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RÉSUMÉ 

Ce mémoire examine les relations statistiques entre les indices de pluviométrie et les rendements 

du coton dans le nord du Cameroun, une région fortement dépendante du coton et vulnérable au 

changement climatique en raison de sa forte variabilité des pluies. Les données quotidiennes de 

pluies provenant du jeu de données NoCORA ont été interpolées à l'aide du krigeage ordinaire 

pour calculer des cartes annuelles d'indices de pluviométrie pour un total de 25 indices. Les 

données de rendement du coton à deux niveaux géographiques différents ont également été 

fournies par SODECOTON. En appliquant des régressions linéaires simples et multiples, l'impact 

des indices de pluviométrie sur les rendements du coton a été analysé. Les indices les plus 

fortement liés de manière statistiquement significative étaient la date de début et de cessation des 

pluies ainsi que la longueur de la saison, le nombre de jours secs, les périodes secs 10 et 15, la 

quantité de pluies saisonnières, les jours de pluie, les jours humides 20 et 30, ainsi que les jours 

des fortes pluies. Nos résultats permettront de poursuivre les recherches sur ce sujet, en vue 

d'analyses prédictives utilisant des données de projection climatique. 

Mots clés: Pluviométrie, coton, changement climatique, Cameroun, statistiques, interpolation 

 

ABSTRACT 

This thesis investigates the statistical relationships between rainfall indices and cotton yields in 

northern Cameroon, a region heavily dependent on cotton and vulnerable to climate change due to 

its high rainfall variability. Daily rainfall data from the NoCORA rainfall dataset was interpolated 

using Ordinary Kriging to calculate yearly rainfall indices maps for a total of 25 indices. Cotton 

yield data on two different geographical levels was additionally provided by SODECOTON. 

Applying simple and multiple linear regression, the impact of the rainfall indices on cotton yields 

were analyzed. The onset and cessation day of the rainy season as well as the season length, dry 

days, dry spell consecutive 10 and 15, seasonal rainfall amount, rain days, wet days 20 and 30, as 

well as heavy rain days were found to be the indices with the strongest, statistically significant 

relationships. Our findings will allow further research into the topic, serving for prediction-

analysis using climate projection data. 

Keywords: Rainfall, cotton, climate change, Cameroon, statistics, interpolation  
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FOREWORD 

 

“The correlation coefficient shows that a master’s student’s happiness will increase the earlier 

the end of his or her thesis arrives.” 

 

This quote was thought of by the great second year “Water and Agriculture” master’s student Clara 

Knops, as she wrote her final lines of this thesis paper.  

The following pages contain said master thesis on the “Exploration of the statistical relationships 

between rainfall indices and cotton yields in northern Cameroon, to strengthen the resilience of 

farmers to climate change. “. It was written to fulfill the graduation requirement of the master’s in 

“Water” at the Institut Agro, AgroParisTech and the Université de Montpellier. The research and 

writing of my thesis took place between February and August 2024 during an internship at the 

CIRAD - UMR Tetis financed by the INNOVACC project (cf. Appendix 20 and 21). 

Before making the first step into the career world, for one last time I wanted to push my know-

how while being a student and acquire new skills in the areas of agriculture, climate change and 

international development. This study allowed me to get to know the beautiful country of 

Cameroon, its people, climate conditions and cotton production, even if working from France. I 

gained new knowledge in data preparation and processing, interpolation techniques and statistical 

methods. For the first time, I worked with and became proficient in Python. In addition, I was able 

to consolidate my previous skills with other computer programs, as well as my comprehension 

about climate change and its interplay with water and agriculture.  

Once more, I learned about the struggles faced in research which has taught me valuable lessons 

both professionally and personally. I have the upmost respect for every researcher and thesis writer 

and wish them good luck. The end will arrive sooner than you think, and you will be very happy 

about your accomplishments. 
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1. INTRODUCTION 

The Sudano-Sahelian region area of Cameroon with a relatively high population density and high 

growth rate, relies heavily on rainfed agriculture. This significantly shapes the local socio-

economic landscape (E. Molua & Lami, 2009), yet only 43% of farmers achieve food self-

sufficiency in this way (Mbétid-Bessane et al., 2006). In the 1980s northern Cameroon already 

faced significant food shortages because of severe droughts (Penlap et al., 2004). Those facing 

food deficits often rely on the production of cotton to meet their financial and food needs, since it 

presents 60% of agricultural revenues, standing out as the primary cash crop and vital income 

source for many. (Mbétid-Bessane et al., 2006).  

Cotton is a heliophilous plant (significant demand for sunlight and warmth) that throughout its 

growth cycle needs a minimum of around 700 mm of water. Typically a cotton plant’s growth 

cycle ranges from 150 to 170 days with a daily evapotranspiration demand between 1 to 2,5 mm 

in the early stages and 6 to 10 mm during the blossoming stage (Ezan et al., 1998). 

In Cameroon, the cotton industry was introduced in 1950 by the Compagnie Française de 

Développement des Textiles (CFDT) (Folefack et al., 2011). In northern Cameroon since 1974 it 

is overseen by the Société de Développement du Coton du Cameroun (SODECOTON), ultimately 

representing 202,000 producers by 2014 (SODECOTON, 2022b). The industry has seen 

significant growth, reaching a peak production of 300,000 tons in 2004. Historically, the success 

of Cameroon's cotton sector has been attributed to mutual commitment and contractual agreements 

between cotton companies and producers, along with stable management and a long-term vision 

that avoided the restructuring seen in other African countries (Folefack et al., 2011).  

However, climate change is likely to negatively affect cotton productivity (Sultan et al., 2009) and 

modify cotton growth conditions (Gérardeaux E. et al., 2018; Gérardeaux et al., 2013), as well as 

regional resilience, due to increased year to year climate variability, unpredictable seasons, and 

more frequent heavy rains and droughts (Field et al., 2012; E. L. Molua, 2006). Extreme weather 

events, such as heavy rains and droughts, exacerbate the socio-economic challenges, impacting 

human communities, the environment, and the economy (Tamoffo et al., 2023). The variability of 

wet and dry periods can even lead to human migration due to changes in long-term rainfall patterns, 

significantly impacting economic and demographic aspects (Beauvilain A., 1996).  
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This vulnerability to climatic hazards and the regions dependance on cotton, has made northern 

Cameroon a critical area for scientific study. 

To understand how rainfall affects the cotton yield in northern Cameroon, we will analyze the 

statistical links between rainfall indices and yield values. For this we will first look at previous 

works around the topic, before creating daily interpolated rainfall maps used to calculate yearly 

rainfall indices that will then be compared to cotton yields via Exploratory Data Analysis and 

model fitting. Finally, we will discuss our results, as well as their limits and possible perspectives, 

before concluding on the subject.  

2. STATE OF THE ART 

The Sahelian region, already recognized for having the highest interannual rainfall variability 

globally over the last century, is experiencing increasingly strong interannual rainfall variability 

(Joël et al., 2015; Nicholson, 2000). These changes affect soil moisture, vegetation cover, and 

albedo, altering large-scale atmospheric patterns and reinforcing irregular rainfall anomalies 

(Nicholson, 2000). Bouba L. et al. (2017) and Vondou et al. (2021) analyzed the trends in rainfall 

and both discovered  an increased tendency of mean annual rainfall in northern Cameroon. Further 

research by Njouenwet et al. (2022), on the spatiotemporal variability and trends of extreme 

rainfall events, using data from fifteen stations, revealed a decrease in the annual number of rainy 

days from the North to the Far North and a slight delay in the onset of the rainy season, but a rising 

intensity of rainfall, hinting towards an increase of rainfall as well. Collectively, these studies 

suggest a general trend of increasing annual average rainfall in the Sudano-Sahelian zone of 

Cameroon. 

The agricultural productivity in northern Cameroon highly depends on weather and climate 

conditions, rendering the region particularly vulnerable to climate change (E. L. Molua, 2006). It 

closely depends on factors such as rainfall availability, onset and retreat date, as well as the 

duration of the rainy season, even if the role of rainfall variability is strongly reduced in farmers’ 

exploitations where other non-climatic factors such as human management, biotic stresses, pests, 

etc., impact crop productivity (Sultan et al., 2009). Sultan et al. (2009) demonstrated in a study on 

the influence of rainfall on cotton yields in northern Cameroon, that cotton productivity 

significantly decreases with early (May–June) and late (September–October) season rainfall 

deficits, which shorten the rainy season length. Across the semi-arid Sahel too, vegetation is 
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notably affected by variations in rainy day frequency, as well as the onset and retreat date of the 

rainy season. Especially this frequency of rainy days, as well as the occurrences of heavy rainfall 

events influence the relationship between growing season vegetation productivity and climate 

factors (W. Zhang et al., 2018). Cotton yields are particularly sensitive to both the overall seasonal 

rainfall amounts and heavy rainfall events (Njouenwet et al., 2021). In addition to those events, 

the impact of gradual changes in consecutive dry days has been notable, the two often leading to 

water supply challenges and soil degradation (M’Biandoun & Olina, 2009).  

Sultan et al. (2009) suggest that a potential decrease in mean annual rainfall in the northern part of 

the cotton production area of Cameroon could reduce productivity and increase climate-related 

risks. In addition, climate change is expected to intensify extreme temperature and precipitation 

events in Cameroon (Tamoffo et al., 2023). The higher temperatures are projected to expedite crop 

maturation times without necessarily causing yield losses to a certain extent, after which 

productivity is expected to decrease because of physiological considerations. Nevertheless, to cope 

with these accelerated phenological cycles of cotton, farmers may need to consider adjustments in 

planting dates and cultivar phenology (Gérardeaux E. et al., 2018; Gérardeaux et al., 2013). 

Despite these challenges, the cotton production region of Cameroon requires more studies on 

regional variability and trends in rainfall, as well as extreme rainfall and drought. The issue here 

was not really the lack of data discussed in Field et al. (2012), but a poor remobilization effort of 

a wealth of data available at SODECOTON. Furthermore, the significant local variations in rainfall 

and cotton yield highlight the necessity for spatialization of data and for a better understanding of 

rainfall trends in the region.  

To this aim, Geostatistical estimation methods, such as Kriging, have been found to provide more 

accurate interpolations than deterministic techniques like Inverse Distance Weighting (IDW), 

making them valuable for predicting climatic impacts on agriculture in the Sudano-Sahelian area 

(Dassou et al., 2016; Moral, 2010). 

Northern Cameroon, with its historical challenges of drought and food shortages, remains a crucial 

area for understanding the impacts of climate change. The interplay of rainfall trends, agricultural 

practices, and socio-economic conditions illustrates a complex and dynamic system that requires 

continuous study and adaptive strategies to mitigate future risks. 
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3. OBJECTIVES AND HYPOTHESES  

The primary objective of this study is to analyze the cotton yield based on rainfall data, addressing 

the pressing need to understand and anticipate the impacts of climate change on cotton production.  

For this, several sub-objectives were defined: 

I. Ensure the integrity and reliability of the rainfall data. 

II. Enhance the understanding of spatial and temporal rainfall distribution through spatial 

interpolation techniques and rainfall indices calculations. 

III. Ensure the integrity and reliability of the cotton yield data. 

IV. Provide valuable insights into the relationships between rainfall indices and cotton 

productivity. 

Leveraging two extensive databases - one capturing daily rainfall observations across several 

hundred rain gauge stations, and the other detailing cotton yield data from numerous collection 

points and sectors - the study aims to equip farmers and scientists with valuable insights for 

effective adaptation strategies. 

Since the study focuses on cotton specifically, the rainfall indices were tied to the rainy season, 

representing a critical period for cotton planting and growth. Rainfall is a major factor in the 

construction of cotton yields and was the only climatic variable considered in this study. Other 

meteorological and climate variables were not taken into consideration in this study due to data 

availability, with historical data not being available and satellite data being of poor resolution, 

given the extent of the region of interest, as well as being unreliable with only few synoptic stations 

present in this area of Africa. Furthermore, at the large scale offered by these products, it would be 

difficult to compare to the obtained cotton yield data at a close-up scale and give questionable 

results to the objective of the study. 

4. MATERIAL AND METHODS 

4.1. Overall Methodology 

The framework displayed in Fig. 1 was designed to accomplish the objectives of the study.  

The method was built on two data sources: the NoCORA rainfall dataset (mainly composed of 

SODECOTON rain gauge data) and the cotton yield data given by SODECOTON. Since the 
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geographic coordinates of the rain gauges, 

as well as the cotton production locations, 

did not necessarily match, the decision was 

made to first interpolate the rainfall data. It 

is processed to create a dataset of daily 

interpolated rainfall maps used to calculate 

yearly index maps covering the whole 

study area. The interpolation method is 

selected by implementing Leave-One-Out 

Cross-Validation (LOOCV) and evaluating 

different error metrics calculated from the 

LOOCV results, as well as by executing a 

paired t-test with these error-metrics. By 

these means, the cotton yield locations can 

be colocalized to the corresponding index 

coordinates to enable efficient exploratory 

data analysis and model fitting. 

4.2. Study Area  

The North of Cameroon comprises two administration regions - North and Far North - lying in the 

Sudano-Sahelian zone of the country, between 7◦ N and 13◦ N latitude and 11◦30’ E and 16◦ E 

longitude. The topographically flat regions (cf. Fig. 2), with a surface area of 100 km2, 

accommodate a population of around 6.4M inhabitants as of 2015, at a density of around 64/km2 

(Brinkhoff, 2020). 

The climate of this zone can be divided into two: north of 10◦ N the Sahelian area with warm semi-

arid climate and south of 10◦ N the Sudanian area with tropical savanna climate (Fick & Hijmans, 

2017; National Geographic Society, 2024). Both areas follow a pattern of dry and wet season, 

influenced by the thermodynamic properties of the African Monsoon, though the Sahel-type 

climate brings rain from May to October, while the Sudan-type climate rainfall arrives in June and 

ceases in September. Following this pattern, the rivers underly a tropical regime with high water 

during the wet season and low water during the dry season. Characterized by a monomodal regime, 

Fig. 1: Overall methodology framework 
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the annual average rainfall increases from north to south with elevation, ranging from around 

900mm in the north to around 1300mm in the south. The temperature during the growing season 

reaches from an average minimum of 21.8◦C to an average maximum of 34.8◦C. 

Agriculture is one of the regions’ main activities, overviewed by organizations such as the 

SODECOTON and the Société d’Expansion et de Modernisation de la Riziculture dans la ville de 

Yagoua (SEMRY). Though the primarily raised crop may vary from area to area, the most common 

ones are cotton, millet, sorghum, maize, rice, groundnuts and onions.  

4.3. Data 

4.3.1. Rainfall Data 

The rainfall data used for the study was published as the Northern Cameroon Observed Rainfall 

Archive (NoCORA, doi: 10.5281/zenodo.10156437) by Lavarenne et al., (2023). The data was 

collected from 418 rainfall stations dispersed in the North and Far North regions of Cameroon, 

through rain gauge instruments, for the period of 1927 to 2022 (cf. Fig. 3). Several sources 

Fig. 2: Digital Elevation Model of northern Cameroon 
Source figures on the left: Victor Nenwala, personal communication 
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contributed to the records, including 

SODECOTON, Robert Morel (IRD), the Lagdo 

Hydroelectric Power Station, the Global 

Historical Climatology Network (GHCN) and 

the Trans-African Hydro-Meteorological 

Observatory (TAHMO). Every data entry is 

accompanied by the corresponding geographic 

coordinates of the rain gauge. Some stations 

from outside of the borders of Cameroon were 

also included in this dataset to serve as “anchor 

points” for the interpolation process, reducing 

the surfaces concerned only by extrapolation 

near the borders. 

Given that the data was provided by different 

sources, an extensive preparation part was 

carried out by Lavarenne et al. (2023) for the 

construction of a complete dataset. Records were 

provided in either numeric or paper format, requiring a preliminary compilation before further data 

cleaning. Inconsistencies between the different records were reduced through standardization of 

station names and verification of coordinate accuracy, eliminating duplicates at the same time. In 

addition, missing coordinates were estimated employing platforms such as Google Maps and 

MapCarta, using the station name as point of reference.  

The observations exhibit a strong variability in space and time, with the number of stations 

changing depending on the day. The records provided by SODECOTON only consider the rainfall 

for the period of March until October, during the rainy season, while rainfall during the dry season 

is not included.  

4.3.2. Cotton Data 

The cotton data used in this study was provided by SODECOTON, which collected the data at two 

different geographical levels: 

Fig. 3: Localization of NoCORA rain gauge stations 
between 1927 and 2022. 
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1. Collection points: Points where trucks collect cotton seed, representing the cotton market. 

2. Sectors: Cotton producer regrouped by larger scale areas 

  
Fig. 4: Localization of SODECOTON collection points 

between 2007 and 2010. 

Fig. 5: Localization of SODECOTON sectors between 

1991 and 2010. 

A collection point dataset, made from data gathered by SODECOTON, was assembled by Antoine 

Leblois as part of his 2013 study about the potential of weather index-based insurance to mitigate 

risk for cotton farmers (Leblois et al., 2014). This original dataset included collection point names, 

as well as cotton yield values in kg/ha, determined from surface areas and cotton production values 

for 1883 collection points over a period of 4 years, from 2007 to 2010. A separate file contained 

the geographic location of every collection point with the related name.  

In addition, Antoine Leblois assembled a sector dataset, once more with SODECOTON’s observed 

cotton yield data in kg/ha. This original sector dataset contained several files with mean annual 

yields for 43 sectors, spanning 28 years from 1983 to 2010.  
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4.4. Methods 

4.4.1. Generating daily rainfall maps from daily rain gauge data using Kriging 

interpolation  

For the preparation of the rainfall data, days with data for only one station were filtered out, since 

they would produce poor, non-representative interpolation results. Therefore, all data entries 

before 1948 were excluded and only the subsequent period until 2021, englobing 395 stations, was 

interpolated.  

Previous studies have shown that in the Sudano-Sahelian area of Cameroun, for daily map 

interpolation, Kriging gives better global predictions than Inverse Distance Weighing (IDW) 

(Dassou et al., 2016), with several studies relying on Kriging (Djoufack et al., 2012; Njouenwet et 

al., 2022; Njouenwet et al., 2021). Therefore, to generate high resolution daily rainfall maps, two 

kriging methods – Ordinary Kriging (OK) as well as Universal Kriging (UK) – were tested. 

Interpolation itself was performed under Python 3.11 using GSTools version 1.5.1 (Müller et al., 

2022). 

The objective of kriging is to use observed values (oi) at fixed data points (xi) to derive the value 

(o0) of a field at a grid point (x0) by using a weighted linear combination of the observed values:  

𝑜 = 𝑤 × 𝑜  

The weights (w) can change according to the location of x0, as well as the variogram model applied 

and are calculated differently depending on the kriging method.  

OK is a linear estimation method that assumes a constant mean. It is theoretically unbiased since 

it pursues to have a mean residual error equal to zero and in addition, OK aims to minimize the 

error variance. The equation for w resulting from the OK system can be expressed as follows:  

𝑤
⋮

𝑤
𝜇

=  

𝑐(𝑥 , 𝑥 ) ⋯ 𝑐(𝑥 , 𝑥 )
⋮ ⋱ ⋮

𝑐(𝑥 , 𝑥 ) ⋯ 𝑐(𝑥 , 𝑥 )
1 1 1

1
1
1
0

 

𝑐(𝑥 , 𝑥 )
⋮

𝑐(𝑥 , 𝑥 )
1

 

where: 

c(xi,xj) = covariance of the given observation 
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μ = Lagrange multiplier 

For UK a deterministic trend is added to the method, allowing the mean to vary in different 

locations. In this study, a linear trend was applied, which assumes that the mean changes linearly 

with the spatial coordinates. The linear trend function of the x, y coordinates (f(xi) and f(yi)) is 

added to the previous equation:  
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As kriging is a technique that uses variogram models to interpolate data, the two methods (OK and 

UK) were implemented using nine different variogram models: Circular, Exponential, Gaussian, 

Matern, JBessel, Rational, Spherical, Stable and SuperSpherical.  

Table 1: Statistical criteria used for the accuracy assessment 

Statistical Criteria Definition 

Coefficient of determination (r2) 𝑟 = 1 −
(∑ ( 𝑜  – �̂�))

(∑ ( 𝑧  – �̂�))
 

Mean Error (ME) 𝑀𝐸 =  
1

𝑛
 ( 𝑧  – 𝑜 ) 

Mean Absolute Error (MAE) 𝑀𝐴𝐸 =  
1

𝑛
 | 𝑧  – 𝑜 | 

Root Mean Square Error (RMSE) 𝑅𝑀𝑆𝐸 =
1

𝑛
 (𝑧  – 𝑜 )

/

 

We evaluated the obtained results by applying a Leave One Out Cross Validation (LOOCV) 

approach, where one data point is consecutively left out of the interpolation procedure, while the 

interpolated value at the missing point coordinates is logged to be compared with the missing point 

value, this procedure being replicated as many times as there are validation points (Longman et 

al., 2019). For the number of observations (n), the error between the observed value (o) versus 

predicted value (z) is then assessed by employing a series of error metrics as described by Willmott, 

1982 and Isaaks & Srivastava, 1989. 
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The coefficient of determination (r2, with p̂ being the mean of p-values) serves as a first indicator 

of the reliability of the model (Willmott, 1982). The bias of the model and its degree is described 

by the Mean Error (ME) (Isaaks & Srivastava, 1989). The Mean Absolute Error (MAE) and Root 

Mean Square Error (RMSE) are both “among the ‘best’ overall measures of model performance, 

as they summarize the mean difference in the unit of o and p” (Willmott, 1982), with the difference 

that RMSE emphasizes extreme values while MAE is less sensitive to those (Willmott, 1982).  

For the best performing models and interpolation method, a paired t-test based on interpolation 

error metric values was carried out additionally, to identify which models present significantly 

different scores. The null hypothesis states that the mean difference between paired observations 

is zero. If the p-value is less than 0.05, the null hypothesis is rejected, indicating a statistically 

significant difference (Xu et al., 2017). As missing days were present in all datasets, due to certain 

days having less than two data-entries and some days not being able to be interpolated, a cross-

filling method was used to assemble a composite of interpolated datasets with no statistically 

significant difference. In practice, this means that we completed missing days of the best 

interpolation method with available days of the second-best interpolation method to reconstruct 

incomplete time-series. In addition, in maps that produced negative interpolated values, these 

negative values were replaced with zeros.  

Using the best performing variogram models, daily rainfall maps were interpolated for the period 

1948-2022 at a resolution of 0.01°, or pixels of 1,11 x [1,08 ; 1,10] = [1,19 ; 1,22] km² at the 

latitude [9 ; 13] °N. 

4.4.2. Rainfall Indices  

Rainfall indices are parameters used to describe the amount, frequency, intensity and distribution 

of rainfall over a certain period and area, tracking events and patterns.  

Regarding the available years of observed cotton yield data, the daily interpolated rainfall maps 

were processed for a period of 20 years, from 1991 to 2010, with a total of 85 stations included in 

the initial interpolation during this time span. The rainfall data was mainly collected from March 

to October during the rainy season, and the data for other months was sparse and only captured 

occasional rain events, therefore exclusively the interpolated maps for the rainy season were used 

since the dry season produced poor and unreliable results. 
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Table 2: Seasonal rainfall indices based on daily rainfall during the rainy season 

Index name Definition Unit 

Onset Starting date of the rainy season Day of year 

Cessation Retreat date of the rainy season  Day of year 

Season length Number of days between onset and cessation Days 

Seasonal rainfall amount Rainfall amount during the rainy season mm 

Rainy days Number of days with rainfall >1 mm  Days 

Relative rainy days Percentage of rainy days during the rainy season  % 

Dry days  Number of days with rainfall <1 mm  Days 

Relative dry days  Percentage of dry days during the rainy season % 

Wet days 20/30/40/50 Number of days with rainfall >20/30/40/50 mm Days 

Relative wet days 

20/30/40/50 

Percentage of wet days 20/30/40/50 during the 

rainy season 
% 

Heavy rainfall days 

(WS1 90P) 
1 day with rainfall >90thpercentile of daily rainfall Days 

Wet spells cumulative 

10/15/20 (WSC10/15/20 

90P) 

10/15/20-days rainfall >90thpercentile of 10/15/20-

day cumulative rainfall 

Nbr of 

events 

Long dry spells (DSl) 8 - 14 consecutive dry days 
Nbr of 

events 

Extreme long dry spells 

(DSxl) 
Consecutive dry days exceeding 15 days 

Nbr of 

events 

Dry spells cumulative 

10/15/20 (DSC10/15/20) 

10/15/20 days with less than 10/15/20 mm of 

rainfall  

Nbr of 

events 

Tied to the rainy season, simultaneously representing the growing season of cotton and a critical 

period for crop planting and growth, a total of 25 rainfall indices were calculated for the days of 

the rainy season (cf. Table 2). These indices were computed pixel-wise, based on the interpolated 

daily rainfall maps, per year. Days exhibiting >1mm of rainfall per day mark rainy days and <1mm 

of rainfall per day mark dry days. Four further thresholds of rainfall were defined, with >20mm, 

>30mm, > 40mm and >50mm of rainfall, indicating wet days as defined by Maidment et al. (2017). 
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Wet spells (WS) and dry spell (DS) indices were derived from (Fall et al., 2019). Dry spells depend 

on duration while wet spells also depend on intensity.  

The methodology used to define the onset and retreat date of the rainy season was developed by 

Liebmann et al. (2012), where for each grid point the sum of the daily rainfall minus the 

climatological annual daily average is calculated. The day after the absolute minimum marks the 

onset date, indicating the start of consistent above-average precipitation. The maximum in this 

value establish the retreat date, indicating the transition to below-average precipitation. .  

The output of calculation is one map per index and per year. 

Also, to be able to analyze the spatial distribution of the rainfall indices and their variability in 

space, the average index value and standard deviation for the analyzed period were calculated for 

each index respectively.  

4.4.3. Cotton data preparation  

For the collection point dataset (cf. Fig. 4), quite detailed in space, the data was refined with the 

help of Ibrahim Njouenwet for the use of this study. The names of the different collection points 

in the two files did not consistently match due to different spelling, therefore they were 

standardized by uniformizing their spelling, before being attributed with the corresponding 

geographic coordinates. Non-attributed-number (Nan) values were then filtered, and duplicate 

lines dropped, creating a complete collection point dataset in csv format with 1883 collection 

points over 4 years, from 2007 to 2010.   

For the operational use of the sector dataset (cf. Fig. 5), more detailed in time, data preparation 

was carried out as well. Since the years 1984, 1986-87 and 1989-90 were missing, the choice was 

made to only keep the data between 1991 and 2010, to insure accurate and reliable results. In 

addition, as shown in Fig. 5 only 37 sectors were presented, the entries of 6 sectors had to be 

removed, due to a restructuring of the SODECOTON sector limits. Names needed to be 

standardized for each sector due to differences in spelling, before the related cotton yield could be 

attributed cartographically to the corresponding polygon with the updated limits. Nan values and 

duplicate lines were removed, thus creating a sector dataset in shape format with 37 sectors for a 

time interval of 20 years, from 1991 to 2010. 
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4.4.4. Exploratory data analysis of the relationships between rainfall indices 

and cotton yield, and Model fitting 

To observe the possible statistical relationships between the cotton yield dataset and our 25 rainfall 

indices, we first established scatterplots for an exploratory data analysis of the yield and rainfall 

index variables.  

The cotton yield dataset (1883 collection points for a period of 4 years) contained several outliers 

restricting a proper first interpretation of the results. Therefore, the choice was made that data 

points over the 95th percentile and under the 5th percentile of yield values were filtered out. 25 

scatterplots could then be produced, one for each index-yield combination. 

Since the cotton yield values for the sector dataset (37 sectors for a period of 20 years) were not 

attributed to a specific pixel coordinate, but to a polygon area, mean and median aggregation 

functions were applied to the rainfall index maps to obtain aggregate rainfall index values for each 

sector. Hence, we produced 50 scatterplots for this dataset, 25 mean index-yield combinations, as 

well as 25 median index-yield combinations.  

For each index-yield combination of the two datasets (75 in total – 25 Collection point dataset, 50 

sector dataset) we then calculated the Pearson coefficient and the p-values: 

The Pearson correlation coefficient (r) is a measure of the linear relationship between two sets of 

data (here R and Y), quantifying the degree to which pairs of data points deviate from their 

respective means in the same direction. The coefficient is calculated as follows: 

𝑟 =  
∑(𝑅 − 𝑅) (𝑌 − 𝑌)

∑(𝑅 − 𝑅) ∑(𝑌 − 𝑌)

 

It ranges from -1 to +1, where +1 indicates a perfect positive linear relationship, -1 indicates a 

perfect negative linear relationship, and 0 indicates no linear relationship (Nettleton, 2014). A p-

value can be associated to it, which helps assess the statistical significance of the observed 

correlation coefficient. As described in 4.4.2 Rainfall Indices, the interpretation of the p-value is 

based on the null-hypothesis. In this case a p-value <0.01 indicates a statistically significant 

relationship, while a p-value >0.01 indicates statistically non-significant relationships. 
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Different model fitting approaches were then applied to both the collection point and sector 

datasets (cf. Fig. 7), to further analyze the statistical relationship between cotton yield and indices, 

as well as to enable the possibility of predicting cotton yields through projected rainfall data.  

Simple linear regression - Ordinary Least Square (OLS)  

The Ordinary Least Squares (OLS) is a commonly applied linear regression method, estimating 

the parameters of a linear relationship by minimizing the sum of the squared residuals, where 

residuals are the differences between observed and predicted values. 

Given a linear model: 

𝑌 = 𝑚 + 𝑟𝑦. 𝑅 + 𝜀 

where in this case cotton (Y) is the dependent variable and the rainfall index (R) is the independent 

variable. The variable of ry is the slope coefficient, representing the yield response to seasonal 

rainfall trends, ε is the residual error, accounting for unexplained variance in the relationship and 

m is the intercept, representing the average yield change due to factors other than seasonal rainfall  

The objective is to find the values of m and ry that minimize the sum of squared residuals: 

𝜀  

where 𝜀i is the residual for the ith observation, defined as the difference between the observed value 

and the value predicted by the model. The minimization of this sum ensures the best linear fit to 

the data. 

To achieve this, the residuals 𝜀i must be calculated for each observation, before each residual is 

squared to prevent positive and negative differences from canceling each other out. The squared 

residuals are then summed and the parameters m and ry optimized to minimize this sum (Dismuke 

& Lindrooth, 2005).  

We performed OLS regression between the 25 rainfall indices and our yield datasets, using the 

statsmodels version 0.14.2 library (Waskom, 2021), applying three dimensions: solely spatial, 

solely temporal and spatiotemporal (cf. Fig. 6).  
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Fig. 6: Dimensions applied for model fitting  

A spatial dimension emphasizes the differences across space, helping to understand how different 

spatial data points perform over a specific time span, highlighting the production capacities for 

every sector while smoothing out year-to-year weather variations. For every data entry in space 

(1883 for the collection point dataset and 37 for the sector dataset), all values over time were taken 

and mean, as well as median aggregation functions were applied to obtain spatial aggregate yield 

and index values. Therefore, each dataset produced 100 results: 25 mean index-mean yield 

combinations, 25 mean index-median yield combinations, 25 median index-mean yield 

combinations and 25 median index-median yield combinations.  

The temporal dimension reduces the influence of local characteristics and variability, helping to 

understand the influence of rainfall indices on cotton yield for the whole region over a longer 

period, highlighting temporal trends. Here, for each year, all values in space are taken into mean 

and median aggregation functions to obtain temporal aggregate yield and index values. Due to the 
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short time span of the collection point dataset (4 years), the temporal dimension was only applied 

to the sector dataset (20 years), producing another 100 outputs with the same combinations as for 

the spatial dimension.  

In a spatiotemporal dimension, both spatial and temporal dimensions are integrated, providing a 

comprehensive view of how cotton yield and its relationship with rainfall indices vary across space 

over time. This approach emphasizes both the geographical differences in the performance of 

spatial data points and the temporal trends in cotton yield influenced by rainfall patterns. Both 

datasets were implemented with each data entry in space for every year as described for the 

Exploratory Data Analysis, with no supplementary mean or median aggregation functions. 

Furthermore, for the sector dataset which depends on values attributed to polygons and not specific 

pixel coordinates, we also tried another strategy for the spatiotemporal dimension, where a 

cropland mask (Karra et al., 2021) was applied. Only the values of the pixels falling into a crop 

category were retained, to better estimate the areas of cotton production. 

Various adaptations of the linear regression equation were then implemented for both datasets, 

apart from the slope/slope method which could only be applied to the sector dataset, given the 

short time interval of the collection point dataset. Moreover, the linear-log model, the relative 

approach and the slope/slope approach were only performed for the spatiotemporal dimension, 

while the First Difference method was implemented for the temporal dimension as well.   

 First difference  

The purpose of the first difference method is to consider the influence of omitted values which are 

attributed to the effect of rainfall indices, instead of other factors, such as the influence of CO2.  

For each data point in space the observed yield value on the day j is subtracted from the yield value 

of the previous day, j-1, thus only being applicable to the temporal and spatiotemporal dimension. 

The same procedure is repeated for the interpolated rainfall index values as follows:  

∆𝑌 = 𝑌 − 𝑌  

and 

∆𝑅 = 𝑅 − 𝑅  

where ΔY describes the difference in yield and ΔR the difference in index values.  
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The differences ΔR and ΔY are implemented in OLS regression, to analyze how the changes in 

rainfall indices influence the changes in cotton yield: 

∆𝑌 = 𝑚 + 𝑟𝑦. ∆𝑅 + 𝜀 

where in this case, m represents the yield change due to other factors than R. 

 Linear-log model 

In a log-linear model, the relationship between the rainfall indices and the cotton yield is expressed 

with R in logarithmic form, adjusting the linear regression equation as described underneath: 

𝑌 = 𝑚 + 𝑟𝑦. log (𝑅) + 𝜀 

This implies that multiplying R by the natural exponent e will result in a corresponding change in 

Y by ry units:  

log(𝑅) + 1 = log(𝑅) + log(𝑒) = log (𝑒𝑅) 

The logarithmic transformation of R helps to address nonlinear relationships between variables. 

This transformation is particularly useful for normalizing heavily biased variables, making it more 

suitable for analysis. A log-transformed variable can better approximate a normal distribution, 

allowing for more accurate and reliable statistical conclusions (Benoit, 2011).  

 Relative values 

The relative values approach standardizes data across different sectors, making it easier to compare 

and detect long-term trends and anomalies, detaching from the average cotton yield. 

For the entire time span of each dataset, the average value of the cotton yield (Yb) is aggregated. 

This average value presents the baseline, equaling 100%. For each Y data entry, the relative values 

regarding the baseline value are then calculated as follows: 

𝑌 = 𝑌/𝑌  

where Yr represents the relative cotton yield value. 
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Linear regression is then applied, using Yr and R as dependent and independent variables 

respectively, giving the adjusted linear regression equation: 

𝑌 = 𝑚 + 𝑟𝑦. 𝑅 + 𝜀 

 Slope/ slope  

The slope/ slope method, first used by Zhang et al., 2015 and adapted to a Cameroonian context 

in 2021 by Njouenwet, serves to highlight the weak implications of index trends in cotton yields 

over time, focusing on long-term trends.  

For each eligible sector, the slope of the cotton yield by year, as well as the index by year, are 

calculated via OLS, essentially representing cotton yield trends and rainfall indices trends. Sectors 

which have less than one data entry for the analyzed period are not considered in this method, 

since there are not enough points to implement a first linear regression analysis. Sectors with more 

than one data point will have an index slope value and a yield slope value attributed to them. To 

quantify how the trends in R impact trends in Y over time, OLS regression is then applied a second 

time, using the yield slope values and index slope values of all sectors as dependent and 

independent variable, giving the adapted equation: 

𝑌 = 𝑚 + 𝑟𝑦. 𝑅 + 𝜀 

where Yt represents the cotton yield trend and Rt the rainfall indices trends.  

Multiple linear regression  

Multiple linear regression is an extension of simple linear regression that incorporates multiple 

independent variables, in this case multiple indices, to predict the dependent variable, the yield, 

helping to understand their association to each other. The relationship between the variables is 

assumed to be linear, meaning the yield is modeled as a linear combination of the indices (Tranmer 

et al., 2020).  

Simple linear regression was applied to all inter-index combinations (25 indices equaling 300 

combinations of 2 indices), to find index-pairs with no statistically significant relationship between 

them as determined by the Pearson coefficient and corresponding p-value. 
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For the retained index combinations multiple linear regression was applied using the general 

equation:  

𝑌 = 𝑚 + 𝑟𝑦 . 𝑅 +  𝑟𝑦 . 𝑅 + 𝜀 

where m represents the intercept and ry1, ry2 are the coefficients for the index variables R1, R2.  

 
   Fig. 7: Model fitting framework 

Calculation of metrics 

For every approach the Pearson correlation coefficient with their corresponding p-values were 

calculated once more. 

In addition, the coefficient of determination (r2), as well as the slope were given by the statsmodel 

output. Here, r2 quantifies the proportion of the variance in the dependent variable Y that is 

predictable from the independent variables, the rainfall indices. Essentially, it is the squared 
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Pearson coefficient, measuring the goodness of fit of the model by indicating how well the rainfall 

indices explain the variation in the cotton yield. The slope quantifies the expected change in the 

dependent variable Y for a one-unit increase in the independent variables R. Through the 

integration of the p-value, statistically significant slopes (p < 0.01) can be identified, indicating a 

strong relationship between the variables (Burton, 2021).  

5. RESULTS 

5.1. Interpolated rainfall maps 

The preparation of the rainfall data left us with 

the stations shown in Fig. 8, to compute LOOCV 

and the interpolation of daily rainfall maps. 

The interpolation performance metrics resulting 

from the LOOCV of the two kriging methods are 

presented in Figure 9. They revealed that 

Circular, Exponential, Spherical and 

SuperSpherical variogram models for OK 

produce the best results. The figures show that 

OK presents as more reliable than UK and that 

all four models exhibit a low bias. 

The paired t-test, which was carried out in 

addition, showed that there was no significant 

difference between OK Circular and OK 

Spherical regarding all error metrics (cf. 

Appendix 1). 

The Spherical dataset using OK, which exhibited the least missing interpolation maps, was used 

as basis for the combined dataset, and completed by the Circular dataset using OK. Data access is 

presented in Table 3. 

Fig. 8: Localization of rain gauge stations between 
1991 and 2010. 
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Fig. 9: Zoom on interpolation performances for different methods and favorable variograms, evaluated through LOOCV for the error metrics: (a) r2 (original 

y-scale -1000 - 1), (b) ME (original y-scale -5 - 5), (c) MAE (original y-scale 1 - 100), (d) RMSE (original y-scale 1 - 70) 

 

(a) (b) 

(d) (c) 
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Table 3: Interpolated rainfall datasets 

Dataset name Description DOI 

OK Circular 
Produced with OK using Circular variogram 

model 

https://zenodo.org/doi/10.5281/

zenodo.10997276 

OK Spherical 
Produced with OK using Spherical 

variogram model 

https://zenodo.org/doi/10.5281/

zenodo.11045583 

Combined 

dataset 

Produced by completing the missing data 

from Spherical using Circular model results 

https://zenodo.org/doi/10.5281/

zenodo.11067784 

5.2. Average spatial distribution and variability of rainfall indices 

We computed the yearly 25 rainfall indices for 

the period 1991-2010, using the daily 

interpolated rainfall data created with the 

stations shown in Fig. 10, to have an outlook of 

their spatial repartition and sense of variability, 

we present their average (cf. Fig. 11 and 

Appendix 2 for supplementary plots) and 

standard deviation (cf. Fig. 12 and Appendix 3 

for supplementary plots) maps.  

The maps (Fig. 11 a and b) show that the 

southern regions experience an early start 

(before March 31) of the rainy season and a 

retreat between October 12 and 17. The onset is 

getting progressively later as you move north, 

with the beginning of the rainy season being 

April 20 and after. For the cessation on the other 

hand, the latest end of the rainy season is 

observable in the central region, at around October 27, before getting earlier in the Far North 

(October 7 and before). The season length increases from north to south, extending from 140 to 

230 days. 

Fig. 10: Localization of rain gauge stations between 
1991 and 2010. 
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Fig. 11: Spatial distribution of seasonal rainfall indices based on 20-year (1991-2010) averages: (a) Onset, (b) 

Cessation, (c) Seasonal rainfall amount, (d) Rain days, (e) Wet days 20, (f) Wet days 50, (g) Dry days, (h) DSC15. 

Supplementary plots for indices not shown here, available in Appendix 2.  

Following the north-south gradient, all wet days indices exhibit a clear augmentation of the number 

of days, or of their relative percentage, towards the south. Even though, the higher the given yield 

for the wet days indices is, the smaller the area of high values in the south, with wet days 20 

reaching up to 20 wet days and wet days 50 only reaching up to 5. 

DS events and dry day indices show a complex pattern across the region. Apart from DSC10, the 

indices show generally low numbers of events (1-3) and dry days (25 to 65) throughout the region 

with the central areas exhibiting the least. In addition, there are notable pockets with high values 

exceeding 4 or more events in the north for DSC10 and DSC15, as well as in the south for DSC10, 

implying more extreme drought conditions in these parts of the study area. Otherwise, DSl events 

are below 1 in almost all northern Cameroon, except for a very small area in the south, where the 

number of events goes up to 4.  
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Fig. 12: Spatial distribution of seasonal rainfall indices based on 20-year (1991-2010) standard deviations (Std): (a) 

Onset, (b) Cessation, (c) Seasonal rainfall amount, (d) Rain days, (e) Wet days 20, (f) Wet days 50, (g) Dry days, (h) 

DSC15. Supplementary plots for indices not shown here, available in Appendix 3.  

For wet day indices, WS1 and relative rain days exhibit a lower variability in comparison with 

other indices, being inferior to 0.2 for relative indices and inferior to 6 for indices by the number 

of days. Apart from relative rainy days, the variability follows a clear north-south gradient, with 

the variability increasing towards the south. For the relative rainy days, as well as most other 

indices, the variability is lower in the central area of the study zone while the northern and southern 

parts present a higher variability. A very complex variability with high values can be observed 

with DSC indices, ranging between 0.8 and 1.8 throughout most of the territory. 

5.3. Spatial distribution of average cotton yields 

The following maps show the average cotton yields in northern Cameroon for a period of 4 years 

for the collection point dataset (cf. Fig. 13) and a period of 20 years for the sector datasets (cf. Fig. 

14).  
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Looking at both maps, we can observe that the very northern tip, as well as larger clusters in the 

south of the study area, either don’t produce any cotton or don’t fall under the supervision of 

SODECOTON. 

  
Fig. 13: Average cotton yield of SODECOTON 

collection points between 2007 and 2010. 

Fig. 14: Average cotton yield of SODECOTON sectors 

between 1991 and 2010. 

The average cotton yield distribution of the collection point dataset reveals a dense concentration 

of cotton collection points with some exceeding a cotton production of over 1400 kg/ha in the 

center of northern Cameroon, around the border of the North and Far North, indicating a significant 

cotton production activity there. The eastern part of the North region as well, exhibits high cotton 

yield values, while the southern part shows rather average values, mostly round 800 to 1200 kg/ha, 

with few collection points present.  

The sector dataset shows a similar distribution of average cotton yields with high values in the 

North in areas around Guider, Padame and Pitoa with over 1200 kg/ha, as well as some sectors in 

the east of the study region, including Madingrin and Sorombeo with over 1400 kg/ha. The Far-
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North region generally exhibits lower yields, particularly in the sector of Kaele with average yields 

below 800 kg/ha. 

5.4. Statistical relationships between rainfall indices and cotton yields 

A first visual analysis of the scatterplots displaying the index values vs cotton yields (cf. Appendix 

8 to 10), exhibited no clear tendencies in the graphic distribution of the values. Rather, we could 

observe large clusters of the values with low and high index values equally presenting low and 

high cotton yield values. 

For the collection point dataset, the strongest Pearson coefficient was calculated for the seasonal 

rainfall amount (0.23, cf. Fig. 15), whereas for the sector dataset WS1 exhibited the highest 

correlation (0.31-0.32, cf. Fig. 15).  

5.4.1. Simple linear relationships 

Simple linear regression served to estimate the linear relationship between two variables, here the 

rainfall indices and the cotton yield. This regression method was applied to both datasets, using 

spatiotemporal (observed values in time and space, with mean and median aggregated values for 

the sector dataset index values), spatial (mean and median aggregations of yield and index values 

Fig. 15: Cotton yields (kg/ha) vs (a) mean WS1 for the sector 
dataset (b) median WS1 for the sector dataset, (c) Seasonal 
rainfall amount for the collection point dataset. 
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of temporal values at a geographic location) and temporal dimensions (mean and median 

aggregation of yield and index values of all spatial values in a year).  

Four additional variations were tested. The first difference method, which takes omitted values 

into account, was implemented using the temporal dimension for the sector dataset, as well as the 

spatiotemporal dimension for both datasets. Possible non-linear relationships were addressed by 

applying a log-linear model for the spatiotemporal dimension of both datasets. The relative values 

approach, which standardizes the observed values in relation to an average yield and index baseline 

value, was applied to both datasets for the spatiotemporal dimension. The slope/slope method 

could only be applied to the sector dataset, due to the short time interval of the collection point 

dataset, highlighting the relationships between yield and index trends. 

Collection point dataset 

Looking at the spatiotemporal dimension of the collection point dataset, the strongest linear 

relationships with Pearson coefficients between 0.2 and 0.23, can be observed for the wet days 20 

indices, seasonal rainfall amount and relative rain days, all having a positive impact on cotton yield 

(cf. Appendix 11). The index most associated with a decline of the cotton yield is the number of 

dry days, as well as its relative, with Pearson values of -0.18 and -0.19 respectively (cf. Appendix 

11). A statistically significant relationship (p-value < 0.05) can be observed for these relationships, 

as well as all other indices, the exception being Onset and WSC indices (cf. Appendix 5). 

Nonetheless, the Pearson correlation indicates that the relationship for those indices is quite weak, 

with several indices exhibiting a correlation coefficient of 0.1 and under (cf. Appendix 4).  

When calculating the spatial dimension, correlation coefficients still show weak relationships. 

Within, DSl, DSxl and DSC15 measure the strongest, with correlation coefficients between -0.22 

and -0.27 (cf. Appendix 4).  Ranging from 0.22 to 0.28, an increase in cotton yields can be observed 

with higher seasonal rainfall amount, as well as wet days 20 and 30 indices - apart from wet days 

30 indices - when taken the median yield and median index value (cf. Appendix 4). 

 Statistical relationships considering omitted values 

The strongest correlation coefficients displayed for this approach are -0.04 and 0.04 for onset day 

of the year and dry days indices respectively (cf. Appendix 4). Other than that, only very few 
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statistically significant relationships can be observed for all of the indices (cf. Appendix 5), and 

they all show a very weak correlation (cf. Appendix 4). 

 Statistical relationships considering non-linear relationships 

Fitting a log function using the OLS method, we can observe weak correlations throughout all 

indices. The strongest positive influence is displayed with wet days 20 indices, seasonal rainfall 

amount and relative rain days (0.15 to 0.2, cf. Appendix 5). A negative influence of logarithmic 

index values on the cotton yield is exhibited by dry days, as well as relative dry days (-0.13 to -

0.12, cf. Appendix 5).   

 Statistical relationships using standardized values  

The results exhibit the same Pearson coefficient, slope and p-value as for the simple linear 

regression, with the strongest positive linear relationships for this method observed between cotton 

yield with the wet days 20 indices, seasonal rainfall amount and relative rain days respectively (cf. 

Appendix 4). The strongest negative relationships are with the number of dry days, as well as 

relative dry days (cf. Appendix 4). 

Sector Dataset 

For the sector dataset, WS1 indicates the strongest, but overall, still a moderate, relationship for 

the sector dataset, with a Pearson coefficient of 0.31 or 0.32 for median and mean index 

respectively (cf. Appendix 12 and 13). In addition, the wet days 30 and 40 indices show some of 

the higher correlations, between 0.18 and 0.2, indicating rather weak relationships with cotton 

yields. Otherwise also wet days 50 indices, DSC15 and 20, as well as dry days indices and relative 

rain days manifest statistically significant, but still quite weak, relationships.  

After applying a LULC mask on the sector polygons, the tendencies observed stay the same for all 

statistically significant relationships (cf. Appendix 4 and 5). For the correlation coefficient of WS1, 

still displaying the strongest relationship, a minor deviation of the Pearson value (0.28) can be 

observed (cf. Appendix 4).  

Exploring the datasets using the spatial dimension, only minor deviations arise between mean and 

median analysis. Cessation, season length, seasonal rainfall amount, rain days, heavy rainfall days 

and wet days 20 indices and wet days 30, manifest strong positive statistically significant 
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relationships with correlation coefficients over 0.5, cessation reached the highest value between 

0.62 and 0.67 (cf. Fig. 16). DSC15 and onset on the other hand have a strong negative impact on 

cotton yields, with the Pearson coefficient ranging from -0.47 to -0.61 and from -0.54 to -0.57 

respectively (cf. Fig. 16). DSl and DSxl could not produce linear regression results when 

calculating median aggregations, due to the low number of occurrences of these dry spell indices, 

creating medians of zero for all sectors. 

 

Fig. 16: (a–i) Spatial relationships between cotton yields (kg/ha) and cessation, DSC15, onset, rain days, season 
length, seasonal rainfall amount, wet days 20, wet days 30, WS1 for the sector dataset based on 20-year median 
values, using OLS 
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Due to the short time span of the collection point dataset, the temporal dimension could only be 

calculated for the sector dataset. There is a noticeable difference to the spatial dimension, with 

many linear relationships that showed a positive influence, showing a negative influence, as well 

as the contrary. Thus, dry days indices display a strong positive correlation coefficient between 

0.52 and 0.62 (cf. Fig. 17), while the correlation of the seasonal rainfall amount lies between -0.63 

and -0.69 (cf. Fig. 17). Similar values can be observed for DSC10 (0.51 to 0.53, cf. Fig. 17) and 

rain day indices (-0.58 to -0.72, cf. Fig. 17). Furthermore, the cessation day of the year exhibited 

a strong Pearson coefficient between -0.47 and -0.54 (cf. Fig. 17).  

Fig. 17: (a–g) Temporal 
relationships between cotton 
yields (kg/ha) and cessation, 
dry days, DSC10, rain days, 
relative dry days, relative rain 
days, seasonal rainfall 
amount for the sector dataset 
based spatial mean values, 
using OLS 
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 Statistical relationships considering omitted values 

In comparison with the simple linear regression, still all indices exhibit a low correlation degree. 

Although, for the spatiotemporal dimension of the sector dataset applying first difference, 

particularly onset (-0.18, cf. Appendix 4), cessation (0.22 to 0.24, Appendix 4) and season length 

(0.25, Appendix 4) exhibit higher Pearson values, as well as seasonal rainfall amount (0.22 to 0.23, 

Appendix 4) and rain days (0.23 to 0.24, Appendix 4). Wet days 30 indices reveal a correlation 

coefficient of 0.21 all the same (cf. Appendix 4), in addition to wet days 20 indices which present 

a higher Pearson value now as well (cf. Appendix 4), whilst it has diminished for wet days 40 

indices and WS1 (cf. Appendix 4). 

Furthermore, regarding the temporal dimension, at a correlation between 0.51 and 0.63, wet days 

20 indices have a strong, more influential relationship (cf. Appendix 14 and 15), as well as 

cessation (-0.53 to -0.55, cf. Appendix 14 and 15) if taking the temporal index median. In 

comparison to the simple linear regression, only DSC10 still indicates a strong significant 

relationship, with slightly lower Pearson values between 0.49 and 0.52 (cf. Appendix 4 and 5).  

 Statistical relationships considering non-linear relationships 

When adding log fitting to the linear regression equation, WS1 exhibits the strongest Pearson 

coefficient with a moderate correlation degree (0.31 to 0.32, cf. Appendix 4). Wet days 30 indices 

show a rather weak Pearson coefficient of around 0.25 to 0.26, though only when taken the median 

index values (cf. Appendix 4). For DSl as well, a difference can be observed between mean and 

median index values. The median values indicate a negative impact on the cotton yield with a 

moderate correlation coefficient of -0.34 (cf. Appendix 4), while the mean values for the same 

index show no statistically significant relationship.  

 Statistical relationships using standardized values  

Anew, the results correspond to those of the simple linear regression, with WS1 indicating the 

strongest relationship for the sector dataset for this method (cf. Appendix 4) and the wet days 30 

and 40 indices show some of the higher correlations observed (cf. Appendix 4). 

 Statistical relationships between yield and index trends 
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Looking at the cessation index, the slope/slope method shows 

a strong positive correlation between 0.57 and 0.59 (cf. Fig. 

18). The WS1 index displays the strongest negative correlation 

(-0.46 to -0.47, cf. Appendix 4), conversely to the findings of 

the spatial dimension of the sector dataset (cf. Fig. 16).  

 

 

 

5.4.2. Multiple linear relationships  

The multiple linear regression method is used to assess the relationship between two rainfall 

indices and the cotton yield. It was applied to both datasets, using the spatiotemporal dimension. 

Collection point dataset  

The correlation analysis between index pairs for the collection point dataset revealed only one pair 

without statistically significant relationship: wet days 50 - rain days (cf. Appendix 16). The 

relationship between those indices and the cotton yield is also nonsignificant, with a weak Pearson 

coefficient at -0.01 (cf. Appendix 18). 

Sector dataset 

For the sector dataset several index combinations displayed nonsignificant relationships with no 

correlation, including cessation – DSC15, DSC15 – relative rain days, DSC20 – onset, DSC20 – 

WS1, DSl – WS1, DSxl – rain days and onset – relative dry days (cf. Appendix 17).  

Still, none of the explored combinations implemented in multiple linear regression with the cotton 

yield show any statistically significant relationships, and all show very weak correlations (cf. 

Appendix 19). The strongest correlations can be observed with the cessation and DSC15 

combination, with a correlation coefficient of 0.04 (cf. Appendix 18). 

5.4.3. Evaluation of metrics 

Examining the r2 values for the different methods and indices (cf. Appendix 7), using the 

spatiotemporal dimension for both datasets, as well as the spatial dimension for the collection point 

dataset, indices explain only a negligeable part of the change in cotton yield. The only exception 

Fig. 18: (a) Trend relationships between 
cotton yields (kg/ha) and Cessation 
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is the slope/slope approach, where the results show that the retreat of the rain season explains 

around 27 to 30% in the change of cotton yield. For the temporal and spatial dimensions of the 

sector dataset on the other hand, there is a much stronger influence to be observed. When applying 

simple linear regression in the spatial dimension, seasonal length and cessation account for up to 

40 and 45% of the variation in cotton yield respectively. In the temporal dimension, it is wet days 

20 and 30 indices that generate the highest variations, between 34 and 38%. Adjoining the first 

difference method to the linear regression of the sector dataset, the wet days 20 index still accounts 

for the highest change in cotton yield with 36 to 40% for the temporal dimension.  

The slope values (cf. Appendix 6) highlight these influences, as well as the positive and negative 

impacts displayed by the Pearson correlation coefficient. For the slope/slope method, a delay by 

one day of the retreat date accounts for 27 to 30 kg/ha more of cotton. For the spatial dimension, 

one day of delay decreases the cotton yield by around 26 to 35 kg/ha of cotton and one a prolonged 

rainy season by one day adds around 12 to 15 kg/ha. On the other side, every added dry day 

decreases the cotton yield by around 10 kg/ha. For the temporal dimension, the cotton yield 

decreases by 22 to 43 kg/ha for every additional wet day over 20mm or 30 mm of rainfall.  

6. DISCUSSION 

When looking at the relationships found between rainfall indices and cotton yields, we can observe 

two larger groups that stand out. On one hand, we have dry days indices and DSC indices. On the 

other hand, we have seasonal rainfall amount, rain days indices, wet days 20 indices and wet days 

30, as well as WS1. This applies to both datasets, although the correlations stand out much stronger 

for the sector dataset. This is likely because the aggregation of rainfall indices for each sector 

which creates a scaling effect, smoothing out local variabilities and capturing more consistent 

trends, whereas the finer-scale collection point dataset might show more variability and noise due 

to its higher spatial resolution and diverse conditions including non-climatic factors such as human 

management, biotic stresses, pests, etc. 

The two groups of indices, differently impact cotton yields. In the spatial dimension (meaning 

independently of time, which is aggregated) for the sector dataset, cotton yields are highly 

positively affected by the seasonal rainfall amount, rain days indices, wet days 20 indices and wet 

days 30, as well as WS1. This coincides with findings of Njouenwet et al. (2021), for cotton in 
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northern Cameroon and W. Zhang et al. (2018), for all vegetation productivity in the Sahel, who 

state that in space the number of heavy rainfall events and seasonal rainfall amount positively 

correlate with yield. On the other side, we found that DSC15 has a highly negative effect.  

When analyzing the relationships from a temporal dimension (meaning independently of space, 

all northern Cameroon sector values are aggregated) for the sector dataset, the effects are opposite 

to those in the spatial dimension. DSC10 and dry days indices show a strong positive effect with 

yield, while Njouenwet et al. (2021) discovered a negative influence of consecutive dry days trends 

on the cotton yield in northern Cameroon. However, they only analyzed data from 16 stations in 

northern Cameroon, focusing on trends not only from a temporal point of view but also spatially, 

possibly leading to the differences in results. The seasonal rainfall amount, rain days indices, and 

wet days 20 indices exhibit a strong negative relationship in the temporal dimension. This 

coincides with findings of Gérardeaux E. et al. (2018), who explained that certain climate models 

predict lower cotton yields with rising rainfalls, although it is important to note that he is 

prognosing this impact based on climate prediction data and not historical data.  

Given these two opposing results, it appears that the spatiotemporal dimension (which considers 

the observed and interpolated values in time and space), exhibits weak correlations possibly 

because the spatial and temporal components tend to counterbalance each other.  

The correlations found for spatial dimension might be because of local characteristics, with certain 

sectors profiting from higher rainfalls for optimal cotton growth. Geographically, we observed that 

seasonal rainfall amount, rain days, wet days 20 indices and wet days 30, as well as WS1 follow a 

north-south gradient (cf. 5.2. Average spatial distribution and variability of rainfall indices), with 

higher index values in the south of the study area. It is in this region that farmers use primarily 

long cycle cotton varieties (Dessauw et al., 2010), taking full advantage of increased water 

availability. For sectors in the Far North, who receive much less rainfall and plant short cycle 

cotton, yields are lower due to quick maturation, not profiting as much from elevated rainfalls 

during the rainy season. In addition, in the Far North of Cameroon, an area used for cotton farming 

since long time, soils are heavily degraded (Tsozué et al., 2014), which could lead to lower cotton 

yields. Lastly, prolonged dry spells (such as DSC15) for short cotton cycles, especially during 
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critical growing stages, could lead to detrimental losses as cotton crops require a certain amount 

of soil moisture for optimal growth (Datta et al., 2019). 

However, when spatially aggregating yield and index value for the whole study area, seasonal 

rainfall amount, wet days 20 indices and rainy days indices could display a negative effect on 

cotton yields, due to floods. Gérardeaux E. et al. (2018) suggests that this negative influence stems 

from nitrogen leaching, presenting a bigger constraint to cotton yields than droughts. Additionally, 

northern Cameroon is known to be prawn to floods, in years of excessive rainfall, they can cover 

up entire parcels (Bouba L. et al., 2017; Tchotsoua, 2007). A consequence of these floods can be 

waterlogging towards which cotton exhibits poor tolerance, influencing its growth and 

development, as well as nutrient intake (Hocking et al., 1987; Hodgson, 1982). Moreover, it is 

important to recall the definitions of the chosen dry days and DSC indices, since the dry days with 

less than 1mm of rainfall per day are not analyzed in a consecutive count of days and consecutive 

dry spells have a higher rainfall threshold. W. Zhang et al. (2018) showed that vegetation 

productivity in the area only starts to be negatively impacted after more than 14 consecutive dry 

days. In the temporal dimension, the absence of a negative effect of DSC10 (exactly 10 days with 

each day <10mm of rainfall) on yields, could be attributed to the short duration of the DSC10 

index. We can hypothesize that the relatively high rainfall threshold for dry spells indices of 10 

mm for the DSC10 index could depict the positive influence of lighter rainfalls, as it is close to the 

optimal rainfall intensity for cotton productivity, which is supposed to be around 12.5 to 13 mm 

(Njouenwet et al., 2021; W. Zhang et al., 2018). Furthermore, the daily evapotranspiration demand 

of cotton is only between 1 to 10 mm depending on the growth stage (Ezan et al., 1998).  

In addition to the previously mentioned indices, one further group stands out: the onset day of the 

year, the cessation day of the year and the season length. In the temporal dimension for the sector 

dataset, the later cessation date is associated with lower cotton yields. We can hypothesize that this 

could be due to an extended exposure of cotton crops to risks such as droughts and floods. In 

contrast, when analyzing trends using the slope/slope method, which helps disambiguate the 

effects of interannual variability from the effect of trends of both predictor and predicted variables, 

a later cessation date correlates with improved cotton yields, a correlation underlined by the 

findings of Gérardeaux E. et al. (2018). The difference in results could be explained by the fact 

that the analysis in the temporal dimension may vary widely due to short-term factors, while the 
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slop/slope method shows broader patterns and more reliable results. This suggests that over time 

a later retreat date can be beneficial to cotton, maybe indicating the successful implication of new 

cotton varieties. The results of the spatial dimension support this theory, showing that cotton yields 

can profit from an earlier onset, later cessation and therefore longer season length, allowing a 

prolonged growing cycle for long cotton cycle varieties (Dessauw et al., 2010; Gérardeaux E. et 

al., 2018). The importance of these indices was also underlined by Sultan et al. (2009), who found 

a close spatial relationship between the three indices and cotton yields, with an early onset, late 

cessation and longer season length giving the highest yields.  

Even though in this study only rainfall was considered, it is important to discuss other factors that 

influence the cotton yield. As shown in the state of the art (cf. 2. State of the Art), several studies 

found that the temperature plays a role in the productivity of cotton yields. It can reduce the 

duration of the cotton growth period, accelerate the phenological cycle, and increase the 

evapotranspiration demand because of higher water stress (Gérardeaux et al., 2013; Roudier et al., 

2011). Another influence stems from CO2 acting as a fertilizer for cotton, which could benefit 

cotton yields within certain limits (Gérardeaux et al., 2013). 

The results of the first difference method consider omitted values, revealing the impact of other 

independent variables that are otherwise attributed to rainfall. Although, we cannot determine 

which independent variable influences the yield to which degree. Two indices stand out 

particularly when looking at the temporal dimension for the sector dataset. The number of dry 

days, which had a strong positive effect, shows a weak negative correlation with cotton yields 

when considering omitted values. The strong correlation with the relative percentage of rainy days, 

which was negative when applying simple linear regression, now exhibits a weak positive 

relationship. This undermines the theory that other factors have an influence on cotton yields. The 

initial positive effect of dry days may have been due to effective irrigation practices mitigating the 

lack of rainfall. For another example, crop yields could also increase under tillage and conservation 

agriculture systems, helping to retain water (Gérardeaux et al., 2013). Conversely, the positive 

relationship with the relative percentage of rain days undermines that, in the presence of other 

favorable conditions, moderate rainfall can indeed benefit cotton yields. 
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The findings of our study clearly show that changes in rainfall provoke changes in cotton yields. 

The identified relationships between rainfall indices and cotton yields suggest an urgent need for 

the development and implementation of adaptive strategies to local climatic conditions. For 

instance, policies promoting adapted cotton varieties, and the adjustment of planting schedules 

based on more accurate seasonal forecasts could greatly enhance the resilience of cotton farmers. 

Furthermore, programs to improve farmers’ knowledge on the climate change implications and 

adaptation strategies could empower them to better manage risks associated with unpredictable 

rainfall patterns. By integrating these points, northern Cameroon could improve the livelihoods of 

farmers and strengthen their resilience to climate change. 

7. LIMITATIONS AND PERSPECTIVES 

Several limits were encountered during the study, related to data and methodology.  

Even so the data provided by the NoCORA dataset presented a very complete collection of rainfall 

measurements in time in space, many dates presented very few data entries with around less than 

5 stations. This leads to the predicted rainfall values of these dates being far from the observed 

ones due to poor interpolation capacity. In addition, while the chosen kriging interpolation method 

was concluded to produce the best results, the interpolation method and variogram models couldn’t 

interpolate the rainfall data of certain dates. Since these missing dates appeared during the same 

month at the same frequency for every year, the decision was made not to apply gap-filling, 

therefore our results have to be considered relative and not absolute.  

Furthermore, we have to consider that our rainfall indices were calculated for the whole rainy 

season, which does not necessarily correspond to the planting and harvesting of cotton in the 

different regions. Therefore, heavy rainfalls, an elevated number of dry days or other index events 

that occur during the rainy season, but not necessarily during the cotton cycle, could influence our 

results. Moreover, it would have been interesting to analyze the relationships between rainfall 

indices and cotton yields during specific stages of the cotton cycle, to determine how the impact 

can differ depending on the level of cotton growth.  

The cotton data must be handled with care as well. Since our dataset consists of yield values 

reported at the collection site and not measured at the field, the cotton yields registered can differ 

from the actual yield.  
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Lastly, if adapted data for other climatic and meteorological variables, such as the temperature and 

evapotranspirational needs, would be available, it would be an important measure to include those 

variables in the study. These variables affect the cotton yield as well and, in this study, could be 

attributed to the impacts of rainfall instead.  

Nonetheless, the results of this study are intended to be a cornerstone for agroclimatic forecasting 

for cotton production, facilitating the evaluation of yield impacts over temporal and spatial scales 

using rainfall projections from sources like CORDEX (Coordinated Regional Climate 

Downscaling Experiment).  

The continuance of our study involves downscaling high-resolution climate simulations (MCRs) 

to a 0.01° × 0.01° grid and correcting biases in simulated rainfall using the historical data fitted in 

this study. Four bias correction methods - Power Transformation (PT), Scaling (SCL), Generalized 

Quantile Mapping (GEQM), and Gamma Quantile Mapping (GAQM) - can then be applied to 

address systematic biases. In this context, as described by Sultan et al. (2009), the uncertainties in 

climate change projections must be reduced as well to produce reliable future scenarios of 

agricultural productivity. Therefore, the most suitable bias correction method would be selected 

based on a set of statistical indices, and the resulting correction coefficients could be used to adjust 

future climate projections for the RCP 2.6, 4.5, and 8.5 scenarios for the period 2010-2100. Finally, 

a multi-model ensemble would be generated for downscaled MCR projections. 

Gérardeaux E. et al. (2018) put in place a similar project to determine the cotton ideotype for 

Cameroon, applying the CROPGRO-cotton model under the RCP 8.5 scenario. He noted that 

climate models can produce inconsistent results for rainfall distributions and amounts, highlighting 

the need for the continuance of this study. 

By exploring future cotton productivity under diverse climatic conditions, this study is a pillar for 

providing critical foresight into the potential scenarios of cotton yield variability, ultimately 

supporting strategic planning and resilience-building for famers in the cotton sector of northern 

Cameroon. 

8. CONCLUSION 

The focus of this study was to analyze the statistical relationships between rainfall indices and 

cotton yields in northern Cameroon, to strengthen the resilience of farmers to climate change. 
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To calculate our rainfall indices, we found that Ordinary Kriging (OK) using Circular and 

Spherical variogram models were the best method to interpolate the rainfall data and produce 

annual rainfall indices maps for 25 indices in total. 

During the study, after implementing different linear regression methods, we discovered 

statistically significant relationships between cotton yields and several rainfall indices. The 

following showed a strong degree of correlation for at least one linear regression approach tested: 

onset and cessation date as well as season length, dry days and relative dry days, DSC10 and 15, 

seasonal rainfall amount, rain days and relative rain days, wet days 20 and 30, as well as relative 

wet days 20, and WS1.  

The correlations calculated were much higher for the cotton yields provided at the sector level 

rather than at the collection point. In addition, our results demonstrated that depending on the 

dimension (spatial, temporal or spatiotemporal), the influence of these indices may vary, not only 

in their degree of impact, but also in terms of positive or negative relationships. These contrasted 

impacts may be partly explained by cultivation improvements/degradation in time, 

counterbalanced by changes in rainfall patterns and indices.  

The spatial and temporal dimension for the sector dataset exhibited the strongest metrics. We 

revealed that moderate dry periods, such as DSC10, and dry days are beneficial for cotton yields 

when considering the mean and median yield for the entire Sudano-Sahelian zone of Cameroon. 

Consistent stronger dry spells, such as DSC15, remain a limiting factor for cotton productivity for 

an extent of sectors. Conclusively, when aggregating all yearly values for each sector, seasonal 

rainfall amount, rain days, wet days 20 indices and wet days 30, as well as heavy rainfall days are 

contributing factors to cotton productivity. In addition, cotton yields profit from a longer season 

length, with earlier onset and later cessation. When considering the mean and median yield for the 

whole area, rising rainfall in addition to more rainy days and a later cessation date can be 

detrimental to cotton yields.  

This study highlights the need for farmers and policymakers to consider changes in rainfall patterns 

when adjusting agricultural methods and shaping water management policies. The produced maps 

and historical data fitted will help with this, serving for the bias-correction and adjustment of future 

climate projections, used to model the impacts on cotton yields.  
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RÉSUMÉ 

Ce mémoire examine les relations statistiques entre les indices de pluviométrie et les rendements 

du coton dans le nord du Cameroun, une région fortement dépendante du coton et vulnérable au 

changement climatique en raison de sa forte variabilité des pluies. Les données quotidiennes de 

pluies provenant du jeu de données NoCORA ont été interpolées à l'aide du krigeage ordinaire 

pour calculer des cartes annuelles d'indices de pluviométrie pour un total de 25 indices. Les 

données de rendement du coton à deux niveaux géographiques différents ont également été 

fournies par SODECOTON. En appliquant des régressions linéaires simples et multiples, l'impact 

des indices de pluviométrie sur les rendements du coton a été analysé. Les indices les plus 

fortement liés de manière statistiquement significative étaient la date de début et de cessation des 

pluies ainsi que la longueur de la saison, le nombre de jours secs, les périodes secs 10 et 15, la 

quantité de pluies saisonnières, les jours de pluie, les jours humides 20 et 30, ainsi que les jours 

des fortes pluies Nos résultats permettront de poursuivre les recherches sur ce sujet, en vue 

d'analyses prédictives utilisant des données de projection climatique. 

Mots clés: Pluviométrie, coton, changement climatique, Cameroun, statistiques, interpolation 

 

ABSTRACT 

This thesis investigates the statistical relationships between rainfall indices and cotton yields in 

northern Cameroon, a region heavily dependent on cotton and vulnerable to climate change due to 

its high rainfall variability. Daily rainfall data from the NoCORA rainfall dataset was interpolated 

using Ordinary Kriging to calculate yearly rainfall indices maps for a total of 25 indices. Cotton 

yield data on two different geographical levels was additionally provided by SODECOTON. 

Applying simple and multiple linear regression, the impact of the rainfall indices on cotton yields 

were analyzed. The onset and cessation day of the rainy season as well as the season length, dry 

days, dry spell consecutive 10 and 15, seasonal rainfall amount, rain days, wet days 20 and 30, as 

well as heavy rain days were found to be the indices with the strongest, statistically significant 

relationships. Our findings will allow further research into the topic, serving for prediction-

analysis using climate projection data. 

Keywords: Rainfall, cotton, climate change, Cameroon, statistics, interpolation  


