APPENDICES

(SODECOTON, 2022a)

Exploration of the statistical relationships between rainfall indices and cotton yields in northern Cameroon, to strengthen the resilience of farmers to climate change.

By Clara KNOPS

Institut Agro Montpellier, AgroParisTech, Université de Montpellier Thesis presented the: 03/09/2024

Master thesis presented for the attribution of the Master 2 Degree Major: Water Specialization: Water and Agriculture

Exploration of the statistical relationships between rainfall indices

and cotton yields in northern Cameroon, to strengthen the

resilience of farmers to climate change.

By Clara KNOPS

Thesis presented the: 03/09/2024

Members of the jury: Flavie CERNESSON Gilles BELAUD Jean-Stéphane BAILLY Jérémy LAVARENNE Frédéric ROSSEL Host organization: UMR-TETIS, CIRAD Thesis advisor: Jean-Stéphane BAILLY Internship supervisor: Jérémy LAVARENNE

LIST OF APPENDICES

Appendix 1: P-value results of paired t-test	2
Appendix 2: Spatial distribution of seasonal rainfall indices based on 20-year (1991-2010)	
averages	3
Appendix 3: Spatial distribution of seasonal rainfall indices based on 20-year (1991-2010)	
standard deviations (Std)	4
Appendix 4: Table of Pearson correlation coefficients for simple linear regression	5
Appendix 5: Table of p-values for simple linear regression	6
Appendix 6: Table of slope values for simple linear regression	7
Appendix 7: Table of r ² for simple linear regression	8
Appendix 8: Exploratory data analysis for the collection point dataset	9
Appendix 9: Exploratory data analysis for the sector dataset (mean aggregations) 10	0
Appendix 10: Exploratory data analysis for the sector dataset (median aggregations)11	1
Appendix 11: Linear regression for the collection point dataset	2
Appendix 12: Linear regression for the sector dataset (mean aggregations)	3
Appendix 13: Linear regression for the sector dataset (median aggregations)14	4
Appendix 14: Linear regression for the sector dataset using First Difference with temporal	
dimension (mean aggregations)15	5
Appendix 15: Linear regression for the sector dataset using First Difference with temporal	
dimension (median aggregations)	5
Appendix 16: Correlations between indices for the collection point dataset	7
Appendix 17: Correlations between indices for the sector dataset	8
Appendix 18: Multiple linear regression for the collection point dataset (a) and the sector dataset	
(c-d)19	9
Appendix 19: Table of metrics for multiple linear regression	0
Appendix 20: Context of the internship	1
Appendix 21: Work organization	2

MAE	Exponential	Circular	Spherical	SuperSpherical
Exponential				
Circular	8.2E-06			
Spherical	1.5E-06	2.7E-01		
SuperSpherical	1.3E-09	3.3E-01	5.2E-01	
ME	Exponential	Circular	Spherical	SuperSpherical
Exponential				
Circular	8.7E-01			
Spherical	1.7E-01	5.9E-02		
SuperSpherical	4.7E-02	5.8E-02	6.1E-01	
r2	Exponential	Circular	Spherical	SuperSpherical
Exponential				
Circular	3.7E-10			
Spherical	1.8E-12	2.4E-01		
SuperSpherical	4.5E-01	6.0E-10	1.7E-11	
RMSE	Exponential	Circular	Spherical	SuperSpherical
Exponential				
Circular	4.0E-05			
Spherical	7.7E-09	1.5E-01		
SuperSpherical	6 OF 01	76006	4 OF 10	

Appendix 1: P-value results of paired t-test (red quadrants mark statistically non-significant differences between variogram models with p>0.05)

Appendix 4: Table of Pearson correlation coefficients (r) for simple linear regression (red quadrants mark strong correlations with r>0.5)

Indices	Simple linear regression -														Pearson							~						~				
Adaptation									. P					3						Fi	irst Differe	nce				Linear-Lo	g	R	elative valu	ues	Slope	slope/
Dimension	Spatial								Spatioten	nporal		Spatioten LULC ma	nporal with ask	Temporal	Q			Spatioter	nporal		Temporal	0			Spatioten	mporal		Spatiotem	poral		Spatiotem	poral
Yield value	mean		2		median				observed	value	62	observed	value	mean	92	median	-	observed	value		mean	0	median	o	observed	value	<i>62</i>	observed v	/alue	-	observed	value
Index value	mean		median		mean		median		mean	median	interp. value	mean	median	mean	median	mean	median	mean	median	interp. value	mean	median	mean	median	mean	median	interp. value	mean	median	interp. value	mean	median
Cessation	0.18	0.03	0.21	0.03	3 0.1	1 0.04	0.09	0.04	0.01	0.02	2 0.08	-0.06	-0.0	2 -0.54	-0.4	7 -0.5	4 -0.52	0.24	4 0.22	0.05	-0.31	-0.21	-0.55	-0.53	0.02	2 -0.02	0.08	0.01	0.02	80.0	0.52	0.55
Dry days	-0.39	-0.13	-0.38	-0.12	-0.3	8 -0.12	-0.37	-0.12	0.12	0.12	2 -0.12	0.14	0.1	3 0.54	0.5	2 0.5	4 0.53	-0.04	-0.06	-0.17	-0.3	-0.23	-0.23	-0.16	0.14	4 0.13	-0.12	0.12	0.12	-0.12	-0.27	-0.23
DSC10	-0.31	-0.17	-0.35	-0.16	-0.3	1 -0.17	-0.33	-0.16	0.05	0.05	-0.18	0.07	0.0	6 0.51	0.5	1 0.5	3 0.53	-0.16	-0.14	-0.21	0.51	0.52	0.49	0.51	0.01	1 0.06	6 -0.1	0.05	0.05	-0.15	-0.28	-0.12
DSC15	-0.49	-0.12	-0.51	-0.11	-0.4	8 -0.15	-0.51	-0.14	-0.12	-0.12	-0.07	-0.12	-0.1	3 0.03	0.0	1 0.0	1 -0.02	-0.1	1 -0.1	-0.14	0.13	0.05	-0.02	-0.08	-0.1	1 -0.13	-0.08	-0.12	-0.12	-0.07	0.19	0.31
DSC20	-0.5	-0.24	-0.49	-0.23	3 -0.5	3 -0.26	-0.52	-0.24	-0.09	-0.11	-0.1	-0.08	-0.0	7 -0.02	-0.0	4 -0.1	7 -0.19	-0.0	5 -0.06	-0.17	-0.39	-0.41	-0.5	-0.52	-0.06	6 -0.07	-0.13	-0.09	-0.11	-0.1	0.36	0.38
DSI	nan	-0.24	nan	-0.23	3 nan	-0.26	nan	-0.24	0.02	0.04	4 -0.1	0.04	0.0	4 0.17	0.1	3 -0.0	6 -0.07	0.0	5 0.08	-0.17	-0.4	-0.43	-0.23	-0.22	0.12	2 0.04	4 -0.13	0.02	0.04	-0.1	0.31	0.11
DSx1	nan	-0.24	nan	-0.23	3 nan	-0.26	nan	-0.24	-0.02	-0.01	1 -0.1	-0.03	-0.0	1 -0.01	-0.0	6 nan	nan	-0.0	5 -0.04	-0.17	-0.43	-0.48	nan	nan	-0.21	1 -0.01	-0.13	-0.02	-0.01	-0.1	-0.18	-0.24
Onset	-0.13	-0.09	-0.13	-0.09	-0.1	4 -0.05	-0.13	-0.05	-0.05	-0.07	-0.01	-0.06	-0.0	4 0.2	0.1	5 0.0	5 0	-0.18	3 -0.18	-0.06	0.16	0.08	-0.19	-0.27	-0.05	5 -0.04	4 -0.01	-0.05	-0.07	-0.01	0.15	0.1
Rain days	0.39	0.14	0.38	0.14	4 0.3	7 0.15	0.37	0.15	-0.06	-0.05	5 0.13	-0.1	-0.0	8 -0.72	-0.6	6 -0.	7 -0.63	0.24	4 0.23	0.17	-0.21	-0.12	-0.15	-0.08	-0.03	3 -0.08	3 0.13	-0.06	-0.05	0.13	0.42	0.41
Relative dry days	-0.39	-0.13	-0.38	-0.13	3 -0.3	8 -0.12	-0.37	-0.12	0.09	0.09	-0.13	0.13	3 0.1	1 0.61	0.5	B 0.6	2 0.58	-0.14	4 -0.14	-0.17	-0.3	-0.26	-0.25	-0.23	0.12	2 0.11	-0.13	0.09	0.09	-0.13	-0.41	-0.42
Relative rain days	0.39	0.13	0.38	0.13	3 0.3	8 0.12	0.37	0.11	-0.1	-0.1	0.15	-0.13	3 -0.1	1 -0.64	-0.5	9 -0.6	2 -0.58	0.14	4 0.14	0.17	0.12	0.1	0.09	0.1	-0.09	9 -0.11	0.15	-0.1	-0.1	0.15	0.43	0.44
Relative wet days 20	0.58	0.26	0.6	0.25	5 0.6	1 0.27	0.62	0.25	0.05	0.04	0.19	0.06	0.0	6 -0.49	-0.4	4 -0.	5 -0.45	0.3	2 0.18	0.27	-0.59	-0.51	-0.63	-0.54	-0.02	2 0.06	0.17	0.05	0.04	0.19	-0.38	-0.36
Relative wet days 30	0.6	0.23	0.59	0.21	0.5	8 0.21	0.58	0.19	0.2	0.19	0.14	0.17	0.1	7 -0.09	-0.0	-0.2	2 -0.24	0.2	0.21	0.23	-0.32	-0.34	-0.43	-0.48	0.11	1 0.17	0.13	0.2	0.19	0.14	-0.38	-0.37
Relative wet days 40	0.5	0.15	0.48	0.14	0.4	5 0.15	0.42	0.13	0.2	0.18	3 0.07	0.16	0.1	6 0.07	0.0	9 0.0	5 0.03	0,1	7 0.15	0.18	0.07	0.09	-0.07	-0.12	0.16	6 0.16	0.06	0.2	0.18	0.07	-0.27	-0.19
Relative wet days 50	0.45	0.09	0.45	0.08	0.3	9 0.14	0.39	0.13	0.16	0.13	3 0.03	0.13	0.1	4 0.12	0.1	3 nan	nan	0.1	2 0.1	0.1	0.05	0.07	nan	nan	0.13	3 0.14	-0.14	0.16	0.13	0.03	-0.06	-0.02
Season length	0.26	0.07	0.28	0.07	0.1	6 0.05	0.14	0.05	0.05	0.06	0.05	0.01	0.0	2 -0.44	-0.3	7 -0.2	9 -0.23	0.2	5 0.25	0.07	-0.29	-0.18	-0.1	0	0.06	6 0.02	0.05	0.05	0.06	0.05	0.21	0.28
Seaonal rainfall amount	0.53	0.25	0.54	0.24	0.5	3 0.23	0.53	0.22	-0.05	-0.05	5 0.2	-0.07	-0.0	7 -0.69	-0.6	3 -0.6	9 -0.63	0.2	3 0.22	0.27	-0.46	-0.37	-0.46	-0.38	-0.02	2 -0.07	0.2	-0.05	-0.05	0.2	-0.17	-0.17
Wet days 20	0.58	0.26	0.6	0.24	1 0.6	1 0.25	0.62	0.24	0.04	0.04	0,19	0.05	0.0	5 -0.51	-0.4	5 -0.5	4 -0.48	0.3	2 0.18	0.28	-0.6	-0.49	-0.63	-0.52	-0.01	1 0.05	0.17	0.04	0.04	0.19	-0.36	-0.35
Wet days 30	0.6	0.22	0.59	0.21	0.5	8 0.21	0.58	0.19	0.19	0.15	0.15	0.16	0.1	6 -0.13	-0.1	1 -0.2	7 -0.28	0.2	1 0.21	0.23	-0.35	-0.35	-0.45	-0.49	0.11	1 0.16	0.14	0.19	0.19	0.15	-0.36	-0.35
Wet days 40	0.5	0.16	0.48	0.15	5 0.4	4 0.15	0.42	0.13	0.19	0.18	3 0.08	0.16	0.1	5 0.07	0.0	9 0.0	6 0.04	0.10	0.15	0.19	0.07	0.1	-0.08	-0.13	0.16	6 0.15	0.09	0.19	0.18	90.08	-0.25	-0.17
Wet days 50	0.45	0.1	0.45	0.1	0.3	9 0.15	0.39	0.14	0.16	0.13	3 0.03	0.14	0.1	5 0.12	0.1	3 nan	nan	0.1	1 0.09	0.1	0.05	0.08	nan	nan	0.13	3 0.15	-0.08	0.16	0.13	0.03	-0.06	-0.01
WS1	0.51	0.17	0.5	0.16	0.5	5 0.18	0.53	0.17	0.32	0.31	0.1	0.28	0.2	8 0.27	0.2	B 0.1	9 0.2	0.2	1 0.22	0.2	-0.04	0.01	0.1	0.15	0.32	2 0.28	3 0.1	0.32	0.31	0.1	-0.47	-0.46
WSC10	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
WSC15	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
WSC20	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan

Sector dataset

	0																															
Indices															Simpl	e linear re	gression -	p-value														
Adaptation									-			1								F	irst Differen	nce				Linear-Lo	g	Re	elative valu	ies	Slope	slope
Dimension	Spatial								Spatiotem	poral		Spatiotem LULC ma	poral with sk	Temporal				Spatiotem	aporal		Temporal				Spatiotem	poral		Spatiotem	poral		Spatiotem	poral
Yield value	mean				median				observed v	value		observed	value	mean		median		observed '	value		mean		median		observed v	/alue		observed v	/alue		observed v	alue
Index value	mean		median		mean		median		mean	median	interp. value	mean	median	mean	median	mean	median	mean	median	interp. value	mean	median	mean	median	mean	median	interp. value	mean	median	interp. value	mean	median
Cessation	0.282	0.19	0.222	0.247	0.511	0.0562	0.584	0.0659	0.759	0.652	7.37E-07	0.153	0.664	0.0146	0.0349	0.013	0.0181	1.4E-08	7.98E-08	0.000817	0.202	0.379	0.0147	0.0195	0.705	0.664	6.22E-07	0.759	0.652	7.37E-07	0.00859	0.00583
Dry days	0.0178	4.72E-08	0.208	1.04E-07	0.0188	2.46E-07	0.0222	3.21E-07	0.00293	0.00299	1.59E-14	0.00112	0.00256	0.0143	0.0182	0.0136	0.0173	0.134	0.176	3.28E-28	0.21	0.337	0.345	0.503	0.000496	0.00256	7.84E-15	0.00293	0.00299	1.59E-14	0.208	0.273
DSC10	0.059	2.21E-13	0.0332	3.7E-12	0.0662	1.04E-13	0.0463	2.15E-12	0.233	0.167	1.12E-21	0.087	0.18	0.0223	0.0226	0.0165	0.0162	0.00017	0.00115	2.27E-43	0.0266	0.0223	0.0327	0.0255	0.709	0.18	1.99E-11	0.233	0.167	1.12E-21	0.189	0.563
DSC15	0.0023	6.02E-08	0.00132	6.71E-07	0.00237	2.19E-10	0.0012	1.8E-09	0.00265	0.0034	3.94E-06	0.00464	0.00356	0.899	0.98	0.98	0.921	0.0126	0.0221	8.22E-21	0.606	0.827	0.949	0.758	0.016	0.00356	3.03E-07	0.00265	0.0034	3.94E-06	0.378	0.146
DSC20	0.00176	7.4E-27	0.00218	7.49E-24	0.000703	1.3E-29	0.00103	3.87E-26	0.0174	0.0049	4.94E-10	0.0527	0.0974	0.944	0.881	0.486	0.423	0.228	0.171	6.73E-28	0.102	0.0794	0.0306	0.0221	0.139	0.0974	5.81E-16	0.0174	0.0049	4.94E-10	0.0808	0.0699
DSI	nan	7.4E-27	nan	7.49E-24	nan	1.3E-29	nan	3.87E-26	0.589	0.324	4.94E-10	0.414	0.33	0.461	0.599	0.194	0.754	0.202	0.0502	6.73E-28	0.0865	0.0655	0.334	0.366	0.075	0.33	5.81E-16	0.589	0.324	4.94E-10	0.146	0.594
DSxl	nan	7.4E-27	nan	7.49E-24	nan	1.3E-29	nan	3.87E-26	0.629	0.849	4.94E-10	0.534	0.799	0.979	0.811	nan	nan	0.272	0.302	6.73E-28	0.0641	0.0389	nan	nan	0.487	0.799	5.81E-16	0.629	0.849	4.94E-10	0.411	0.267
Onset	0.443	4.49E-05	0.453	9.53E-05	0.42	0.0226	0.445	0.0367	0.167	0.0952	0.614	0.174	0.298	0.402	0.52	0.833	0.984	1.91E-05	1.42E-05	0.000107	0.51	0.742	0.427	0.259	0.18	0.298	0.655	0.167	0.0952	0.614	0.496	-0.641
Rain days	0.018	8.48E-10	0.0196	3.57E-09	0.0228	6.38E-11	0.0259	1.39E-10	0.157	0.178	1.66E-17	0.0223	0.0644	0.000355	0.00157	0.000667	0.00278	9.5E-09	1.93E-08	5.53E-29	0.391	0.63	0.533	0.748	0.422	0.0644	5.11E-17	0.157	0.178	1.66E-17	0.0429	0.046
Relative dry days	0.018	1.16E-08	0.0209	2.91E-08	0.0195	8.32E-08	0.0229	1.56E-07	0.0208	0.0263	7.21E-18	0.00339	0.0107	0.00434	0.0071	0.00383	0.00699	0.000661	0.000757	1.48E-28	0.21	0.29	0.294	0.352	0.00213	0.0107	4.15E-18	0.0208	0.0263	7.21E-18	0.047	0.0397
Relative rain days	0.0177	8.93E-09	0.0208	2.34E-08	0.0197	4.4E-07	0.0231	9.23E-07	0.0104	0.0139	1.61E-22	0.00231	0.00815	0.00337	0.00616	0.00352	0.00735	0.000966	0.000978	2.07E-28	0.623	0.679	0.711	0.691	0.0238	0.00815	3.36E-22	0.0104	0.0139	1.61E-22	0.0369	0.0308
Relative wet days																																
20	0.000146	2.33E-31	9.96E-05	2.99E-27	6.11E-05	1.8E-32	0.000047	1.62E-28	0.235	0.265	9.9E-37	0.167	0.139	0.027	0.051	0.0234	0.045	2.46E-06	1.35E-05	3.64E-74	0.00795	0.027	0.00414	0.0165	0.597	0.139	2.47E-28	0.235	0.265	9.9E-37	0.064	0.0871
Relative wet days																																
30	8.64E-05	4.78E-23	0.000113	5.01E-20	0.000149	1.41E-19	0.000151	3.34E-17	6.18E-07	1.07E-06	8.7E-21	7.22E-05	6.96E-05	0.7	0.717	0.342	0.313	6.99E-07	6.79E-07	8.93E-52	0.18	0.156	0.0664	0.0372	0.00706	6.96E-05	7.56E-16	6.18E-07	1.07E-06	8.7E-21	0.0646	0.0732
Relative wet days															1									111111								
40	0.00183	3.56E-11	0.00266	1.93E-09	0.00576	2E-10	0.0098	7.3E-09	5.75E-07	3.92E-06	2.01E-06	0.000151	0.000253	0.772	0.716	0.822	0.888	7.96E-05	0.000505	8.07E-32	0.761	0.712	0.783	0.626	0.000402	0.000253	0.0078	5.75E-07	3.92E-06	2.01E-06	0.21	0.37
Relative wet days		1		1																												
50	0.00478	6.71E-05	0.00575	0.000292	0.0169	9.99E-10	0.017	4.36E-09	4.07E-05	0.000686	0.102	0.0017	0.000757	0.623	0.59	nan	nan	0.00624	0.0232	2.17E-10	0.835	0.77	nan	nan	0.0193	0.000757	0.000053	0.000407	0.000686	0.102	0.764	0.936
Season length	0.122	0.00136	0.0895	0.00258	0.33	0.0177	0.194	0.0218	0.24	0.153	0.00288	0.893	0.657	0.0517	0.106	0.211	0.334	1.08E-09	1.53E-09	1.71E-06	0.225	0.465	0.692	0.987	0.164	0.657	0.00149	0.24	0.153	0.00288	0.333	0.183
Seaonal rainfall																and the second																
amount	0.000706	6.99E-28	0.000622	3.23E-25	0.00077	3.05E-24	0.000672	5.42E-22	0.198	0.186	5.1E-39	0.0904	0.13	0.000711	0.00269	0.000752	0.00284	2.68E-08	7.23E-08	3E-70	0.0496	0.115	0.0484	0.113	0.605	0.13	9.76E-38	0.198	0.186	5.1E-39	0.435	0.416
Wet days 20	0.000153	7.88E-30	0.000103	5.62E-26	6.08E-05	2.9E-29	4.79E-05	1.06E-25	0.294	0.361	1.25E-35	0.288	0.237	0.0211	0.0454	0.0133	0.0311	1.03E-06	0.000012	1.33E-74	0.00713	0.0323	0.00395	0.0212	0.713	0.237	6.64E-29	0.294	0.361	1.25E-35	0.0796	0.0975
Wet days 30	8.63E-05	9.14E-23	0.000112	7.63E-20	0.000154	7.99E-20	0.000153	1.97E-17	1.19E-06	2.05E-06	2.23E-22	0.00017	0.000145	0.598	0.648	0.243	0.237	5.76E-07	6.69E-07	1.64E-52	0.139	0.143	0.0554	0.0336	0.00587	0.000145	2E-17	1.19E-06	2.05E-06	2.23E-22	0.0824	0.0985
Wet days 40	0.0018	3.82E-12	0.0026	2.53E-10	0.00582	1.15E-10	0.0101	4.91E-09	7.23E-07	2.63E-06	7.3E-08	0.000174	0.000333	0.778	0.707	0.787	0.855	9.54E-05	0.000439	4.61E-34	0.784	0.699	0.746	0.594	0.000388	0.000333	0.000142	2 7.23E-07	2.63E-06	7.3E-08	0.23	0.423
Wet days 50	0.00468	6.43E-06	0.00561	3.46E-05	0.0171	1.29E-10	0.017	6.51E-10	3.65E-05	0.000655	0.0243	0.00134	0.000663	0.621	0.578	nan	nan	0.00699	0.0297	1.97E-11	0.84	0.751	nan	nan	0.0187	0.000663	0.0156	3.65E-05	0.000655	0.0243	0.295	0.949
WS1	0.00113	2.98E-14	0.00148	1.52E-12	0.000402	6.48E-16	0.000722	3.83E-14	3.04E-16	2.04E-15	1.68E-10	2.53E-11	1.84E-11	0.253	0.24	0.425	0.387	3.02E-07	2.33E-07	1.62E-39	0.861	0.969	0.692	0.553	1.32E-16	1.84E-11	2.2E-10	3.04E-16	2.04E-15	1.68E-10	0.02	0.024
WSC10	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan								
WSC15	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan								
WSC20	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan								

Appendix 5: Table of p-values for simple linear regression (red quadrants mark statistically significant relationships with p<0.01)

Sector dataset

Tediana															01			0														
marces									22.27						Simp	le finear r	egression -	Stope		E	not Differen					Linear Los	~	р	alativa valu		Flore	Jolona
Adaptation	-								-			Spatiatom	noral with						72-02	FI	Ist Differen	nce				Linear-Log	5	R	erative varu	.es	Stope	rstope
Dimension	Spatial								Spatiotem	poral		LULC ma	sk	Temporal				Spatiotem	poral		Temporal				Spatiotem	poral		Spatiotem	poral		Spatiotem	poral
Yield value	mean				median				observed v	alue		observed v	value	mean		median		observed '	value		mean		median		observed v	value		observed v	alue		observed v	value
Index value	mean		median		mean		median		mean	median	interp. value	mean	median	mean	median	mean	median	mean	median	interp. value	mean	median	mean	median	mean	median	interp. value	mean	median	interp. value	mean	median
Cessation	25.62	1.15	32.13	1.05	17.28	1.61	15.95	1.6	0.45	0.63	1.6	-1.89	-0.67	-16.52	-14.99	-14.4	-14.41	11.22	9.69	5.11	-6.79	-5.31	-8.62	-9.29	159.7	-0.67	474.37	0	0	0	29.95	27.57
Dry days	-10.24	-2.39	-11.09	-2.4	-10.05	-2.25	-10.87	-2.3	2.52	2.47	-2.37	3.15	2.84	7.58	7.56	7.64	7.62	-1.86	-1.61	-4.07	-4.91	-4.26	-3.16	-2.5	103.52	2.84	-51.59	0	0	0	-10.98	-9.81
DSC10	-12.6	-37.73	-78.26	-36.9	-61.56	-37.77	-73.7	-36.84	12.47	13.82	-29.8	19.38	14.66	99.69	102.37	91.98	94.87	-50.66	-38.89	-46.59	59.51	68.47	58.04	67.2	7.46	14.66	-42.86	0.01	0.01	-0.03	-109.21	-46.59
DSC15	-69.16	-20.4	-80.19	-19.31	-64.95	-23.1	-76.08	-22.59	-34.34	-31.47	-10.04	-35.44	-34.64	6.84	1.38	1.17	-4.81	-32.88	-27.07	-24.16	17.06	8.15	-1.83	-9.85	-42.46	-34.64	-27.32	-0.03	-0.03	-0.01	79.57	116.22
DSC20	-170.49	-57.25	-185.63	-55.54	-182.62	-53.6	-197.01	-51.86	-27.37	-30.64	-19.63	-23.82	-19.81	-3.39	-7.45	-27.72	-32.73	-18.06	-18.37	-44.06	-48.84	-58.31	-53.56	-63.04	-18.86	-19.81	-58.69	-0.02	-0.03	-0.02	145.52	136.2
DSI	0	-57.25	0	-55.54	0	-53.6	0	-51.86	15.43	25.63	-19.63	25.03	27.18	122.09	90.12	-32.13	-39.53	42.01	55.74	-44.06	-173.97	-208.15	-69.27	-72.83	21.55	27.18	-58.69	0.02	0.02	-0.02	436.64	147.38
DSx1	0	-57.25	0	-55.54	0	-53.6	0	-51.86	-148.51	-40.08	-19.63	-187	-54.12	-83.68	-788.35	0	0	-259.84	-167.15	-44.06	-3380.87	-4175.74	0	0	-18.66	-54.12	-58.69	-0.13	-0.04	-0.02	-2584.76	-2536.56
Onset	-38.1	-2.99	-41.35	-2.95	-42.86	-1.32	-44.98	-1.24	-1.4	-1.6	-0.17	-1.49	-1.13	4.35	3.45	0.83	-0.08	-5.55	-5.13	-3.77	2.34	1.32	-1.75	-2.77	-156.82	-1.12	-15.09	0 0	0	0	7.65	4.77
Rain days	9.18	1.96	10.05	1.95	8.74	2.11	9.49	2.13	-0.85	-0.79	1.62	-1.57	-1.26	-8.13	-7.67	-8.11	-7.59	4.86	4.59	3.5	-3.19	-2.02	-2.32	-1.45	-60.61	-1.26	234.21	0	0	0	13.03	12.48
Relative dry days	-1917.07	-476.85	-2077.73	-478.36	-1870.93	-451	-2022.97	-455.41	369.66	340.57	-539.95	523.23	445.12	1610.3	1582.38	1674.46	1630.4	-770.94	-737.52	-782.4	-1130.78	-1078.22	-752.41	-765.55	89.21	445.12	-59.39	0.32	0.3	-0.55	-3061.36	-3105.14
Relative rain days	1917.12	473.67	2076.48	474.77	1863.02	416.05	2015	417.13	-396.32	375.68	587.85	-540.27	-459.41	-1634.91	-1594.62	-1651.32	-1588.37	745.89	720.46	773.22	439.72	415.16	194.38	268.82	-240.51	-459.41	455.39	-0.35	-0.33	0.59	3090.81	3126.82
Relative wet days 20	3906.34	1841.9	4416.91	1768.35	4111.13	1895.89	4612.29	1830.49	626	581.15	1458.26	804.13	842.94	-5203.86	-4878.03	-5183.63	-4790.82	3099.48	2797.88	2309.39	-4768.93	-4592.29	-4590.48	-4451.57	-6.92	842.94	73.42	0.56	0.52	1.47	-8227.85	-7168.82
Relative wet days																																
30	7801.5	3124.98	8534.37	2993.95	7541.09	2809.43	8354.66	2704.63	6248.21	5879.02	2083.93	5167.47	4980.63	-3225.83	-3124.53	-6360.2	-6935.64	6547.15	6266.31	3599.99	8301.29	-9802.47	-8298.77	-10431.6	23.27	4980.63	32.85	5.56	5.23	2.11	-13085.1	-11493.6
Relative wet days																																
40	12926.97	4214.63	13882.79	3946.62	11318.08	3760.23	11789.64	3530.57	12847.14	10855.24	1956.27	9545.81	8621	5948.33	7662.54	3133.98	2011.88	9779.75	7651	5524.73	4286.89	5815.65	-2625.35	-5187.93	29.93	8621	19.17	11.43	9.65	1.98	-18320.5	-13377.9
Relative wet days																																
50	37297.93	4692.6	40567.1	4400.71	29372.3	7093.7	32547.71	7034.31	20752.17	15140.25	1213.74	14488.72	14017.52	23423.26	26448.47	0	0	13020.3	9301.73	5255.4	6422.05	10083.3	0	0	20.85	14017.52	-61.01	18.46	13.47	1.23	-9203.9	-1810.09
Season length	38.75	1.45	46.95	1.41	23.48	1.06	22.79	1.06	0.88	1.02	0.53	0.11	0.36	-7.33	-6.37	-4.47	-3.59	5.96	5.49	3.7	-3.43	-2.35	-0.94	-0.07	181.67	0.36	107.43	0	0	0	6.7	8.53
Seaonal rainfall																																
amount	0.42	0.18	0.46	0.18	0.41	0.16	0.46	0.16	-0.05	-0.05	0.16	-0.08	-0.07	-0.54	-0.51	-0.52	-0.49	0.33	0.32	0.26	-0.45	-0.41	-0.46	-0.42	-23.32	-0.07	238.57	0	0	0	-0.49	-0.48
Wet days 20	20.36	8.81	23.05	8.47	21.48	8.55	24.07	8.25	2.78	2.4	6.92	3.15	3.44	-27.3	-24.82	-27.88	-25.49	16.36	14.34	11.76	-25.15	-23.3	-23.92	-22.35	-4.63	3.44	68.51	0	0	0.01	-40.66	-35.96
Wet days 30	40.99	15.84	44.86	15.2	39.35	14.41	43.65	13.88	32.18	30.22	11.29	26.13	25.43	-24.37	-21.76	-43.12	-44.86	34.7	32.9	18.83	-54.96	-60.96	-51.72	-63.51	23.42	25.43	34.96	0.03	0.03	0.01	-64.62	-55.1
Wet days 40	68.09	23.13	73.17	21.76	59.38	19.85	61.86	18.6	67.1	58.27	11.81	50.54	45.03	30.57	41.79	20.29	14.11	51.17	40.97	30.26	20.64	32.57	-16.65	-30.6	29.55	45.03	28.16	0.06	0.05	0.01	-90.71	-62.11
Wet days 50	196.85	28.04	214.19	26.57	153.53	39.2	170.32	38.89	110.83	80.53	9.01	79.85	76.15	123.97	143.64	0	0	68.56	47.29	29.75	32.75	57.75	0	0	20.79	76.15	-38.05	0.1	0.07	0.01	-41.02	-7.45
WS1	72.14	20.41	78.33	19.62	68.12	20.62	72.7	19.94	52.12	48.22	9.94	46.39	45.03	42.4	44.79	25.3	28.17	39.37	36.76	26.38	-4.34	1.09	7.91	12.99	756.84	45.03	136.29	0.05	0.04	0.01	-149.54	-128.33
WSC10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0
WSC15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0 0	0	0	0	0
WSC20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0

Appendix 6: Table of slope values for simple linear regression

Sector dataset

Indices	-														Sin	ple linear	regression	- r2							-							
Adaptation									-			-								Fi	irst Differen	nce				Linear-Log	§	Re	lative value	es	Slope/	slope
Dimension	Spatial				10				Spatiotem	poral		Spatiotem LULC ma	poral with sk	Temporal		0		Spatiotem	poral		Temporal				Spatiotemp	ooral		Spatiotemp	oral		Spatiotemp	oral
Yield value	mean		2		median		-		observed	value	-	observed v	alue	mean	3	median		observed v	alue		mean		median	2	observed v	alue	3	observed va	alue		observed va	alue
Index value	mean		median		mean		median		mean	median	interp. value	mean	median	mean	median	mean	median	mean	median	interp. value	mean	median	mean	median	mean	median	interp. value	mean	median	interp. value	mean	median
Cessation	0.032	0.001	0.044	0.001	0.012	0.002	0.008	0.002	0.000	0.000	0.006	0.004	0.000	0.292	0.221	0.292	0.270	0.056	0.050	0.003	0.094	0.046	0.303	0.283	0.000	0.000	0.006	0.000	0.000	0.006	0.270	0.303
Dry days	0.152	0.017	0.144	0.014	0.144	0.014	0.137	0.014	0.014	0.014	0.014	0.020	0.017	0.292	0.270	0.292	0.281	0.004	0.003	0.028	0.091	0.054	0.038	0.019	0.020	0.017	0.014	0.014	0.014	0.014	0.073	0.053
DSC10	0.096	0.029	0.123	0.026	0.096	0.029	0.109	0.026	0.003	0.003	0.023	0.005	0.004	0.260	0.260	0.281	0.281	0.025	0.019	0.044	0.257	0.271	0.247	0.265	0.000	0.004	0.010	0.003	0.003	0.023	0.078	0.014
DSC15	0.240	0.014	0.260	0.012	0.230	0.023	0.260	0.020	0.014	0.014	0.005	0.014	0.017	0.001	0.000	0.000	0.000	0.011	0.009	0.020	0.016	0.003	0.000	0.006	0.010	0.017	0.006	0.014	0.014	0.005	0.036	0.096
DSC20	0.250	0.058	0.240	0.053	0.28	0.068	0.270	0.058	0.008	0.012	0.010	0.006	0.005	0.000	0.002	0.029	0.036	0.003	0.003	0.028	0.150	0.170	0.242	0.269	0.004	0.005	0.017	0.008	0.012	0.010	0.130	0.144
DSI	nan	0.058	nan	0.053	nan	0.068	nan	0.058	0.000	0.002	0.010	0.002	0.002	0.029	0.017	0.004	0.005	0.003	0.007	0.028	0.163	0.186	0.054	0.048	0.014	0.002	0.017	0.000	0.002	0.010	0.096	0.012
DSx1	nan	0.058	nan	0.053	nan	0.068	nan	0.058	0.000	0.000	0.010	0.001	0.000	0.000	0.004	nan	nan	0.002	0.002	0.028	0.187	0.228	nan	nan	0.044	0.000	0.017	0.000	0.000	0.010	0.032	0.058
Onset	0.017	0.008	0.017	0.008	0.020	0.003	0.017	0.003	0.003	0.005	0.000	0.004	0.002	0.040	0.023	0.003	0.000	0.032	0.033	0.004	0.026	0.007	0.036	0.073	0.003	0.002	0.000	0.003	0.005	0.000	0.023	0.010
Rain days	0.152	0.020	0.144	0.020	0.13	0.023	0.137	0.023	0.004	0.003	0.017	0.010	0.006	0.518	0.436	0.490	0.397	0.057	0.055	0.029	0.044	0.014	0.030	0.009	0.001	0.006	0.017	0.004	0.003	0.017	0.176	0.168
Relative dry days	0.152	0.017	0.144	0.017	0.144	0.014	0.137	0.014	0.008	0.008	0.017	0.017	0.012	0.372	0.336	0.384	0.336	0.021	0.020	0.029	0.091	0.066	0.044	0.037	0.014	0.012	0.017	0.008	0.008	0.017	0.168	0.176
Relative rain day	0.152	0.017	0.144	0.017	0.144	0.014	0.137	0.012	0.010	0.010	0.023	0.017	0.012	0.384	0.348	0.384	0.336	0.019	0.019	0.028	0.015	0.010	0.003	0.005	0.008	0.012	0.023	0.010	0.010	0.023	0.185	0.194
Relative wet days 20	0.336	0.068	0.360	0.063	0.372	0.073	0.384	0.063	0.003	0.002	0.036	0.004	0.004	0.240	0.194	0.250	0.203	0.039	0.033	0.075	0.347	0.256	0.392	0.295	0.000	0.004	0.029	0.003	0.002	0.036	0.144	0.130
Relative wet days 30	0.360	0.053	0.348	0.044	0.336	0.044	0.336	0.036	0.040	0.036	0.020	0.029	0.029	0.008	0.008	0.048	0.058	0.043	0.043	0.053	0.102	0.115	0.181	0.228	0.012	0.029	0.017	0.040	0.036	0.020	0.144	0.137
Relative wet days 40	0.250	0.023	0.230	0.020	0.203	0.023	0.176	0.017	0.040	0.032	0.005	0.026	0.026	0.005	0.008	0.003	0.001	0.027	0.021	0.032	0.006	0.008	0.005	0.014	0.026	0.026	0.004	0.040	0.032	0.005	0.073	0.036
Relative wet days 50	0.203	0.008	0.203	0.006	0.152	0.020	0.152	0.017	0.026	0.017	0.001	0.017	0.020	0.014	0.017	nan	nan	0.013	0.009	0.009	0.003	0.005	nan	nan	0.017	0.020	0.020	0.026	0.017	0.001	0.004	0.000
Season length	0.068	0.005	0.078	0.005	0.026	0.003	0.020	0.003	0.003	0.004	0.003	0.000	0.000	0.194	0.137	0.084	0.053	0.064	0.063	0.005	0.085	0.032	0.010	0.000	0.004	0.000	0.003	0.003	0.004	0.003	0.044	0.078
Seaonal rainfall amount	0.281	0.063	0.292	0.058	0.28	0.053	0.281	0.048	0.003	0.003	0.040	0.005	0.005	0.476	0.397	0.476	0.397	0.054	0.051	0.071	0.208	0.139	0.222	0.149	0.000	0.005	0.040	0.003	0.003	0.040	0.029	0.029
Wet days 20	0.336	0.068	0.360	0.058	0.372	0.063	0.384	0.058	0.002	0.002	0.036	0.003	0.003	0.260	0.203	0.292	0.230	0.042	0.034	0.076	0.355	0.242	0.397	0.277	0.000	0.003	0.029	0.002	0.002	0.036	0.130	0.123
Wet days 30	0.360	0.048	0.348	0.044	0.336	0.044	0.336	0.036	0.036	0.036	0.023	0.026	0.026	0.017	0.012	0.073	0.078	0.044	0.043	0.053	0.124	0.122	0.196	0.237	0.012	0.026	0.020	0.036	0.036	0.023	0.130	0.123
Wet days 40	0.250	0.026	0.230	0.023	0.194	0.023	0.176	0.017	0.036	0.032	0.006	0.026	0.023	0.005	0.008	0.004	0.002	0.027	0.022	0.034	0.005	0.009	0.006	0.017	0.026	0.023	0.008	0.036	0.032	0.006	0.063	0.029
Wet days 50	0.203	0.010	0.203	0.010	0.152	0.023	0.152	0.020	0.026	0.017	0.001	0.020	0.023	0.014	0.017	nan	nan	0.013	0.008	0.011	0.002	0.006	nan	nan	0.017	0.023	0.006	0.026	0.017	0.001	0.004	0.000
WS1	0.260	0.029	0.250	0.026	0.303	0.032	0.281	0.029	0.102	0.096	0.010	0.078	0.078	0.073	0.078	0.036	0.040	0.046	0.047	0.040	0.002	0.000	0.010	0.022	0.102	0.078	0.010	0.102	0.096	0.010	0.221	0.212
WSC10	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
WSC15	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
WSC20	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan

Appendix 7: Table of r^2 for simple linear regression (red quadrants mark strong absolute correlations with r^2 >0.25)

Sector dataset

Appendix 8: Exploratory data analysis for the collection point dataset, with cotton yields in kg/ha and index units as given in Table 2 of the main document, section 4.4.2.

Appendix 9: Exploratory data analysis for the sector dataset (mean aggregations), with cotton yields in kg/ha and index units as given in Table 2 of the main document, section 4.4.2.

Appendix 10: Exploratory data analysis for the sector dataset (median aggregations), with cotton yields in kg/ha and index units as given in Table 2 of the main document, section 4.4.2.

Appendix 11: Linear regression for the collection point dataset, with cotton yields in kg/ha and index units as given in Table 2 of the main document, section 4.4.2.

Appendix 12: Linear regression for the sector dataset (mean aggregations), with cotton yields in kg/ha and index units as given in Table 2 of the main document, section 4.4.2.

Appendix 13: Linear regression for the sector dataset (median aggregations), with cotton yields in kg/ha and index units as given in Table 2 of the main document, section 4.4.2.

Appendix 14: Linear regression for the sector dataset using First Difference with temporal dimension (mean aggregations), with cotton yields in kg/ha and index units as given in Table 2 of the main document, section 4.4.2.

Appendix 15: Linear regression for the sector dataset using First Difference with temporal dimension (median aggregations), with cotton yields in kg/ha and index units as given in Table 2 of the main document, section 4.4.2.

Appendix 16: Correlations between indices for the collection point dataset (red quadrants mark statistically non-significant relationships with a correlation of r<0.01)

Appendix 17: Correlations between indices for the sector dataset (red quadrants mark statistically non-significant relationships with a correlation of r<0.01)

Appendix 18: Multiple linear regression for the collection point dataset (a) and the sector dataset (c-d), with cotton yields in kg/ha and index units as given in Table 2 of the main document, section 4.4.2. (The plane represents all possible combinations of the two independent index variables, showing how changes in these predictors affect the response in the dependent cotton variable.)

	1.	10	T 1 1	c	. •	C	1.*	1	1.	•	
Δn	nendiv	19.	Table	ot m	netrics.	tor	multin	le	linear	regressio	m
ιvρ	penuix	17.	raute	OI II	1001105	101	munip	10	mou	regressio	11

	Multipl	e linear
Indices combinations	regre	ssion
Metric	Pearson	p-value
Dimension	Spatiote	emporal
Yield value	observe	d value
Collection point dataset		
Rain days,		
Wet days 50	0.04	0.3655
Sector dataset		
Cessation mean,		
DSC15 mean	0.04	0.3655
Cessation mean,	10.1011	
DSC15 median	0.04	0.3665
Cessation median,		
DSC15 mean	0.03	0.3875
Cessation median,	0.04	0 00 10
DSC15 median	0.04	0.2849
Relative rain days mean	0.02	0 5779
DSC15 median,	0.02	0.0110
Relative rain days median	0.02	0.5821
DSC20 mean,		
WS1 mean	-0.01	0.7222
DSC20 mean,	0.01	0 7055
WS1 median	-0.01	0.7655
WS1 mean	0.02	0 5906
DSI mean.	0.02	0.0000
WS1 median	0.03	0.5126
DSxl mean,		
Rain days mean	0.01	0.8425
DSxl mean,		
Rain days median	0.01	0.8331
DSXI median, Rain days mean	0.01	0 8502
DSx1 median	0.01	0.0002
Rain days median	0.01	0.8693
Onset mean,		
Relative dry days mean	0.02	0.5422
Onset mean,		
Relative dry days median	0.03	0.5279
Onset median,		
DSC20 mean	0.03	0.4731
Onset median, Relative dry days mean	0.03	0 4203
Onset median,	0.03	0.4202
Relative dry days median	0.03	0.5015

Appendix 20: Context of the internship

This internship was proposed by the "Centre de coopération Internationale en Recherche Agronomique pour le Développement" (CIRAD), a public establishment founded in 1984 to promote sustainable development of tropical and Mediterranean regions. It was financed by the INNOVACC ("Innovation for Adaptation to Climate Change") project, a major initiative in Cameroon which aims to strengthen the resilience of rural populations in the face of climate change, particularly in the North and Far North regions. This project is in the hands of CIRAD, as well as CIFOR-ICRAF, Energie pour le monde and IRAD, and financed by the European Union. This study is a contributing factor to the INNOVACC project, helping to understand and anticipate the impacts of climate change on cotton production by fitting historical rainfall and cotton data.

The entirety of the internship, from February 2024 to August 2024, was based within the "Unité Mixte de Recherche Territoires, Environnement, Télédétection et Information Spatiale" (UMR TETIS) in Montpellier at the "Maison de la Télédétection". a place dedicated to remote sensing and more broadly to spatial information. It brings together different research and training organizations in two UMRs, including TETIS. The UMR TETIS is a multidisciplinary research laboratory dedicated to exploring and developing the use of spatial information. Its objective is to better understand the complexity of territories, agro-ecosystems, and to support stakeholders in their decision-making.

The internship was supervised by Jérémy LAVARENNE (CIRAD, researcher in agroclimatology and crop modeling), Ibrahim NJOUENWET (École Nationale Supérieure Polytechnique of the University of Yaoundé I, researcher in climatology), and Victor Hugo NENWALA (CIFOR-ICRAF, doctoral student in geography).

Appendix 21: Work organization

The following succession of tasks was adapted: We started with a general familiarization with the subject and data, carrying out research to better understand the problematic and define the state of the art, as well as to prepare the data for effective usage. We then continued working with the rainfall data. To calculate the rainfall indices, we first applied a cross-validation method on our rainfall data to determine the best interpolation method and variogram model, Once found, the rainfall data was interpolated to create daily rainfall maps. These maps were then used to calculate the rainfall indices, producing yearly indices maps. At this point we made sure that the cotton data was correctly prepared to then determine the statistical relationships between cotton yields and rainfall indices by applying simple and multiple linear regression. Bibliographical research was carried out at the beginning of each new task, to better determine and understand the methodology used and its interpretation. In addition, towards the end, additional research was done, to underline our discussion.

This work is a supplementary document to: Knops, Clara, 2024. Exploration of the statistical relationships between rainfall indices and cotton yields in northern Cameroon, to strengthen the resilience of farmers to climate change. Thesis of the Master 2 internship, Master Water, Specialization Water and Agriculture, AgroParisTech/Institut Agro Montpellier/Univ. Montpellier. 56.

To cite this work: Knops, Clara, 2024. Exploration of the statistical relationships between rainfall indices and cotton yields in northern Cameroon, to strengthen the resilience of farmers to climate change. Appendices, Master Water, Specialization Water and Agriculture, AgroParisTech/Institut Agro Montpellier/Univ. Montpellier. 22.

2 Place Pierre Viala Campus La Gaillarde, 34000 Montpellier, France