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Myriam Adam f,g,i, Malick Ndiaye j, Bertrand Muller a,f,h, Lauriane Rouan e,f,*
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d Montpellier University, Institut Montpelliérain Alexander Grothendieck (IMAG), 34000, France
e CIRAD - French Agricultural Research Centre for International Development, UMR AGAP Institut, F-34398 Montpellier, France
f AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
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A B S T R A C T

Due to increasing climate uncertainties, optimizing plant traits is essential for sustainable agriculture. This article
presents an approach that combines advanced modelling techniques to identify optimal plant traits under various
agro-environmental conditions. By integrating a crop model, a climate generator, and our PEQI algorithm
(Profile Expected Quantile Improvement), our method aims to create ideotype maps tailored to specific regions.
We use the SAMARA model (Simulator of crop trait Assembly, MAnagement Response, and Adaptation),

calibrated with trials carried in Sahel on a set of local varieties, to simulate crop growth in diverse environments.
The PEQI algorithm adjusts varietal parameters to maximize expected yield, defining precise selection objectives
known as ideotypes, which are particularly important in regions with irregular rainfall patterns like the Sahel.
With the PEQI algorithm based on a kriging metamodel, we ensure effective adaptation to spatially variable

environments. By leveraging a climate generator to simulate meteorological variability, our integrated approach
optimizes crop yields in regions such as Senegal, southern Mali, Burkina Faso, and Guinea-Bissau. The outcome is
an ideotype map for sorghum, providing breeders with a robust decision-support tool to enhance crop perfor-
mance amidst climate uncertainty.

1. Introduction

As the world’s population grows, there is a constant need to increase
agricultural production. In the Sahel, where malnutrition is the highest
in the world (OCDE, 2014), the saturation of arable land means that new
land is rare or fallow periods are shortened. To meet the growing de-
mands of a burgeoning population, production per unit of cultivated
land must be increased to raise crop yields.

Increasing yields requires improving crop and their growing envi-
ronment, which is modified by cultural practices (i.e. tillage, fertilisa-
tion, weed management, etc.). For any given crop, the best variety is not

necessarily the same in different environments. Therefore, most culti-
vated crop species exist in the form of numerous varieties, adapted to
both the environment they occupy and the use for which they are
intended. In temperate climates, for reasons of both marketing conve-
nience and geographical structuring of the environment, the environ-
ment is divided into mega-environments, which are assumed to be
homogeneous. In the Sahel, the definition of mega-environments is
questionable because the environment is strongly constrained by the
availability of water in the soil. Indeed, there is a continuous gradient
from the Sahara in the north to the so-called Sudan climate zone in the
south, where water is more abundant for sorghum cultivation (see Fig. 1;
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(Fensholt et al., 2013)).
Historically, it was farmers who practised plant breeding. They saved

the best of their production as seed and exchanged genetic resources
between families through alliances (Labeyrie et al., 2016). Since the
scientific discovery of heredity (Yule, 1902), genetic improvement
specialists have gradually replaced farmers in this task, leading to sig-
nificant increases in cereal yields. Genetic improvement involves several
phases defining the specifications, searching for donors with the traits of
interest, carrying out crosses that randomly combine the different alleles
of the genes that determine these traits in the offspring, and selecting the
best offspring. The evaluation phase of the resulting varieties is chal-
lenging because the environment to which the varieties must adapt
changes every year. The best variety in one year may not be the best in
the next year or in future years; this is known as genotype by year
interaction. While this interaction makes it difficult to release varieties
in temperate countries, it makes it even more difficult to evaluate va-
rieties in the Sahel, where the rainy seasons vary greatly from year to
year (Sultan et al., 2005). In addition, the irregularity and spatial vari-
ability of rainfall events greatly affect crop production, especially in
rainfed areas. In this context, the expected yield of a given variety be-
comes difficult to estimate and a large number of observations are
required for accuracy. It is even more so for yield variance or for
quantiles, such as the yield exceeded 8 years out of 10. It is therefore
difficult to select the most stable varieties at a limited cost. A less
empirical alternative would be to identify plant adaptation traits that
would allow prediction of plant responses to environmental variation.
For example, a variety with a deep-rooting system is more likely than
others to withstand prolonged drought. However, direct observation of
drought resistance can be subject to the randomness of water shortages,
whereas root length measurements are reproducible, provided the
conditions under which they are taken are well defined.

The a priori approach to constructing a variety by drawing up a list of
desirable characteristics according to the knowledge we have of the
environment and the functioning of the plant is the concept of an
ideotype. Donald (1968) introduced this concept and constructed an
ideotype of cereal by pure reasoning. However, the functioning of a
plant is complex, so the search for ideotypes by simple reasoning by
experts is necessarily subjective. The mathematical formalisation of
physiological phenomena and the computer simulation of the resulting
equations to predict the response of the plant to its environment is the
subject of various types of crop models (Landsberg and de Wit, 1980;
Muller and Martre, 2019).

A crop model describes the functioning of a soil-plant system and a
plant’s response to its environment. It is based on mathematical equa-
tions involving environmental and plant variables. Some models are
sufficiently generic to cover multiple varieties or even species (Asseng,
van Keulen and Stol, 2000). So-called variety parameters can be used to
modify the plant’s response to the environment in the model.

A crop model can thus be considered a relevant means of defining the

ideal plant in a target environment, based on the parameters that allow
it to best respond to the growth conditions of that environment. For
example, if the goal is to achieve a high yield in a given environment,
one would seek the values of the variety parameters that maximize yield
under these conditions. For the same set of variety parameters, any
change in environmental conditions should alter the model’s results.
Therefore, for future conditions with a known probability distribution,
one can try to maximize yield expectation, minimize its variance, or
maximize a trade-off, which could be a production quantile. However,
the estimation of these moments or quantiles as a function of varietal
parameters is, in practice, based on a limited number of simulations and
is therefore subject to error.

To determine a gradient of the best varieties across a gradient of
target environments, conditional optimization based on the environ-
ment must be considered. From a methodological point of view, this
involves finding, for each location u, i.e., each pixel on a map, the va-
riety that maximizes yield. In other words, performing optimization of
the crop model parameters for each point on a map. This is a time-
consuming task. In this paper, we present a less time-consuming meth-
odological approach. If it is assumed that, with slow spatial variations in
soil and climate, the optimal yield at a location (u+δ) close to (u) is
similar to the optimal yield at (u), it is possible to fit a response surface to
account for this dependency. The response surface is an approximation
of the crop model called a metamodel. Among the possible metamodels,
the Gaussian process, and with it kriging as a prediction method, has
already yielded remarkable results in optimization (Bonte et al., 2008;
Janusevskis and Le Riche, 2013; Queipo et al., 2005). Slow variations in
space are then seen as realizations of a random field with correlations
between neighbors (Cressie, 1991; Chilès & Delfiner, 2012).

In this paper, we will show how a conditional optimization method
based on this type of metamodel and the PEQI criterion (Profile Ex-
pected Quantile Improvement) we developed (Sambakhé et al, 2019)
can be used to establish a map of ideotypes without repeating optimi-
zations from scratch in neighbouring locations. To illustrate our
approach, we will focus on defining sorghum ideotypes, one of the most
consumed cereals in the Sahel region, and show how to obtain a map of
sorghum ideotypes suited to the current and future Sahelian climate
using a crop model. Specifically, for this proof of concept with
user-chosen parameters, we will demonstrate how to obtain maps of
optimal values which maximize the expected yield of the crop.

2. Material and methods

2.1. Multi-local experiment for model calibration and evaluation

2.1.1. Experimental sites
The SAMARA model (Dingkuhn et al., 2011) was calibrated and

evaluated on the basis of experimental data collected during four
consecutive rainy seasons (2013, 2014, 2015 and 2016) in three

Fig. 1. North to south gradient of annual rainfall in the Sahel (Fensholt et al., 2013).
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agro-ecological zones, namely Bambey (northern peanut basin), Nioro
du Rip (southern peanut basin) and Sinthiou Malem (eastern Senegal).
These areas have different soil and climatic conditions. The character-
istics of these different areas are shown in Table 1.

Bambey Station is subject to a typical Sahelian climate, characterised
by a long dry season of 8 to 9months and a rainy season of 3 to 4months.
Rainfall varies greatly from year to year. The predominant soils are
sandy with a very low water retention capacity of 80 to 100 mm.m-1

(Affholder, 1997). The Nioro du Rip and Sinthiou Malem stations are
located at the interface between the Sahelian and Sudanian zones. They
benefit from a rainy season of 4 to 5 months, which is wetter than in
Bambey, but still characterised by strong interannual variability. The
soils are still predominantly sandy, but have a slightly higher clay and
silt content and a water retention capacity of 90 to 120 mm.m-1 (Baret,
1980).

2.1.2. Plant material
The plant material consists of ten varieties from different regions of

West and Central Africa. Each variety is known to perform well in its
area of distribution. They were selected to provide a contrasting sample
in terms of cycle length (each adapted to its target region), architecture
(height, stem diameter in particular), structural characteristics (lignin,
cellulose), grain production and biomass (Table 2).

2.1.3. Measured variables
In the trials conducted, observations were made on flowering and

maturity dates, number of emerged leaves, leaf area index (LAI),
biomass and plant height dynamics, yields (grain and biomass) and their
components. Total above-ground biomass and its distribution among
stems, leaves and panicles, leaf area index and number of emerged
leaves were monitored every week after flowering (see (Ndiaye et al.,
2021) for more details).

The main characteristics of these trials (soil type, sowing date,
standard daily climatic data - minimum, maximum and average tem-
peratures, minimum, maximum and average relative humidity, global
radiation, average wind speeds at 2 m above the ground and rainfall
heights) were also measured.

2.2. Modelling yield as a response to climate and crop parameters

This study aims to define a map of sorghum ideotypes using a crop
model. Crop models differ in the formalisms they use to represent the
soil-plant system in interaction with climate. We used the SAMARA
model (Dingkuhn et al., 2011), which is a crop simulation model that
operates on a daily time step basis. As a crop model requires some soil
and meteorological inputs to produce a yield prediction, ideotyping for a
given climate requires that the (joint) probability distribution of these
meteorological inputs is known or at least sampled. While this is the case
for a limited number of so-called synoptic meteorological stations, these
stations are irregularly distributed and scarce in developing countries, so
the meteorological data collected in the current climate are not suffi-
cient to produce an ideotype map. However, using a stochastic model,
the probability distribution of the inputs can be summarised by a few
parameters that can be interpolated between synoptic stations, thus
predicting these distributions at all points. An analytical mapping of this

distribution of weather inputs of a crop model to that of its outputs is not
feasible, so the Monte Carlo method is used by generating equiprobable
weather sequences under a given climate model. The climate model is
then represented as a weather generator. Moreover, meteorological re-
cords are not (yet) available under the future climate: to obtain samples,
one also needs a weather generator. Therefore, for this study, we
coupled the SAMARA model with the MarkSim stochastic weather
generator (Peter G. Jones and Thornton, 2000).

2.2.1. Overview of the SAMARA crop model for sorghum growth and yield
simulation

Crop models use almost the same concepts to represent the mecha-
nisms of plant growth and development. However, they differ in the way
physiological assumptions made, the environmental factors considered,
and how they are formalised. The SAMARA model, developed to study
plant concepts in silico under different climatic environments, different
soil types and different cultural practices (Dingkuhn et al., 2011; Kumar
et al., 2016,& 2017), is well suited to find trade-offs between plant traits
in order to optimise an agronomic outcome such as grain yield. It is
based on a carbon and water balance. The capture of light and its
transformation by photosynthesis is the source of carbohydrates. These
carbohydrates are distributed between different sinks: the reserves (i.e.
sugar in the stems, starch in the grains), the constitution of the structures
(i.e. stem, roots, leaves) and their respiration. Carbohydrates are
distributed to each sink in proportion to its strength. In SAMARA,
growth can be source or sink limited, governed by an index of internal
competition. Under structural sink limitation, excess assimilates are
stored as reserves and can also cause feedback inhibition of photosyn-
thesis. The rate of photosynthesis depends, among other factors, on the
availability of water to the roots.

In our study, system water inflow is limited to rainfall, while water
outflow is simulated as the sum of runoff, soil surface evaporation, plant
transpiration and deep drainage, which occurs when the water holding
capacity of the soil is exceeded. As in its simpler precursor model
SARRA-H, frequently used for climate impact studies in the Sahel (Baron
et al., 2005; Sultan et al., 2005), rooting depth is limited by a dynamic
soil wetting front. For monsoonal sorghum in West Africa, flowering
should ideally take place a month before the rain stops, to minimize
grain diseases and losses to birds and other pests, and furthermore, to
receive maximal solar radiation during grain filling (Kouressy et al.,
2008a). In this case, grain filling takes place mainly by exploiting the
soil’s residual water reserves. Flowering date is simulated using
thermal-time budgets and photoperiod sensitivity for varieties that are
sensitive to it. The grains receive the product of current photosynthesis
and, if insufficient, sugar reserves accumulated in the stems. During this
period, there is a trade-off between terminal leaf senescence (that re-
locates C and N to grains) and stay-green (which sustains photosyn-
thesis). In SAMARA, leaf senescence is driven by C competition among
organs, attenuated by a genotypic parameter. Depending on the avail-
able reserves and the number of grains ready to receive them, the filling
of the grains will be more or less complete.

SAMARA employs a vast array of 83 crop parameters (see https://um
r-agap.cirad.fr/en/research/scientific-teams/samara-model for a com-
plete description), categorized into several functional groups including
seed, leaf, internode and panicle properties, phenology and photoperi-
odism, root growth, tillering, light extinction and conversion, water
relations, maintain respiration and thermal stress. By incorporating such
a diverse range of parameters, the model can replicate the various stages
and processes involved in sorghum growth.

2.2.2. Description of MarkSim stochastic climate generator
The MarkSim stochastic climate generator was developed in the

1990s to simulate weather series from known sources of weather data
from around the world (P. G. Jones and Thornton, 1993; Peter G. Jones
and Thornton, 2013). The basic MarkSim algorithm is a daily precipi-
tation simulator. Precipitation is modelled using a two-step process: the

Table 1
Mean rainfall and temperature at the three experimental sites during the rainy
season.

Locations Positions Soil type rain Tmin Tmax

Bambey 14◦42’N
16◦28’W

Sandy soil 500 20 37

Nioro du Rip 13◦45’N
15◦45’W

Sandy soil 600 22 36

Sinthiou Malem 13◦49’N
13◦55’W

Loamy sandy soil 700 22 36
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first determines whether a given day is rainy or not, and the second
determines the amount of rain.

The first step is a third-order Markov chain: the probability that day j
of month i will be rainy depends on the rainfall of the previous three
days. The probability of rain is defined by a probit model:

P(W /D1D2D3) = ϕ− 1( bi + aj− 1d1 + aj− 2d2 + aj− 3d3
)

where the probit function ϕ− 1 is the inverse of the distribution function
of the standard normal distribution, bi is the monthly baseline probit of a
wet day after three consecutive dry days, aj is an indicator equal to 1 if it
rained on day j and 0 otherwise, and dk is a persistence parameter.

The probability of a wet day is thus specified by 15 parameters,
including the baseline probit, bi, for each month and three persistence
parameters, d1, d2 and d3, which do not vary from one month to another.

In the second step, rainfall is generated using the truncated gamma
distribution, restricted to values greater than or equal to 0.1 mm, to
determine the daily amount of rainfall on days where rainfall has been
decided in the first step. The maximum likelihood method is used to
estimate the mean and parameters of this distribution for each month,
giving a total of 24 additional parameters. To generate rainfall records,
the monthly base probabilities (probability of rain after 3 consecutive
dry days) are interpolated to daily probabilities using the 12-point
Fourier transform (Peter G. Jones and Thornton, 2000). Similarly, the
monthly mean and shape parameters of the gamma distribution of
precipitation amounts are interpolated, also using the 12-point Fourier
transform, and downscaled to daily values. MarkSim allows the simu-
lation of daily maximum and minimum temperatures and daily solar
radiation, based on the methods used in (Richardson, 1981). Maximum
temperature, minimum temperature and solar radiation are considered
as continuous multivariate stochastic processes with daily means and
standard deviations conditioned on the wet or dry state of the day.

Markov chain parameters were estimated at 9,200 weather stations
where daily data were available, and the results were classified into 720
climate groups(Peter G. Jones and Thornton, 2013). For each group, a
regression of these parameters was estimated on monthly averages of
total precipitation and daily minimum and maximum temperatures.
These monthly means are available for almost all land areas. They were
interpolated on a grid of 30 arc-second steps, corresponding to a ground
distance of 1.1 km at the equator and decreasing with the cosine of

latitude - such data are available in the WorldClim database.
The authors of the generator (Peter G. Jones and Thornton, 2013)

found that this 3-day dependence model with seasonal coefficients was
not sufficient to reproduce the variance in total annual precipitation. To
recover this variability, they modulated the transition probabilities of
the Markov chain from one simulated year to the next, following a
distribution whose variance is the variance of the estimate of these
parameters.

2.2.3. Coupling the SAMARA and MARKSIM models
For our ideotype search, the SAMARA model was set up with a

sowing strategy and a vector of soil and crop management inputs set to
fixed value t, with a v vector of parameters that vary according to variety,
and coupled with the Marksim weather generator to feed it with
weather data simulated over a large time period for any location u. For
each combination (u,v), we have been able to estimate an expected yield
by the average of 99 simulated yields at location u with parameter set v
(Fig. 2).

In this study, a simplified case was considered in which the soil
characteristics were set to identical non-limiting values. In the same
way, the technical itineraries were assumed to be identical regardless of
the location, except for the sowing date, which was determined for each
location and year according to a fixed sowing strategy. Following the
recommendations of (Balme et al., 2005), a cumulative rainfall of 20mm
over three days is required before sowing sorghum. We increased this
threshold to 30 mm to match farmers’ perceptions of sufficient rainfall.
For a given set of fixed soil and crop management inputs, the model
outputs then depend only on the sorghum variety and the meteorolog-
ical environment (i.e. weather/climatic variability).

For each location u and variety v, we assumed mean simulated yields
of the form

ỹ(u, v) = y(u, v) + ε (1)

where ε represents observation noise, assumed to be the realisation of a
random variable, and y(u, v) represents the yield expectation for variety
v in environment u. In the following, we also assumed that the obser-
vation noise is normally distributed, centred, and independent from one
run to another, ε ∼ N

(
0, τ2

)
.

Table 2
Characteristics of the ten varieties used in themulti-location trial. Photoperiod sensitivity is categorized as low (0< K≤ 0.3), moderate (0.3< K≤ 0.6), and high (0.6<
K ≤ 0.9), with photoperiod sensitivity K defined as the (reduction in cycle length)/(delay in sowing date) as per Sawadogo et al. (2022). Cycle length is measured from
sowing to the physiological maturity of the grain, indicated by the grain hilum turning black. Isohyet values indicate the range of annual rainfall (measured in
millimeters) to which each sorghum genotype is best adapted. Plant height is measured under optimal growing conditions from the ground to the top of the panicle.
Potential yield refers to the yield obtained under optimal growing conditions.

Genotype Type photoperiod
sensitivity

Cycle
length

Isohyet goal plant
height

Potential
yield

other origin

Fadda Guinea
(Hybrid)

moderate 128 days 700-1000
mm

Grain-
biomass

2-3m 4.5t/ha Tolerant of: mould,
anthracnose

Mali, breeding IER/
ICRISAT, pedigree

Nielni Caudatum
(Hybrid)

low 115 days 700-800
mm

Grain 3m 4t/ha Tolerant of: mould,
anthracnose

Mali, breeding IER/
ICRISAT

IS15401 Guinea high 115 days 900-1200
mm

Biomass 4-4.5m 2t/ha Resistant to: mould, striga
and midge

Cameroun, breeding
IER/ICRISAT

Pablo Guinea
(Hybrid)

moderate 125 days 700-1000
mm

Biomass 4m 4t/ha Tolerant of: mould,
anthracnose

Mali, breeding IER/
ICRISAT

CSM6 Guinea Low 90 days 600-1000
mm

Grain 4m 2tha Tolerant of: anthracnose
and insects

Mali, traditional variety

SK5912 Caudatum High 170 days 700-900
mm

Biomass 2m 2.5-3.5t/ha Tolerant of: mould,
anthracnose

Nigeria

Grinkan Caudatum No 90 days 500-800
mm

Grain-
biomass

1.2m 4t/ha Resistant to: midge, insects Mali, breeding ICRISAT

Soumba Caudatum Low 115 days 600-1000
mm

Grain-
biomass

2.5m 2.5t/ha Tolerant of: anthracnose,
insect and striga

Mali

621B Caudatum No 105 days 600-900
mm

Grain 1.75m 2.5-3t/ha Mould resistant Senegal, breeding ISRA

F2-20 Caudatum Low 110 days 600-900
mm

Grain 2.1m 3-5.3t/ha Resistant to: mould and
striga

Senegal, breeding ISRA
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2.3. Searching for a map of optimal varieties

2.3.1. Choice of varietal parameters for optimization
As many of crop models, the SAMARA model uses a large number of

varietal parameters. Most of these parameters are not good candidates
for ideotypes search using an optimisation algorithm, either because
they are not variable within the species or because the output of interest
(i.e., grain yield) is not sensitive to them in the target environment.
Another rejection criterion is the parameter whose output is known to be
a monotonic function, which is the case for photosynthetic efficiency.
Increasing it always increases the output, so there is no need to use an
optimisation algorithm. Among other possibilities, for our study we
chose the following parameters to characterize our ideotypes:

- Maximum root length (RootFrontMax): Investing in long roots con-
sumes energy to the detriment of the grain. On the other hand, long
roots allow the crop to survive days without rain (dry spells) and can
therefore save production. It is therefore an ideal parameter to find a
compromise.

- Length of vegetative cycle (sdjbvp): Lengthening the vegetative cycle
allows more leaf production and accumulates more biomass, leading
to better grain production. However, a long vegetative cycle could be
detrimental to grain production if the rainy season is shorter than
expected, leading to drought stress during the grain filling period.
We focused here on photoperiod insensitive varieties.

- Leaf death sensitivity coefficient (leaf.death): This parameter regu-
lates leaf death throughout the cycle based on inter-organ competi-
tion, but impacts mostly during the grain filling phase when panicles
are the dominant sink. A value of 0 simulates a "stay green" sorghum
genotype that keeps its leaves green at maturity. This genotype will
be able to photosynthesise and thus make better use of the water
reserves in the soil. However, green leaves transpire and bind carbon
reserves. There is therefore a trade-off between the consumption of
carbon reserves and the expectation that the water reserves will be
converted into carbohydrates.

- Reserve capacity in the stems (stem reserve): At the end of the rainy
season, under unfavourable conditions, sorghum can mobilise sugar
reserves accumulated in the stem (more precisely in the internodes).
However, these reserves can prove useless when conditions are
favourable.

Prior to optimization, on a set of 5 localities evenly distributed along
a north-south gradient, we verified that a change in these parameters
modified the distribution of simulated yields at least in some locations
(results not shown). In other words, yields were sensitive to these pa-
rameters, but not in every location.

The other parameters were set to the values estimated for the non-
photoperiodic variety 621B described in Table 2. Some parameters,
such as those related to potential panicle size, were set at the upper limit

of the variation interval specified in the Samara reference manual
(available at https://umr-agap.cirad.fr/en/research/scientific-teams/
samara-model), so as not to limit potential yield when exploring the
parameter space during optimisation.

2.3.2. Optimization method to determine a sorghum ideotype map
Our objective was to find a map of optimal parameter values that

would allow each location to maximise an expectation or quantile of
production. To reduce the computational time, which can be long (if we
compute the optimum of each location), we used a metamodel-based
optimization algorithm (see Victor Soares do Amaral et al., 2022 for a
review). At its core, this type of algorithm leverages the concept of
metamodels, which are surrogate models created to approximate the
behaviour of the actual objective function, in our case the expected
yield. The process starts by sampling a limited number of points from the
parameters search space, evaluating the objective function at these
points, and then fitting a metamodel. Once the metamodel is con-
structed, it replaces the computationally expensive objective function,
drastically reducing the number of actual evaluations required. The al-
gorithm then iteratively refines the metamodel and explores the pa-
rameters search space using intelligent strategies like genetic algorithms
to identify promising areas to evaluate the true objective function. By
effectively balancing exploration and exploitation, the
metamodel-based optimization algorithm converges towards optimal
solutions with significantly fewer evaluations, making it a powerful and
efficient tool for solving real-world optimization problems in various
domains.

In this study we used a method based on a kriging metamodel and a
specific optimization criterion called Profile Expected Quantile
Improvement (PEQI) developed by Sambakhé et al. (2019) for the
conditional optimisation of a noisy function. This optimization algo-
rithm consisted of the following steps:

1. Design an initial plan: an initial latin hypersquare experimental
design of 100 points D = {(u1, v1), …, (u100, v100)} was created
using the optimumLHS function from the lhs R package.

2. Construct the metamodel: the crop model was evaluated at each
point in the experimental design D, and the variance of the noise ε
was estimated (see Eq. (1)). This information was used to construct a
kriging metamodel.

3. Search for optimal sampling points: the algorithm aimed to find a
new point (u∗, v∗) that maximized the Profile Expected Quantile
Improvement (PEQI) criterion. This involved searching for the
optimal combination of location u and varietal parameters v by
considering a random grid of environments G and all possible vari-
eties V.

4. Calculate the function output: the expected yield for the selected
point (u∗, v∗) was calculated by averaging 99 simulated yields for
that particular location with the given parameter set.

Fig. 2. Coupling of the stochastic weather simulator Marksim and the crop growth model Samara to simulate at any location u an expected yield Yt(u, v) of a variety v
under fixed environmental inputs t.

D. Sambakhé et al. Ecological Modelling 498 (2024) 110840 

5 

https://umr-agap.cirad.fr/en/research/scientific-teams/samara-model
https://umr-agap.cirad.fr/en/research/scientific-teams/samara-model


5. Update the experimental design and metamodel: the new point
(u∗, v∗) was added to the experimental design, and the kriging met-
amodel was updated using the additional data point.

Steps 3, 4, and 5 were repeated iteratively for a predetermined
number of 200 iterations. The final metamodel was then used to
determine the optimal v (ideotype) at each node u of a regular grid in
order to produce an ideotype map.

The optimisation algorithm is implemented in R (Version 3.4.0, R
Core Team, 2017) using DiceOptim (Picheny et al, 2021), DiceKriging
(Roustant et al., 2012), rgenoud and lhs (Carnell, 2022) packages. The
algorithm produces a grid of geographic coordinates and a set of pa-
rameters corresponding to the ideotype for each point on the grid.
ArcGIS Pro software (Esri, 2020) was used to produce the Ideotype
maps. This software has several interpolationmethods for predicting cell
values in a raster from a limited number of sample points.

2.4. Comparison of sorghum ideotypes with a reference sorghum variety

In order to assess the improvement in expected yield resulting from
the conditional optimization, we generated maps to compare the ex-
pected yields of both the ideotype and real-world plant varieties within
the context of the Sahel. As real-world counterpart we chose the 621B
variety previously used as starting point of our optimisation process. We
generated the yield maps using ArcGIS Pro.

3. Results

3.1. Sorghum ideotype map for Sahelian region

We generated a sorghum ideotype map for part of the Sahel coun-
tries, including Senegal and parts of Mauritania, Guinea-Bissau, Guinea,
Mali, Niger, and Burkina Faso (Fig. 3). The area chosen is much wider in
latitude than the sorghum’s range.

For cycle length, the results of the optimisation were consistent with
the breeders’ varietal profiling. At low latitudes, where rainfall is reg-
ular, long duration sorghum ideotypes are better adapted. On the other
hand, at high latitudes where rainfall is scarce, short duration sorghum
ideotypes give better yields (see Fig. 3-A).

As far as root length is concerned, sorghum ideotypes with short
roots are only adapted in the south-western part of the map (Guinea-
Bissau and Guinea). The transition is very rapid northwards, where the
long-root trait is best throughout Senegal. At about 10 degrees west
longitude (i.e. Mali), the optimum variety has medium length roots
(about 1000 mm; see Fig. 3-B). The interpretation of the results is less
obvious for the optimal values of the parameters leaf.death and stem.
reserve (see Fig. 3-C, Fig. 3-D). In some environments, a sensitivity
analysis (not shown) reveals that these parameters have less influence
on yield compared to crop cycle and root length. However, in the
western part of the map and between 13◦N and 16◦N there is a trend for
yield improvement with sorghum ideotypes with high stem reserves.

In Mauritania and north part of West Mali, around 16◦ N and 5, 8 and
9◦ W, the optimum values of the leaf mortality and stem reserve opti-
mum coefficients are unstable, as they vary much within a small area.
Again, these two parameters have a low influence on expected yield in
these areas (sensitivity analysis not shown).

3.2. Comparison of ideotypes’ expected yield with that of a reference
sorghum variety

Comparison of the average yields simulated using Samara for the
ideotypes and for the reference variety 621B (Fig. 4) shows a great
improvement in the expected yield, which varies according to latitude.
Average yield improvement is around 800 kg/ha near Dakar (14.44◦N
17.27◦W), 1200 kg near Ouahigouya in Burkina Faso (13.35◦N 2.25◦W)
and 1600 kg at the Mali-Guinea-Senegal triple border (12.41◦N
11.38◦W), but is very low at the southern border of Mauritania (15.50◦N
8.12◦W), which remains unsuitable for Sorghum cultivation. These

Fig. 3. Sorghum ideotype varies continuously with climate gradient as described by the maps of optimal values of four model varietal parameters. (A) Map of optimal
values of cycle length, (B) Map of optimal values of root length, (C) Map of optimal values of leaf mortality, (D) Map of optimal values of stem reserve capacity. The
optimal parameters are those that maximise expected yield.
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yields are potential yields with no limiting factors other than radiation
and water supply.

4. Discussion

The overall objective of this study was to find sorghum ideotypes
adapted to the present and future Sahelian climate. In this study, we
chose to find these ideotypes among non-photoperiodic varieties, by
optimizing four parameters: length of the vegetative phase, maximum
root length, potential stem reserve and leaf senescence. The model’s
optimization outputs for cycle length were consistent with its matching
with useful rainy season. For root length, high yields were associated
with root lengths of about 1 m and above, except in the south-western
part of the map (in Guinea-Bissau) where short roots were found to be
favourable. This result seems to be consistent with the results of (Chen
et al., 2020), who showed that under controlled progressive drought
conditions, deep roots of sorghum play an important role in yield pro-
duction, making it a trait of interest for varietal improvement in a
drought context. Assefa et al. (2010) also identified root depth and
density as important drought adaptation mechanisms in sorghum.

The result of the model optimisation also showed that the sensitivity
of leaf senescence to the water stress parameter had a positive effect on
yield only in the most stressful environments. This is in accordance with
the findings of Kouressy et al (2008) who state that as yield is sink
limited, stay-green introduction would not theoretically improve yield,
except when expressed before flowering. Without working specifically
on leaf sensitivity to water stress, but more globally on the stay green
trait, (Borrell et al., 2014) showed that this is an important adaptive trait
to end-of-cycle water stress in sorghum. In fact, they showed that the
stay green loci are also associated with a reduction in canopy size at
flowering and hence water use before anthesis, which in the case of
post-flowering water stress increases water availability during grain
filling and hence grain yield. However, there have been no multi-site
trials to show whether the beneficial effects of the stay green trait are
limited to the most stressful environments.

Similarly, without specifically addressing stem reserve capacity,
(Blum et al., 1997) showed in an experimental study that among two
isogenic varieties with different stem sizes, the shorter one with less
stem reserve was less resistant to water stress than the taller one, with
less desiccation-induced mass transfer from stems to grains.

The ideotype map presented here was produced by optimising
average yield according to four parameters of the SAMARA model. The
parameters were chosen by expert opinion for a proof of concept because
they were known or suspected to be subject to trade-offs. However, other
options can be considered for the choice of test parameters as well as the
variable to be optimised. For example, photoperiodism parameters and
yield free from fungal disease losses can be chosen for optimisation.

Our methodology based on a kriging metamodel and the PEQI cri-
terion allows us to produce, in a reasonable computational time, a map

of ideotypes with continuous variation of the parameters, which is better
able to follow the continuous variation of the climatic stress.

For this proof of concept, we chose to set the soil parameters at a non-
limiting value. This facilitated the presentation and interpretation of
optimizations in relation to the climatic gradient alone. To also consider
optimization in relation to soil parameters such as useful reserve, if their
variations remain slow in space, we can apply exactly the same
approach. If there are discontinuous variations between soil categories,
separate optimizations for each category should be used.

Depending on the farmer’s objectives and risk aversion, a quantile of
yield will give a better compromise between its expectation and its
variability. Among the plant traits reflected by the model parameters,
some are easier to improve genetically than others because they are
cheaper to measure or more heritable. A possible improvement to the
optimisation algorithm would be to consider the cost of trait improve-
ment, either in the form of a constraint or by including the cost in a
multi-criteria optimisation.

Our approach also offers an effective means of addressing the im-
pacts of climate change on sorghum cultivation, as varietal parameters
may also be optimized using climate change scenarios. As extreme
temperatures, erratic rainfall and other climate-related stressors become
increasingly pronounced, our methodology thus provides a proactive
framework for improving the climatic resilience of sorghum crops. Using
the complex mechanisms encoded in the crop model, this innovative
approach not only helps to find the right compromises between varietal
traits in the context of changing climatic variables, but also provides
agricultural stakeholders with actionable information to optimize sor-
ghum cropping strategies, ensuring food security in the face of a dy-
namic and uncertain climatic future.

Lastly, it should be noted that the crop parameters we considered
here did not cover the full spectrum of adaptive traits. For example,
short plant stature and tillering may increase harvest index in favourable
environments but less so under drought; likewise, high genotypic
panicle sink potential may increase the yield ceiling under favourable
conditions but incur unnecessary carbon costs under drought. The pre-
sent study thus presented a practical approach to quantitative ideotype
definition without claiming completeness.
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D. Sambakhé et al. Ecological Modelling 498 (2024) 110840 

8 

https://doi.org/10.1016/S0378-4290(96)03453-3
https://doi.org/10.1016/S0378-4290(96)03453-3
https://doi.org/10.1094/CM-2010-1109-01-RV
https://doi.org/10.1094/CM-2010-1109-01-RV
https://doi.org/10.1016/S1161-0301(99)00044-1
https://doi.org/10.1016/S1161-0301(99)00044-1
http://www.jle.com/download/sec-265216-demarrage_de_la_saison_des_pluies_au_sahel_variabilite_aux_echelles_hydrologique_et_agronomique_analysee_a_partir_des_donnee-cirad-WmshPX8AAQEAAGFyvBsAAAAN-u.pdf
http://www.jle.com/download/sec-265216-demarrage_de_la_saison_des_pluies_au_sahel_variabilite_aux_echelles_hydrologique_et_agronomique_analysee_a_partir_des_donnee-cirad-WmshPX8AAQEAAGFyvBsAAAAN-u.pdf
http://www.jle.com/download/sec-265216-demarrage_de_la_saison_des_pluies_au_sahel_variabilite_aux_echelles_hydrologique_et_agronomique_analysee_a_partir_des_donnee-cirad-WmshPX8AAQEAAGFyvBsAAAAN-u.pdf
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0005
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0005
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0006
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0006
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0006
https://doi.org/10.1016/S0378-4290(96)03462-4
https://doi.org/10.1007/s00158-007-0206-3
https://doi.org/10.1093/JXB/ERU232
https://CRAN.R-project.org/package=lhs
https://CRAN.R-project.org/package=lhs
https://doi.org/10.3390/AGRONOMY10040611
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0012
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0012
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0012
https://desktop.arcgis.com/
https://desktop.arcgis.com/
https://doi.org/10.3390/RS5020664
https://doi.org/10.1007/s10898-011-9836-5
https://doi.org/10.1007/s10898-011-9836-5
https://doi.org/10.1016/0168-1923(93)90019-E
https://doi.org/10.1016/0168-1923(93)90019-E
https://doi.org/10.2134/agronj2000.923445x
https://doi.org/10.2134/agronj2000.923445x
https://doi.org/10.1016/j.agsy.2012.08.002
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0020
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0020
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0020
https://doi.org/10.1016/J.EJA.2007.07.008
https://doi.org/10.1016/J.EJA.2007.07.008
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0022
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0022
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0022
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0023
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0023
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0023
https://doi.org/10.1073/pnas.1513238112
https://doi.org/10.1073/pnas.1513238112
https://doi.org/10.2307/2259277
https://doi.org/10.1093/jxb/erz175
https://doi.org/10.1093/jxb/erz175
https://doi.org/10.1007/S00425-021-03599-Z/METRICS
https://doi.org/10.1007/S00425-021-03599-Z/METRICS
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0029
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0029
https://CRAN.R-project.org/package=DiceOptim
https://CRAN.R-project.org/package=DiceOptim
https://doi.org/10.1016/j.paerosci.2005.02.001
https://doi.org/10.1016/j.paerosci.2005.02.001
https://www.R-project.org/
https://doi.org/10.1029/WR017i001p00182
https://doi.org/10.1029/WR017i001p00182
https://www.jstatsoft.org/v51/i01/
https://www.jstatsoft.org/v51/i01/
https://doi.org/10.1007/s10898-018-0716-0
https://doi.org/10.1007/s10898-018-0716-0
https://doi.org/10.1155/2022/9504150
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0037
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0037
http://refhub.elsevier.com/S0304-3800(24)00228-X/sbref0037
https://doi.org/10.1016/j.simpat.2021.102403
https://doi.org/10.1111/j.1469-8137.1902.tb07336.x
https://doi.org/10.1111/j.1469-8137.1902.tb07336.x

	Ideotype map research based on a crop model in the context of a climatic gradient
	1 Introduction
	2 Material and methods
	2.1 Multi-local experiment for model calibration and evaluation
	2.1.1 Experimental sites
	2.1.2 Plant material
	2.1.3 Measured variables

	2.2 Modelling yield as a response to climate and crop parameters
	2.2.1 Overview of the SAMARA crop model for sorghum growth and yield simulation
	2.2.2 Description of MarkSim stochastic climate generator
	2.2.3 Coupling the SAMARA and MARKSIM models

	2.3 Searching for a map of optimal varieties
	2.3.1 Choice of varietal parameters for optimization
	2.3.2 Optimization method to determine a sorghum ideotype map

	2.4 Comparison of sorghum ideotypes with a reference sorghum variety

	3 Results
	3.1 Sorghum ideotype map for Sahelian region
	3.2 Comparison of ideotypes’ expected yield with that of a reference sorghum variety

	4 Discussion
	Funding source
	Declaration of Generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


