study case 2, start 

in 2016). 
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Figure 2.6.  Application of the change detection algorithms to four Senegalese study cases showing agricultural 
LSLA implementations. For each study case, the corresponding pre-processed MODIS 2000-2021 time series with 
the different breakpoints detected (BFAST Lite)/selected (all others) are presented in the a subparts of the figures 
at the left. Figures at the right correspond to Google Earth snapshots closest in time with the LSLA implementation: 
the top/bottom snapshot for to the closest date available before/after the change. In the left figures: dashed lines 
correspond to the highest-magnitude breakpoints: green for BFASTm-L2, orange for BFAST Lite (1 break), black 
for BFASTmonitor and blue for Edyn (break dates are also given in the same colors to facilitate identification when 
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breakpoints are superimposed). Grey shaded areas correspond to the period of change (1 year before and after 
the observed date of change). Grey subplots (subparts b) at the bottom present all the breakpoints detected by 
BFASTmonitor (black), BFASTm-L2 (green) and Edyn (blue), along with their magnitude (height of vertical lines). 
Red dots pinpoint the highest-magnitude breakpoint (in absolute value). Hatched areas correspond to periods 
without monitoring (because of the initial period of time needed for training, and for computation of L2).  

On Figure 2.6 (subpart b of each subplot), the multiple breakpoints detected by 

BFASTmonitor, BFASTm-L2 and Edyn are represented with vertical lines. The selected 

breakpoints are the ones having the highest magnitude, and are highlighted with a red dot at 

the extremity. BFAST Lite, BFASTm-L2 and Edyn performances (position of the unique 

breakpoint) are overall similar, with the following exceptions: i) a gap of 3/4 years is observed 

between BFASTm-L2 and BFAST Lite/Edyn in study case 2 and, ii) Edyn selected breakpoint 

is far away (>10 years) BFASTm-L2/BFAST Lite breakpoints in study case 4. Compared to 

BFASTmonitor, Edyn found significant fewer breakpoints, mainly due to the used-fixed period 

length needed after each detected breakpoint to ensure stability for model retraining.  

In study case 1, two major events occur: a central-pivot irrigation system was installed at the 

end of 2011 (conversion from small to large-scale agriculture), and as from 2018 a huge 

increase in productivity is observed. The first change mostly translates as seasonal changes 

(NOS, amplitude), while the second induces a sharp abrupt change in 2018. In this case, 

BFAST Lite, BFASTm-L2, but also Edyn, output a higher-magnitude breakpoint for the abrupt 

change than the seasonal one, which is in line with the findings made in section 4.1.2 ( Figure 

2.5).  

Study case 2 (conversion from natural vegetation), is also concerned by the installation of a 

central-pivot irrigation system at the beginning of 2016. It translates in the signal as seasonal 

changes (NOS, amplitude), with a positive trend. In this case BFAST Lite and Edyn selected 

breakpoints are closely located in time (~1 year of difference), and both differs (more than 3 

years) from BFASTm-L2 selected breakpoint. While BFAST Lite and Edyn breakpoints are 

closely located from big changes in amplitude, BFASTm-L2 highest magnitude breakpoint is 

located at the beginning of 2017, when seasonal changes are most marked, and most probably 

related to the concession implementation and start of activities.   

Study case 3 is another example of transition from natural vegetation to intensive agriculture, 

but in a less arid environment. The transition is visually observed in 2008 and mostly related 

to seasonal changes (NOS). Despite the high variability exhibited in the time series (particularly 

after 2008), BFAST Lite and BFASTm-L2 detects the same breakpoint, while Edyn differs from 

9 months away in the middle of the second growing cycle of the first year of production.   

Lastly, study case 4 located in the most humid environment, shows more stability than the 

other study cases. Indeed, the land use change does not induce a significant change in the 

time series shape. The change being sought translates in a significant change in amplitude 
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and a negative trend. Here again, BFAST Lite and BFASTm-L2 agreed in the breakpoint 

detected, inside the sought period of change. Edyn diverges from many years away, and 

outputs its highest-magnitude breakpoint where an amplitude change is observed. As a 

reminder, the Edyn breakpoint magnitude used here is the residual of the detected breakpoint. 

While the standardized magnitude should be more adapted for the comparison of breakpoint 

magnitudes, it was not used here as more than one breakpoint may share the same maximum 

value thus hindering the selection of a unique breakpoint. Edyn sensitivity to the parameter 

lambda was tested, with the parameter set to 0.6 (Appendix A).  All the highest-magnitude 

breakpoints found differed from those presented in Figure 2.6, including for study case 1 which 

contains a huge abrupt change.  

2.5.2.2 Detection of LSLAs induced LULC changes in breakpoint magnitude maps  

So far, it has been shown that the performances of BFAST Lite and BFASTm-L2 in detecting 

in time seasonal changes are similar. However, because of the different sensitivities of the 

breakpoint magnitudes to the different types of change ( Figure 2.5 ), differences in the change 

maps based on the breakpoint magnitudes are expected. The change maps obtained with the 

different algorithms were evaluated over a study area close to Dakar, in which several LSLAs 

have been implemented since 2003 (Figure 2.7).  
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PART II 

A B C D 

 

Figure 2.7. Change detection maps for each of the four change detection algorithms. .PART I) From left to right, top 
to bottom: 1) Snapshot view of the study area (Map data ©2015 Google), (2) MODIS NDVI average over 2000-
2020, 3-4-5-6) Breakpoints (normalized) magnitude maps using: (3) BFASTm-L2, (4) BFAST Lite, (5) 
BFASTmonitor, (6) Edyn. Red polygons represent the active agricultural LSLAs reported in the ISRA ground-field 
database. PART II) Google Earth zoom-in of points A, B, C, D plotted in all the maps of PART I.  

The change maps based on the breakpoint magnitude display different spatial patterns. While 

LSLAs (red polygons) in the BFASTm-L2 (subplot I.3) change map are clearly highlighted and 

have significantly higher magnitude values than the background (highest difference for 

BFASTm-L2 as shown in Table 2.3), this is not the case for BFAST Lite (subplot I.4) which 

difference between the values inside and outside LSLAs is null.  

BFAST Lite (subplot I.4) highest magnitudes are mainly located in two areas of the map: 1- in 

the centre of the map, in the wooded vegetation of the reserve of Bandia (see Appendix B.1) 

and, 2- in the top left of the map, forming a stripe pattern of high values related to a highway 

construction in 2016 (see Appendix B.2). When looking more in detail the time series of these 

two places, the first change corresponds to an amplitude change (what seem to probably be 

the end of a recovery phase), while the second correspond to an abrupt change. This is in line 

with the results shown in Figure 2.5, which indicate that BFAST Lite breakpoint magnitude is 

mostly sensitive to abrupt changes and in a lesser extent to amplitude changes. Other 

seasonal changes (NOS and LOS) are not expected to be well discriminated from the 

background, particularly if, as it can be observed in I.4, the real background values are higher 

than what was expected from the no-change category in the simulated data set (<0.1 vs. 0.1-

0.3). 

At the opposite, and as mentioned above, BFASTm-L2 change map (I.3) based on the highest-

breakpoint magnitude is able to highlight reported LSLAs such as those represented by 

polygons A (corresponding to the study case 3) and C (also see zoom-ins II.A and II.C), but 

also to detect newer LULC changes located in points B and D, and induced by agricultural 

activities as observed in the subplots II.B and II.D of Figure 2.7. “Pattern” changes induced by 
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activities other than agriculture are also detected, such as the ones related to the highway 

construction at the north-west of the map.  

 

Table 2.3: Average breakpoint magnitude (mean ± standard deviation) in LSLAs  (red polygons in the study area) 
and the whole study area 

 

Regarding BFASTmonitor change map (I.5), one can see that the highest-breakpoint 

magnitudes are globally positively correlated to average NDVI (I.2). Even if the average of the 

magnitudes within LSLAs is high (0.6, the highest of the set; cf. Table 2.3), the magnitudes are 

not particularly sensitive to the changes induced by LSLAs. As an example, and in contrast 

with the BFASTm-L2 change map, magnitudes are overall low in points C and B. From Figure 

2.5, and considering that the correlation with NDVI is lower for the other algorithms, we can 

advance that the BFASTmonitor magnitudes are mostly responsive to amplitude changes 

(instead of abrupt changes which would also be highlighted by BFAST Lite), or as observed in 

the previous section, to trend changes.  

Finally, one can see in subplot I.6 that LSLAs are somehow discriminated in the Edyn residual-

based change map (I.6). This is corroborated by the average difference of the magnitudes 

within and outside LSLAs, which even if lower than the BFASTm-L2 one, is still non-negligible 

(0.18 vs. 0.27, cf. Table 2.3). Despite the fact that the breakpoint residuals are not adapted for 

the breakpoint selection approach applied in this study (as the standardized magnitudes would 

be), the algorithm proved to respond to seasonal changes (in particular to amplitude changes).  

The drawback of the algorithm, and in particular for large-scale applications, is however its 

high sensitivity to the lambda parameter (Saxena et al., 2018) and low speed. This last point 

will certainly be improved in the future through the implementation of the algorithm on cloud 

platforms. 

 BFAST Lite BFASTmonitor BFASTm-L2 Edyn 

Breakpoint 

magnitude average in 

LSLAs (mean ± std) 

0.22 ± 0.14 

(n=258) 

0.60 ± 0.15 

(n=262) 

0.50 ± 0.13 

(n=262) 

0.46 ± 0.16 

(n=258) 

Breakpoint 

magnitude average 

outside LSLAs 

(mean ± std) 

0.22 ± 0.10 

(n=37,653) 

0.38 ± 0.13 

(n=37,343) 

0.23 ± 0.07 

(n=37,343) 

0.28 ± 0.10 

(n=37,684) 

Difference (in-out) 

(mean ± std) 

 

0.0 ± 0.17 

 

 

0.22 ± 0.20 

 

 

0.27 ± 0.15 

 

 

0.18 ± 0.19 
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2.5.2.3  Running times of the algorithms 

To assess the algorithm speed on real time series, the four algorithms and the L2 distance 

alone were applied on varying-size areas: from 10x10 to 200x200 pixels. Results are presented 

in Figure 2.8. 

 

Figure 2.8. Running time mean and standard-deviations (5 runs) over areas with varying-size , using 6-cores parallel 
processing (64 Go RAM) for the 5 change detection approaches.  

From Figure 2.8, BFASTm-L2 appears to be very fast (16.4 min for a 200x200 pixels area), 

just after BFASTmonitor (2.0 min for a 200x200 pixels area, with a median of numbers of 

breakpoints of 37). The “force-brute” method (the continuous computation of L2 at a 3-month 

step) took 21.1 min for the same area size, followed by BFAST Lite (86.5 min), and finally Edyn 

(439.8 min).  Worth is to note that the R implementation of Edyn was called from python using 

the rpy2 interface, which may slower the entire process. Faster python implementation of Edyn 

may be further tested (as the vey recent pyEWMACD available in github 

https://github.com/lewistrotter/pyEWMACD). 

2.6 DISCUSSION 

2.6.1 BFASTm-L2, an efficient method to detect seasonal changes 
The results obtained with the single-change simulated data set showed that BFASTm-L2 was 

the approach with the overall best performance in accurately detecting seasonal changes, 

thereby demonstrating the efficiency of combining BFASTmonitor and L2 distance for timely 

breakpoint selection (Figure 2.4). The algorithm was particularly good at detecting, in a 

benchmark dataset with single changes, LOS changes (84.8%) and NOS changes (98%), but 

https://github.com/lewistrotter/pyEWMACD
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also changes in amplitude (76.8%) and break/trend changes (83.4%), which were however 

better detected by BFAST Lite (99%).  

When tested over simulated time series with a unique change, all the algorithms showed 

increased sensitivity (i.e. higher breakpoint magnitude) to abrupt changes (Figure 2.5). 

However, when considering the seasonal distributions alone in the violin plots of  Figure 2.5 

BFASTm-L2 presented the highest magnitude means for LOS and NOS. This was also a goal 

of this study, as it enhances the probability of being able to spatially identify large-scale 

persistent seasonal changes.  

When applied to real MODIS NDVI time series of individual case studies, BFAST Lite and 

BFASTm-L2 performed particularly well, producing similar performances in detecting the 

different types of change (Figure 2.6). However, on the study area, BFAST Lite in contrast to 

BFASTm-L2 failed to spatially highlight the changes in LULC caused by the setting up of the 

different types of agro-industrial concessions (LSLAs) (Figure 2.7). This is mostly explained 

by the lower breakpoint magnitudes of BFAST Lite associated with seasonal changes (LSLAs 

mostly seemed to induce changes in NOS, as shown in Figure 2.6), but also because the real 

background values of BFAST Lite were higher than, the simulated data led us to expect (see 

Table 2.3). On the contrary, BFASTm-L2 and in a lesser extent Edyn, efficiently spatially 

capture LSLA driven changes. To better identify the type of change induced by LSLAs, the 

violin plots of Figure 2.5 along with the change maps of Figure 2.7 were helpful in this task. 

Considering the performance similarities in breakpoint detection between BFAST Lite and 

BFASTm-L2, and the responsiveness of BFAST Lite magnitudes to abrupt and amplitude 

changes, in case LSLAs induced changes were of any of these types (i.e. amplitude or abrupt), 

they would certainly be highlighted in the BFAST Lite’s change map. This is not the case. Agro-

industrial LSLAs induced changes are therefore probably of seasonal type (NOS and/or LOS). 

This interpretation is strengthened by the different specific study cases presented in Figure 

2.6. In addition, because Edyn (which was also able to capture LSLAs changes) outputs 

breakpoint magnitudes for gradual changes of the same order as the no-change category, the 

probability that the LSLAs changes captured by BFASTm-L2 but also by Edyn are due to trend 

changes is low.   

In terms of process speed, BFASTm-L2 produced the second-best performance after 

BFASTmonitor, despite its high rate of false positives, probably enhanced in this study by the 

absence of a “penalty” period applied after each detected breakpoint, and the non-automatic 

determination of a stable training period. Indeed, it is worth to remember that the BFASTm-L2 

approach relies on the L2-distance, computed whenever a breakpoint is detected by 

BFASTmonitor. As a result, the speed of this approach depends on the number of breakpoints 
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found in long time series. With a step frequency of three months, and a monitoring period of 

14 years, BFASTm-L2 proved to be faster than the force-brute method represented by L2 

computed continuously over areas of more than 100x100 pixels (Figure 2.8). Worth is to notice 

that running times may be improved by changing the step frequency, by removing some of the 

detected breakpoints if too close one to the other, or by using a more optimized algorithm (that 

effectively does implement the automatic detection of the training period). 

To resume, the main contributions brought to the change detection community through this 

study are: 

- The proposition of BFASTm-L2 as a change detection method faster than BFAST Lite, 

already known for its speed, making easier its application at larger scales; 

- A change detection approach with breakpoint magnitudes more sensitive to seasonal 

changes. This allows to highlight agricultural-induced LULC changes, supporting the 

hypothesis that generic LULC changes are very often seasonal, and that more 

importance should be given to the detection of this type of change. 

- More understandable BFASTmonitor, BFAST Lite and Edyn magnitude-based change 

detection maps. Because of the sensitivity analysis made to the different types of 

change, insights on the dynamics behind the changes observed in a change map are 

gained. 

2.6.2 Recommendations for using BFASTm-L2 to detect and map 

LULC changes at regional/ national scale 

While it is clear that changes in land use/land cover (LULC) involve changes in the composition 

of the vegetation which, in turn, result in changes in phenology and seasonality (e.g. a 

transition from grassland to croplands (Mardian et al., 2021)), the relationship between a 

change in land use and a change in seasonality is less straightforward. To check this link, we 

focussed on changes in the system of land use caused by agroindustrial LSLAs installation in 

the study area. Foreseen specific changes were transitions from natural vegetation or small-

scale agriculture to large-scale agricultural systems. These changes were identified without 

the use of any threshold, mask, or any prior information on the type of land cover or on the 

direction of the change, meaning the method is suitable for use in unsupervised change 

detection pipelines. Most of the known LSLAs-related land use changes in the study area were 

spatially highlighted with BFASTm-L2 and in a lesser extent with Edyn, but not with BFAST 

Lite, suggesting that these specific LULC changes may occur without necessarily causing any 

abrupt change.   
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However, even if BFASTm-L2 produced promising results, some limitations should be 

mentioned. First, and as pointed out in the violin plots of  Figure 2.5, the breakpoint highest-

magnitude based selection approach hinders the identification of seasonal changes when time 

series contain abrupt changes. Second, BFASTm-L2 aims to detect seasonal changes based 

on the use of the time signal canopy greenness (estimated through the NDVI) as a disturbance 

indicator. In greener environments such as in Casamance (Southern Senegal), where the 

difference in seasonality may be less marked, the method may be less sensitive to changes in 

land use. In such cases, other indicators more sensitive to vegetation biomass should be 

tested. Third, BFASTm-L2 is highly sensitive (i.e. high breakpoint magnitudes) to trends, which 

are often linked to vegetation recovery/degradation land processes. While trends induced by 

these land processes are frequently accompanied by changes in amplitude, other seasonal 

changes such as NOS changes are less expected. Because of this, and because amplitude 

changes do not profoundly affect the time series shape, shape metrics such as the Procrustes 

distance could be used in the future to minimize the detection of these type of changes. A last 

limitation is the inability of BFASTm-L2 to detect recent changes (earlier than the defined L2-

w period, in our case 3 years).  

When thinking of using this method with other sensors, it is useful to remember that BFASTm-

L2 relies on time series that: 1- have a high temporal frequency sufficient to properly represent 

the phenology, 2- are long enough (8 years as minimum) and 3-are gap-free and smoothed, 

in order to minimise false detections. As such, applications with Sentinel are currently 

hampered because of the short temporal depth. On another hand, under tropical conditions 

and with frequent cloud coverage, highly temporal frequency time series are hardly obtained 

with Sentinel and Landsat. Finally, because of those sensors’ higher spatial resolutions, 

running times would increase, thus hindering the application of BFASTm-L2 at larger scales. 

With MODIS data, BFASTm-L2 is able to detect other LULC changes occurring at large scale 

than those related to LSLAs, such as the changes related to mining and urbanization 

processes.  

Lastly, it is worth emphasising that the method proposed here is purely pixel-based, and that 

it needs to be completed by a spatial analysis, in order to better identify the drivers of changes 

in land use and to better interpret the changes. Because of the positive correlation between 

the NDVI and the breakpoint magnitudes, spatial analysis should be limited to areas that do 

not encompass many different ecoregions.  Further research on spatial analysis at larger scale 

will be done. 
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2.7 CONCLUSIONS AND PERSPECTIVES 

We developed a simple, automatic and rapid approach to select the breakpoint linked to the 

largest seasonal change in long and dense NDVI MODIS real time series with multiple 

breakpoints. The method, named BFASTm-L2, is based on the combined use of 

BFASTmonitor algorithm and the L2 euclidean distance for breakpoint selection, and was 

shown to accurately detect most of the single change types included in a subsample of the 

Awty-Carroll et al. (2019) benchmark set. Applied to a study area in Senegal using 20 years of 

MODIS satellite imagery the algorithm, through the spatialization of its single breakpoint 

magnitude, proved to be able to spatially identify LULC changes induced by the implementation 

of agro-industrial concessions in Senegal. This task, performed automatically without the need 

for any prior knowledge, is fit to be included in unsupervised pipelines to map and analyse 

generic LULC changes at regional scale. This was also possible because of the absence of 

any abrupt changes, supporting the hypothesis that generic LULC changes are very often 

seasonal, and that more importance should be given to the detection of this type of change. 

To improve the detection of changes in the LULC at regional and national scales, an 

operational tool will be developed on a platform such as Google Earth Engine. This will enable 

supporting land monitoring initiatives such as the Land Matrix in detecting and monitoring 

anthropogenic changes such as those driven by LSLAs, for which much information remains 

to be gathered to help ground local teams. 
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3.1 HIGHLIGHTS 

- BFASTm-L2 change characterization provides insight into national land dynamics  

- Differentiation between change types improves understanding of LULC change 

drivers 

- The RGB change map is useful for inferring main drivers of LULC change (LULCC) 

- Time series shape dissimilarity is sensitive to agricultural-driven LULC changes 

- Large-Scale Agricultural Investments driven LULCC are unsupervisely detectable  

3.1 ABSTRACT 
As global land cover/ land use change (LULCC) threatens the human’s well-being, accurate 

detection and characterization of LULCC is of paramount importance. The increasing 

availability of dense satellite image time series (SITS), together with the ever-improving 

change detection algorithms, has allowed significant progress to be made. However, much 

remains to be done in its characterization. 

This study aims to provide insight into the land dynamics and drivers of change in Senegal, 

through an RGB composite change map based on BFASTm-L2 detected changes and three 

NDVI time series-derived change metrics. These metrics, chosen to discriminate different 

types of change, include: the magnitude of change, the direction of change, and the time series 

shape dissimilarity. The sensitivity of each metric to different types of change was first tested 

on a simulated dataset, and then applied to MODIS NDVI SITS (2000-2021). The RGB change 

map allowed the visualization of different “signatures" of change, which, in combination with 

ground information, rainfall data, NDVI time series analysis and Google Earth imagery, helped 

to link them to different drivers of change. Climatic and anthropogenic changes, such as those 

induced by LSAI or mining, could be visually inferred from the RGB map. 

Although only tested in Senegal, this study shows the usefulness of integrating the type of 

change, especially seasonal change, into the characterization of land change. This approach, 

has the advantage of being fast, interpretable, robust to noise and easily transferable to 

different regions.  
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3.2 INTRODUCTION 
The Earth’s land surface has been changing at an unprecedented rate, with about three-

quarters of the land surface having been modified by humans within the last millennium 

(Winkler et al., 2021). Because such global land changes threaten the sustainability of 

ecosystem services and human’s well-being, there is a strong requirement for monitoring land 

cover and land use changes (LULCC) (Radwan et al., 2021). Over the past few decades, the 

land change community has benefited from the rapid advances in remote sensing 

technologies, together with the free and open data policy, cloud computing platforms, and the 

ever-improving change detection algorithms. The great potential of dense Satellite Image Time 

Series (SITS) analysis have triggered a paradigm shift from bi-temporal change detection to 

continuous monitoring of LULC change, fostering interest in land use mapping and monitoring, 

especially at regional and higher scales  (Molinier et al., 2021; Weiss et al., 2020; Woodcock 

et al., 2020; Zhu et al., 2022).  

Among change detection algorithms, the trend is toward those that can use all available data 

(and thus handle seasonal variations) in dense SITS, with supervised approaches (map 

classification, trajectory classification), unsupervised statistical approaches, ensemble 

approaches and recently, deep-learning approaches (Molinier et al., 2021). Unsupervised 

statistical methods, if fast enough and with few tuning parameters, are suitable for large-scale 

studies where the availability of labeled data at appropriate spatial and temporal resolution 

remains a major challenge (Woodcock et al., 2020). While they have been widely adopted by 

the land change community through cloud-based platforms, they still have limitations. 

First, fast algorithms that do not rely on time series decomposition are more sensitive to abrupt 

and long-term gradual changes than to seasonal changes due to the use of harmonic 

regression models. This can be problematic if the goal is to detect seasonal changes. In fact, 

specific land-use conversions, such as those driven by Large Scale Agricultural Investments 

(LSAIs), often include seasonal changes without abrupt changes (Ngadi Scarpetta et al., 

2023). Second, algorithms that perform time series decomposition are often too 

computationally expensive to be applied on a large scale. To the best of our knowledge, none 

of these statistical techniques are currently capable of both detecting and identifying the 

specific type of seasonal change, i.e., in amplitude, in the number of seasons (NOS) and/or in 

the length of season (LOS).  

In an attempt to fill this gap, Ngadi Scarpetta et al. (2023) proposed BFASTm-L2, a rapid 

change detection approach, fine-tuned to seasonal changes. The algorithm demonstrated 

higher sensitivity to NOS changes than three state-of-the-art algorithms, allowing spatial 

detection of LULCC induced by LSAIs in Senegal. This and other studies (e.g. Hentze et al. 
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(2017), Mardian et al. (2021)) highlight the importance of accurate seasonal change detection, 

but also the particular link that may exist between the type and the driver of change, allowing 

to shift from land change detection to characterization, which remains one of the most difficult 

challenges in the land change community (Verburg et al., 2009; Zhu et al., 2022). In a recent 

review of the potential of remote sensing to fully characterize land change, Zhu et al. (2022) 

proposed a multifaceted framework consisting of five facets, including Where (i.e. the location 

of change), When (i.e. the date of change), What (i.e., target of change), How (i.e., the metrics 

of change), and Why (i.e., the drivers of change). They found that while the first three facets 

have been studied extensively, much work remains to be done on the last two facets. 

Given the identified needs, our main objective is to contribute to the How and Why facets of 

land change using the BFASTm-L2 algorithm. While its sensitivity to seasonal changes was 

demonstrated, BFASTm-L2 also showed some sensitivity to abrupt changes and trends, 

hindering the analysis of land dynamics from a change type perspective. Therefore, this study 

aims to: i) derive a set of change metrics with varying sensitivities to the different types of 

change, and ii) combine these metrics into a comprehensive RGB change map to provide 

insight into the drivers of change at the national scale. Compared to other change visualization 

approaches (Hird et al., 2016; Julien and Sobrino, 2021), this approach goes beyond detecting 

change to characterizing it (changes are detected using BFASTm-L2), by looking at the specific 

relationships between the different types of change (particularly seasonal) and potential 

drivers. Characterized changes are the most important ones occurring at each location within 

the entire monitoring period. Particular attention was given to LSAIs. Details of the approach, 

data and methods are provided in the next section. 
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3.3 DATA AND METHODS 

3.3.1 Approach 
Flowchart of the approach is shown in Figure 3.1. The first step aims to characterize BFASTm-

L2 detected change on MODIS dense NDVI SITS. In addition to the magnitude of change, two 

change metrics were derived: a time series shape dissimilarity measure to assess the type of 

seasonal change, and an NDVI change ratio to assess the change’s directionality. The second 

step aims to provide a map of the major drivers of change on a national scale by combining 

the change metrics into a unique RGB change map. Dominant colors were tentatively assigned 

to one or a few drivers of change by visual inspection using Google Earth (GE), NDVI time 

series analysis, precipitation distribution analysis, and the LSAI field database.  

 

Figure 3.1: Flowchart for identifying drivers of change from MODIS time series. 

3.3.2 Study area and LSAI 
Located in the westernmost part of the Sahel, Senegal has a strong north-south rainfall 

gradient resulting in a semi-arid climate in the north (200-400 mm/ year) and a tropical climate 

in the south (800-1200 mm/ year) (Figure 3.2). Senegal has two distinct climatic seasons: a 

dry season from November to May and a rainy season from June to October, with the main 

land cover types being steppe, savanna and sub-humid dry forest (Budde et al., 2004; Sultan 

and Janicot, 2003; Tappan et al., 2004). It also has remarkable ecosystems, such as the 

productive wetlands along the Senegal River, which have supported small farmers, herders, 
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fishermen and traders for centuries, but are increasingly threatened by dams and irrigated rice 

schemes (Horowitz and Salem-Murdock, 1993; Tappan et al., 2004).  

The agriculture, which accounts for 15% of the GDP, is dominated by smallholdings with farm 

sizes of less than 5 hectares (Bourgoin et al., 2019). Large Scale Land Acquisitions (LSLAs) 

are however increasing in number, with 3% of the country's arable land declared under contract 

by foreign investors in 2016 (Harding et al., 2016). Due to opacity, lack of geospatial 

information, and potential socio-environmental impacts, efforts have been made to inventory 

and map  LSLAs (Bourgoin et al., 2019; Nolte et al., 2016). However, discrepancies and gaps 

remain due to the spatio-temporal dynamic nature of LSLAs and differences in methodologies. 

Automated and rapid approaches are needed to easily monitor the entire national territory.  

 

Figure 3.2: Senegal’s map of the MODIS NDVI 2000-2021 average. The black boxes represent the three regions 
of interest: a) the Senegal river (SR) (North), b) the Niayes (West), and c) Ferlo (Centre) that include most of the 
LSLAs (red polygons) reported in the field database (M. Dieye, personal communication, 2022. Punctual study 
cases used in this study are represented by points 1 to 13.  

Agricultural LSLAs , hereinafter refer as to Large Scale Agricultural Investments or LSAIs, 

are mainly concentrated over three regions, shown in Figure 3.2 (Bourgoin et al., 2019): 

1- The Senegal River (hereinafter refer as to SR) region shown in box a, is an important 

agricultural region with a growing number of LSAIs, mainly focused on horticulture, 

sugarcane production and cereals, mainly rice. 
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2- The box b in the Niayes includes many LSAIs dedicated to horticulture. The 

vegetation consists mostly of open agricultural parkland.  

3- The sylvopastoral area of Ferlo shown in box c, consists mainly of tree and shrub 

savannah, and is home to most of the LSAIs focusing on gum arabic production. 

Figure 3.2 also displays the locations of thirteen study cases with medium-large magnitudes 

of change, corresponding to different LULCCs, as interpreted using GE imagery, LSAI field 

database, and analysis of selected NDVI time series and rainfall distributions. 

3.3.1 Data 

3.3.1.1 LSAI dataset 

In 2019, the Senegalese Institute of Agricultural Research (ISRA) conducted a field campaign 

on LSLAs, with more than 700 polygons recorded in a spatial database (M. Dieye, personal 

communication, 2022). The database contains deal information, such as deal type 

(agrobusiness, mining, etc), size, year of transaction/ negotiation or implementation status. A 

sub-database of 76 polygons was used, which only includes: i) LSAIs established or expanded 

during the monitoring period (2003-2018), ii) with a minimum size of 30 hectares, iii) with at 

least 1/3 productive area (as verified by GE imagery). 

3.3.1.2 Simulated time series dataset 

In this study a gap-free and noise-free subsample of the simulated time series dataset created 

by Awty-Carroll (2019) (https://osf.io/taf9y/) was used to analyze the sensitivity of the proposed 

metrics to different types of change. The subsample consisted of 3,150 simulated NDVI time 

series (2006-2015 at 16-day frequency resolution as MODIS), each containing a single change 

and belonging to one of the following change types: trend, abrupt with/without a trend change, 

amplitude, length of season (LOS), and number of seasons (NOS). Different intensities of 

change, with 50 replicates for each, were included in each group. The highest absolute 

intensities are (Fig. 3): 0.3 NDVI units for the amplitude changes (+ 60% of the initial 

amplitude), a shift of season start of -45 days backward for LOS changes, + 1 season for NOS 

changes, 0.046 NDVI units/ year for trend changes, and + 0.3 of the NDVI baseline (+ a trend 

of 0.046 NDVI units/year) for abrupt changes. More information (on the parameters, 

intensities…) can be found in Awty-Carroll et al. (2019). 

https://osf.io/taf9y/


Chapter 3: Data and methods 
 

Y. Ngadi Scarpetta, 2024. Detection and characterization of LSAIs from EO data 

91 

  

  

 

 

Figure 3.3: Illustration of the highest-intensities changes found in the simulated dataset, for each change-type group: 
a) trend (gradual change), b) abrupt change with a gradual change, c) amplitude change, d) change in the length 
of season (LOS), e) change in the number of season (NOS). The no-change time series is plotted in black dash 
line.  

3.3.1.3 MODIS NDVI data and pre-processing 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a satellite sensor launched 

in 1999, and designed to improve our understanding of global dynamics and processes on 

Earth. Its global coverage, moderate spatial resolution (250 m) and high temporal resolution 

(1-2 days), make it ideal for detecting subtle land cover changes. Here, a set of MODIS NDVI 

16-day composites at 250 m resolution (MOD13Q1, Collection 6), was acquired for Senegal 

over 2000-2021 and pre-processed in GE Engine. Pre-processing included the application of 

an optimized weighted Savitzky-Golay smoothing (Chen et al., 2004). Weights were computed 

according to Piou et al. (2013b), which uses the reliability of the pixel (i.e., quality flag, view 

b) a) 

c) d) 

e) 
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zenith angle) and the position of each observation in a predefined moving window 

(exponentially decreasing weights). A moving window length of 13 observations and a 

polynomial order of 3 were used. 

3.3.1.4 TRMM precipitation data 

Precipitation estimates for the study cases 1 (16.605°; -14.627°), 4 (15.220°; -13.708°) and 11 

(12.944°; -14.631°) were obtained from the Tropical Rainfall Measuring Mission (TRMM), a 

satellite designed to observe rainfall in tropical and subtropical regions of the world 

(Kummerow et al., 1998). Specifically, the 3B43v7 product, created using TRMM-adjusted data 

from several sources (namely high-quality microwave data, infrared data, and rain gauges 

analysis), was downloaded from GE Engine. Monthly precipitation rate estimates (mm/hr 

monthly average) at a spatial resolution of 0.25° were converted to annual estimates 

(mm/year). 

3.3.1 Methods 
This section is divided into two sub-sections. Section 2.4.1, dedicated to the How facet of land 

change, presents the three-change metrics derived from the MODIS NDVI SITS that 

characterize in different ways the change found by BFASTm-L2 between 2003 and 2018. 

Section 2.4.2, dedicated to the Why facet of land change, presents the RGB map obtained 

from the combination of the three-change metrics, enabling the identification of possible drivers 

of change through the analysis of known study cases. Throughout this study, special emphasis 

was placed on the detection of LSAIs. 

3.3.1.1 Contributing to the How facet of land change: the change metrics  

3.3.1.1.1 The magnitude of change metric 

The magnitude of change used in this study is the one corresponding to the largest magnitude 

breakpoint detected by BFASTm-L2 in each time series (Ngadi Scarpetta et al., 2023). This 

magnitude represents the Euclidean distance (i.e., the. square root of the sum of the squared 

difference) between the two 3-year time series located at each part of the breakpoint. Because 

this distance does not take into account the non-stationarity of the variance in the time series 

(Lhermitte et al., 2011),  it is very sensitive to trends and amplitude changes that are commonly 

attributed to natural (e.g., forest regeneration) and climatic variability-induced changes, 

respectively. To discriminate such contributions, a time series shape similarity metric expected 

to be more sensitive to seasonal changes is introduced in the next section. 

3.3.1.1.2 The time series shape dissimilarity metric 

Since special attention is given to the detection of LSAIs in Senegal, that induce changes in 

NOS (i.e. number of seasons) and LOS (length of season) (Ngadi Scarpetta et al., 2023), we 

propose here the Procrustes distance (hereafter referred to as dissimilarity) as a method to 

refine the type of seasonal change detected. Procrustes analysis is a statistical shape analysis 
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that optimally superimposes (by translation, rotation, reflection and scaling) two (or more) 

vectors (Gower, 1975). Values ∈ [0,1], with higher values indicating greater dissimilarity. In this 

study, the Procrustes function of the Python spatial package scipy was used.  

As for the magnitude in our previous study, a sensitivity analysis of the dissimilarity metric was 

first performed on the simulated time series dataset and on a selection of six real NDVI time 

series for pixels with no change and pixels undergoing different types of change. For each 

sample, the dissimilarity between the two 3-year time series (first averaged on a montly basis) 

at each part of the change was computed.  

3.3.1.1.3 The change direction metric 

To assess the direction of change, the ratio of the 3-year NDVI average after the change to 

the 3-year NDVI average before the change was calculated. An NDVI ratio below 1 indicates 

a “negative” direction of change, while a ratio above 1 indicates a “positive” direction of change. 

As for the magnitude in our previous study, a sensitivity analysis of the NDVI ratio to different 

types of change was performed on the simulated time series dataset and on a selection of real 

NDVI time series.  

3.3.1.2 Contributing to the Why facet of land change: combining the change metrics into an RGB 

composite map 

Although there is no one-to-one relationship between the drivers and the types of change, 

some drivers are more likely to cause a particular type of change. First, climate variability often 

causes direct changes in amplitude through its effects on vegetation vigor and health. If 

important enough to change the existing vegetation cover, it may also affect LOS (Evans and 

Geerken, 2006).  Second, abrupt changes (often accompanied by amplitude changes) are 

often associated with large abiotic (fires, floods...) or anthropogenic changes. When it comes 

to gradual changes, land management practices inducing subtle changes such as selective 

logging, reforestation, or biotic changes (forest regeneration, disease...) may be in cause.  

Finally, drivers likely to induce changes in LOS and NOS include agricultural activities 

(particularly agricultural intensification), that have a direct impact on the land cover type  (Arvor 

et al., 2012; Brown et al., 2007; Hentze et al., 2017; Ngadi Scarpetta et al., 2023).  

In light of these observations, we propose a composite RGB map based on three change 

metrics with different sensitivities to different types of change: the magnitude of change in red, 

the NDVI ratio (indicative of the direction of change) in green, and the dissimilarity measure 

(sensitive to seasonal changes) in blue. The dominant change “signatures” (i.e. colors) 

observed in the RGB map were linked to specific land dynamics and drivers of change (see 

Table 3.1) based on the: i) expected relationships between some drivers and types of change 

(presented above), ii) visual verification of thirteen selected study case points presenting 
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different land use transitions, iii) constructed knowledge of LSAIs, and iv) comparison of NDVI 

time series and the distribution of annual average precipitation for cases that are likely to be 

non-anthropogenic due to their area and shape (cases 1, 4, and 11). As BFASTm-L2 

breakpoint detection is based on the comparison of two 3-year time series subsamples, only 

potential drivers with short-term effects were considered and grouped into four broad classes: 

CLIM (for changes induced by climate variability), NAT (for biotic natural changes), MIN/INF 

(for mining/ infrastructure), and LSAI (for intensive agricultural activities), the latter being our 

main focus in this study.  

3.4 RESULTS AND DISCUSSION 

3.4.1 Sensitivity assessment of the dissimilarity and NDVI ratio metrics 
The sensitivity of the dissimilarity and NDVI ratio metrics is here assessed using two different 

datasets.  

3.4.1.1 On the simulated dataset 

3.4.1.1.1 The dissimilarity metric 

Table 3.1 shows the dissimilarity medians computed for each type of change in the simulated 

dataset. Null values are observed for "vertical" changes, represented by changes in amplitude, 

trend, and abrupt changes (with/without trend changes). In contrast, it is very sensitive to NOS 

changes (median = 0.78) and to a lesser extent to LOS changes (median = 0.35).  

Table 3.1: Medians of the dissimilarities computed per type of change using the simulated dataset.  

 Amplitude LOS NOS Trend only Abrupt w/ trend No change 

Dissimilarity  0.03 0.35 0.78 0.03 0.04 0.03 

 

3.4.1.1.2 The NDVI ratio metric 

Figure 3.4 shows the distribution of the NDVI ratios for each type of change in the simulated 

dataset. This metric shows particular sensitivity to abrupt changes (max. = 6.03), and to a 

lesser extent to LOS changes (max. = 1.85). Less sensitivity is shown for amplitude and 

gradual changes (max. of 1.62 and 1.59 respectively). The lowest value is reached for NOS 

changes (1.47). 
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Figure 3.4: Violin plots of the NDVI ratio for each type of change in the simulated dataset. Group’s medians are 
represented by red dots.    

3.4.1.2 On real NDVI time series with different land use transitions 

In this section, the MODIS NDVI time series of six pixel-study cases are presented. Four of 

them include LULC transitions from/to (Fig. 5.a-d): natural vegetation other than 

estuaries/wetlands (NAT), estuaries (EST), small-scale agriculture (SA), large-scale 

agricultural investment (LSAI), mining (MIN) and infrastructures (INF) (roads or airports). The 

computed dissimilarities and NDVI ratios are given.  

 

 

-13 days 

- 45 days 
+ 1 peak 

- 1 peak 

+ 60%  

+ 0.3 ndvi baseline. + 0.046 ndvi/ year 

- 60%  

+ 0.046 ndvi/ year 

- 0.046 ndvi/ year 
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Figure 3.5: Selected pixel-study cases. Each subplot’s upper part shows the smoothed MODIS NDVI time series, 
with the breakpoint detected by BFASTm-L2 (red dashed line), and the 3-year time period before and after the 
breakpoint (grey zone). The bottom part shows the 3-year monthly average (before/ after the breakpoint) and the 
computed change metric values. Land transitions and coordinates [latitude, longitude] are: a) NAT-LSAI [16.181°, 

a) 

c) d) 

e) 
f) 

b) 
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-15.779°]; b) SA-MINE [15.039°, -16.806°]; c) NAT-LSAI [16.406°, -15.689°]; d) NAT-INF [14.708°, -17.090°]; e) 
NAT [16.278°, -15.312°]; f) EST [12.838°, -16.384°].   

Figure 3.5 demonstrates that real data can be complex, with various types of changes 

occurring simultaneously. For example, two study cases with the same land use transition 

(NAT-LSAI) show different combinations of change types. While case a. shows a combination 

of amplitude (~ +75%) and NOS changes, case c. shows a combination of amplitude, LOS and 

abrupt change. Transition SA-MINE study case b) shows a combination of all types of changes. 

Study cases without land conversions, i.e. cases e. and f. (NAT and EST), show mainly 

amplitude changes.  

In this dataset the highest and lowest NDVI ratios were obtained for NAT-LSAI (case c: 2.3) 

and SA-MINE (case b: 0.5) transitions, due to large abrupt (~ -0.1 NDVI units) and amplitude 

(+75%) changes, respectively. At the opposite, the NDVI ratios close to 1 of the two cases 

without land conversions (case e:0.8; case f: 0.9) indicate the absence of significant land 

changes. 

In terms of dissimilarity, values greater than 0.5 were observed for large-scale land use 

conversions, such as conversion to LSAI (case a: 1; case c: 0.51) or mining (case b: 0.55). 

Cases without LULCC (e.g. climate-induced changes: case e), or those covering a smaller 

area (e.g. infrastructure construction: case d), have lower dissimilarity values (0.06 and 0.1). 

An exception is the estuary study where a high dissimilarity is observed (case f: 0.61) due to 

the water level fluctuations.  

The results are summarized in Table 3.2. Results related to the magnitude sensitivity were 

taken from a previous study (Ngadi Scarpetta et al., 2023). 
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Table 3.2: Sensitivity of the change metrics to different types of change. Sensitivity classes are: low: +, medium: 
++, high: +++. None: -   Change type thumbnails are for illustration only, as changes can be positive/ negative, from 
one direction to the other.   

 

3.4.2 Contributing to the How facet of land change 
Figure 3.6 shows the different change metrics maps at the national scale: magnitude of 

change (Fig. 3.6.a), time series shape dissimilarity (Fig. 3.6.b), and NDVI ratio (Fig. 3.6.c). To 

facilitate readability, close-in views of these maps for the three regions (SR, Niayes and Ferlo) 

are given in Appendices B to D. As a reminder, the changes are those detected by BFASTm-

L2 in the full MODIS NDVI time series between 2003 and 2018. Several observations can be 

made from these maps. 

 

                         Change metric 

 

Change type 

Magnitude Dissimilarity NDVI ratio 

Trend 

 

++ - ++ 

Abrupt 

 

+++ - +++ 

Amplitude 

 

++ - ++ 

NOS 

 

+++ +++ + 

LOS 

 

+ ++ ++ 
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Figure 3.6:National maps of the different change metrics: a) the magnitude, b) the dissimilarity, c) the NDVI ratio.  

The first is that a breakpoint is almost always found on long and dense SITS (see Appendix A 

for the date of change map).  

Second, the magnitude of change map (Fig. 6.a) highlights significant areas of change 

throughout the monitoring period. Large-scale changes (big yellow patches) are primarily 

concentrated in the eastern north and central pastoral regions, and the forested areas in 

Casamance, which are located around point 4 and point 11 respectively. The changes 

occurred almost simultaneously in each region (Appendix A), indicating a common cause of 

change per region. At a smaller scale, it appears that the highest magnitudes in the SR 

(Appendix 3.B.c) are linked with agricultural activities or wetlands, which sharply contrast with 

the remaining arid environment. In the Niayes (Appendix C.c), the LSAIs are well highlighted 

with large magnitudes of change. Additional highlighted structures include linear structures 

(points 7-8) that correspond to infrastructure constructions, compact patches (point 6) that 

correspond to mines, and more diffuse patterns over greener areas (Appendix C.a). In the 

Ferlo (Appendix D.c), random patterns of high magnitudes and different dates of change 

appear. Here, the LSAIs dedicated exclusively to the production of gum arabic do not induce 

visible changes. 

c) 
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Third, most of the previously observed magnitude hotspots disappear in the dissimilarity map 

(Figure 3.6.b). In this map, high values are particularly observed in the SR valley, near water 

bodies and in the estuary regions in the south, indicating high seasonal variations. Elsewhere, 

the values are low, but with minor local variations. In the Niayes (Appendix C.d), the LSAIs are 

particularly highlighted by the dissimilarity metric. In the SR region, the LSAIs also show high 

dissimilarities, although they are not clearly distinguished from the surroundings characterized 

by the presence of wetlands. Conversely, the Ferlo region (Appendix D.d) exhibits very low 

dissimilarity values. 

Finally, the NDVI ratio map enables evaluation of change direction (“negative” for values 

between 0-1, and “positive” for values >1) and demonstrates overall similar patterns to the 

magnitude of change map. Very high (around 1.3) or very low (below 0.8) NDVI ratios are 

associated with high magnitudes of change. The most significant changes in NDVI occur in the 

eastern pastoral region, with a combination of high and low values (Appendix D.e). Some 

patterns are also observed in Casamance (southwest region), but with fewer extremes, except 

for the forested region near point 11 that displays high NDVI ratios. At a smaller scale, the 

LSAIs in the SR region are generally well represented by compacted positive change patches 

(point 2 and polygons in Appendix B.e), with the exception of LSAIs established prior to 2003 

(Appendix 3.B.f). In this region, the wetlands have moderate positive or significant negative 

NDVI ratios, suggesting that these ecosystems have mostly dried out (all causes confounded) 

during the monitoring period. In the Niayes (Appendix C.f), the linear structures observed in 

the magnitude of change map and attributed to infrastructure are well highlighted by negative 

values (points 7-8 of Figure 3.8), as well as the mines (Fig. 8.6). In this region, the LSAIs do 

not have overall high positive NDVI ratios, indicating less abrupt changes than in the north. 

The highest positive values observed here are in the form of diffuse patterns, associated with 

greening areas. 

As observed, each map provides useful information on its own, but it is necessary to consider 

all three maps together for a full understanding of the changes. To this end, in the next section 

we propose an RGB composite map constructed to highlight anthropogenic changes. 

3.4.3 Gaining insights on the Why facet of land change: the RGB composite map 
Figure 3.7 shows the national-scale RGB composite map, constructed from the BFASTm-L2 

magnitude of change (red band), the NDVI ratio (green band), and the dissimilarity metric (blue 

band), as well as the 2000-2019 MODIS NDVI and TRMM annual precipitation distribution for 

3 pixels located in large natural areas (forest: point 11, wetland: point 1, other natural 

vegetation: point 4). This figure is followed by close-in views over the 13 study cases (Figure 

3.8), to help interpret the observed signatures in terms of drivers of change. 
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The dominant colour observed is green, followed by yellow and orange, indicating changes 

with low dissimilarities. Green indicates small magnitude changes, along with varying NDVI 

ratio values that range from 0.73-1.33. Orange and yellow pixels indicate high magnitudes of 

change with either a decrease in NDVI average (orange pixels) or an increase in NDVI average 

(yellow pixels). Based on their size and irregular shape, as well as their similar dates of change 

(see Appendix A), it is likely that these large orange and yellow patches are caused by natural 

or climatic drivers of change. To confirm this hypothesis, we visually analyzed the NDVI time 

series and precipitation distributions from points 4 and 11 in Figure 3.7. The change detected 

at point 4 (red dashed line in 2012) correlates with a decrease in both NDVI amplitude and 

precipitation, supporting the hypothesis of a climate-driven change. In fact, a drought episode 

that caused a major humanitarian crisis in the Sahel was reported in 2012 (United Nations 

Office for the Coordination of Humanitarian Affairs). The NDVI time series at point 11 shows a 

sharp increase in its baseline in 2003 (detected date of change), corresponding to an increase 

in pluviometry. This is consistent with positive anomalies observed in the region during the 

same period (Solly et al., 2020). The absence of significant seasonality changes, other than 

erratic amplitude changes, supports the assumption of non-anthropogenic change. 

Looking closely at Figure 3.8 and the sub-regional areas in Appendices B, C, additional 

shades of pink and blue appear that are associated with changes of greater dissimilarity values 

(along with varying magnitudes). The blue shades are primarily observed in the northern and 

southern coastal ecosystems (see Appendix 3.B.f). These areas show small magnitudes of 

change and no significant NDVI changes over a 3-year period. In the arid north, areas of light 

pink are associated with higher magnitudes of change (Fig. 8.1), suggesting a higher degree 

of instability compared to estuaries in the south. 

In addition to coastal ecosystems, other land dynamics are shown in light pink. This is the case 

for all LSAIs in the Niayes and several of those in the SR (zooms 2, 5, 7-8, 9, 10 of Figure 3.8 

and Appendices B.f and C.f). However, those dedicated to gum arabic production in the Ferlo 

do not follow the same trend (in yellow, see Appendix D and Figure 3.8.3). In the SR, many of 

the LSAIs established before 2003 (start of the monitoring period) are colored in light pink, 

while the most recent ones appear in white, indicating very high NDVI ratios (zoom 2 of Figure 

3.8). In the southern Casamance, the LSAI plots shown Figure 3.8.12 are light pink, except 

for the most recent plot in orange, indicating very low NDVI ratios, possibly due to vegetation 

removal associated with plot preparation.  

As noted above, the orange color indicates changes with low dissimilarity values. It is therefore 

surprising that the vegetation cover’s removal does not lead to higher dissimilarities. This is 

also the case for most changes induced by infrastructure (roads Fig. 8.8) and some mines (Fig. 
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8.9), which are also orange. Larger mines (Fig. 8.6, 8.13) or infrastructure (airport in Fig. 8.7) 

tend however to appear in dark pink, indicating higher dissimilarities.
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NDVI ratio Magnitude 

Dissimilarity 

 

Figure 3.7: RGB composite map with in Red: the change’s magnitude, in Green: the NDVI ratio, and in Blue: the dissimilarity metric. MODIS 2000-2019 NDVI and TRMM annual 

rainfall distribution are shown for three pixels with natural/ climate-driven changes : 1 (wetland), 4 (shrub savanna) and 11 (dry tropical forest) . See legend in Table 3. Map values 

were stretched between the 1st and 99th data percentiles, corresponding to [0.73-1.33] and [0-0.79] for NDVI ratio and dissimilarity, respectively. 
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Figure 3.8: Zoom-ins of study cases 1 to 13. LSAIs: 2, 3, 9, 10,12. Not in database LSAIs: points 5, 10. Mines: 

points 6 and 13. Infrastructures: points 7 (airport) and 8 (road). Forest: point 11. Wetland: point 1. Other natural 

vegetation: point 4. 
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The observations are summarized in Table 3.3. In this table, the dominant colors observed are 

linked to the 3-band intensities (1st column), and to some potential drivers of change (2nd 

column). 

Table 3.3: Association table between the RGB map colours (first column) and the potential drivers of change  (2nd 

column, see 2.4.2). Change signatures are composed of, in red: the magnitude of change, in green: the NDVI ratio 

and in blue: the dissimilarity metric.  
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3.5 DISCUSSION 

3.5.1 The How facet 
Detected changes are usually categorized as either abrupt or gradual changes depending on 

the duration of the change (Zhu et al., 2022). Sudden seasonal changes have not been 

explicitly addressed because: the detection of changes in dense SITS often requires the 

removal of the seasonality (Evans and Geerken, 2004; Hird et al., 2016), they are mostly 

considered to be climate-driven changes (especially for erratic changes in amplitude), and they 

typically result in small magnitudes of change (especially for LOS/NOS changes) (Ngadi 

Scarpetta et al., 2023). Because land use conversions, such as LSAI-driven ones in Senegal, 

typically involve seasonal changes that are not necessarily accompanied by abrupt changes, 

the effort in this study was to select metrics that effectively discriminate between types of 

changes  

The first change metric is the BFASTm-L2 magnitude of change, which is known to be sensitive 

to abrupt and large gradual changes, but also to NOS changes (Ngadi Scarpetta et al., 2023).  

Because many change drivers are likely to induce these types of changes, this map 

represented our baseline map, from which different drivers, all of which inducing high-intensity 

changes, were tentatively discriminated. 

The second metric evaluated here was the dissimilarity metric introduced to help discriminate 

seasonal changes. This metric showed to be invariant to amplitude and trend changes, while 

being very sensitive to NOS/LOS changes and small intra-annual variability (Table 3.1and 

Figure 3.5). This metric was most effective in the Niayes, where it effectively highlighted LSAIs 

(Appendix C). In other regions, the dissimilarity shows a great sensitivity to the strong intra-

annual variability present in the wetlands and estuaries, in the SR floodplain (Appendix 3.B.d) 

and Casamance respectively. Although this metric shows a strong sensitivity to agricultural 

changes, it seems to be primarily sensitive to the seasonal changes caused by annual crops, 

rather than slow-growing plantations, as is the case with the arabica gum plantations in Ferlo 

(Appendix D).  

Finally, the NDVI ratio based on the comparison of two 3-year periods after and before the 

change, provide an indication of the direction and intensity of the change. A 3-year period was 

considered sufficient to favor persistent changes over climate-driven changes. While this ratio 

improves the discrimination between biomass-producing and biomass-depleting drivers, we 

found that it was most useful for discriminating anthropogenic drivers such as mining or 

infrastructure (zooms 7-9,13 in Figure 3.8), rather than LSAIs, which have highly variable NDVI 

ratios (Appendices B.e and C.e).  
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While each metric alone provides valuable insight into potential drivers of change, 

interpretation of these multiple changes independently is often complicated.  

3.5.2 The Why facet 

3.5.2.1 General considerations 

The RGB map based on the magnitude of change, the dissimilarity and the direction of change 

represents a simple change visualization method, providing clues as to the possible drivers of 

change. While the change detection is done at the pixel level, the attribution of possible drivers 

of change is done by looking at the color (“signature” of change), area, and shape of the 

clusters. The date of change map also helps in this process, as very large clusters of change 

with the same date of change are unlikely to have an anthropogenic origin. This is the case of 

the natural areas around points 4 and 11 in Figure 3.7, which are most likely driven by 

pluviometry and natural forest regrowth respectively. These represent the most significant 

events occurring at any given time during the 2003-2018 monitoring period. While current 

dynamics may be slightly different, this change map is powerful for detecting punctual human-

induced events in the past. Compared to natural and climate-driven changes, anthropogenic 

land changes are spatially constrained, often with geometric shapes.  

3.5.2.2 LSAIs 

While the LSAIs show different signatures of change across the country, most share high 

dissimilarities with different NDVI ratios, introducing a new way to characterize them. All LSAI-

related changes appear in light pink/white, except for those in the Ferlo, which are yellow (very 

low dissimilarities). Specifically, LSAIs are best identified in the Niayes (Appendix C), where 

they are widely spaced and are coloured light pink (Figs. 8.5, 8.10, 8.11). In this region no 

other land dynamics produce the same signature of change. In the arid north (Appendix 3.B), 

newly established LSAIs appear in white as a result of significant changes that represent land 

conversion from semi-arid natural vegetation to agribusiness. LSAIs established prior to the 

monitoring period and SR Valley wetlands characterized by flood recession agriculture both 

appear in light pink, making them difficult to distinguish. Finally, in the semitropical south, new 

LSAIs (or spatial extensions, i.e. the orange area in Fig. 8.12) show negative abrupt changes 

that may be related to field preparation and biomass (woody vegetation) removal in favor of 

annual crops. In contrast to the north, plots of LSAIs installed before 2003 appear in very pale 

pink, indicating changes in agricultural practices. The presence of these white clusters near 

compact orange clusters may help distinguish LSAIs from other land dynamics in the tropics, 

even though in this region, as in the Niayes, no other land dynamics appear to produce the 

same colors.  

Compared to other pixel-based studies aimed at detecting LSAI  (Bey et al., 2020; Hentze et 

al., 2017; Hurni et al., 2017; Xiao et al., 2020), this approach has the advantage of being fast, 
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unsupervised, not crop-specific, independent of absolute spectral values, and able to use all 

available data. Therefore, it can be used as the first step of a pipeline to detect potential LSAIs. 

A more in-depth analysis could then be performed using HR satellite imagery only at these 

specific locations, including morphological and textural metrics following Vogels et al. (2019). 

Because the detected changes represent the largest LULCC within the entire monitoring 

period, detected areas may have a different land use in the present. 

3.5.3 Limitations and Recommendations 
Our results show that the RGB change-metric based map at the national scale proved to be 

useful for quick visual detection of specific land changes. However, there are some limitations. 

The first, as shown in Table 3.3, is that there is not a one-to-one relationship between a given 

combination of change types and a change agent. For example, while it is true that the reported 

Senegalese LSAIs are likely to cause seasonal NOS/LOS changes, other spatial objects such 

as the highly unstable estuaries and wetlands are also exhibit this type of change. In this case, 

other characteristics such as spatial patterns (area, shape) may help to determine the most 

likely driver of change. Similarly, the same type of change’s agent can cause different 

combinations of change types. For example, certain types of LSAIs, such as those involving 

slow-growing tree plantations in semi-arid environments, do not cause visible NOS/LOS 

changes such as annual crops. These land dynamics are therefore poorly captured by 

BFASTm-L2. Finally, it is important to note that the results may be different in other climatic 

regions, especially in the humid tropics, where the observed seasonal changes may be less 

pronounced. The same conclusions apply to regions where the diversity and size of agricultural 

systems makes LSAI less contrasted with other agricultural land uses. Indeed, it is important 

to keep in mind that in Senegal, the majority of the farms are smallholdings, rain-fed, with an 

area of less than five hectares (Bourgoin et al., 2019).  

Regarding some of the recommendations, it is worth noting that because the change 

magnitude is not NDVI normalized, for a same region encompassing different biomes (e.g. the 

Niayes), the magnitude tends to be higher over the forested areas. On the other hand, when 

considering the use of this method with other sensors, because BFASTm-L2 relies on long (at 

least 8 years) gap-free and smoothed time series, with a high temporal frequency to properly 

represent phenology, applications with higher resolution SITS such as Sentinel are currently 

hampered by the short temporal depth. The use of coarse resolution MODIS SITS allows rapid 

and easy identification of areas with specific land change dynamics over large areas, which 

can be analysed in more detail using HR satellite imagery at a later stage. 
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3.6 CONCLUSIONS AND PERSPECTIVES 
In this exploratory study, the BFASTm-L2 change detection algorithm was applied to MODIS 

2000-2020 NDVI imagery to provide insights into the major land changes and potential drivers 

of change in Senegal, contributing in a novel way to the How and Why facets of land change 

proposed by Zhu et al. (2022). The How facet of land change was characterized here by three 

change metrics, namely the magnitude of change, the direction of change, and a time series 

shape dissimilarity metric. The combination of these metrics in an RGB composite map allowed 

the characterization of different land dynamics, and proved to be a useful visualization 

approach in detecting different anthropogenic LULCC such as those induced by LSAIs, mines 

or infrastructure. Complex land use systems such as LSAIs, which are diverse in terms of 

cropping practices, are often difficult to detect. However, by combining the “signature” of 

change, with other change characteristics such as the area and shape, newly installed (within 

the monitoring period) LSAIs could be visually inferred from the RGB map.  

Although this approach has only been tested in Senegal, it demonstrates the usefulness of 

integrating the type of change, and in particular the seasonal ones, into the characterization of 

land change. This approach, based on a statistical change detection method, has the 

advantage of being interpretable, robust to noise and easily transferable to different regions, 

as it uses all the available temporal data and does not require the use of ancillary data. Further 

research will focus on automating the LSAI detection approach and integrating morphological 

and textural variables from high spatial resolution satellite imagery into the analysis. The 

approach will then be tested to different regions of the world. 
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3.2 APPENDICES 
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Close-in views of the Senegal River. a) MODIS NDVI 2000-2021 average map, b) Date of change map, c) 
Magnitude of change map, d) Dissimilairty map, e) NDVI ratio map, f) RGB  map
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Close-in views of the Niayes. a) a) MODIS NDVI 2000-2021 average map, b) Date of change map, c) Magnitude of 

change map, d) Dissimilairty map, e) NDVI ratio map, f) RGB  map.
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Appendix 3.D 
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Close-in views of the Ferlo. a) MODIS NDVI 2000-2021 average map, b) Date of change map, c) Magnitude of change map, d) Dissimilairty map, e) NDVI ratio map, f) RGB  map 
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4.1 HIGHLIGHTS 

- Dissimilarity metric improves the LSAIs highlighting in the BFASTm-L2 change map 

- LSAIs share similar spectro-temporal characteristics per ecoregion 

- 25-50% of field-reported LSAIs are detectable in a fully unsupervised approach 

4.2 ABSTRACT 

The profound impact of human activities on the Earth's land surface over the past millennium 

has raised concerns about the sustainability of ecosystem services and human well-being, 

necessitating global monitoring of land use and land cover change (LULC). Among the major 

drivers of LULC change, agricultural expansion, often associated with deforestation, 

urbanization, and climate change, is a prominent contributor. Large-scale agricultural 

investment (LSAI) accounts for a significant proportion of this expansion. The rapid growth of 

LSAIs over the past two decades, coupled with a lack of transparency, highlights the need for 

monitoring approaches to mitigate potential negative impacts. 

To fill this gap, remote sensing offers a cost-effective and efficient solution for monitoring these 

complex land use systems over space and time. Various strategies have been used to detect 

agricultural LULC changes, with supervised classification methods being the most common. 

These methods, including pixel-based machine learning algorithms and object-based 

approaches, rely on data-driven approaches and the availability of representative training data, 

which is a major limitation for LSAIs for which geographic data is scarce.  

This study presents an unsupervised, remotely sensed approach to identify distinctive change 

characteristics of LSAIs in Senegal, distinguishing them from other major drivers of change, 

such as natural (i.e. biotic and abiotic such wetlands)  and anthropogenic drivers of biomass 

removal (e.g. urbanization, infrastructure development, and mining). The methodology 

involves a three-step process applied independently to the Niayes and Senegal River (SR) 

regions, known for their high LSAI presence. First, indiscriminate LULC changes were detected 

at the national scale using the fast and unsupervised BFASTm-L2 algorithm applied to MODIS 

NDVI SITS. The magnitude of change was then weighted using two change metrics: the time 

series shape dissimilarity and the NDVI ratio pre/post change to highlight potential LSAIs. 

Second, data-driven contour analysis was used to extract hotspots of change. By cross-

referencing these hotspots with Google Earth imagery and field data on Large-Scale Land 

Acquisition (LSLA), we aimed to identify the primary drivers of LULC change and build a 

validation database. Third, for each hotspot, object-based spectro-temporal features (i.e., the 

above-mentioned change metrics computed from MODIS and the NDBaI index computed from 
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Landsat), as well as Landsat-based textural (Haralick features) and structural features (related 

to detected lines and rectangular/ circle shapes) were derived. Their effectiveness in 

discriminating LSAIs was investigated using unsupervised methods. The assessment was 

performed using an LSAI field database. 

The results show that the extracted hotspots of change, obtained by applying BFASTm-L2 and 

contour analysis of the weighted magnitude of change map, overlapped with 53% (in the 

Niayes) and 24% (in the SR) of the LSAIs reported in the field database. Furthermore, 

unsupervised analysis of the hotspots shows that LSAIs in each region can be distinguished 

from other land dynamics by their spectro-temporal and structural characteristics. Due to the 

varying discriminative power of structural features depending on the region analyzed, they 

were excluded from the unsupervised classification analysis to maintain methodological 

robustness and genericity. Results of a K-means clustering analysis based solely on the 

spectro-temporal features show that the precision rates of the most related LSAI clusters to 

LSAIs are of 65% (in the Niayes) and 75% (in the SR). 

While mostly exploratory, this research contributes to the development of robust and 

interpretable change detection methods that minimize reliance on external data, enabling the 

detection and comprehension of LSAIs in regions with limited geographic information. These 

findings have implications for improving monitoring and understanding of LSAI dynamics in the 

context of global LULC change. 

4.3 INTRODUCTION 
Over the last thousand years, approximately 75% of the planet's land surface has been altered 

by human activities, threatening the sustainability of ecosystem services and human welfare, 

and urging the need for global monitoring of land cover and land use change (LULCC) 

(Radwan et al., 2021; Winkler et al., 2021).  

Agricultural expansion, along with urbanization, deforestation (often closely linked to 

agricultural expansion) and climate change, is one of the main drivers of LULC change 

worldwide. It involves the conversion of land use from often natural environments to cultivated 

fields and can take many different forms, depending on factors such as location, scale, 

purpose, and environmental conditions. Amongst these, (active) Large-Scale Agricultural 

Investment (LSAI), often driven by commercial enterprises and agribusinesses, would 

account for 23.8 million ha in 2016, of which 42% would be in Africa, representing 

approximately 10 million ha (37% of global reported area) (Nolte et al., 2016). Because of the 

speed and scale at which these large-scale investments are expanding, and the current lack 

of transparency surrounding most of these deals, monitoring their spatio-temporal dynamics is 

essential to mitigate potential negative impacts. This is all the more important given the 
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significant environmental, economic and social impacts of these structures, as well as the 

impact they may have on multiple issues such as food security (Davis et al., 2014; D'Odorico 

et al., 2017). 

To fill this gap, remote sensing appears to be an appropriate, cost- and time-efficient tool to 

monitor these particular land use systems in space and time. Since LSAIs are complex land 

use systems with many different forms (in terms of crops, environment, practices...), they 

cannot usually be derived directly from remotely sensed imagery. To overcome this, the most 

common approaches to date have been methods that focus on a specific region or cropping 

system, and take advantage of the particular spatial arrangement and temporal patterns driven 

by LSAIs to derive spatio-temporal features that can be used as proxies for land use intensity. 

A commonly used proxy is cropping intensity, usually defined as the number of peaks per year 

(i.e., cropping cycles) in a pixel's vegetation index time series (Hentze et al., 2017). Another 

proxy for land use intensification is related to the availability of irrigation. Since irrigated 

agricultural land is expected to be more productive, temporal differences in biomass and 

greenness indices are exploited, especially during the dry season (Eckert et al., 2017). A third 

common proxy for land use intensity is related to field size and field texture, which are often 

larger and more homogeneous in LSAIs due to mechanization (Graesser et al., 2018; 

Kuemmerle et al., 2009).  

Methods to derive these proxies include very popular pixel-based machine learning algorithms 

(e.g., random forest) (Bey et al., 2020; Chen et al., 2023a), but also object-based approaches 

(Vogels et al., 2019), and deep learning-based methods that focus on detecting specific 

structural elements in the landscape, such as irrigation pivots (Tang et al., 2021). In most 

cases, these different strategies depend heavily on the availability of reliable and 

representative training data, which can be very difficult to obtain for LSAIs, especially in remote 

regions such as sub-Saharan Africa (Bourgoin et al., 2019). Furthermore, these data, when 

available, are often outdated and incomplete due to the high spatio-temporal dynamics of 

LSAIs. This severely limits the representability of the training data sets and thus the 

generalization ability of the supervised models. In addition many of these approaches make 

use of ancillary data that may not always be available or updated. For example, cropping 

masks are often used to limit the analysis complexity to cropland. However, these may be 

third-party products that are often outdated and not available in other regions (Hentze et al., 

2017), may be based on assumptions that are not applicable to different regions (Ajadi et al., 

2021), or, as mentioned above, may rely on training data (Graesser and Ramankutty, 2017), 

that have their own limitations in terms of quality and representativeness. Finally, many of the 

approaches, especially the object-based ones, often require high to very high resolution 

satellite imagery, which hinders their application on a large scale due to computational burden 
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and imagery cost.Therefore, fast, robust change detection methods that rely minimally on 

external data are desired to avoid the development of multiple region- and crop-specific 

models. 

In a previous study, we proposed BFASTm-L2, a time-series change detection approach 

sensitive to seasonal changes, to detect anthropogenic LULC changes such as those induced 

by LSAIs (Ngadi Scarpetta et al., 2023). The results confirmed the hypothesis that newly 

implemented LSAIs in a small area of Senegal modified land cover, which in turn induced 

detectable seasonal changes in vegetation index (e.g. NDVI) time series. Because the 

algorithm uses coarse resolution MODIS data, it was shown to be fast and easily upscaleable. 

It also has the advantage of not relying on ancillary data or spatial masking. However, since 

the detected changes are not specific to LSAIs and may include other anthropogenic changes 

(e.g. mining) or (a)biotic changes, a second study aimed to gain insight into the relationship 

between the main drivers of change and the induced types of change (i.e. abrupt, gradual, 

seasonal: amplitude, length of season (LOS), number of seasons (NOS)) and to derive some 

change metrics that, when combined, allow a better differentiation between them (Ngadi 

Scarpetta et al., 2024).  

This study, which follows on from the two mentioned above, has two main objectives. The first 

is to automatically locate and extract potential hotspots of change related to LSAIs based 

on BFASTm-L2 applied to MODIS 2000-2021 NDVI SITS (i.e., monitoring period between 

2003-2018) and two MODIS-based derived change metrics: time series dissimilarity and NDVI 

post/pre change ratio (Ngadi Scarpetta et al., 2024). The second objective is to explore, based 

on an unsupervised approach, some common change characteristics of LSAIs in Senegal that 

distinguish them from other major drivers of change, such as natural changes (biotic and 

abiotic changes) and anthropogenic drivers of biomass removal (e.g., urbanization, 

infrastructure development, and mining). These features should be as few and general as 

possible. As a result, remote sensing features that might be too specific to certain crop types 

or require complex settings to extract were avoided. This was done to better understand what 

characterizes LSAIs, and with the idea of developing a fully automated pipeline in the future.  

The features include object based spectral features (i.e. MODIS derived change metrics and 

Landsat derived NDBaI) as well as Landsat based textural (i.e. Haralick features) and structural 

features. The next section describes the approach in detail. 
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4.4 DATA AND METHODS 

4.4.1 Approach 

4.4.1.1 Workflow 

The methodology consists of a 3-step approach, from extracting potential LSAI-related 

hotspots of change to distinguishing them from other land dynamics (Figure 4.1): 

1. In the first step, indiscriminate LULC changes were detected at the national scale using 

the fast and unsupervised BFASTm-L2 algorithm (Ngadi Scarpetta et al., 2023) 

applied to long and dense MODIS NDVI time series. The magnitude of change was 

then weighted using the time series shape dissimilarity and NDVI ratio presented in 

Ngadi Scarpetta et al. (2024) (submitted for publication) to give more weight to 

potential LSAIs in the resulting change map.  

2. From the weighted change map, hotspots of LULC changes were automatically 

extracted using a contour analysis, and labelled according to one of the main LULC 

change drivers identified using Google Earth and  LSAI field database: LSAI, SA 

(smallholder agriculture), WET (wetlands), NAT (changes in natural environments 

other than wetlands), MIN (mining), INFR (infrastructure development), URB 

(urbanisation), MIX (mixed class) and FLOOD (floodplains).  

3. The extracted objects of change (i.e. hotspots) were then characterized using spectro-

temporal, textural and structural features derived from MODIS and Landsat, and 

clustered using the K-means algorithm based on the most discriminating and easily 

computable (in terms of genericity, i.e. without strong parameterization) object-based 

features. Clusters more strongly associated with LSAIs were identified and 

characterized. 
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Figure 4.1: Three-step research workflow 

4.4.1.2 Study area 

Located in the westernmost region of the Sahel, Senegal has a marked variation in rainfall 

from north to south, resulting in a semi-arid climate in the northern part (receiving 200-400 mm 

of rainfall per year) and a tropical climate in the southern region (receiving 800-1200 mm per 

year). The country has two distinct climatic seasons: a dry season from November to May and 

a rainy season from June to October. The predominant land cover types include steppe, 

savanna, and sub-humid dry forests, as documented by Budde et al. (2004), Sultan and Janicot 

(2003; Tappan et al.) and Tappan et al. (2004). The country has unique ecosystems, such as 

the fertile wetlands along the Senegal River, which have been vital to small-scale farmers, 

herders, fishermen, and traders for centuries. Unfortunately, these ecosystems are 
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increasingly threatened by the construction of dams and the implementation of irrigated rice 

projects, as highlighted by Horowitz and Salem-Murdock (1993) and Tappan et al. (2004). 

Agriculture, which contributes to 15% of the country's GDP, is mainly characterized by small 

farms of less than 5 hectares, according to Bourgoin et al. (2019). Notably, there is an 

increasing trend of large-scale land acquisitions (LSLAs), with foreign investors deals counting 

for more than 3% of Senegal's arable land in 2016, as reported by Harding et al. (2016). Due 

to the lack of transparency, limited geospatial information, and potential socio-environmental 

impacts, initiatives have been launched to inventory and map LSLAs, as described in the works 

of Bourgoin et al. (2019) and Nolte et al. (2016). Nevertheless, challenges remain due to the 

spatio-temporal dynamic nature of LSLAs in terms of location and time, coupled with 

differences in methodologies. To address these issues, there is an urgent need for automated 

and rapid approaches to effectively monitor the entire national territory. 

Agricultural LSAIs, hereafter referred to as Large Scale Agricultural Investments or LSAIs, are 

mainly concentrated in two contrasting regions (Figure 4.2): 

1- The arid northern Senegal River region (hereafter referred to as SR, upper subplot in 

Figure 4.2) is an important agricultural region with a growing number of LSAIs, mainly 

focused on horticulture, sugarcane production and cereals, mainly rice. Wetlands in 

this region are typically marsh type, saturated with water for a significant part of the 

year, which distinguishes them from floodplains, which are periodically flooded and 

traditionally used for flood-recession agriculture.  

2- The Niayes (lower subplot,) contains many LSAIs dedicated to horticulture. The 

vegetation consists mostly of open agricultural parkland. In this study, an extended part 

of the Niayes was considered, with a part of the Western Peanut Basin, which includes 

higher tidal wetland vegetation of the estuarine and mangrove type, mainly located in 

the Saloum Delta. 
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Figure 4.2: Overview of the study areas  (black boxes): SR for the Senegal River region and an extended Niayes 
region. Red polgygons represent the reported large scale agricultural investments within the field database. The 
base image represents the MODIS NDVI averaged over 2000-2020, with colors ranging from dark brown (lowest 
values) to dark green (highest values). 

4.4.2 Data 

4.4.2.1 LSAI field database 

In 2019, the Senegalese Institute of Agricultural Research (ISRA) conducted a field campaign 

on Large-Scale Land Acquisitions (LSLAs) and recorded more than 700 polygons in a 

spatial database (M. Dieye, personal communication, 2022). The database contains deal 

information such as deal type (agribusiness, mining, etc.), size, year of transaction/negotiation. 

A filtered database was used, composed of 75 polygons containing only: i) agribusinesses 

created or expanded during the monitoring period of this study (2003-2018), ii) with a minimum 

size of 30 hectares, iv) with at least 1/3 productive area (assessed using Google Earth 

imagery). It is important to note that in this database some single LSLAs may be divided into 

many neighbouring blocks or digitised polygons.  The distributions of LSAI size for the two 

studied regions are shown in Figure 4.1 (see Appendix 4.E for more details). 

SR 

Niayes 

Saloum delta 
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Figure 4.3: Boxplots of LSAI size (in hectares) by study region  (medians are 181.5 and 104 ha for SR and Niayes 
respectively, indicated by the green horizontal line) and number of observations (n) in the ISRA field database. 
Green dots represent means. 

4.4.2.2 MODIS 

The Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor, in orbit since 

1999, has been designed to improve our understanding of global dynamics and processes on 

Earth. With its global coverage, moderate spatial resolution (250 m) and high temporal 

resolution (1-2 days), this sensor is ideal for detecting subtle changes in land cover. Here, a 

set of MODIS NDVI 16-day composites at 250 m resolution (MOD13Q1, Collection 6) was 

acquired for Senegal over the period 2000-2021 and pre-processed in Google Earth Engine, 

using the same pre-processing as in Ngadi Scarpetta et al. (2023). 

4.4.2.3 LANDSAT 

For each of the detected hotspots of change (step 1 of the workflow, see Figure 4.1) in each 

study region, Landsat 2019-2021 scenes with the highest available data quality (Landsat 8 

Collection 2 Tier 1 and Real-Time data calibrated top-of-atmosphere (TOA)) were acquired 

using GE Engine. These data were selected because they follow the BFASTm-L2 monitoring 

period, which ends in 2019, and ensure land characterization following the detected change. 

Data have a spatial resolution of 30 m, sufficient for image analysis (i.e. textural and structural 

analysis) of LSAIs objects. Higher spatial resolution satellite imagery (e.g. Sentinel) was not 

considered here, as only the general structure of the LSAI (as structured by plot disposition) 

was of interest, while avoiding intra-plot variability. The data were first filtered for clouds and 

cloud shadows using the Quality Assessment (QA) band. Bits 3 and 5 (for cloud shadow and 

cloud respectively) were set to zero.  
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Data were extracted twice for each hotspot of change: 1) clipped to the hotspot footprint, and 

2) a 100 x 100 pixel square image (approximately 900 hectares) centred on the hotspot 

centroid. These square images were considered necessary because some detected changes 

may represent only a small area of the LSAI (a few fields), from which it may be difficult to 

select the best contrasted composite image allowing extraction of structural and textural 

features (see section 4.4.3.4). 

4.4.3 Methods 

4.4.3.1 LULC change detection 

4.4.3.1.1 The BFASTm-L2 weighted magnitude of change 

In the first step of the approach, the BFASTm-L2 change detection algorithm (Ngadi Scarpetta 

et al., 2023) was applied to the 2000-2021 MODIS NDVI time series. The magnitude of change 

calculated by BFASTm-L2 corresponds to the most significant breakpoint detected in each 

time series, measured as the Euclidean distance between the two 3-year time series flanking 

the breakpoint. Consequently, only changes in the period 2003-2018 can be detected. 

However, as this distance is sensitive to trends and amplitude changes, it may capture natural 

and climatic variability-induced changes. To disentangle these contributions, and following 

Ngadi Scarpetta et al. (2024), two additional change metrics were computed: a time series 

shape similarity metric (hereafter referred to as dissimilarity) based on the Procrustes 

distance, and an NDVI post/pre change ratio based on 3-year averages (hereafter referred to 

as NDVI ratio). Procrustes analysis is a statistical shape analysis that optimally superimposes 

(by translation, rotation, reflection and scaling) two (or more) vectors  (Gower, 1975). Values 

∈ [0,1], with higher values indicating higher dissimilarity. The function Procrustes of the Python 

scipy spatial package was used.  

These metrics contribute to the F factor presented here below and increase the importance of 

shape changes in the overall magnitude of change calculation. 

𝑭 =  |𝒍𝒏 ( 
𝒕𝒔𝟐̃

𝒕𝒔𝟏̃
  ) |  +  𝒑𝒓𝒐𝒄𝒓𝒖𝒔𝒕𝒆𝒔 (𝒕𝒔𝟏𝒂𝒈𝒈

, 𝒕𝒔𝟐𝒂𝒈𝒈
)  Equation 4-1 

With  𝑡𝑠1 / 𝑡𝑠2  the 3-year subsample before / after the breakpoint; and 𝑡𝑠(1 (2))𝑎𝑔𝑔
 the same 

subsamples monthly averaged over the 3 years. 

The first logarithmic term of F accounts for changes in amplitude. The logarithmic 

transformation allows most values to fall between [0,0.22] (in fact, it is rare for the NDVI 

post/pre-change ratio to exceed 1.25 in Senegal (Ngadi Scarpetta et al., 2024) ). The second 

term of F explicitly quantifies the shape similarity between 𝑡𝑠1and 𝑡𝑠2, and ranges from 0 to 1. 

This additive combination allows less weight to be given to very large abrupt changes that do 

not significantly alter the time series pattern. This factor was then incorporated into a weighted 
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magnitude of change to better emphasize LULC changes that are mostly seasonal in nature. 

The BFASTm-L2 weighted magnitude of change, used to derive the change map, was 

calculated as follows: 

𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝒎𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆 =   𝒄𝒉𝒂𝒏𝒈𝒆 𝒎𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆 𝒙 𝑭   Equation 4-2 

4.4.3.1.2 Assessment of the weighted magnitude of change to LSAIs 

The sensitivity of the weighted magnitude to LSAIs was assessed by analyzing the difference 

in magnitude between the median values inside and outside each LSLA. Outside values 

correspond to the medians of the magnitudes within a positive 2 km buffer around each 

reported LSLA (reported in the field database). Differences are expressed in percent with 

respect to the outside values. Only the polygons with more than 66% of their area occupied 

(assessed with Google Earth imagery) were used for this analysis, resulting in 75 polygons 

located in two agro-climatic regions of Senegal. The idea behind this difference is to assess 

how contrasted the objects are with respect to their environment and how likely they are to be 

visually detected on a map with the weighted magnitude. The results are presented in the form 

of a stacked histogram, with two classes representing the two study areas (Senegal River 

valley and the Niayes). 

4.4.3.2 Extraction and labelling of change hotspots  

4.4.3.2.1 Extraction of change hotspots  

Hotspots of change were detected and extracted from the weighted magnitude of change map. 

The pre-processing of the weighted magnitude of change map included the application of a 

500m buffer around the water (corresponding to pixels with negative MODIS 2000-2021 NDVI 

mean). The buffering allows to exclude highly unstable costline pixels with very high 

magnitudes of change from the analysis. A Gaussian blur (kernel=7) was then applied to 

average rapid changes in pixel intensity before performing a linear stretch of the images 

between the 1st and 99th percentiles. Image segmentation was then performed using a 6-level 

contour segmentation. The Python contour function from the Matplotlib library was used. 

Aggregation of the last 2 levels was performed to obtain larger polygons. Then, the convex hull 

of each detected polygon was computed to obtain more "compact" shapes. 

4.4.3.2.2 Labeling change hotspots with a LULC class 

To evaluate the discriminative power of the spectro-temporal, textural and structural features 

used in this study (and presented in the next section) for different drivers of change, each 

extracted hotspot of change (from the previous section) was labeled in one of the following 

LULC classes: LSAI, SA (smallholder agriculture), WET (wetlands), NAT (changes in natural 

environments other than wetlands), MIN (mining), INFR (infrastructure development), URB 

(urbanization), MIX (mixed class).  In the northern Senegal River region, the WET class was 

further subdivided into WET (wetlands) and FLOOD (floodplains) classes due to its 
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specificities. The main drivers of change were visually assessed using the Google Earth 

imagery and the field database on LSAIs. 

4.4.3.3 Characterization of change hotspots  

3.6.1.1.1 Spectro-temporal features  

As proposed by Ngadi Scarpetta et al. (2024) (submitted for publication), we used a 

combination of three MODIS-based (spectro-temporal) change metrics to highlight LSAIs: the 

BFASTm-L2 magnitude of change, the time series shape dissimilarity, and the ratio of the 3-

year NDVI average before and after the detected change. Because changes caused by LSAIs 

may have some similarities to those caused by wetlands (Ngadi Scarpetta et al., 2024), and 

because we expect LSAIs to have less frequently exposed bare soils, we introduced an 

additional spectral variable, the Normalized Difference Bareness Index (NDBaI). This index is 

based on the difference between the strong emission of thermal infrared (TIR) radiation and 

the near total absorption of shortwave infrared (SWIR) wavelengths by bare soil (Zhao and 

Chen, 2005). It is effective in distinguishing bare ground from similarly constructed structures 

and vegetation. The NDBaI was calculated as follows (following the Landsat band names) 

𝑵𝑫𝑩𝒂𝑰 =  (𝑺𝑾𝑰𝑹𝟏 −  𝑻𝑰𝑹𝑺𝟏) / (𝑺𝑾𝑰𝑹𝟏 +  𝑻𝑰𝑹𝑺𝟏)   Equation 4-3 

The Landsat 20019-2021 NDBaI 25th percentile was calculated for each pixel, and then 

aggregated at the object-level (i.e. hotspot of change) using the mean.  

The discriminative power of each spectro-temporal feature for LULC drivers of change was 

assessed through visual analysis of pairwise scatterplots and univariate distributions of the 

spectro-temporal features. 

4.4.3.4  Textural and structural features 

4.4.3.4.1 Landsat NDMI composites 

Once the boundaries of all detected change objects were obtained by the segmentation step, 

textural and structural features were computed for each object based on a composite image 

calculated to provide the best possible contrast between the target object and its surroundings. 

The 100x100 pixels composite,  centered on the center of each detected change hotspot, was 

based on the NDMI (for Normalized Difference Moisture Index) vegetation index, used in 

studies aiming to detect irrigated agriculture (Chance et al., 2018) and computed as follows: 

𝑵𝑫𝑴𝑰 =  (𝑵𝑰𝑹 –  𝑺𝑾𝑰𝑹𝟏) / (𝑵𝑰𝑹 +  𝑺𝑾𝑰𝑹𝟏)  Equation 4-4 

After averaging the 2019-2021 NDMI images on a monthly basis (thus obtaining 12 monthly 

averaged images),  a 3-month rolling average was applied to each monthly image. This is 

defined by calculating, at the pixel level, the NDMI average of the current month, the previous 
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month, and the following month. This allowed the values of a 3-month period (roughly 

equivalent to a growing season) to be integrated into each image, and allowed to obtain an 

image that best represents the growing season. Then, the image with the highest contrast 

was then selected to better identify: (i) the growing season and (ii) the edges of the 

LSAIs. Contrast was calculated as the difference between the average pixel values in the 

center of the image (represented by the red square in Figure 4.4), and the average pixel values 

at the edge of the image (in blue). This requires that the LSAIs are well separated from other 

land objects, as is the case in the Niayes. For places where this is not the case and the 

difference between the red and blue averages is less than 10 (a defined hard threshold), such 

as the agriculturally intensive SR region, the image with the highest interquartile range (IQR) 

(difference between the 75th and 25th percentile) was selected. 

  

Figure 4.4:  Schematic view (to scale) of the 100 x 100 pixel Landsat image (full square). Coloured areas were used 
to identify the composite image with the highest contrast, representing the largest difference between the average 
NDMI value in the red area and the average NDMI value in the blue area.  

Because intensive agriculture, as a result of mechanization, has often been reported to 

produce more homogeneous landscapes with larger field sizes of regular shape, many studies 

have used textural features to distinguish LSAIs from other land use systems (Bey et al., 2020; 

Kuemmerle et al., 2009). In this study, the fourteen textural metrics proposed by  Haralick et 

al. (1973) were computed from the Gray Level Co-occurrence Matrix (GLCM), using the NDMI 

composite image clipped to each hotspot footprint as the base image. The pyfeats package 

(Giakoumoglou, 2021) was used, allowing to compute the following features: 1) Angular 

Second Moment (ASM), 2) Contrast, 3) Correlation, 4) Sum of squares (variance), 5) Inverse 

Difference Moment (or homogeneity), 6) Sum Average, 7) Sum Variance, 8) Sum Entropy, 9) 

Entropy, 10) Difference Variance, 11) Difference Entropy, 12-13) Information Measure of 

Correlation 1 and 2, and 14) Maximal Correlation Coefficient. As for the spectro-temporal 

features, the discriminative power of each textural feature for LULC drivers of change was 

assessed through visual analysis of pairwise scatterplots and univariate distributions. 

4.4.3.4.2 Structural features 

The structural features were derived from the 100x100 pixel Landsat-based NDMI composite 

images. The goal was to derive features that characterize the shape geometry of the landscape 

objects present in the Landsat scene, assuming that the field geometry of intensive agriculture 
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is generally polygons with square angles and circles. Prior to feature extraction, the images 

were pre-processed, to improve image segmentation, which allowed the detection of object 

shapes and lines. This includes: 1- contrast stretching between the 2nd and 98th percentiles, 

2- image quantization in 10 color bins, 3- bilateral smoothing, 4- image equalization, and 5- 

thresholding using the 7th computed Jenks natural break (Jenks, George F., Caspall, Fred C., 

1971). 

Then, two methods were tested for the detection of shapes and lines, keeping the same 

parameterization for both regions (SR and Niayes). The first was by image segmentation using 

a contour analysis (Python contour function from the Matplotlib library) applied over the whole 

100x100 pixels image. The number of square angles (i.e. 90° ± 10°) and circles was calculated, 

and correspond to the cnt counter metric. Only the polygons that: 1- were not too large (i.e. < 

2000 pixels; very large objects often correspond to natural objects, while objects such as LSAIs 

are expected to be segmented into smaller objects corresponding to fields); 2- had at least one 

square angle or a circularity index close to 1 (i.e. >0.8 ) (Cox, 1927) , 3- did not have a very 

complex shape, i.e. a Shape index  close to 1 (i.e. < 1.6 ) (McGarigal, 2002)  were considered.  

In the second method, line detection was performed using the Line Segment Detector (lsd) 

algorithm (Grompone von Gioi et al., 2012), implemented in the Python OpenCv 

LineSegmentDetector function. Default parameters were used. Unlike the contour-based 

method, which uses the contours extracted within the entire image, this method was only 

applied within the hotspot footprints.This minimized the number of "false" detections, since all 

segmented objects (also outside the hotspot footprint) are composed of lines.The number of 

parallel lines and the number of square angles (intersection angle of 90° ± 10°) were then 

calculated and standardized to the footprint area (line counter). 

The two computed metrics, i.e. cnt counter and line counter were then combined into a new 

variable, called geom index, corresponding to: 

𝒈𝒆𝒐𝒎 𝒊𝒏𝒅𝒆𝒙 = 𝒍𝒏(  (𝒄𝒏𝒕  𝒄𝒐𝒖𝒏𝒕𝒆𝒓 + 𝟏) 𝒙 (𝒍𝒊𝒏𝒆 𝒄𝒐𝒖𝒏𝒕𝒆𝒓 + 𝟏) )    Equation 4-5 

As with the previous features, the univariate distributions of the three calculated metrics were 

plotted for each type of LULC driver of change, allowing a visual assessment of the 

discriminative power of each metric. 

4.4.3.5 Clustering of change hotspots 

The detected land objects of change, previously labelled into main LULC classes, were 

clustered using the K-means algorithm. This was done in the hope of detecting a group of 

similar objects that could be related to LSAIs in an unsupervised manner and thus help in their 

characterization. Only the discriminant (according to the univariate distributions plotted for 
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each type of LULC driver of change) and generic (requiring few parameters in their 

computation) features were used in the clustering. 

The best partitioning (i.e., K-means k parameter) was identified using the Silhouette metric, for 

partitions ranging from 2 to 10. The silhouette metric is a measure of how similar an object is 

to its own cluster (cohesion) compared to other clusters (separation). The silhouette values 

range from -1 to 1, with high values indicating a good fit, i.e. good cohesion within clusters and 

separation between clusters, and values near or below zero indicating a very poor fit and 

misclassification. In this study, and for similar overall Silhouette values, the partitioning that 

produced the smallest number of clusters (k) was chosen to improve the interpretation of the 

results, which consist of a box plot of the clusters against the features used in the classification. 

4.4.3.6 Evaluation of the performance in detecting LSAIs 

The evaluation consisted of two steps: 

1. The first step evaluated the performance of the BFASTm-L2 change detection 

algorithm in detecting LULC changes induced by LSAIs. This was done by counting the 

number of extracted hotspots of change that overlap the LSLAs (i.e digitized polygons) 

reported in the field database.  

2. The second step was to evaluate the precision of the clustering with respect to LSAIs. 

In this step, the clusters related to LSAIs were first combined into a unique group. Then 

the precision of this unique group to LSAIs was calculated as follows: 

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 / (𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 +  𝑭𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔) Equation 4-6 

The true positives correspond to the number of objects within the combined group that are 

LSAIs. The false positives correspond to the number of all other objects. 

4.5 RESULTS 

4.5.1 LULC change detection 

4.5.1.1 Change maps  

To improve the contrast of potential LSAIs, we here proposed a change magnitude weighted 

by the dissimilarity and NDVI ratio as explained in section section 2.3.1. Maps of these 

weighted magnitudes are shown in Figure 4.5 for each study region.   
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Figure 4.5: Change maps for the Niayes (a) and the Senegal River regions (b). From left to right (a)/ top to bottom 
(b): the BFASTm-L2 magnitude of change map, the magnitude of change map weighted with the dissimilarity and 
NDVI ratio metrics. LSAIs reported in the field database are shown in cyan.  
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Overall, background contributions are minimized for both regions using the weighted 

magnitude of change (subplots a vs. b) while it is less the case when the magnitude is not 

weighted. In the Niayes, diffuse areas of change occurring within forested areas (Bandia, 

Popenguine, area near Balig...) are removed, leaving clear contributions from LSLAs, mining 

and infrastructure activities characterized by large seasonal changes (in NOS/LOS) and/or 

large abrupt changes. In the arid region of the Senegal River, the contrast seems to be less 

important within the intensive agricultural area in the northwest, although a minimization of the 

background contributions is also observed. 

To better assess the contrast enhancement observed in the maps when using the weighted 

magnitude of change, quantification of the contrast  is performed in the next section using the 

LSLAs reported in the field database. 

4.5.1.2 Assessment of the weighted magnitude of change to LSAIs 

The performance of BFASTm-L2 in detecting agricultural LSLAs was evaluated here by 

analyzing the difference in magnitude (weighted or not) between the median values inside and 

outside each reported LSLA (see Section 2.3.5). Differences are expressed in percent with 

respect to the outer values. This allows an assessment of how different objects are from their 

surroundings, and thus how likely they are to be automatically detected on a map. 
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Figure 4.6 Histogram of the relative differences (in %) between the medians of the magnitudes of change within 
("in") and outside ("out", i.e. within a 2 km buffer around the LSAI) the LSAIs in the field database. a) Using the 
BFASTm-L2 magnitude of change, b) Using the weighted magnitude of change. 

 

Figure 4.6 shows the histograms of the differences using two different change metrics: the 

BFASTm-L2 magnitudes of change and the weighted magnitudes of change (subplot a and b, 

respectively). A first observation is that all distributions are more spread out when using the 

weighted magnitudes of change, indicating a better contrast between the LSLAs and their 

surroundings, with about 10% to 40% of the samples having a difference above 200% (see 

subplot a and b respectively). In the Niayes,  0% to ~40% of samples have a difference > 

200%, and the in Senegal River  ~20% to ~60% of samples have a difference > 200%. These 

results show the ability of the weighted magnitude to detect and highlight changes caused by 

LSLAs.  

a) 

b) 
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4.5.2 Extraction and characterization of change hotspots 

4.5.2.1 Extracted hotspots 

Hotspots of change extracted for the Niayes and the Senegal River regions following the 

approach detailed in Section 3.3.3 are presented here below, in Figure 4.7 a and b 

respectively. 

 

a) 

b) 
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Figure 4.7: Study regions with LSAIs from the non-exhaustive ISRA field database (in cyan) and extracted hotspots 
of change (yellow). a) The extended Niayes region; b) the Senegal River (SR) region. Base map correspond to the 
weighted magnitude of change. 

 

A sample of the variety of landscape objects detected is shown in Figure 4.8, with high 

resolution imagery from Google Earth. 

   

   

   

g) h) i) 

d) e) f) 

a) b) c) 
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Figure 4.8: Close-up views of some of the identified change objects  (whitish polygons). LSAIs: subplots a to o 
(Niayes: a-f; SR: g-o). Infrastructures: p,s (Niayes). Natural (wooded land cover change): t (Niayes). Mines: q 
(Niayes). Urbanization: r (Niayes). Wetlands: u (Niayes), v (SR). Floodplains w-x  (SR), Smallholder agriculture: y 
(Niayes). 

 

Figure 4.9 provides simple statistics on the number and area of the objects detected per land 

use type and study area. In the Niayes, about 1/3 of the detected objects correspond to 

wetlands located in the southernmost part of the study area (37), while another 1/3 is shared 

between LSAIs (15) (some not in the field database) and infrastructure and urbanization (15). 

The remaining third is divided between mines (7), mixed (i.e. non-homogeneous) objects (3), 

natural areas (3), and small-scale (but dense) agriculture (1). With the exception of the mixed 

objects (most often a mixture with urbanization), the largest detected objects correspond to 

infrastructures (airport, road construction…), followed by LSAIs (median of 276 and 165 ha 

respectively). 

v) w) x) 

y) 



Chapter 4: Results                         
   

141 
Y. Ngadi Scarpetta, 2024. Detection and characterization of LSAIs from EO data 

 

 

Figure 4.9:Box plots of the size of detected objects per land use type and study region versus their area. The 
number of observations in each class is shown in blue.  

In the agriculturally intensive SR region, about half of the 58 detections correspond to LSAIs 

(25) (some of which are not in the field database) (subplots g-o of Figure 4.8), followed by 

wetlands (this category also includes floodplains, see 2.3.3.1) (23) (subplots v-x of Figure 

4.8). The remaining objects correspond to mixed objects (10). In this region, and with the 

exception of the mixed objects (often related to agricultural activities within floodplains), the 

largest objects are related to LSAIs (median = 274 ha), followed by wetlands/floodplains 

(median = 142 ha). 

Now that the major hotspots of change have been extracted, the next question is to identify 

the major driver of change behind them. For this purpose, several object-based discriminative 

features were computed in an attempt to better distinguish LSAI from other land dynamics, in 

particular from wetlands/floodplains. These are presented in the next section. 

4.5.2.2 Spectro-temporal features 

The discriminative power of various spectral, textural, and structural object-based features is 

evaluated in the following sections. 

Pairwise scatter plots and distributions of each object-based calculated feature per LULC class 

are shown in Figure 4.10, separately for the Niayes (a) and the Senegal River region (b).   
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Figure 4.10:  Pairwise scatterplots and univariate distributions (diagonal) of the spectro-temporal variables 
aggregated at the object-level, per LULC class for a) the Niayes, and b) the SR: the BFASTm-L2 magnitude of 
change, the time series shape dissimilarity, the ratio of the 3-year NDVI average before and after the detected 
change, and the NDBAI 25th percentile. 

 

b) 

a) 
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From Figure 4.10, several findings can be drawn. The first is that the changes induced by 

LSAIs are particularly similar to those induced by wetlands. While LSAIs can be 

distinguished from wetlands in the Niayes, this is hardly the case in the SR. In the Niayes, 

LSAIs are well separated from wetlands by magnitude of change alone, with magnitudes above 

those induced by wetlands (~4000 vs. ~3000). In the SR, the opposite is true, with LSAI-

induced magnitudes (although higher than in the Niayes) below those induced by wetlands 

and especially floodplains (~6000 vs. ~8000 and 10000, respectively). Second, the 

dissimilarity and NDVI ratio metrics allow good differentiation of biomass removal 

anthropogenic drivers (mines, infrastructure development, urbanization) from wetlands and 

LSAIs. Third, while the 25th percentile NDBAI is particularly efficient at discriminating 

wetlands in the Niayes (mostly mangrove type), it is less efficient in the SR where wetlands 

are mostly herbaceous (marshes). However, in this region, the NDBAI-based variable is useful 

in discriminating some of the induced changes in the floodplains. 

In addition to these spectral variables, efforts were placed on the identification of textural and 

structural features that may be helpful in the discrimination of LSAIs. These are presented in 

the next section. 

4.5.2.3 Textural and structural features 

4.5.2.3.1 Landsat NDMI composites 

To extract textural and structural features, the first step was to select the best image, i.e. 

the image with the highest contrast between the detected object and its surroundings, which 

best represents the growing season. For this, the 2019-2021 NDMI images were first averaged 

on a monthly basis (thus obtaining 12 monthly averaged images). Then,  a 3-month rolling 

average was applied. The image with the highest contrast was then selected. For illustration, 

the 3-year monthly NDMI average for February for one of the hotspot of chage detected in the 

Niayes (Figure 4.11.a) is compared with the 3-month rolling average (Figure 4.11.b). 

 

Figure 4.11:NDMI monthly means for February based on 2019-2021 LANDSAT data  (normalized between 0-255). 
a) 3-year monthly mean; b) 3-year 3-month rolling mean.  

 

b a 
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As can be seen in Figure 4.11, the 3-month rolling average (b) gives a better picture of LSAI 

during the growing season than the 3-year monthly average (a). These composite NDMI-based 

images were therefore automatically selected and used as the basis for texture and structur 

calculations. Figure 4.12 gives an overview of the obtained NDMI composite images for the 

same sample of various types of changes shown in Figure 4.8. As one can see, this 

compositing and selection method allows to obtain images where LSAIs and agricultural plots 

are well contrasted (subplots a-o of Figure 4.12). 

 

   

  
 

   

   

a) b) c) 

g) h) i) 

j) k) l) 

d) e) f) 
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Figure 4.12: NDMI  Landsat-based 3-year composites (100 x 100 pixels), centered at the hotspot of change, for 
different LULC changes in the Niayes and SR. a-o: LSAI, p: airport (INFR), q: mining (MIN), r: urbanization (URB), 
s: road contruction (INFR), t: natural change (NAT), u-w: wetland (WET), x: floodplain (FLOOD) y: smallholding 
agriculture (SA). The light red masks indicate the MODIS-based hotspot of change. 

p) q) r) 

s) t) u) 

v) w) x) 

m n) o) 

y) 
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4.5.2.3.2 Textural features 

As mentioned above, the texture features were computed on the NDMI composites. A first 

observation from Figure 4.12 is that the spatial texture observed within the areas of change 

(in red) is very variable between the different cases, as the plot size, plot shape, spatial 

arrangement of the plots (including the width between plots), and contrast to the immediate 

surroundings are very different for each case. As such, there is no clear common textural 

feature that emerges to distinguish these objects from others related to other drivers of change 

(subplots p-x in Figure 4.12). This observation is reflected in the distributions of the 14 

Haralick's textures presented in Appendix 4.A (the Niayes) and B (the SR region) per type of 

LULC change driver. It can be seen that the separability between the different classes based 

on the textural features is low, especially between LSAI and WET. The Sum of Average 

(feature #6) is the feature that best separates the two classes in both regions, but there is still 

a significant overlap. Therefore, these features are not included in the clustering step. 

4.5.2.3.3 Structural features 

As for the textures, the structural features were extracted using the NDMI 3-month rolling 

averaged Landsat composites as a basis. Images were first pre-processed to optimize the 

image segmentation (see Section 3.2.2.2). The segmented images obtained (after image 

htresholding, see 4.4.3.4.2) for the samples presented in Figure 4.8 and 12 are shown in 

Figure 4.13. 

   

   

a) b) c) 

d) e) f) 
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Figure 4.13: Segmentations (after image thresholding) obtained using the NDMI composites shown in Figure 12. 
Red polygons and cyan lines correspond to the detected and selected polygons/lines using the contour method and 
lsd algorithm respectively as described in section 2.3.3.2. 

Figure 4.13 shows that objects retrieved from LSAI-related imagery (subplots a to o) are 

overall less complex, with more geometric shapes, than those retrieved from imagery with 

other LULC types. This is truer for larger LSAIs in the SR (subplots g to o) than in the Niayes 

(subplots a to f). The more complex objects are obtained in locations where the LSAI parcel 

arrangement and size are not uniform (cases n and o), or where there is high within-field 

heterogeneity (crop type: case b). The contour-based method is overall efficient for detection 

of rectangular and circular LSAI plots. The evaluation of the lsd-based method used to detect 

lines is visually more difficult (note: only lines within the hotspot of change are retained). This 

is more easily done using the univariate distributions of the three calculated structural metrics 

shown in Figure 4.14, namely the cnt counter (i.e., the number of rectangular polygons/circles), 

the line counter (i.e., a number related to the number of parallel/perpendicular lines), and the 

geom index (an index that combines the cnt counter and the line counter, see 2.3.3.2). The 

distributions in Figure 4.14, show that in both regions, LSAIs have higher structural metric 

values than the other types of landscape objects. Overall, the combined metric, i.e., the geom 

index, is more efficient in differentiating LSAIs in the SR region than in the Niayes, especially 

from wetlands (see Appendix 4.C). As noted above, the contribution of the contour-based 

method is higher in the SR than in the Niayes, where the lsd-based method is more efficient.  

 

 

v) w) x) 

y) 
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Figure 4.14: Univariate distributions of three structural features in the Niayes (left) and the SR region (right): 1: cnt 
counter, the number of square angles and circles detected using the contour method; 2: line counter, the number 
of parrallel lines and squares angles detected using the lsd algorithm, 3: logarithmic variable combining both: geom 
index. 

As observed, the structural features have a high discriminative power in some regions. 

However, due to their sensitivity to different parameters (i.e., preprocessing and detection 

methods), they are not included in the clustering step.  
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4.5.3 Clustering of change hotspots 

Following the feature analysis performed in the previous section, a K-means clustering of the 

object based spectral features was performed for each region independently. For each region, 

the best partitioning (k value) was identified using the Silhouette metric as described in Section 

3.3. Silhouette values for each clustering from k=2 to k=10 are shown in Appendix 4.D. 

4.5.3.1 The Niayes 

Figure 4.15 shows the partitioning of the 72 hotspots using k=5 in the Niayes region. This 

number is less than the total number of hotspots found (81), because of the unavailability of 

Landsat Tier1 images for some polygons. The 9 lost polygons belong mainly to the URB and 

WT classes. The overall silhouette width obtained was 0.5, indicating a reasonably good 

clustering overall. 

 

Figure 4.15:K-means clusters (applied to the extracted hotspots) obtained in the Niayes region with k=5. 

The composition of each cluster is shown in Figure 4.16. The vegetation biomass removal 

LULC classes, i.e.: URB, MIN and INFR have been combined into a new class ANTH (for 

anthropogenic, in pink) for better clarity. In addition, a distinction was made for visually 

identified LSAIs that were not reported in the LSAI field database ("No-DB LSAIs"). These 

correspond to LSAIs that are active but were installed before 2003 (outside our change 

detection monitoring period) or have not been reported. 

 

Saloum delta 

Dakar 
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Figure 4.16: Barplots of the K-means cluster composition for the Niayes, with the x-axis the number of objects. 

Figure 4.16 indicates that the clustering of the spectro-temporal features in the Niayes allows 

a good differentiation of the wetlands (of mangrove type in the Saloum delta) and the 

vegetation removal anthropogenic drivers, represented by clusters 0 and 2, respectively. This 

is reflected by their high silhouette values (0.6 and 0.5 respectively, see Appendix 4.D). LSAIs 

(15 hotspots out of 72 are LSAIs) mainly belong to two clusters: cluster 1 (6 hotspots out of 

11) and cluster 3 (7 out of 9). Both have a Silhouette average of 0.3, indicating a high within-

class variability. WET objects within both clusters (in blue) are located near Dakar. These are 

different (less forested) from those found in the southern Saloum delta (cluster 0).  

To understand what makes up each cluster, a boxplot of each clusters against the object 

derived features is shown in Figure 4.17.  

 

Figure 4.17: Boxplot of clusters (x-axis) in the Niayes against original spectral-temporal variables  (one subplot per 
variable; values on y-axis). 
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Starting with the non-LSAI clusters (clusters 0 and 2), it can be seen that cluster 0 (wetlands) 

is mainly defined by very low NDBaI values (characteristic of covered soils), but also by high 

seasonal variability (i.e. high dissimilarity and NDVI ratio). The associated BFASTm-L2 

magnitudes are the lowest in the dataset. Cluster 2 (containing INFR, MIN and URB objects) 

is defined by the lowest NDVI values, indicating vegetation removal. This is supported by the 

highest NDBAI values, which are characteristic of bare soils. The changes observed within this 

cluster, which are among the highest-magnitude ones, are associated to very low dissimilarity 

values. 

LSAIs-related clusters (mostly clusters 1 and 3, but also cluster 4) share relatively high 

NDBaI and NDVI ratio values. Cluster 3 is different from the other two clusters in that it has 

extremely high dissimilarity values (the highest in the dataset) indicating a strong seasonnal 

change. Cluster 4 has the highest NDVI ratios with the lowest dissimilarity values, indicating 

non-seasonal positive changes, most likely in amplitude or gradual. Finally, cluster 1 

represents the one with the smallest magnitudes of change. 

4.5.3.2 The Senegal River (SR) region 

Figure 4.18 shows the partitioning of the 57 change hotspots using k=7 in the SR region. In 

this intensively agricultural region, the overall silhouette value obtained is 0.36 (Appendix 4.D), 

indicating an overall poor fit. The composition of each cluster is shown in Figure 4.19. As in 

the case of the Niayes study, a distinction was made between LSAI objects reported in the 

LSAI field database ("LSAI") and those visually identified as not ("No-DB LSAI"). 

In terms of cluster composition (Figure 4.19), and in contrast to the Niayes, there is only one 

very small pure class cluster, Cluster 3, with objects on the shore of Lake Guiers (which 

appears to be composed of wetlands). Regarding the other clusters, three are of particular 

interest as they cover most of the LSAIs: clusters 2 (12 objects out of 14), cluster 0 (7 objects 

out of 10) and cluster 6 (7 objects out of 11). As can be seen in Figure 4.18, cluster 2 is the 

cluster with the most overlap with the LSAI field database objects. Other LSAIs are detected 

that are not in the field database because they have a communal land tenure system despite 

their large size (these are part of a government project that has made large tracts of land 

available to small farmers, with communal irrigation systems). Cluster 0 is specific in the sense 

that it includes the only two detected objects that represent pivot irrigation structures (objects 

52 and 57), but also most of the objects in the floodplains that represent some agricultural 

activities (e.g., object 18 in Figure 4.8.n). Finally, cluster 6, the only of the three that has a 

good silhouette average (0.5 vs. 0.3), has predominantly objects within LSAIs, and some 

wetlands.   
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Besides these LSAIs- related clusters, two clusters mostly contain only WET/FLOOD objects: 

cluster 1 mostly constituted of FLOOD objects and cluster 5, mostly constituted of WET 

objects.   

 

Figure 4.18: K-means clusters (applied to the extracted hotspots) obtained in the SR region with k=7. 

 

 

Figure 4.19: Barplots of the K-means clusters composition for the SR, with the x-axis  representing the number of 
objects. 

For better understanding, boxplots of each cluster against the object-derived features are 

shown in Figure 4.20. In this region, the clusters most associated with LSAIs, i.e. clusters 2 

and 6, are mostly defined by very high NDVI ratios, very low magnitudes of change, and 

low NDBAI values. Compared to cluster 6 that is characterized by very high dissimilarity 

values, cluster 2 that contains most of the newest LSAIs is characterized by low dissimilarity 

values.  
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In the floodplains, the objects of change mostly belonging to clusters 0 and 1, are easily 

distinguished by their very high NDBAI and dissimilarity values. Compared to cluster 0, cluster 

1 is mainly differentiated by its very high magnitudes of change (highest in the dataset).  

Finally, remains clusters 3, 4 and 5. Cluster 5, mostly comprising wetlands (see above), has 

a strong seasonal variability, as indicated by its high magnitudes of change, high dissimilarity 

values and high NDVI ratios. Clusters 3 and 4 are characterized by very low NDVI ratios, 

suggesting vegetation removal. However, when looking at the NDBAI values, the drivers of 

change seem to be different: while the extremely low values of cluster 3 suggest submergence, 

the very high NDBAI values of cluster 4 suggest land degradation. 

 

Figure 4.20: Boxplot of clusters (x-axis) in the SR against original spectro-temporal variables  (one subplot per 
variable; normalized values on y-axis). 

4.5.4 Evaluation of the performance in detecting LSAIs 

As explained in Section 2.3.5, evaluating the detection performance of LSAIs can be difficult, 

even with the availability of a field database that is not perfect and likely incomplete. In this 

study the evaluation consisted of two steps. In the first step, the number of LSAIs detected, 

i.e. the number of change hotspots extracted using the BFASTm-L2 weighted magnitude map 

used alone, that overlap the LSAIs reported in the field database (i.e., those implemented or 

extended within the monitoring period), was counted. This is given by the percentage of the 

first branched arrow in Figure 4.21 a and b: 53% for the Niayes and only 24% for the SR.  

The second part of the evaluation is related to the discriminative power of the LSAIs with 

respect to other land dynamics when performing a K-means clustering using the 4 spectro-

temporal features . We want here to evaluate the precision of the "LSAI clusters": what is the 

probability of detecting a true LSAI when selecting these clusters? In this evaluation, we 

consider all the change hotspots visually identified as LSAI, even when not in the field database 
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("No-DB LSAI", in a burgundy color). The precision achieved for the LSAI-related clusters in 

the Niayes (clusters 1 and 3) was 65%, while in the SR it was 75% for the partition consisting 

of the combination of clusters 0, 2 and 6.  

 

 

Figure 4.21: Tracking the destination of LSAIs reported in the field database through the steps of change detection 
(+ image segmentation) (first column) and hotspot of change clustering (2nd column) for a): the Niayes and b): the 
SR region. Precision of the combined LSAI-related cluster is given in column 3.  Vertical arrows indicate the percent 
of LSAIs that were not detected. Multiple extracted hotspots of change may overlap the same LSAI, which explains 
why the sum of LSAI-related hotspots for the SR is greater than the number of DB LSAIs detected (10 vs. 9). 

4.6 DISCUSSION 

In this study, a three-step approach was implemented to detect and characterize LSAI-related 

LULC changes based on: i) BFASTm-L2 change detection on MODIS NDVI time series, ii) 

extraction of LULC change hotspots from a magnitude of change map weighted to highlight 

seasonal changes, and calculation of MODIS- and Landsat-based spectro-temporal,  textural 

and structural features, and iii) K-means clustering of the change hotspots based on their 

spectro-temporal features, and identification and characterization of the most LSAI-related 

clusters. Since the BFASTm-L2 magnitude of change is somewhat sensitive to vegetation 

cover, the approach was independently applied, but using the same parameters, to an 

a) 

b)) 
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extended region of the Niayes and another extended region of the Senegal River in the north, 

where a high presence of LSAIs prevails. This in order to not encompass multiple distinct 

ecoregions.  

4.6.1 Change detection and hotspot extraction 

The first two steps of the approach allowed the extraction of hotspots of change that showed 

significant seasonal variation. The hotspots were found to often overlay specific landscape 

objects and were found to be spatially coherent and meaningful despite having somewhat 

imprecise contours, mainly due to the application of the convex hull transformation (Figure 

4.8). Depending on the region, about one-fifth (Niayes) to one-half (SR) of the detected 

hotspots correspond to LSAI, demonstrating the ability of this approach to detect LSAI-related 

objects that have undergone multiple spatial expansions at different times, without the need to 

select specific satellite images for image segmentation, specific years for comparison, or the 

application of specific parameters. As a reminder, hotspots of change were extracted from a 

weighted magnitude of change map, which was intended to improve the highlighting of 

hotspots of change that included seasonal changes. While the use of this metric efficiently 

improved LSAI spatial contrast, particularly in the SR, where 60% of the objects had more than 

a 200% difference in magnitude between the object and its surrounding buffer, the results 

varied by region. In the SR, only 24% of the reported LSAIs were effectively detected, 

compared to 53% in the Niayes (Figure 4.9). While these numbers may seem very low at a 

first look, it is important to keep in mind that these detections were made in complex and high-

contrast regions where the target objects are relatively small, using the full MODIS NDVI SITS 

without the help of ancillary data or spatial filtering. In addition, the same parameters were kept 

for the two regions to keep the method as generic as possible.  

The differences in results can be attributed to several factors. First, the Niayes are more 

contrasted in terms of land dynamics, with LSAIs more dispersed across the landscape, while 

the SR is an intensively agricultural region, with LSAIs close to other high weighted magnitude 

of change objects.  In addition, a higher proportion of LSAIs in the SR are relatively small, with 

16% covering less than 50 ha, compared to 5% in the Niayes (Appendix 4.E). Second, the 

SR contains dynamic and unstable ecosystems, such as marsh-type wetlands and floodplains, 

that experience similar or greater rates of change, making it more difficult to extract between 

smaller objects. In contrast, the larger LSAIs, with the exception of pivots, are better detected. 

In the Niayes, half of the LSAIs are detected and extracted using the contour method, although 

challenges remain due to nearby areas of natural change of similar magnitude (forested areas) 

and cases where changes are not significant enough (some of these LSAIs are dedicated to 

plantations, others have changes that are not persistent in time (abandoned?)) to induce 
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substantial magnitudes or dissimilarities. Of course, there are some cases of inaccurate 

detection with BFASTm-L2, but these have not yet been quantified. Conversely, it was 

interesting to observe that some, albeit few, LSAIs were detected that were not originally 

included in the database. Therefore, conditions for effective LSAI detection with BFASTm-L2 

were defined: the analyzed region should ideally consist of a single ecoregion (since the image 

preprocessing (i.e. percentile contrast stretching) may prevent the detection of local changes 

when integrating the extreme values that may occur in other ecoregions) , the target change 

areas should be larger than 50 ha or far from unstable ecosystems, LSAIs should 

involve fast-growing crops or significant field preparation, and induced changes should 

be persistent for at least 3 years. 

4.6.2 Insight and characterization of the drivers of change  

Besides LSAIs induced LULC changes, other land dynamics were detected, justifying the need 

to better characterize the LULC changes. In the extended Niayes region, about one-third of 

the detections corresponded to mangrove-type wetlands, another third to anthropogenic 

drivers related to vegetation removal (including infrastructure development, urbanization, and 

mining), and about one-fifth to LSAIs. In the SR, about half of the changes are associated with 

marsh-type wetlands and floodplains, while the other half is associated with LSAIs. The 

exploratory analysis of the extracted hotspots of change aimed to identify common spectro-

temporal, textural, and structural features that may help distinguish the main drivers of change. 

These are discussed in the following sections.  

4.6.2.1 Spectro-temporal characterization 

Spectro-temporal features analyzed included: the BFASTm-L2 magnitude of change, the 

dissimilarity, the 3-year post-change/pre-change NDVI mean ratio, and the NDBAI 25th 

percentile. These individual features, through K-means clustering allow to differentiate 

particularly well mangrove-type wetlands and vegetation removal anthropogenic 

drivers of change: i.e. infrastructure development (airport, roads...), urbanization, mines 

(Figure 4.16). They also allow for the detection of subtle differences that exist within the same 

class. What we initially considered to be a single class, e.g. WET, in fact comprises several 

subclasses, clearly distinguishing forested wetlands (mangrove type, low magnitudes of 

change) from marsh type wetlands (higher and LSAIs similar magnitudes of change), 

floodplains (highest magnitudes of change), and even some cases of submergence. 

The main postulate of this study, based on (Ngadi Scarpetta et al., 2024) (submitted for 

publication), is that large and persistent anthropogenic LULC changes induce important 

seasonal changes that can be assessed by the dissimilarity metric. This was most evident in 

the Niayes, where many LSAIs induced very high dissimilarities (cluster 3, LOS/NOS seasonal 
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changes). The remaining LSAIs (primarily in cluster 1), despite containing pixels with high 

dissimilarities, have moderate values once aggregated at the object-level. Several factors 

explain this: 1) the inclusion of pixels from nearby change areas with very low dissimilarity 

values (e.g. road construction) or from areas with no change as a result of the convex hull 

transformation, 2) pixels within the object with a shifted detected change date (for which the 

Euclidean value is the largest, but not the dissimilarity value), 3) pixels with moderate 

dissimilarity values despite the observation of a clear visual seasonal change. This is the case 

for changes that mostly induce LOS (Length of Season) changes without significant NOS 

(Number of Seasons) changes (i.e. second crop cycle of small amplitude). In the SR, it was 

noteworthy that the most extensive LSAIs (belonging to cluster 2), implemented on nearly bare 

(very dry) soils, had some of the lowest object-based dissimilarity means (with the exception 

of LSAIs with pivot structures, which had the highest dissimilarity values). This phenomenon 

seemed applicable under tropical conditions as well (Ngadi Scarpetta et al., 2024)(submitted 

for publication) and warrants further investigation. Conversely, changes occurring within pre-

2003 existing LSAIs induced very high dissimilarity values (see Figure 4.20, cluster 6), 

allowing for differentiation from newly implemented LSAIs.  

Compared to the dissimilarity, we observed that the magnitudes of change were highly variable 

as a function of region: while LSAIs induced high magnitudes of change in the Niayes, they 

had relatively low values in the SR region compared to those induced by unstable ecosystems 

such as floodplains and marsh-type wetlands (see Figure 4.20, clusters 1 and 5). On the 

contrary, and as expected for arid regions, the NDVI ratios were relatively high for all the 

different cases. 

In summary, the combination of these 4 spectral features has good discriminative power for 

differentiating LSAIs. Since in both regions the LSAIs were distributed in 2 to 3 clusters, we 

evaluate the precision of a combined and unique cluster for LSAIs, which gives an indication 

of the probability of detecting a true LSAI when using these 4 object-based spectro-temporal 

features. Despite the simplicity of the approach, the precision ranged from 65% to 75%, and 

in both regions the false positives were mainly represented by marsh-type wetlands. In order 

to achieve more accurate results, the next two sections discuss the appropriateness of adding 

textural and structural features to the analysis to better differentiate LSAIs. 

4.6.2.2 Textural characterization 

In this study, global Haralick's texture features were extracted from the 3-year Landsat-based 

NDMI composites for each of the change objects. As can be seen in Figure 4.12, the LSAIs 

are generally well contrasted, demonstrating the suitability of the compositing and image 

selection methods. However, and in contrast to studies where textural features have been 
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successfully applied (Bey et al., 2020; Kuemmerle et al., 2009), the textural features extracted 

here showed a very low discriminative power between the drivers of LULC change (as 

observed in the distributions per type of driver in Appendices 4.A and 4.B). This is mainly 

explained by the large variability observed in plot size, plot separation width and within-field 

intensity, making it very difficult to find a discriminating LSAI-related textural feature. In 

addition, while the use of an automatic but variable hotspot footprint can have some 

advantages, as it allows to reduce a large part of the spectral information not related to the 

LSAIs, it is not without its limitations, as the number of plots within the footprint can vary greatly 

(e.g. subplots g and m in Figure 4.12). This may further hinder the use of textural features as 

discriminative features. The most useful textural feature was found to be the Sum of Average. 

In this study, wetland discrimination was found to be particularly difficult (again, echoing the 

results obtained with the spectro-temporal features). The use of local texture features 

computed at different window sizes could potentially lead to better results. However, the 

automaticity of the method could not be guaranteed, since the optimal window size would be 

different for different cases, as evidenced by the large variability in plot sizes observed. 

4.6.2.3 Structural characterization 

The last group of features to be assessed is the structural one. The main objective here was 

to find some metrics that could correlate with the geometric shapes very often observed in 

intensive agricultural landscapes as a result of mechanization (Tang et al., 2021; Vogels et al., 

2019; Yan and Roy, 2014). Two methods were tested: 1- based on the extraction of contours, 

2- based on the extraction of lines. In both cases, the number of square angles and circles 

(contour method) or parallel lines (line method) was calculated. In both cases, image 

preprocessing constitued a very important step, and the results were very sensitive to the 

different parameters used. Therefore, while we manually adjusted the parameters to values 

that worked best for both regions, we decided not to include these metrics in the unsupervised 

classification at this exploratory stage. Here we found that in both regions the LSAIs show 

indeed an overall high number of geometrical shapes, compared to other detected landscape 

objects (except, and as expected, for the URB class in the Niayes). The contour method 

performed particularly well in the SR region, allowing to discriminate LSAIs from wetlands (see 

Figure 4.14, Appendix 4.C). This was favored by the higher contrast objects and the larger 

size of the parcels. In the Niayes, the lower contrast and more heterogeneous parcels found 

(see Figure 4.14.b), in addition to the smaller and more "compact" fields observed, which do 

not allow the extraction of individual field parcels (as in Figure 4.14.g), lower the structural 

metric values. In addition, in this region, more geometric shapes were found in the wetlands 

due to what appears to be the many sandbanks found isolated in the mangrove wetlands. 
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Adding these features to the unsupervised classification would therefore lower the precision of 

the clustering to LSAIs in the Niayes, while greatly improving that in the SR region. 

4.6.3 Limitations, recommendations and perspectives 

The proposed approach to automatically detect LULC changes potentially related to LSAIs has 

shown to be promising. The work presented here is mainly exploratory, and as such has 

certainly avenues worth exploring.   

One key area for consideration is the scalability and transferability of the approach to different 

regions. While designed for large-scale applicability, our findings emphasize the importance of 

performing the spatial analysis in an area that does not encompass different ecoregions due 

to variations in change magnitudes and change characteristics. Extending the testing to 

different regions, particularly tropical ones, represents a logical progression, although 

challenges in acquiring sufficient high-quality temporal data may arise due to cloud cover. 

Other avenues to explore are related to the metrics of change used. The main hypothesis 

tested in this study is that LULC changes associated with LSAI should mainly affect the 

seasonality of the time series, quantified by the dissimilarity metric integrated in the weighted 

change map and in the clustering. While this was indeed observed in the Niayes, the semi-arid 

region of the Senegal River, the most representative cluster of LSAIs shows very low 

dissimilarity values compared to other land dynamics, especially those related to wetlands and 

floodplains. This is interesting because the induced change in the time series pattern can be 

significant. This has also been observed in subtropical environments, with significant changes 

(but in the opposite direction) likely related to field preparation (Ngadi Scarpetta et al., 2024). 

While these changes are very large, with significant changes in amplitude, they are often 

accompanied by changes in length of season (LOS), to which the dissimilarity metric is less 

sensitive. Therefore, the exploration of new dissimilarity metrics that are more sensitive to 

changes in LOS is desirable. This could also potentially improve change detection at the pixel 

level. Continuing with the metrics of change, the exploration of new metrics may also be of 

interest, particularly the inclusion of temporal metrics that allow characterization of the rate, 

distribution, and frequency with which some changes occur at the object level. This could 

potentially better characterize LSAIs from other land use systems, such as smallholder 

agriculture. 

When considering spatial-related features, our study suggests that incorporating structural 

features derived from high spatial resolution satellite imagery improves spatial analysis, as 

observed in the semi-arid Senegal River region. Simple features, such as square angles and 

circles, effectively distinguished LSAIs from wetlands. Although the proposed approach is 

rudimentary, its flexibility (no search for perfect shapes) and simplicity are advantages. 
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Optimizing automatically the image preprocessing (although no hard thresholds were applied) 

and evaluating when the integration of structural features is beneficial (as there is a large 

variability in the spatial footprints exhibited by LSAIs) represent areas for refinement.  

Finally, the question of applying the fully unsupervised approach to new regions remains. 

Although time consuming, identification of clusters associated with LSAIs may involve visual 

inspection. This should be feasible as the overall approach was thought to provide the lowest 

but still relevant number of hotspots of change and clusters. This was done to avoid 

complicating the spatial analysis. In addition, alternative clustering algorithms could be tested 

to better handle the overlapping multivariate distributions observed in this study. For example, 

hierarchical clustering algorithms, which allow a better evaluation of the similarity of clusters, 

would be interesting to quickly identify the most related clusters. 

The proposed methodology for automated detection of land use and land cover (LULC) 

changes potentially associated with LSAI shows promise. This study is primarily exploratory 

and suggests avenues for further investigation. 

4.7 CONCLUSIONS 

In this exploratory study, an unsupervised LULC change detection approach is proposed, 

focusing on the detection of a specific land use system (LSAI for Large Scale Agricultural 

Investment) in two contrasting regions of Senegal. The method, which aims to be fast and 

generic, is based on the detection of pattern changes within long and dense MODIS NDVI time 

series using the BFASTm-L2 algorithm, followed by the extraction of change hotspots from a 

change magnitude map weighted to highlight seasonal changes. The extracted hotspots are 

further analyzed and characterized using spectrao-temporal (mostly MODIS time series 

change metrics) and Landsat-based textural (Haralick's features) and structural (based on 

contour analysis and lsd algorithms) features. In each study region, LSAI-related K-means 

clusters were identified and characterized. The precision (to LSAIs) of the cluster resulting from 

merging all clusters containing LSAIs, , ranged from 65% to 75%.Although still at an 

exploratory stage, the integration of structural features to discriminate LSAIs shows promise, 

and suggests many avenues for further investigation and method improvement. 

In conclusion, this approach provides valuable insights into LULC changes associated with 

LSAI and offers potential for further methodological improvements. This study was conducted 

with the specific purpose of assisting concerned citizens and stakeholders, or LSLA monitoring 

initiatives such as the Land Matrix (landmatrix.org),  in identifying significant LULC changes 

that could potentially be attributed to LSAI. This approach serves the dual purpose of 
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identifying regions of particular concern and facilitating the coordination of future field 

campaigns, improving transparency, and paving the way for impact analysis. 
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4.8 APPENDICES 
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Pairwise scatterplots and univariate distributions of the Haralick’s textural features for the Niayes:  1: ASM, 2: 
contrast, 3: correlation, 4: sum of square variance, 5: Inverse Difference Moment, 6 : Sum Average, 7: Sum 
Variance, 8: Sum Entropy,  9: Entropy, 10: Difference Variance, 11: Difference Entropy, 12: Information1, 13: 
Information 2, 14: Maximal Correlation Coefficient. 
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Appendix 4.B 
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Pairwise scatterplots and univariate distributions of the Haralick’s textural features for the SR region:  1: ASM, 2: 
contrast, 3: correlation, 4: sum of square variance, 5: Inverse Difference Moment, 6 : Sum Average, 7: Sum 
Variance, 8: Sum Entropy,  9: Entropy, 10: Difference Variance, 11: Difference Entropy, 12: Information1, 13: 
Information 2, 14: Maximal Correlation Coefficient. 
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Appendix 4.C 

 

 

 

Classification of the hotspots of chanbe by their geom index value for a) the Niayes and b) the SR. In both maps 5 
classes were defined using a quantile classification. LSAIs reported in the field database are shown in cyan. 
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Appendix 4.D 

 

 

 

  

 

Silhouette plots: a) the Niayes, b) the SR region. Each cluster is plotted as a horizontal bar plot, with one bar for 
each object. Bar values near 1 indicate a good fit, while values near zero and below indicate a very poor fit with a 
high probability of misclassification. The overall average fit is indicated by the dashed red bar. The cluster size and 
the Silhouette average of each cluster are shown  on the right. 
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Appendix 4.E 

 

 

Hotspot size distribution sfor:  a) the Niayes, and b) the SR region.  
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5 DISCUSSION 

This work has been driven primarily by the need for automated monitoring of specific land uses 

on a large scale for more effective resource management and better informed decision making. 

The question addressed in this research specifically concerns the detection of LSAI (Large-

Scale Agricultural Investments) in tropical areas, as these systems are of strategic importance 

in terms of territorial development and socio-economic and environmental impacts, but remain 

poorly understood. The lack of reliable and up-to-date data on these systems at the national 

scale, due to the difficulty of collection, makes Earth observation data particularly well suited 

to address this issue. Since LSAIs are complex land use systems with many different forms (in 

terms of crops, environment, practices...), the focus was on the development of an automatic, 

robust (i.e. generic) and interpretable method to detect LSAIs at the regional scale. Therefore, 

the main question we addressed in this work was: Can we automatically detect emerging 

large-scale agricultural investments (LSAIs) at a large scale without the need for a 

training dataset (i.e., in an unsupervised manner)?  

To address this overarching question, we have developed a conceptual model that links remote 

sensing features (spectro-temporal and spatial) to the characteristics of the land systems 

under study. Our strategy revolves around three sub-objectives, each of which is described in 

detail in the form of scientific papers in Chapters 2 to 4 of this document. 

Chapter 2 (focusing on the first sub-objective) focused on the development of the BFASTm-L2 

change detection algorithm. This algorithm is designed to automatically detect significant 

pattern changes, primarily seasonal changes, in the MODIS 250-m NDVI time series that 

may be associated with potential anthropogenic changes. We assumed that newly 

implemented LSAIs are causing significant and persistent changes in vegetation composition 

and dynamics. Key requirements for the algorithm included unsupervised operation (i.e. 

independent of external data), efficiency for large-scale application (i.e. fast), sensitivity to 

seasonal changes, and robustness with minimal tunable parameters. In addition, the method 

had to avoid relying on rigid thresholds for either the magnitude of change or its direction (i.e., 

positive/negative change) to account for variation across ecoregions (e.g., arid vs. tropical 

humid conditions). 

Chapter 3 (centered on the second sub-objective) aims to understand the land use and land 

cover (LULC) changes likely to be induced by climatic, natural, anthropogenic (non-

agricultural) and agricultural factors (including LSAIs) at the national scale. This step is 

critical for distinguishing previously detected LULC changes associated with LSAIs. The 

proposed approach is grounded in the assumption that different drivers of LULC change exhibit 
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distinct spectro-temporal signatures in terms of time series types of change. Our 

strategy involved identifying three spectro-temporal features having contrasting sensitivities to 

different time series change types. Combining these features in an RGB composite map 

allowed highlighting different LULC changes with different signatures of change. By 

considering the area and shape of the observed changes, they could be linked to different 

drivers of LULC change. 

The third and final sub-objective, outlined in Chapter 4, capitalized on the fact that LSAIs 

induce large spatial changes, with large BFASTm-L2 change magnitudes that are combined 

to a shape dissimilarity metric to take into account seasonal changes, and particular lanscape 

organization. Using the change map derived from BFASTm-L2, the aim was to identify and 

analyze hotspots of change, integrating approaches and insights from the previous two 

sub-objectives, to pinpoint areas potentially associated with Large Scale Agricultural 

Investment (LSAI). Spectro-temporal evidence from 250m MODIS time series and 

structural/textural features from 30m Landsat imagery specifically computed from these 

change hotspots were used. Although discriminative in some regions, structural features 

were excluded from the unsupervised classification analysis to maintain methodological 

robustness and genericity, as not all LSAIs have distinctive geometric shapes (e.g., see the 

example of large rubber plantations in Laos in Appendix B.1, which were tested but not 

included in the research as a ground truth database was not available).The detection approach 

was independently tested on two contrasting sub-national regions in Senegal (arid and semi-

tropical) with different types of LSAIs. 

These three sub-objectives are in line with the framework proposed by Zhu et al. (2022) for 

characterizing land change, which includes five facets of change, including Where (i.e., the 

location of change), When (i.e., the date of change), What (i.e., what is changing), How (i.e., 

the metrics of change), and Why (i.e., the driver of change). This discussion section 

summarizes the key findings through the lens of these facets of change, beginning with the 

Where and When facets and then delving into the subsequent How and Why facets that follow. 

5.1 KEY FINDINGS 

5.1.1 Where and When?  
Chapter 2 enabled contributions to the Where and When facets of change with the 

development of BFASTm-L2, a fast and unsupervised change detection algorithm focused on 

identifying the breakpoint associated with the most significant spectro-temporal (i.e., mostly 

seasonal) change within long and dense MODIS 250-m NDVI time series. The underlying 

assumption was that newly implemented LSAIs induce significant and persistent changes in 
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land surface vegetation composition that manifest as pattern (i.e. shape) changes within VI 

time series. In the process, we made three critical observations about existing algorithms: 

• First, statistical change detection algorithms that emphasize speed often do not 

perform seasonal decomposition of time series, leaving ambiguity about the nature of 

the change being detected - whether it is abrupt, gradual, or seasonal, and if seasonal, 

how it affects seasonal components such as amplitude, length of season (LOS), or 

number of seasons (NOS). This makes it difficult to understand the land dynamics 

behind the detected change.  

• Second, many algorithms tend to evaluate the magnitude of detected breakpoints 

based on deviations from the mean, which is appropriate for detecting abrupt or gradual 

changes but less effective for quantifying seasonal changes.  

• Third, selection of the most significant breakpoint among multiple breakpoints, which is 

not always the largest abrupt change, is often desired but most of the time not provided. 

The BFASTm-L2 change detection algorithm was developed in response to these challenges 

and compared with widely used algorithms (BFAST Lite, BFAST monitor, EWMACD) selected 

from the literature specifically for their speed and, where applicable, sensitivity to seasonal 

changes. Derived from BFAST monitor, BFASTm-L2 uses the Euclidean distance as the 

magnitude of change calculated between the two 3-year samples of the time series located on 

each side of the breakpoint detected by BFAST monitor. This distance has been found to be 

sensitive to pattern changes and in particular to NOS changes. It therefore allows the largest 

and most persistent (over three years) changes to be selected from multiple detected 

breakpoints. 

Key findings from these comparisons included BFASTm-L2's ability to spatially 

highlight known LSAIs by mapping the magnitude of change (Euclidean distance), 

confirming that LSAI-induced LULC changes primarily affect the seasonal component 

(but not only, as explained in Box 5.1.1). In addition, the observed mapping differences 

between the tested change detection algorithms were for some algorithms  (BFAST Lite) due 

to differences in change magnitude rather than inaccurate temporal detection, confirming that 

the change magnitude calculated as the deviation from the mean may be inappropriate for 

quantifying seasonal change. 

Having successfully addressed Research Question 1.1 - What method allows detection 

and selection of the breakpoint that causes the greatest pattern change in long and 

dense NDVI time series - the focus shifted to understanding the likelihood of detecting LULC 

changes driven by LULC drivers other than LSAI. This inquiry required a deeper understanding 

of the relationships between the major drivers of LULC change, such as climate variability, 
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natural factors, anthropogenic influences (including LSAIs), and the resulting time series types 

of change. Chapter 3 dealt with this aspect, and key results are presented in the following 

section.  

 

 

5.1.2 How and Why? 

5.1.2.1 The change metric RGB composite map: a useful visualization tool to gain insight into the main 

land dynamics at the national scale 

In Chapter 2, BFASTm-L2, a change detection algorithm was proposed to detect and map at 

the national scale of Senegal the main LULC changes that occurred during the monitoring 

period (2003-2018). This map, based on the magnitude of change, is presented in Chapter 3. 

While useful, this map alone is not sufficient to disentangle LSAI from other drivers of LULC 

change. In order to gain some insight into the drivers of LULC change behind the BFASTm-L2 

detected changes, we have assumed here that different drivers of LULC change (climatic, 

natural, anthropogenic non-agricultural and agricultural) have different signatures in terms of 

time series types of change (i.e. abrupt, gradual or seasonal: amplitude, NOS and LOS). 

Therefore, our main objective was to find a set of spectro-temporal metrics that allow 

Box 5.1.1  – BFASTm-L2: Implications of detecting a unique breakpoint for LSAI 

detection 

BFASTm-L2 locates the breakpoint associated with the most significant pattern change 

(evaluated over a limited 3-year period). While this allows for the identification of 

persistent seasonal changes, it favors the detection of significant abrupt changes when 

present, a likely situation in real long time series. What are the implications of these 

findings?  Although Chapter 2 showed that LSAIs in the Niayes region do not induce 

large abrupt changes overall, this may not be the case in other regions. For example, 

abrupt changes are expected in tropical regions due to field preparation (i.e. forest 

clearing), or in (semi-)arid regions due to sudden increases in biomass productivity. 

However, in some cases it may be related to large-scale land dynamics other than LSAIs, 

such as large smallholder deforestation fronts that may later be replaced by LSAIs (Arvor 

et al., 2012; Graesser et al., 2018). There, the following spatial analysis will confirm or 

not the presence of LSAIs based on the particular spatial arrangement and composition 

of this form of intensive agriculture. 
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characterizing the detected change in terms of the types of change involved, thus 

contributing to the How, and at the same time to the Why facets of change. 

The existing literature provides limited insights into the predominant types of change induced 

by the main drivers. As discussed in Section 1.3.3, the distinction between different drivers of 

change often relies on correlations with meteorological data, or on third-party data which 

affects the transferability of the approach. In Chapter 3, we hypothesized that : 

• Climate variability and natural changes mainly affect the amplitude of the time series 

through different meteorological events, resulting in small expected changes in NOS or 

LOS over a 3-year period (in the absence of extreme events). Gradual natural changes 

were expected to induce mostly gradual changes without significant changes in the 

seasonal component; 

• Anthropogenic non-agricultural changes were mostly expected to either remove 

vegetation biomass (i.e. urbanization, mining), or reduce it without subsequently 

affecting the seasonality of the time series (infrastructure construction). 

• Finally, LULC changes associated with large-scale agriculture are mostly expected to 

affect the seasonality component of the time series, but also, as noted in Box 5.1.1, to 

induce abrupt changes depending on the environmental conditions of implementation. 

To test these hypotheses, we first assessed the types of change detected by BFASTm-L2 

through visual analysis of selected time series representing different known types of change 

(punctual study cases) of MODIS NDVI and TRMM pluviometry. In addition, we identified three 

metrics to improve discrimination between different types of detected change: a time series 

shape dissimilarity metric, an NDVI post/pre-change ratio, and the BFASTm-L2 magnitude of 

change. These metrics were chosen for their complementary sensitivities to different types of 

change. A sensitivity analysis using a synthetic dataset of time series with different types and 

intensities of change showed that: 

• The dissimilarity metric was highly sensitive to NOS and less sensitive to LOS 

changes;  

• In contrast, the NDVI ratio showed high sensitivity to abrupt changes and, surprisingly, 

higher absolute values for LOS changes compared to amplitude or trend changes, and 

lower sensitivity to NOS. This metric also provided information on the direction of 

change, which helped to discriminate between agents of biomass removal;  

• The magnitude of change, as introduced in Chapter 2, is known to be sensitive to 

abrupt and NOS changes.  
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As one can see, these three metrics together allow to gain insight into the different types 

(and directions) of change involved behind a detected change, and help to address 

Research Question 2.1: Which time-series derived change metrics may be useful in 

distinguishing the different time-series types of change? 

In a subsequent step, these three metrics were combined into an RGB composite map, 

effectively highlighting different LULC changes. By considering the area and shape of the 

observed changes, it was possible to link different signatures of change (as indicated by the 

different colors of the RGB map) to different drivers of LULC change (i.e., climatic, natural, 

anthropogenic non-agricultural, and agricultural). In particular, these metrics, once combined 

and mapped, highlighted LSAI not only in the Niayes, but also in another ecoregion: the 

Senegal River valley. This showed that LSAI-induced changes are detectable in different 

regions and share common characteristics, including higher dissimilarity and 

magnitude values compared to other land dynamics. A caveat must be made here. While 

a mixture of seasonal and/or abrupt changes is often observed, in some rare cases neither is 

present. This is the case of the LSAIs located in the Ferlo region and dedicated almost 

exclusively to the production of gum arabic.  These are slow-growing plantations native to the 

Sahelian regions, planted over large areas that often appear sparse over time. They do not 

show significant seasonal variations during the first years of plantation.  However, some of 

them show a positive NDVI ratio, but most of them are not intense and uniform enough across 

the field to be detected. Overall, the analysis of the RGB composite map performed in Chapter 

3 allowed to address Research Question 2.2: Are the main drivers of LULC change (i.e. 

climate variability, anthropogenic non-agricultural change, agricultural change, and 

natural change) more likely to cause a particular type of change in NDVI time series? 
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Box 5.1.2.– Composite RGB map: the case of the smallholder agriculture 

Despite the perception of limited change in the national composite RGB map (i.e., green 

pixels), it is important to note that much of the country's agriculture is small-scale and 

would be expected to produce seasonal changes due to land surface change in 

vegetation composition.  Several factors contribute to the apparent underrepresentation 

of these changes on the map. First, the use of coarse spatial resolution data (250 m) 

focused on detecting large-scale agricultural activities, making it less likely to capture 

changes occurring at a scale smaller than the pixel size (~6 ha), such as those induced 

by numerous small fields contributing to a mixed signal. Second, the map statistics (for 

image stretching and visualization purposes) are calculated for the entire national 

territory, which may mask local variations unless they are large and intense. Finally, 

due to the low-intensity agricultural practices (with different crops, crop rotations) and 

the fact that in most cases the fields have been used for the same activity long before 

our monitoring period, the change associated with a change in practices, if detected, is 

of small magnitude. Exceptions may occur in cases of rapid change in contiguous 

areas, such as the observed agricultural expansion frontiers in forested regions (orange 

pixels in snapshot b)). 

 

Legend: Pioneer agricultural frontiers in the south of Senegal: a- Google Earth snapshot, b- RGB 
composite map snapshot based on BFASTm-L2 detected change in 2003-2018 MODIS NDVI 
SITS. Green pixels indicate small magnitude changes. Orange and yellow pixels indicate high 
magnitudes of change with either a decrease in NDVI average (orange pixels) or an increase in 
NDVI average (yellow pixels)  

a 

b 
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5.1.2.2 How well can LSAI be distinguished from other land dynamics? 

Chapter 3 provided valuable insights into the change signatures induced by major drivers of 

LULC change, using a combination of three spectro-temporal metrics. In particular, the RGB 

composite map showed similar change signatures (represented by pale pinks to whites, 

indicating higher dissimilarity and magnitude values) for most LSAIs across two different 

ecoregions. This finding confirmed the viability of unsupervised LSAI detection. The focus of 

the research then shifted to developing a method for automatically extracting and 

classifying hotspots of change potentially associated with LSAIs through the 

integration of spatial analysis, thus contributing to the How and Why facets of change.  This 

was explored in Chapter 4,  in two distinct steps.  

In the first step we sought to identify hotspots of change from a magnitude of change 

map derived from BFASTm-L2 for subsequent analysis. This required an image in which LSAIs 

stand out from their surroundings. Building on the results of Chapter 3, we introduced a change 

map derived from BFASTm-L2 change magnitude weighted by dissimilarity in Chapter 4. This 

weighting was intended to highlight pixels showing changes in the shape of the time series 

(i.e., NOS and LOS) (note: this metric was not used in Chapter 2 because the detection of 

abrupt changes was also desired in that step of the overall approach, see Box 5.1.1). Spatial 

analyses were then performed for two different ecoregions, the Niayes (semi-arid and 

subtropical dry) and the Senegal River (semi-arid), independently to account for potential 

masking of local variation by image preprocessing. The resulting weighted magnitude of 

change map significantly improved the spatial highlighting of LSAIs, indicating that LSAIs in 

both regions have high weighted magnitudes that allow them to be distinguished from 

other land dynamics, particularly in the Niayes region. From here, hotspots of change were 

then extracted from the weighted magnitude-based change map using contour analysis. While 

the spatial analysis was performed independently for each region, the contour analysis 

parameters were kept consistent to ensure the general applicability of the LSAI detection 

approach. The extracted hotspots showed spatial coherence. Depending on the region, about 

half (Niayes) to a quarter (Senegal River region) of the LSAIs reported in the field database 

were considered "detectable" by this method, addressing Research question 3.1: How can 

we automatically extract potential LSAI related hotspots of change? There are three main 

reasons for this underreporting. First, the Senegal River region has a significant number of 

small LSAIs, making their spatial identification difficult. Second, the presence of dynamic 

ecosystems, such as marsh-like wetlands and floodplains, in close proximity makes it difficult 

to detect changes in smaller objects. Finally, there are cases where changes in LSAIs are not 

substantial enough-some dedicated to plantations and others with changes that do not persist 

over time (abandoned?) -resulting in a lack of significant magnitudes or dissimilarities. 
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In the second step, we analyzed and classified the extracted hotspots, mainly to assess 

how well LSAIs can be unsupervised distinguished from other land dynamics and 

characterized them. This step mainly used evidence from spectro-temporal (from MODI NDVI 

SITS), structural and textural features computed from the change hotspots, applying 

unsupervised classification (K-means) to detect similar groups of objects. Structural and 

textural features were computed from more recent, higher spatial resolution Landsat imagery 

(from the end of the monitoring period) to assess post-change land use. Tests performed on 

the two different regions, show that structural features have varying discriminative power in 

function of the region analyzed. Therefore, structural features were excluded from the 

unsupervised classification analysis to maintain methodological robustness and genericity. In 

addition, it should be noted that not all LSAIs have distinctive geometric shapes (e.g., see the 

example of large rubber plantations in Laos in Appendix B.1). On the other hand, since texture 

features (Haralick's features) were found to be not discriminative enough compared to other 

studies, they were also excluded from the unsupervised classification. Two main reasons were 

found to explain these results. First, the automatically extracted hotspot footprints often 

included external areas unrelated to the LSAIs (i.e., areas that underwent changes likely 

related to field preparation, infrastructure construction, but also due to image preprocessing 

prior to segmentation), which significantly affected the calculated textures, especially when the 

LSAIs were small. Second, the analyzed LSAIs showed considerable spatial variability in terms 

of field plot shapes, sizes, and widths between plots, complicating the use of common textural 

features to identify LSAIs. 

Among the primary findings, we observed a distinct clustering of LSAIs (composed of the three 

previously proposed spectro-temporal features and the Landsat-based NDBaI, which allows 

the assessment of post-change land use), typically represented by 1-2 clusters within each 

region. However, the characteristics associated with LSAIs are different for the two regions 

studied. While LSAIs in the Niayes are mostly characterized by very large dissimilarities and 

high magnitudes of change, LSAIs in the SR Valley are mostly characterized by relatively low 

magnitudes of change and dissimilarity (but very high NDVI ratios). This, in addition to 

answering Research Question 3.2 (What spectro-temporal and spatial features are 

common to LSAIs that may distinguish them from other land dynamics), confirms the 

need for analysis at the ecoregion level. Another important finding was that structural features 

(i.e., the proposed structural index related to the number of parallel lines, squares, angles, and 

circles found) to discriminate LSAIs show promise and could be used to refine the identification 

of LSAI-related clusters in specific regions. Finally, we found that the most closely related land 

dynamics, in terms of signatures of change, in both regions are those represented by marsh-

type wetlands. 
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5.2 SYNTHESIS, RECOMMENDATIONS AND PERSPECTIVES 

5.2.1 So, what do we detect? 
In this thesis, we developed an algorithm (BFASTm-L2) that detects and selects the most 

significant (in terms of the importance of the change in the time series pattern/shape), 

persistent (evaluated over 3 years) LULC changes detected within long NDVI time series (here 

between 2003-2018). These are changes that are mostly associated with abrupt changes 

and/or changes in annual "peaks" (number of growing cycles). The coarse spatial resolution of 

the imagery used favors the detection of large scale changes (anthropogenic, climatic or 

natural). 

Based on this change detection algorithm, two main products are proposed: 

• The first is a national-scale RGB composite map that highlights the most 

significant LULC changes with the greatest impact on land surface vegetation 

composition (Chapter 3). By providing insight into the nature of the time series change 

behind the detected change, it allows for a comprehensive understanding of the most 

likely driver of change, an insight often missing from change maps based solely on 

magnitude of change. The fact that we do not use hard thresholds for any of the change 

metrics allows any change to be detected as long as it is contextually significant (with 

respect to its neighboring pixels). Large LULC changes such as those induced by 

climate variability (e.g. drought), natural changes (e.g. forest regeneration), 

anthropogenic non-agricultural activities (e.g. mining, infrastructure construction, 

urbanization), and agriculture (LSAI, but also smallholder pioneer fronts) can be 

visually detected on the map. Although the When facet of change was not explored 

here, it is worth mentioning that LULC changes observed within a single patch of 

change, may have been induced at different times. With respect to LSAIs, these may 

be detected as long as they induced the most important (fast enough) LULC change 

within the monitoring period.  

• The second output consists of subnational maps showing the extracted hotspots 

of change (as discussed in Chapter 4). This is an exploratory effort to automatically 

identify and locate potential LSAIs. While user intervention is still required for cluster 

labeling, our results in Chapter 4 show that LSAIs in each region studied fall 

predominantly into 1-2 clusters out of a total of 5-7. Furthermore, when all relevant 

LSAI clusters are combined into a single cluster, more than half of the hotspots (65%-

75%) are likely to be associated with LSAIs. This has the potential to significantly 

streamline the process of identifying new LSAIs, reducing the time and resources 

required to discover them. Notably, LSAIs with a change area of less than 30 hectares 
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are not detected in this process, due to a size threshold applied to minimize the number 

of small hotspots detected. In addition, those that tend to cause slow trends or LOS 

changes (e.g. slow growing plantations) are not detected. In contrast, those that are 

homogeneous, producing monocultures with similar and uniform magnitude of change, 

are best detected. Since the changes often include external areas unrelated to the 

LSAIs, and due to the convex hull transformation performed (aimed at avoiding 

complex shapes and obtaining compact polygons), field edge detections are not within 

the scope of this analysis.  

5.2.2 Study limitations, recommendations and research perspectives  
Chapter 3 defined the conditions for effective LSAI detection with BFASTm-L2: the analyzed 

region should ideally not include different ecoregions, the target change areas should be larger 

than 50 ha or far from unstable ecosystems, LSAIs should involve fast-growing crops or 

important field preparation. In addition, when considering the application of this approach to 

alternative sensors than MODIS, it is important to keep in mind that the effectiveness of 

BFASTm-L2 relies on time series that must meet certain criteria: 1) have a high temporal 

frequency sufficient for accurate phenological representation, 2) have a minimum duration of 

8 years, and 3) be both gapless and smoothed to minimize the occurrence of false detections. 

Currently, the application of BFASTm-L2 with Sentinel data is limited by its relatively short 

temporal depth. Conversely, in tropical conditions characterized by frequent cloud cover, the 

acquisition of high temporal frequency time series is challenging for both Sentinel and Landsat. 

In addition, the higher spatial resolution of these sensors would result in increased 

computational time, limiting the scalability of BFASTm-L2 for larger scale applications.  

When exploring the different maps, and especially the RGB composite map, it is important to 

keep in mind that while certain change signatures appear to be associated with major drivers, 

there is no direct one-to-one relationship. A particular change signature could be attributed to 

different drivers of change, and conversely, a single driver could manifest itself in different 

change signatures, especially in different environments. Careful visual analysis should be 

performed using the size and geometry of the change patch, as well as contextual information 

(what do the changes look like in the region?).  Finally, while still in an exploratory phase, it is 

recommended that the automated approach be applied to individual ecoregions. It is important 

to note that results may be different in regions where the diversity and size of agricultural 

systems makes LSAI less contrasted with other agricultural land uses (See the Argentine case 

in Appendix B.2). 

Future research directions include: 1) improving the speed of BFASTm-L2 by using an 

implementation of BFAST monitor with automatic selection of stable historical periods, 2) 
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exploring and identifying spectro-temporal metrics that are responsive to LOS changes, 3) 

further research on the automatic extraction of structural features and how to integrate them 

into the classification analysis., and 4) exploring the ability of object-level spatio-temporal 

metrics to improve discrimination of LSAIs. The rationale for the last proposal is based on the 

observation that the implementation and expansion of LSAIs follows a systematic and 

sequential pattern in both time and space. 

5.2.3 Operational perspectives 
This work was undertaken with the specific aim of reducing the prevailing gaps in land 

information, particularly in countries of the Global South, in order to improve the transparency 

of land governance and to support informed decision-making on land issues. While the 

proposed approach does not provide a wall-to-wall area estimate of newly implemented large-

scale agricultural investments (only significant land changes can be detected, which may be 

far below the contracted area), it goes beyond the mere quantitative analysis of land 

transactions by incorporating precise geo-location data. This advancement represents a critical 

step towards a comprehensive understanding of the full implications of large-scale agricultural 

investments, including social, environmental and economic impacts on a global scale. 

However, as with other technology-based initiatives (land observatories, data-sharing 

platforms...), this approach alone is not sufficient to ensure that informed decisions are made 

(Grislain and Bourgoin, 2023). As highlighted by other scholars (Bourgoin et al., 2019; 

Özdoğan et al., 2018; Scoones et al., 2013), the proposition here is not to replace 'local voices' 

but rather to work alongside them. This is all the more important given the illustrative figures 

of Bourgoin et al. (2019), who found that 78% of transactions reported in a participatory 

inventory were not present in previous inventories conducted by reference organizations such 

as Land Matrix and GRAIN. To facilitate the appropriation of the methodology, a Microsoft 

Planetary Computer API is currently being developed in Pyton language that will be hosted in 

Streamlit cloud. Along with this operational tool, there is a need for comprehensive training 

programs to effectively integrate it into existing practices and to ensure the transfer of skills 

and knowledge. It's important to note that confirmation of LSAI detection is only possible after 

a well-organized field visit where ground truth information is carefully collected. This 

underscores the importance of practical, on-the-ground verification to validate the results of 

remote sensing and technological tools. 
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APPENDICES 

Appendix A : A sample of LSAI-related study cases 
 

Study 

Data 

spatial 

resolutio

n 

Region 

Ancillary data 

(other than 

training data) 

Detected LSAI Method 
Land 

unit 
Assumptions Period Estimates 

Mapping of intensive agricultural systems 

(Arvor et al., 

2011) 

250 m Mato Grosso 

(906 000 

km2) 

(Brazil) 

 Double cropping 

systems involving 

soybean, maize 

and cotton. 

2 ML-based 

classifications for 

agricultural masking 

and crop 

classification. +  

temporal 

segmentation 

Pixel Cropland can be 

discriminated from 

local vegetation 

based on EVI-time 

series derived 

statistical metrics.  

Size threshold: 25 

ha. 

2006-2007  16800 km2 (out of 

56000 km2 of 

cropland) planted 

with two 

commercial crops 

(Bellón et al., 

2017) 

250 m Tocantins 

state 

(Brazil) 

TerraClass 

(agricultural 

mask) 

Two double 

cropping systems 

involving 

soybean, maize 

and rice. 

PCA-based GEOBIA 

+ rule-based and 

phenological pattern 

visual analysis 

classification 

Object Dominant cropland 

where pasture & 

rangeland (based on 

TerraClass product) 

< 30% of land unit. 

2013-2014 11193 km2 of 

dominant 

cropland 

(Sedano et al., 

2019) 

30 m Northern 

Nigeria (21 

Landsat 

scenes) 

DEM; HBASE; 

(expert 

knowledge) 

Main agricultural 

systems including 

irrigated 

agriculture 

Knowledge-based 

expert system  

Pixel Extensive 

knowledge on 

phenological cycles 

and separability of 

the relevant land 

surfaces  

2015 Irrigation 

agriculture: 2.2% 

of the land;  14 % 

of the floodplains. 
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(Xiao et al., 

2020) 

20 m Luang 

Namtha 

Province 

(9325 km2) 

(Laos) 

 

 Rubber 

plantations 

Algorithm based on 

deciduous features, 

differentiated with 

Red Edge Spectral 

Indices (RESI) 

 

Pixel Rubber trees may 

be differentiated 

from evergreen 

forests based on 

their deciduous 

characteristics in 

the dry season 

2016-2018 771 km2 

 

(Vogels et al., 

2019) 

6 m Central Rift 

Valley (669 

km2) 

(Ethiopia) 

 Large-scale 

agriculture 

GEOBIA + Random 

Forest 

Object Textural, shape and 

neighbour features 

are discriminative 

Nov., Dec. 

2013 and 

Feb. 2014. 

120 km2 

(Tang et al., 

2021) 

10m Mato Grosso 

(Brazil) 

 Pivot irrigation 

systems 

PVANET, 

GoogLeNet, Hough 

transform. 

 

Pixel  June-August 

2017 

741 km2 of 

irrigated area 

 

Supervised change detection approaches: Post-classification approaches 

(Eckert et al., 

2017) 

30 m Foothills of 

Mount 

Kenya (2491 

km2) 

(Kenya) 

 

 Large-scale 

irrigated 

agriculture 

Random Forest 2 x 2 

km 

Irrigated agriculture 

with vegetation 

productivity during 

the dry season. 

Greenhouses and 

water bodies 

covered more than 

3% of land unit 

1987- 2016 

1987- 2002 

2002 -2016 

3% of the study 

area in 2016 

(Özdoğan et 

al., 2018) 

30 m Southern 

Laos 

 Large-scale 

rubber 

concessions 

Decision tree C4.5 

classifier 

pixel  2004-2012 

in 1 year 

intervals 

300 km2 planted 

(2004-2012) 

(Bey et al., 

2020) 

30 m Gurué 

district 

(5606 km2) 

(Mozambiqu

e) 

 Large-scale 

agriculture 

2 Random Forest + 

object-based size 

thresholding (> 5 ha). 

Pixel Textural features 

are discriminative 

due to 

mechanization.  

2006; 2012;  

2016 

67 km2 (1.2%) 
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(Chen et al., 

2023a) 

10,20,30 

m 

Xishuangban

na region   

(China) 

 

Three LULC 

third-party 

products 

Rubber Multisource 

phenology 

characteristics + 

Random Forest 

Pixel  2014;2016; 

2018; 2020 

2020:  

4199 km2  

 

Supervised change detection approaches: Trajectory classification approaches 

(Hurni et al., 

2017) 

30 m Southeast 

Asia (7 

Landsat tiles 

(3 in Laos) 

 Boom crops 

(rubber, cashew, 

eucalyptus, 

sugarcane and 

coffee) 

SVM Pixel  2000 - 2014 7360 km2 

(Curtis et al., 

2018) 

30 m  

(based on 

forest 

cover 

change 

maps) 

Global Tree cover 

maps; 

population and 

wildfire 

databases 

Commodities 

related to 

deforestation: 

agriculture 

(including 

plantations), 

mining and 

energy 

infrastructure 

Decision-tree model 10 x 10 

km 

Permanent 

conversion of 

forest/shrubland to 

non-forest land uses 

2001-2015 Souteast Asia and 

LatinAmerica: > 

60 % of 

commodity-

driven  

deforestation 

(Chen et al., 

2023b) 

30 m Laos  New plantations 

following large 

forest 

disturbances 

CCDC-SMA Pixel Plantations induce a 

time series pattern 

change. A threshold 

on magnitude is 

applied 

1991-2020 969 km2 (0.4% of 

deforestation) 

Unsupervised change detection approaches 

(Yan and Roy, 

2014) 

30 m 150 x 150 

km 

agricultural 

regions 

(Texas, 

California, 

South 

Dakota)  

Prior extraction 

of a crop and a 

crop field edge 

probability map.  

Large-scale 

agricultural crop 

fields 

Active contour 

segmentation; 

Watershed algorithm; 

Geometric based 

algorithm 

 

Object Crops are assumed 

to be pixels with 

consistently (i.e. d 

weeks) high 

seasonal NDVI.  

2006-2010  
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(United 

States)  

(Kontgis et al., 

2015) 

30 m Mekong 

River Delta 

(Vietnam) 

 

 Detection of 

single, double and 

tripple-cropped 

rice paddies 

Pixel-based 

thresholds on 

EVI/NDWI and 

GEOBIA;  Decision 

tree C4.5 classifier. 

Pixel/ 

object 

Size threshold on 

land unit > ½ ha.  

2000; 2010 % of rice farms 

with triple 

cropped fields 

increase from 

34% (2000) to 

62% (2010)  

(Graesser et al., 

2018) 

30 m Sub-Andean 

South 

America (48 

% of 

continental 

area/ 

majority of 

region  

croplands) 

 Expansion of 

large-scale 

cropping systems 

on deforested land 

Pixel-based random 

trees classification (at 

ecoregion-level) and 

object extraction 

based on histogram 

equalization 

(CLAHE) and 

adaptive threhsolding 

(Ath) 

Pixel/ 

object 

Are only considered 

forest-to- cropland 

transitions; Size 

requirements: 

>50% of land 

object is estimated 

as cropland; Land 

object > 50 ha. 

1990-2014 

in 5 year 

intervals 

(timeframe 

of 1.5 year) 

Acreage increase 

of 32% - 48%. 

Cumulative 1990-

2014 cropland 

expansion is 

>300 900 km2  

(Hentze, 2019) 250 m Agro‐

ecological 

region IIa 

(AERIIa) 

(Zimbabwe) 

 

SADC 1997  

land cover map  

for crop 

masking; 

Dataset for 

agro-ecological 

zone 

stratification;  

Changes in 

irrigation patterns  

Seasonal Trend 

Analysis (STA) + 

BFAST  

Pixel Irrigation allows 

two growth cycles 

in subtropical 

Zimbabwe, 

allowing its 

differentiation from 

non-irrigated 

agriculture.  

2000-2015  

(Ye et al., 

2021) 

30 m Seima 

Protection 

Forest 

(11805 km2) 

(Cambodia) 

 

Forest map Rubber 

plantations 

Shapelet detection 

algorithm 

Pixel Rubber trees, 

compared to 

evergreen forests, 

have a time period 

of consistently low 

vegetation cover 

due to land 

clearing/ planting 

preparation 

1995 - 2015  
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(Gellert Paris 

and Rienow, 

2023) 

30 m, 250 

m 

Nacala 

Corridor 

(Mazambiqu

e) 

Databases on 

land deals 

Large-scale 

irrigated 

agriculture 

1- LandTrendr; 2- 

statistical-based 

threshold 

 

Pixel Overlapping 

detected changes 

between 1 & 2 are 

related to land 

grabs; High 

productivity during 

the dry season    

1994-2020 By district.  
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Appendix B : Case Studies from Laos and Argentina 
 

B.1 : Southern Laos 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: a) Location and extent of rubber plantation in southern Laos (source: (Özdoğan et al., 2018) ) b) RGB 
composite map based on BFASTm-L2 detected change in 2003-2018 MODIS NDVI SITS c) Snapshot from Google 
Earth Imagery 
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B.2 : Northern Argentina 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: Newly implemented LSAIs in northern Argentina. a) RGB composite map based on BFASTm-L2 detected 
change in 2003-2018 MODIS NDVI SITS 
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