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ABSTRACT Enhancing food security in the Sahel through nature-based solutions is urgent given population
growth, resource scarcity and climate change. Traditional agroforestry parklands are a farmer- and nature-
based widespread form of ecological intensification which randomly integrates trees into crop fields. While
most studies estimating crop yields in agroforestry have been conducted in controlled experimental settings,
few have addressed the inherent variability in such highly heterogeneous systems. Thus, the purpose of
this study is to benefit from a UAV-based proxy-sensing and machine learning approach to address the
variability of pearl millet grain yield, according to the distance to randomly distributed trees in a traditional
agroforestry system dominated by Faidherbia albida (i.e. groundnut basin of Senegal). 21 vegetation indices
(VIs), 32 normalized difference texture indices (NDTIs) derived from multispectral drone images, and
normalization variables for radiative conditions were used with yield data collected in 15 plots (around
1 ha each) and subplots (15 m2 each) displayed at 3 distances from the tree over five cropping seasons
(2018–2022). In this context, the optimal phenological stage was determined for predicting pearl millet
grain yield, which proved to be the pre-heading period. This period was used as the basis for our machine
learning model training dataset in the subplots. Two models, Random Forest (RF) and Gradient Boosting
Machine (GBM) were compared by combining VIs, NDTIs and normalization variables. GBMwas the best-
performing model, explaining 78% of observed pearl millet yield variability over five years in the subplots,
with a RMSE of 16 g.m−2. This study revealed that NDTIs calculated from red and green bands were more
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influential for yield estimation than those based on near-infrared. These results were subsequently used to
predict yield in all plots, resulting in a mean relative error of 17.5% between yields estimated by the farmers
and GBM-estimated yields. This approach represents a pathway to assessing the withinfield yield variability in
highly heterogeneous agroforestry plots and to demonstrate, quantify and optimize tree benefits for ecological
intensification.

INDEX TERMS Agroforestry, drone, heterogeneity, multispectral, machine learning, upscaling, yield.

I. INTRODUCTION
One in nine people in the world is undernourished, and
the most recent evidence available suggests that the number
of people unable to afford a healthy diet around the
world has increased by 112 million to almost 3.1 billion,
reflecting the impacts of rising consumer food prices during
the pandemic [1]. In 2020, the African population was
approximately 1.312 billion, accounting for approximately
17% of the global population [2]. This population increase
has consequences such as a reduction in arable land,
which requires mechanisms to eliminate hunger, ensure
food security, improve nutrition, and promote sustainable
agriculture, as outlined in Sustainable Development Goal 2
[3]. Indeed, at a global scale, the paradigm has shifted from
simple agricultural intensification to ecologically intensive
agricultural practices [4], aiming to increase yields while
limiting the environmental impacts of agricultural systems.
These challenges are particularly critical in Sub-Saharan
Africa, where smallholder family farming serves as a local
source of food and income and contributes significantly
to overall food and nutrition security [5]. Moreover, Sub-
Saharan Africa is one of the regions in the world where
agriculture is particularly constrained, with observed yields
well below potential yields [6]. Agroforestry, the combination
of trees, crops, and livestock in the same area [7], has
been recognized as a mechanism to increase resilience
against land degradation and climate change [2]. The
adoption of agroforestry depends on many management
goals, drivers, and contextual factors [7]. In most cases,
assets related to ecosystem services and food security are
the main motivating factors in agroforestry adoption [8],
[9]. Agroforestry also has supportive functions, for example,
soil fertility improvement or water recycling [10], [11],
[12], particularly when management techniques such as
mulching or conservation agriculture are applied [13]. agro-
forestry is therefore often considered a way to sustainably
intensify farming practices for enhanced food security
using socially and cost-effectively managed techniques [7].
Many agroforestry options achieve this through low external
input requirements, high recycling rates, and crop-livestock
integration [14]. In addition, agroforestry provides attractive
alternatives to monoculture, especially when the benefits of
association can be quantified and explained convincingly
based on phenomena such as extended resource acquisition,
complementarity, and facilitation [12]. Consequently, the aim
of this study is to optimize crop yields in agroforestry context.

The study site here is a Faidherbia albida parkland located in
the groundnut basin of Senegal. Faidherbia albida is the main
tree species of the parkland (38% of the trees) [15]. However,
the presence of trees in the plots creates a complex config-
uration within the field, unlike in experimental agroforestry
plots. The trees contribute to significant spatial heterogeneity
in crop yield, leading to both spatial and temporal variability,
compounded by different agricultural practices among farm-
ers and across years. Moreover, yield assessment is primarily
conducted under controlled experimental conditions using
costly and non-scalable manual methods. Therefore, the
utilization of new technologies emerges as a critical tool for
evaluating crop yields. Remote sensing and proxy detection
are attractive tools for the mapping of crop traits. As one
example, the estimation of yields of cereal crops in a
complex agricultural landscape was made possible by the
democratization of satellite imagery of high spatial-temporal
resolution (VHR: e.g., Sentinel-2, Landsat 8, or Plan-
etScope). Such tools with high spatial resolutions of 10 m
and 3 m have demonstrated their performance in estimating
crop yield [16] and ecosystem service relationships [17]
at the landscape scale. However, Sub-Saharan Africa and
specifically the groundnut basin of Senegal are characterized
by relatively small plots, different agricultural practices,
environmental heterogeneity (caused by the local impact of
trees), and cloud cover during pearl millet growth stages.
Such characteristics significantly limit the application of
satellite images, especially at the intra-plot scale. Recent
technological advancements in unmanned aerial vehicles
(UAVs) and sensor miniaturization have created interesting
prospects in crop characterization. UAVs are widely used
for intensive monitoring of cultivated fields. They offer the
opportunity to capture intra-plot variability and plot yield
heterogeneity. Vegetation indices derived from multispectral
and visible images show sensitivity to crop development
stage and canopy structure. Through the use of UAVs,
high-resolution spatiotemporal remote sensing data for crop
monitoring can be acquired for various applications [18],
[19], [20], including agroforestry [21]. UAV sensors can be
used to detect crop-related diseases [22], analyze crop devel-
opment [23], and assess plant water status [24]. Aerial images
from multispectral and hyperspectral cameras have greatly
contributed to crop evaluation and the estimation of biophys-
ical parameters using vegetation indices [25]. Reference [26]
estimated rice grain yield at different developmental stages
and compared indices based on visible and multispectral
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imagery, with the VARI (visible atmospherically resistant
index) for color-based indices and the NDVI (normalized
difference vegetation index) for spectral-based indices being
the best predictors. Several studies have utilized color indices
such as the normalized green–red difference index (NGRDI),
vegetative index (VEG), and primarily the excess green index
(ExGI) calculated from RGB bands to map vegetation cover
fractions and estimate biophysical parameters [27], [28], [29].
In addition, recent studies have tested the potential of texture
indices based on the gray-level cooccurrence matrix (GLCM)
for estimating rice aboveground biomass or monitoring wheat
fusarium head blight in combination with vegetation indices
derived from visible or multispectral images [30], [31].
Reference [32] combined vegetation indices with texture
indices into the normalized difference texture index (NDTI)
to estimate rice grain yield using a hyperspectral camera.
Texture analysis combined with vegetation indices improved
the prediction of rice leaf area [33]. NDTIs generated
new perspectives for further improving the prediction of
crop performance in general, particularly crop yield [34].
Textural analysis pertains to the spatial variation of grayscale
levels in an image. Hence, integrating texture features into
yield estimation models could deepen our comprehension
of spatial variations that might influence crop productivity.
The utilization of NDTIs combined with texture indices,
facilitates the incorporation of textural variations for a more
effective capture of the signal characteristic. In one only
of the fields surveyed by the present study, [35] used a
MS camera and flew an UAV at the time of harvest to
compare measured and sensed pearl millet yield. Although
this pioneering study was promising, the developed approach,
with a R2 of 0.47 and a RMSE of 46%, needed to be improved
using more data. The considered options to improve its
performance are: (i) to repeat the study for several years and
over a larger network of plots in order to test the robustness,
(ii) to implement multiple flights throughout the growing
season to determine the optimal phenological period for
yield estimation, (iii) to combine several VIs and texture
indices into machine learning approaches. However, flying
at different dates and times causes biophysical conditions
to vary, such as global radiation, diffused fraction and sun
angle. Therefore, standardizing radiative conditions between
flights becomes advisable. The aims of this study were to
build a generic model on a large network of plots and years
for estimating pearl millet grain yield in a heterogeneous
landscape and specifically to (i) assess the best period for
millet grain yield prediction; (ii) assess the potential of
texture indices for improving the estimation model and
standardization variables for normalizing reflectance; and
(iii) determine upscale productivity from small sampling
plots to the whole stand.

II. MATERIALS AND METHODS
A. STUDY SITE
The study was carried out in the agroecological zone of
the groundnut basin of Senegal, more precisely around the

village of Sob in the commune of Niakhar located in the
Fatick region (Fig. 1). The climate is Sudano-Sahelian.
According to [36], rainfall decreased from 900 to 400 mm
between 1950 and 1995 (the driest period) and then recovered
partially to ca. 500 mm by 2015, although with large
interannual variability in its amount and distribution. The
area is characterized by one rainy season that usually lasts
from July to October, with heavier rainfall recorded between
August and September. Small family farming, with low
uses of external inputs, is the main source of food and
income. The area is characterized by a tree-based cropping
system, also known as parkland, where trees are combined
with crops. A highly instrumented site called ‘‘Faidherbia-
Flux’’ (https://lped.info/wikiObsSN/?Faidherbia-Flux); reg-
istered in FLUXNET as ’SN-Nkr’;) was launched in
2018 in the area (see Fig. 1). Faidherbia-Flux is located at
14◦29′44.916′′N and 16◦27′12.851′′W and has instruments
and facilities for monitoring micrometeorology, soil mois-
ture, the NDVI, surface temperatures, crop productivity, and
yields, among other parameters. A standard meteorological
station was available at the flux tower. The soil profile
sampled during this study indicated a loamy sand texture with
homogeneous sand fractions along the profile; clay fraction
and bulk density variations were found at depth intervals of
0-50, 50-100, and 100-200 cm [37]. The cropping systemwas
an annual rotation between pearl millet and groundnut under-
crops below Faidherbia. Pearl millet (Pennisetum glaucum,
L.), the crop being researched in the current study, is a
foundation of food security in rural areas, with consumption
increasing by 50% during the lean period [38]. It is the sixth
cereal [39] in terms of world production and is considered a
‘‘cereal of last resort’’ for farmers in especially challenging
arid conditions [40].

B. FIELD DATA COLLECTION AND SUBPLOT
ARRANGEMENT
From 2018 to 2022, a total of 16 fields of ca. 1 ha
cultivated by millet were monitored during the cropping
season. We measured the pearl millet grain yield of each
of the subplots from each plot at harvest. The ears (part
of a millet plant that bears the grains) were weighed to
determine fresh weights in the field with precise scales to
the nearest gram. The ears were then air dried and sent to
the laboratory for oven drying at 65◦C until constant weight
and then weighed. In each plot, we selected an average
of 4 F. albida trees. For each tree, subplots with an area of
15 m2 were displayed at three distances, following [35]: at
the edge of the tree crown (to ensure the strong impact of
the neighbor tree on crop growth with still visibility of the
subplot during UAV flights), at 2.5 times the crown radius
(R) and 5 R (see Fig. 2). In 2018, 2020 and 2022, plot ‘‘0’’
was also harvested completely by the farmer, and in 2019,
plot ‘‘8’’ was harvested as well; ears were bundled, bundles
were counted and weighed, and the ratio between the fresh
weight of the ears and the dry weight of the grains obtained in
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FIGURE 1. Location of the study area in the groundnut basin of Senegal with the position and IDs of different plots monitored from 2018 to 2022. The star
corresponds to the position of the flux tower. Image source: Google Satellite ©* background, 2022.

TABLE 1. Yields data and standardized variables from 2018 to 2022.

the laboratory from subplot samples was applied to infer the
whole plot ear dry mass yield. The relative yield error (RYE)
was computed as Eq. 1, hence assuming that themeasurement
error can be larger than the simulation error due to the high
difficulty and assumptions related to the yieldmeasurement at
thewhole-plot scale. Field data were aggregated into a ground
truth database comprising of 158 subplots from 5 years and
16 plots (Table 1).

RYE =
|(Ymeas− Ysim)|

Ysim
(1)

RYE = relative yield error, Ymeas = real yeald mesurement
and Ysim = simulated yeald. |(Ymeas - Ysim)| represente
absolute value of the diferent betwen Ymeas and Ysim.

C. IMAGE ACQUISITION AND PREPROCESSING
In this study, we used two different UAVs. Details about the
differences between the two drones are shown in Table 2.
From 2018 to 2020, a FeHexaCopter V2 UAV (Mikrokopter
- HiSystems GmbH, Moormerland, Germany) [41] was used
with two onboard cameras mounted on a two-axis gimbal.
The first camera was a visible RGB ILCE-6000 (Sony
Corporation, New York, USA). The second camera was an
AIRPHEN multispectral camera [42] with a focal length
of 08 mm. The AIRPHEN camera had six wavelengths

TABLE 2. Basic parameters for the two multispectral cameras.

centered at 450, 530, 560, 675, 730, and 850 nm with a
spectral resolution of 10 nm. In this study, we discarded
the 530 nm wavelength because it was unavailable with the
second drone’s camera. The drone flights were carried out at
an altitude of 50 m (due to the 30 m high flux tower) with
a longitudinal overlap rate of 80% and lateral overlap rate
of 70%. From 2021 to 2022, the study was conducted with
a DJI Phantom 4 Multispectral multirotor drone [43]. The
Phantom 4 Multispectral has a payload capacity of 400 g and
a maximum range of 5000 m. The drone’s flight time varied
between 12 and 22 minutes depending on the battery’s level
and weather conditions. The UAVwas equipped with a digital
camera that measured in the visible band and 5 spectral bands
centered at 450, 560, 650, 730, and 840 nm with a spectral
resolution of 16 nm. Drone flights were carried out in open-
sky conditions and low wind speeds between 12 and 16 h
local time. This trade-off was to minimize shade over the
plot, cover several plots on the same day, and avoid windy
periods. The DJI Gs Pro application was used to define the
flight missions. Camera parameters were adjusted based on
sunlight exposure. Images were captured every 2 seconds
with a longitudinal overlap rate of 80% and a lateral overlap
rate of 70%. Flight altitudes were fixed at 25 m, except over
the flux tower plot, and we obtained a spatial resolution of
1.3 cm. Details of image acquisitions are shown in Table 3.
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FIGURE 2. One plot example of pearl millet crop sampling at three distances from 4 F. albida trees (gray crown (unleafed during the wet season),
4 colors of subplots). We compared three distances to the tree: at the edge of the tree crown (1 R), at 2.5 radii (2.5 R), and at 5 radii (5R), where R is
the radius of the tree crown. Total number of subplots per plot = 12.

TABLE 3. Acquisition of multispectral (Ms) images for 5 years of
experiments, according to pearl millet growth stages. N = 16 orthomosaic.
In red, years in which the entire plot was harvested (ID: 0 for 2022).

1) ORTHOPHOTO-MOSAIC GENERATION AND
CO-REGISTRATION
The orthophotos were obtained from UAV photography
combined with a 3D model. Photogrammetric techniques
were used to reconstruct artificial and natural elements
on a plane from pairs of images with a common part
determined by the overlap rate defined during the flight
mission execution. An automatic image processing pipeline

was designed to generate multispectral orthophotos [44]
using a digital elevation model at 5 wavelengths using
Agisoft Metashape Python API (Metashape Professional
1.7.4, Agisoft LLC, Russia). Co-registration is a process that
aligns multiple images from different sources and times so
that they can be compared and overlaid accurately. We then
performed a geometric correction to co-align the orthophotos,
using the harvest date orthophoto as a reference for each
plot. The co-registration algorithm was performed using the
rgdal [45] and raster [46] packages in R software version 4.2.2
[47].

2) VEGETATION INDEX CALCULATION
A literature reviewwas conducted to select vegetation indices
based on spectral wavelengths and others derived from
the three channels of RGB cameras, which were used for
vegetation monitoring and yield estimation. These indices
were employed to establish a statistical model correlating
21 vegetation indices (Table 4) with millet yield, aiming to
pinpoint the most predictive ones. Every single index was
averaged on all pixels of each subplot.

3) TEXTURAL INDEX CALCULATION
Recent studies [30] and [31] have shown the potential of
texture indices derived from UAV imagery to improve the
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TABLE 4. List of the 21 vegetation indices used in this study.

monitoring ofwheat ears and the estimation of aerial biomass.
Thus, we used the gray level cooccurrence matrix (GLCM)
[66] to calculate eight texture properties based on the GLCM
(Fig. 3), namely, mean (MEA), variance (VAR), homogeneity
(HOM), contrast (CONT), dissimilarity (DISS), entropy
(ENT), second-moment (SM), and correlation (COR). These
texture measurements were calculated using R and the glcm
package [67]. We used the smallest window size (3×3 pixels)
and all directions to perform texture analysis. The analysis
was performed with the green, red, and near-infrared bands
of the multispectral imagery.

4) COMPUTATION OF NORMALIZED DIFFERENCE TEXTURE
INDEX (NDTI)
Following [31], the traditional definition of the normalized
difference vegetation index (NDVI) was used as a reference to
calculate the normalized difference texture index (NDTI) [33]
(Eq. 2). The NDTI differs from the NDVI in its calculation
procedure, as it is computed based on different combinations
of selected bands (green, red, and near-infrared) during the
calculation of statistical texture properties from the gray-level
co-occurrence matrix. Only the NDTIs were subsequently
used to improve millet grain yield estimation.

NDTITiab =
Tia − Tib
Tia + Tib

(2)

where Ti is a texture index (with i ranging from 1 to 8,
according to Fig. 3), and a and b are random spectral
bands.

5) STANDARDIZATION VARIABLES
In the context of this study, the UAV monitoring of a
network of smallholder farms involved capturing images
at different times and days due to battery limitations
and in situ ground truth measurements. Each drone flight
was carried out under varying environmental conditions,
and the radiometric calibration of the numerical values of
the different spectral bands was a normalization solution,
as in [31]. However, in this study, reference carpets were
available only from 2018 to 2020 when using the AIRPHEN
camera. Due to slight differences in drones, bands, reso-
lution, time of flight, and availability of reference carpet,
we introduced a standardization step. We tested a few
meteorological variables that were measured or computed
by standard weather stations and that were likely to affect
the signal, and we finally selected the most predictive
ones, i.e., the relative humidity of the air (measured by
CS615, Campbell Scientific), the surface soil temperature
(by Type-T thermocouples), the photosynthetically active
radiation (PAR, by SKP 215, Skye instruments; NB: the
global radiation is available in many weather stations instead
of PAR, but both variables are extremely well correlated)
and the solar azimuth (computed from coordinates and time
using a standard astronomical model). The purpose was not
to introduce field covariables in the model to explain yield
variability but rather to standardize the signal between days
and hours of flights to dampen noise in reflectance. These
variables were available at the meteorological station of the
flux tower antenna at the semi-hourly time-step since 2018.
Hence, for each image, we used the standardization variables
acquired at the exact date and time of the flight (Table 1).

D. MODEL CALIBRATION AND VALIDATION
The overall approach for developing the models of prediction
of millet grain yield for different variables is given in Fig. 4.
In this study, we refined the models in sequence. First,
we tested the potential of vegetation indices (Vi) in predicting
only millet grain yield. Second, we assessed the impact of
the NDTI on the prediction by combining vegetation and
texture indices. Finally, we added standardization variables
to account for changes in the environment during image
acquisition and to normalize the wavelength reflectance.
At each step, we selected the best variable combination.

1) SELECTION OF THE BEST ACQUISITION DATE FOR MILLET
GRAIN YIELD ESTIMATES
The UAV allowed for regular monitoring of the cultivated
plots from the development stage to the maturation of
millet. We sought to determine the best date that predicted
millet grain yield most accurately. For this exercise, we first
discarded years when UAV flights were not carried out
over the entire crop cycle (2018 to 2020). Following this,
to determine the optimal correlation date for the years
2021 and 2022, we performed a simple linear regression
between the same vegetation index and yield for these two
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FIGURE 3. Eight GLCM-based texture measurements of Near Infrared band for one example plot, in 2021.

years. Considering the availability of 21 vegetation indices,
and recognizing that the correlation between these indices
and yield varies based on the index and date, NDRE was
chosen from the 21 indices. This choice was made due
to its sensitivity to crop growth, allowing us to evaluate
its correlation with millet grain yield and to conduct a
comparative analysis.

2) DATA PREPROCESSING
Using UAVs can lead to errors that are related to weather con-
ditions, terrain geometry, etc. Field measurements (‘ground
truth’ here) can also have errors related to inaccurate note-
taking or incorrect manipulation. Preprocessing of the data
is fundamental to obtain reliable and reproducible results.
We first discarded outlier data for millet grain yield values
using the interquartile range technique [68], [69]. Then,
we evaluated the performance of different variables to select

the most relevant variables for predicting millet grain yield.
This selection was made using a recursive feature elimination
(RFE) algorithm [70], [71]. The algorithm was based on the
machine learning model used for prediction and performed
a 5-fold cross-validation. Additionally, we conducted an
analysis to detect variables exhibiting collinearity or strong
dependence. This analysis was critical to avoid overfitting
the model. We used the variance inflation factor (VIF) to
select collinear variables for elimination [72]. VIF [71] (Eq.
3) uses simple linear regression between the different input
variables of the model to calculate the Pearson correlation
coefficient [73] and gradually eliminate collinear variables.
Elimination was performed using a VIF < 2 [74] to exclude
collinear variables and retain the variables that would be used
in the final models (Fig. 5).

VIF i =
1

1 − R2i
(3)
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FIGURE 4. Schematic description of the workflow for pearl-millet grain yield estimation.

where VIFi stands for the variable inflation factor of the
variable i and R2i stands for unadjusted coefficient of
determination for regressing the it h independent variable on
the remaining ones.

3) RANDOM FOREST
Random forest (RF) [75] is a widely used machine learning
method for predicting continuous variables using multiple
random decision trees and other optimization parameters.
For the latter, we used the number of decision trees
(n_estimators), maximum depth of each tree (max_depth),
minimum number of samples (min_samples_leaf), and ran-
dom number generator (random_state). Hyperparameter opti-
mization was performed using a 5-fold cross-validation grid
search that tested all possible combinations of parameters.

We then performed 5 iterations on the grid search to select
the best combination based on the lowest mean squared error
(MSE). The RF model takes as input only the selected remote
sensing and microclimatic variables (Vi, combination of Vi+
NDTIs, and combination of Vi + NDTIs + standardization
variables) obtained through RFE and VIF and relates them
to millet grain yield. The grid search result for the Vis +

NDTIs + standardization variables model yielded 500 for
n_estimators, 15 for max_depth, 2 for min_samples_leaf,
70 for random_state and True for oob_score.

4) GRADIENT BOOSTING MACHINE
As with the RF, we applied a grid search with 5-fold
cross-validation. The hyperparameters used to optimize
the gradient boosting machine (GBM) method were the
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FIGURE 5. Selected explanatory variables after performance and collinearity tests. (a) presents the selected variables for the GBM model, while
(b) showcases the selected variables for the RF model.

same as those for RF, with learning_rate as an additional
parameter. The model for the combination of Vi + NDTIs +

standardization variables, which produced the lowest RMSE,
was obtained using the following values: learning_rate
(0.002), max_depth (15), min_samples_leaf (2), n_estimators
(1000), and random_state (10).

E. ASSESSMENT OF MODEL PERFORMANCE
To evaluate the quality of the millet grain yield estimation
models, we split the dataset into 80% training data and
20% external validation data. We used the coefficient of
determination R2, root mean squared error (RMSE), and
relative root mean squared error (RRMSE) as metrics to
select the best machine learning model between RF and
GBM (for the different variable combinations) based on
the external validation results. We also performed 5-fold
cross-validation with 3 repetitions on the training data.
To mitigate biases stemming from temporal autocorrelation,
we conducted temporal leave-out cross-validation to assess
the robustness of the machine learning models. The temporal
cross-validation process involved training the model using
data from four years (e.g., 2018, 2019, 2020, and 2021) and
validating in the remaining year (e.g. 2022). This procedure

was iterated to calculate the RMSE for validation across all
years. The assessment of feature importance was conducted
using the SHAP value method, which proves instrumental in
offering intricate interpretations of variables by delineating
the impact of each variable’s contribution on the model.
Additionally, satellite images from Landsat 8, downloaded
via the Google Earth Engine platform, were employed to
construct a millet grain yield estimation model with a view to
comparing it with the results obtained by UAV. In 2020, [17]
demonstrated that GCVI around the pearl millet flowering
period is a good estimator of yields. Thus, we relied on this
result to calculate the Green Chlorophyll Vegetation Index
(GCVI) of different plots monitored from 2018 to 2022 using
Landsat 8 satellite imagery. The spectral bands of Landsat
8 were resampled to a spatial resolution of 15 meters using
the panchromatic band and the pansharpening technique.
The resulting yield models facilitated the assessment of the
robustness and relevance of using UAV-acquired data, which
possess very high spatial resolution.

F. MAPPING OF THE MILLET GRAIN YIELD
The scaling-up from subplot to whole-plot yield was carried
out on 4 plots where the entire grain yield of the plot was
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FIGURE 6. Correlation between NDRE and millet grain yield for each date during the millet cycle.

harvested (Table 3). The most performant machine learning
model (based on data from the 16 plots, 5 years and the
best date of acquisition for each) among different variable
combinations was used to produce grain yield maps for
the latter plots. All trees (F. albida and other species) and
equipment present on the different plots weremasked to avoid
misinterpretation of the spatial model. Thus, we compared the
yield estimated from the final model with the yield actually
measured in the field. The total millet grain yield of the plot
was calculated by normalizing the sum of yield values with
the total number of pixels in the plot.

III. RESULTS
A. SELECTION OF THE BEST UAV FLIGHT DATE
The intensive monitoring of millet’s developmental stages
allowed us to analyze the relationship between VIs (NDRE
in this part) and millet grain yield for each image acquisition
date per year where several dates of flights were available
(2021 and 2022). For both years, we encountered the same
ranking of dates, with the pre-heading date presenting the best
coefficient of determination (see Fig. 5). However, we found
large discrepancies in the R2 values between 2022 and
2021, with better correlations between the NDRE and millet
grain yield in 2022 (pre-heading: R2 = 0.34, harvest: R2

= 0.01) than in 2021 (pre-heading: R2 = 0.10, harvest:
R2 = 0.04). Indeed, the study was conducted on a large
network of 12 smallholder plots (2021 and 2022), where

pearl millet was usually mixed with weeds, leading to the
saturation of VIs, in addition to the inherent differences
caused by agricultural practices and environmental factors.
Due to this inherent variability and the absence of other
cycle periods in previous years, it was preferred not to use
a single date across years (such as the pre-heading date);
rather, it is better to rely on the best date for each year and
each plot.

B. BEST MODEL FOR ESTIMATION OF MILLET GRAIN
YIELD
We used machine learning methods (RF and GBM) with
various combinations input variables (VIs, NDTIs, standard-
ization variables) to evaluate the contribution of NDTIs and
standardization of reflectances in estimating millet grain
yield. The best combinations of features were to add them
all, i.e., VIs + NDTIs + standardization variables (Table 5).
We based our selection of the best combination of variables
(the feature importance is shown in Fig. 7(a) for GBM
method and 7(b) calculated with the Out-Of-Bag (OOB) of
the RFmethod) for differentmachine learningmethods onR2,
RMSE, and RRMSE using external validation. Ultimately,
the GBM produced a cross-validation CV_R2 of 0.71 and
a CV_RMSE of 19 g.m−2 on 80% of the training data
(see Fig. 8(a)). For external validation (see Fig. 8(b)) on
the remaining 20% of the test data, the GBM yielded an
R2 of 0.78, an RMSE of 16 g.m−2, and an RRMSE of
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TABLE 5. Summary of calibration and validation results.

TABLE 6. Model performance with temporal leave-out cross-validation.
The year specified in the ‘‘year’’ column corresponds to the year used for
validation.

22%. Temporal leave-out cross-validation of the GBMmodel
indicated that, for the years 2018, 2020, and 2022, the Root
Mean Square Error (RMSE) values nearly doubled, reaching
32 g.m−2, 32 g.m−2, and 28 g.m−2, respectively. In contrast,
the years 2019 and 2021 exhibited higher RMSE values,
particularly in 2021 (Table 6). A summary of the calibration
and validation results is shown in Table 5. The results
indicated that the most significant standardization variables,
ranked by their importance, included the relative humidity of
the air, the soil surface temperature, the solar azimuth, and
the photosynthetically active radiation, and they significantly
improved millet grain yield estimation, capturing 78% of the
variability in validation. Interestingly, the relative humidity
of the air was ranked second among the important variables
in the machine learning model, just after the most important
NDTI. The results (see Fig. 9) of the comparisonwith Landsat
8 data showed, upon validation, a coefficient of determination
(R2 = 0.47), insufficient to ensure the model’s robustness
compared to the results obtained by UAV with an (R2 = 0.78.
This underscores the relevance of utilizing UAV-acquired
data to generate a robust model for estimating millet grain
yield.

C. MILLET GRAIN YIELD MAP AND YIELD COMPARISON
We used the GBM-based machine learning model to extrap-
olate millet grain yield from the subplots where the model
was calibrated to the whole plot. We constructed millet grain
yieldmaps (Fig. 10) for each fieldwhere the ground truth total
harvest was conducted. The average error over the four years
of harvest was 17.5%. The results exhibit yield variability
surrounding the crown of F. albida, displaying a gradient that
signifies the impact of F. albida on pearl millet grain yield.
A summary of the comparison between the estimated and
measured yields is presented in Table 7. We observed a trend
to overestimate yield at the whole-plot scale.

TABLE 7. Comparison (error) between measurements at the whole-plot
scale. The relative error was computed as |(Ymeas-Ysim)| / Ysim.

IV. DISCUSSION
The use of UAVs for the intensive monitoring of cultivated
fields has led to a very active research area in the real-
time prediction of yield based on proxy-sensing data.
As a crop that serves as a food source for smallholder
farming, pearl millet deserves an accurate prediction of
grain yield for mapping crop productivity under complex
and heterogeneous environments to adjust practices with
precision and anticipation across landscapes and variable
climatic years. If proven to be generic, a refined method for
data analysis would save tremendous work in the field in the
future. We will discuss below whether a generic method can
be proposed for pearl millet and under which conditions.

A. THE BEST FLIGHT’S DATE PER YEAR CHANGED WITH
THE VARIABILITY IN AGRICULTURAL PRACTICES AND
CLIMATIC YEARS
In this part, the relationship between themillet grain yield and
NDRE was tested at different stages of crop development.
However, the correlation between the yield and NDRE
was highly dependent on environmental conditions and on
interannual rainfall variability, on stage crop growth and
quantity. The results showed that the pre-heading period
was usually the best time for predicting millet grain yield.
Indeed, this period was characterized by the absence of
weeds and leaf senescence, and the effects of agricultural
practices were less pronounced than those at the end of the
crop cycle. Furthermore, during this period, the vegetation
displays substantial greenness, and the millet plants are
clearly distinguishable. In contrast, during the harvest period,
the millet plants bend significantly due to strong winds
accompanying the rains. This clump causes an overlapping
effect between the plants, hindering the capture of reflectance
from the entire vegetation present on the surface. Similar
results have been obtained by [26] and [74] for wheat
and rice yield prediction. For 2021 and 2022, the study
was conducted on a network of smallholder plots (2021:
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FIGURE 7. Ranking of features importance (Shap value) according to Gradient Boosting Machine (GBM) method (a) and to Random Forest method (based
on Out-Of-Bag) (b).

FIGURE 8. Relationship between millet grain yield and combinations of Vis + NDTIs + standardization variables in calibration (a: N = 126 dots) and
validation (b: N = 32 dots), using the Gradient Boosting Machine (GBM) method. One dot is one groundtruth subplot of 15 m2.

FIGURE 9. Relationship between millet grain yield and GCVI using Landsat 8 data in calibration (a: N = 126 dots) and validation (b: N = 32 dots), using
the Gradient Boosting Machine (GBM) method. One dot is one groundtruth subplot of 15 m2.

8 and 2022: 5), resulting in a similar ranking of dates
but with high variability in R2, likely caused by different

agricultural practices and environmental factors. However,
the investigation into the correlation between NDRE and
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FIGURE 10. Whole-plot maps for one extreme year in terms of rainfall, using the relationship from Fig. 7 (scale is in ggrain.m−2, rainfall = 822 mm).

yield serves primarily to construct our database with the
optimal dates, laying the foundation for subsequent in-depth
analyses utilizing advanced machine learning techniques.
Therefore, we argue that the pre-heading stage can be
generally considered the optimal period for estimating millet
grain yield based on the results from 2021 and 2022, despite
the large residual variability. Therefore, when possible, it is
recommended to fly several times during the growing season,
with a priority on pre-heading and harvest periods, and to
choose the best date a posteriori. Moreover, depending on
a single vegetation index may introduce uncertainties in
determining optimal dates. Thus, we recommend comparing
indices that highlight different characteristics of the plant:
chlorophyll content index, nitrogen stress index, water stress
index, and dry matter stress index.

B. GBM MODEL OUTPERFORMED RANDOM FOREST
In this study, we compared two machine learning methods
(GBM and RF) that can be proposed alternatively to predict
millet grain yield and illustrate the importance of variables.
One of the goals of this study was to upscale millet
grain yield from subplots to the whole plot through ML
methods. Thus, the results showed that the model based on
GBM (gradient boostingmachine) provided better calibration

performance (Table 5; R2 = 0.95; RRMSE = 10%) and
validation performance (Table 5; R2 = 0.78; RRMSE =

22%) than the model obtained with RF (random forest)
by combining Vis (visible), NDTIs (normalized difference
texture index), and standardization variables. The temporal
leave-out cross-validation of the GBM model revealed inter-
annual variability across different years, given the higher
difficulty for the model to predict (validating) the yearly
crop, when the observations from this year are absent from
the training set. One of the difficulties in this work is the
heterogeneity of the data, with a large dataset in 2021 and
crop rotation each year (2018, 2019 and 2020, 2021, 2022),
that is utilized, explaining the large temporal variability.
Although RF and GBM both rely on the use of trees, they
differ in their internal construction and evaluation [75].
Furthermore, the optimization parameters for the two models
are different. Reference [76] demonstrated the superiority of
the GBM model in predicting the prevalence of Listeria spp.
in livestock environments compared to RF. Additionally, [77]
utilized multiple ML techniques to assess the performance of
corn yield estimation and showed that the GBM-based model
outperformed the RF-based model. GBM can achieve higher
accuracy compared to RF due to optimization parameters that
facilitate the correction of mutual errors, and then allowing
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it to capture complex patterns in data with high variability.
The model derived from UAV data exhibited significantly
more substantial results compared to the model based on
Landsat 8 data. Indeed, our study is conducted at the intra-
plot scale, which requires fine spatial resolution to capture
the variability introduced by the presence of trees. The yield
data collected were obtained from plots of 15 m2 (3m x 5m).
The pixel size of Landsat data is 15 times larger than the
area of the plots used to measure millet grain yield. However,
the performance of ML models depends on data structuring,
which is why comparing different methods is a valuable
alternative to identify the model that best fits the acquisition
data. In addition, the constraint on the number of data points
significantly impacts the performance of the model, given
that machine learning approaches demand abundant data for
robust learning. However, we suggest experiments similar to
the one conducted in 2021, entailing a reduction in subplot
size and a broader distribution within the field. This approach
could potentially allow the development of machine learning
models on a date-specific basis or through the integration
of all phenological dates, facilitating the assessment of
interactions between dates and years.

C. THE INTEGRATION OF TEXTURE INDICES AND
NORMALIZATION OF REFLECTANCE IMPROVE THE
ESTIMATION OF MILLET GRAIN YIELD
Vegetation indices have been widely used to predict crop
yield but with certain limitations. Indeed, [78], [79], [80]
showed that vegetation indices tended to saturate, especially
at advanced phenological stages of the crop, with the onset of
senescence, panicles, and weeds. The use of texture increased
the dimensionality of UAV image data, which was limited
by the number of spectral bands. Texture allowed for the
assessment of spatial relationships between neighboring pixel
pairs, providing a better description of spatial configuration
and crop intensities. It has been reported as a promising
technique for precision agriculture using UAV imagery [31].
Both [31] and [34] explored the impact of including texture
in modeling crop characteristics. References [78], [81],
[82], and [83] demonstrated the potential of texture indices
in crop identification and trait estimation. Reference [31]
showed significant performance of texture indices compared
to vegetation indices in estimating the aboveground biomass
of rice. Similarly, [34] reported that the use of texture
information alongside spectral and canopy height data
improved the prediction accuracy over the VI model in
predicting soybean grain yield. Our study confirmed that
combining texture indices with vegetation indices (NDTIs)
improved millet grain yield prediction. Over 60% of the
pearl millet variability was captured in validation using the
GBM model including texture indices. Texture attributes
offer a more precise description of spatial configurations,
color, and intensities in crops. This can be attributed to the
sensitivity of texture variables to the structural characteristics
of the canopy, while Vegetation Indices (VIs) serve as a

proxy for vegetation content. Indeed, normalizing texture
properties allowed for a better consideration of variability
in canopy architectures and helped to minimize the effects
of soil, sun angle, and sensor viewing angle. This is why
the millet grain yield estimation was significantly improved
by using NDTIs. Analysis of variable importance from
the GBM model showed that the correlation-based NDTI,
calculated between the red and green bands, ranked first
for millet grain yield estimation. Moreover, we used data
from the pre-heading stage, characterized by pronounced
plant greenness and extensive soil coverage. During this
developmental phase, green plants have substantial absorp-
tion in the red band and increased reflectance in the green,
while the soil exhibits significant reflectance in the red.
This phenomenon may elucidate why the correlation-based
NDTIs computed using the red and green bands hold greater
significance than NDTIs computed using the near-infrared
band. Furthermore, the absence of radiometric calibration
and flights under different environmental conditions leave
noise to the spectral band signal and hence the vegetation
indices. In this study, the area was equipped with a standard
meteorology station on the flux tower that provides ancillary
information related to environmental conditions during the
UAV flights. Thus, we selected the best standardization
variables obtained from the meteorology station to normalize
the reflectance of spectral bands and indirectly the vegetation
indices. Combining standardization variables with spectral
and texture information proved here to be an alternative to the
absence of radiometric correction with carpets. We searched
the literature, but to our knowledge, such attempts have
not yet been reported. In the future, it might be advisable
to test standardization variables directly on radiometrically
corrected images.

D. UPSCALING YIELD FROM THE SUBPLOTS TO THE
WHOLE-PLOT THROUGH ML METHODS
The satisfactory results obtained with the GBM model
allowed us to extrapolate from the plot-level yield to
the entire field. The GBM model was built using data
from 2018 to 2022, encompassing 16 smallholder plots and
158 subplots. This involved various agricultural practices
and therefore a high level of variability. Thus, the model
accounted for both intra- and inter-plot variability, as well
as interannual variability, yielding satisfactory results even
in validation (Fig. 8(b); R2 = 0.78; RRMSE = 22%).
In 2020, [35] explored the use of only vegetation indices to
predict millet grain yield and obtained a significant but much
weaker correlation between yield and MSAVI2 at the time
of harvest (R2 = 0.47; RRMSE = 46%). This pioneering
study triggered the need to exploremore years, plots, textures,
standardization and models to determine whether a generic
model could be proposed. The 2018 wet season had only
474 mm rainfall, millet grew much better close to the trees,
and the positive effect of Faidherbia on millet yields in its
neighborhood was visible. Using the same scale, but now in
2022 (rainfall = 822 mm), the millet yield was much higher,
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regardless of the distance to the trees, indicating that some
drought limitations to productivity have been compensated
under abundant rainfall. Furthermore, extrapolating millet
grain yield to the whole plot enabled a reasonable comparison
between the estimated yield from the model and the yield
measured by the farmer at harvest. Comparing our results
to those obtained by [35] under the same conditions but
with a much simpler method (relative error = 20% between
measured and UAV-NDVI estimated yield) for the same field
and data collection year (2018) demonstrated a significant
improvement and a more robust model in millet grain yield
estimation in thewhole plot with the refinedmethod proposed
here. However, the imprecision stemming from the harvest
protocol (relation between the fresh weight of the spikes
and the dry weight of the grains) was practical and realistic,
yet not accurate, given the potential significant variation
in moisture content. This result tells us that part of the
17.5% average accuracy may be due to measurement error
in the field. As suggested by [35], we achieved a much
more robust millet grain yield estimation by employing a
wide range of vegetation indices, normalized texture indices,
standardization variables, and machine learning techniques.
This yield map will be instrumental for assessing the
influence of F. albida on pearl millet grain yield through
the application of geostatistical methods and semivariogram
analysis.

V. CONCLUSION
Our results demonstrated that the whole-plot millet grain
yield could be accurately estimated using UAV imagery for
different years of cultivation, even in a highly heterogeneous
agroforestry park. Here, we proposed a generic method
for pearl millet data analysis that provided an accurate
estimation of pearl millet yield at both the subplot and
the whole-plot scales. Machine learning models, namely,
RF and GBM, were utilized to predict millet grain yield by
incorporating spectral band information, texture indices, and
meteorological standardization variables obtained at the time
of flight. The key findings indicated that the including NDTIs
showed promise as an alternative to conventional vegetation
indices for mapping and predicting millet grain yield with
precision. Additionally, standardization variables offered a
means of normalizing reflectance values. Such an approach,
which was developed in bush agroforestry fields with low
levels of productivity (poor soils, deficit of soil organic
matter, no fertilizer, reliance on natural rainfall variability),
would deserve an extension of its calibration and validation
across new landscapes, particularly with conditions close to
the potential productivity of millet, such as those encountered
in experimental stations, with fertilization, irrigation, and
selected varieties. We argue that the methodology proposed
here is mature enough also to be applied to other crops
(e.g., groundnut) or to other crop associations in the field
(e.g., crops grown with other trees or bush species such as
Guiera senegalensis or Piliostigma reticulatum in place of
Faidherbia albida).
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