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A B S T R A C T

The open interfaces between protected areas and rural communal lands in southern Africa are characterized by 
semi-arid savannas where wildlife-livestock interactions vary in frequency and intensity. In a context of 
increasing anthropization of land and trans-frontier conservation, the multiplication of these interactions may 
facilitate human-wildlife coexistence such as competition for natural resources, livestock predation, crop 
destruction by wildlife, and/or the risk of pathogen transmission between wild and domestic species. To better 
understand potential contacts between domestic and wild animals at these wildlife/livestock interfaces, we 
developed a method combining remote sensing and spatial modelling to simulate the movements of African 
buffalo (Syncerus caffer) and domestic cattle (Bos taurus, Bos indicus). Satellite-derived maps of surface water and 
vegetation, the primary determinants of movement for these ungulate species, were integrated into a mechanistic 
and stochastic model of collective movements of individuals interacting according to group cohesion and 
alignment. This model allowed simulations of herd movements and the location of contact areas with their 
seasonal dynamics in space and time at the periphery of three national parks in Zimbabwe and South Africa. 
Model outputs were compared to Global Positioning Systems collar location data of 32 individuals (14 buffalo 
and 18 cattle). The modelled results show a high spatial and seasonal variability of contacts between buffalo and 
cattle in the three study sites, and a landscape scale correspondence between spatial extensions of the modelled 
and observed contact areas. These results illustrate the potential of spatial modelling combined with remote 
sensing to generically simulate animal movements and contacts at landscape scale while providing opportunities 
to explore the management of these wildlife/livestock interfaces through, for example, a further coupling with 
epidemiological modelling.

* Corresponding author.
E-mail address: florent.rumiano@gmail.com (F. Rumiano). 

Contents lists available at ScienceDirect

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

https://doi.org/10.1016/j.ecolmodel.2024.110863
Received 8 March 2024; Received in revised form 2 September 2024; Accepted 3 September 2024  

Ecological Modelling 498 (2024) 110863 

Available online 20 September 2024 
0304-3800/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:florent.rumiano@gmail.com
www.sciencedirect.com/science/journal/03043800
https://www.elsevier.com/locate/ecolmodel
https://doi.org/10.1016/j.ecolmodel.2024.110863
https://doi.org/10.1016/j.ecolmodel.2024.110863
http://creativecommons.org/licenses/by/4.0/


1. Introduction

The increasing footprint of human societies and their extractive ac-
tivities has heightened the demand for natural resources while causing 
the fragmentation of natural habitats (Hansen and Defries, 2007). 
Consequently, humans and their domestic animals are living in closer 
proximity to natural areas and wildlife (Wittemyer et al., 2008), thereby 
increasing the number of wildlife-livestock interfaces (WLIs). The 
establishment of Transfrontier Conservation Areas (TFCAs) in Southern 
Africa has further reinforced this trend by providing additional space for 
congested wildlife populations and extending their effective distribution 
range (Fynn and Bonyongo, 2011). WLIs, defined as the physical spaces 
where wild species, domestic species, and humans overlap in range and 
interact (Caron et al., 2021), include the movements of wild and do-
mestic animals across the landscape (e.g., between communal land and 
protected areas) and determine potential direct and indirect contacts 
between species (Ferguson et al., 2012). WLIs within TFCAs are poten-
tially subject to increasing human-wildlife encounters and interactions. 
The larger areas created to reduce human-wildlife conflict (HWC) can 
sometimes accelerate conflicts due to growing and expanding wildlife 
populations. From an anthropocentric perspective, HWC that pose 
threats to human agricultural activities and human life (Madden, 2004) 
include events such as livestock depredation by carnivores (Eklund 
et al., 2017), crop destruction by wildlife (Gross et al., 2018), increased 
competition for shared natural resources (Treves et al., 2006), hunting 
or illegal hunting (Warchol et al., 2003), and disease transmission 
(Decker et al., 2010). HWC can also be indirectly influenced by climatic 
events, which are becoming increasingly unpredictable in terms of fre-
quency and intensity due to climate change (IPCC, 2023). These climatic 
events influence hunting strategies or cause stochastic environmental 
events (e.g., fire, flooding), which can drive animals towards anthrop-
ized areas (Distefano, 2005). Consequently, HWC fosters resentment 
from local communities, who may retaliate by killing wild animals, often 
illegally (Mbise, 2021). Given the complexity of human-wildlife con-
flicts locally, WLIs are at the epicenter of economic, social, health, and 
conservation issues (Frank et al., 2019). This complexity prompts 
stakeholders to design policy-relevant pathways toward human-wildlife 
coexistence (König et al., 2020) and coadaptation (Carter et al., 2020). 
In Southern African WLIs, livestock husbandry and subsistence 
agro-pastoralism are prevalent (Caron et al., 2013), impacting conser-
vation within these multiple-use areas (Fynn et al., 2016). These WLIs 
are primarily located in semi-arid savannas, where the spatial distribu-
tion and availability of natural resources, such as forage and surface 
water, are influenced by seasonal variations and human activities, 
including agricultural expansion (Chagumaira et al., 2016). The 
spatiotemporal distribution of these resources, in turn, influences ani-
mal landscape use (G. Wang et al., 2006). During the dry season, forage 
and surface water become irreplaceable resources (Valls-Fox et al., 
2018a), making their availability a key determinant of animal distri-
bution at the landscape scale (Ogutu et al., 2014). In Southern African 
WLIs, competition for these natural resources can potentially lead to 
depletion effects, particularly when resources are concentrated in spe-
cific areas and periods (Chamaillé-Jammes et al., 2007; Shrader et al., 
2008).

In this context, it is crucial to understand the drivers of resource 
selection by wild and domesticated animal species to mitigate HWC, 
including the risk of pathogen transmission (Miguel et al., 2013), by 
characterizing the spatiotemporal distribution of natural resources 
(Wiens, 1989), animal movement patterns (Gaucherel, 2011; Benha-
mou, 2014), as well as their respective foraging and watering decisions 
(Owen-Smith et al., 2010; Valls-Fox et al., 2018b). Spatial models that 
simulate collective animal movements at the landscape scale, account-
ing for biotic and abiotic drivers and including behavioral mechanisms, 
have recently been developed (Westley et al., 2018). The latest tech-
nological advances, such as the use of telemetry based on the global 
positioning system (GPS) (Kays and Crofoot, 2015) and the use of 

satellite remote sensing (SRS) (Remelgado et al., 2018), have led to 
major advances in the collection of data on animal movement and on 
their distinctive environments. This data, coupled with models of col-
lective movements, provide a timely opportunity to better understand 
animal behaviors at high spatial and temporal resolutions. Previous 
studies used such models on other species and highlighted their benefits 
in explaining the collective behavior of animal groups (Sumpter, 2006; 
Giuggioli and Kenkre, 2014). Movement models applied at the indi-
vidual and collective levels such as mixtures of random walks capturing 
the long-distance movements observed in many animals (Morales et al., 
2004), state-space models analyzing movement data by estimating un-
observed behavioral states and predicting future movements (Jonsen 
et al., 2005), Mechanistic Home Range models integrating movement 
behavior with spatially explicit resources to predict home range patterns 
(Sawyer et al., 2013) or agent-based models (ABMs) simulating the ac-
tions and interactions of individual animals to assess their effects on the 
system as a whole (Grimm et al., 2005), have all helped to enhance our 
capabilities to better understand and predict animal behavior and in-
teractions. The collective movement model developed in this article is 
based on a self-propelled collective motion model developed by 
(Grégoire et al., 2003) and differs from previous animal movement 
models as it focuses on the collective and cohesive motion in animal 
groups, distinguishing it by its specific attention to the forces of cohesion 
and alignment among individuals. Developing such a model designed to 
simulate movements influenced by interactions with other individuals 
and the environment could potentially provide a more detailed and 
dynamic understanding of group movement behaviors of buffalo and 
cattle in different ecological and environmental contexts. However, the 
development of collective movement models comes with challenges 
such as the integration of habitat heterogeneity and individual-level 
variations into analyses of collective movement, as well as the compu-
tational power required to process large amounts of data (Westley et al., 
2018).

The African buffalo (Syncerus caffer) and domestic cattle (Bos taurus, 
Bos indicus) are both large bovid species and key players in conservation 
and production systems in Southern Africa. As primarily grazing animals 
of similar size, they depend on and compete for the same natural re-
sources when they are sympatric (Kock et al., 2023; Fynn et al., 2016; 
Odadi et al., 2011). We posit that a better understanding of the move-
ment dynamics of these two species in time and space can provide in-
sights into ecological phenomena, such as inter-species relationships 
(Rumiano et al., 2020). Enhancing our comprehension of these re-
lationships may help address and mitigate the rising risk of disease 
transmission between these species and potentially to humans (Miguel 
et al., 2013). From that standpoint, this study aims to develop a spatial 
mechanistic model to simulate buffalo and cattle movements based on 
seasonal surface water availability (Caron et al., 2023a; Rumiano et al., 
2021) and their respective interactions with the landcover according to 
their inherent behaviors. The primary objective of the model is to assess 
the frequency and geographical location of buffalo-cattle contacts at a 
medium spatial scale in three WLIs areas near protected areas in 
Zimbabwe and South Africa.

2. Method

2.1. Study sites

The three study sites (Fig. 1) are located on the periphery of pro-
tected areas: i) in Zimbabwe, Hwange National Park (HNP), referred to 
as “Hwange/Dete”; ii) Gonarezhou National Park (GNP), referred to as 
“Gonarezhou/Malipati”; iii) and in South Africa, Kruger National Park 
(KNP), referred to as “Kruger/Pesvi” with a periphery in Zimbabwe. The 
“Hwange/Dete” study site, located west of Zimbabwe close to Botswana 
and Zambia, is approximately 600 km from the two other study sites in a 
straight line. On the other hand, the “Gonarezhou/Malipati” and 
“Kruger/Pesvi” study sites, located southeast of Zimbabwe near 
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Mozambique and South Africa, are just approximately 50 km apart in a 
straight line. In these three sites, conflicts between human communities 
and wildlife are increasing (Mutanga et al., 2017; Guerbois et al., 2012), 
and boundaries between protected areas and communal areas are often 
permeable (i.e., river, railroad, or road) and without barriers.

In the three study sites, human activities in communal areas outside 
national parks primarily consist of subsistence farming with small-scale 
livestock production and rainfed agriculture (from November to March). 
Small herds are bred extensively with an average of 12 heads of cattle 
and small ruminants (goats and a few sheep) per herder (Miguel et al., 
2013). In these areas, domestic and wild animal movements between 
natural and anthropogenic compartments are frequently observed in 
both directions (Chigwenhese et al., 2016), and contacts between Afri-
can buffalo and domesticated cattle have been noted (Miguel et al., 
2013), even though livestock incursions into protected areas are strictly 
forbidden in Zimbabwe and South Africa (Chigonda, 2018). The in-
tensity and frequency of contacts vary among the study sites, empha-
sizing different buffalo and cattle contact configurations (Fig. 1). Based 
on the statistical analyses developed in a previous study (Miguel, 2012), 
the rate of cattle incursion inside protected areas (expressed as a per-
centage of the overall time recorded by the GPS collars placed on tar-
geted cattle) was 6.9 % in Hwange/Dete, 3 % in Gonarezhou/Malipati, 
and 0.2 % in Kruger/Pesvi. Concerning the rates of buffalo incursion into 
communal areas, it was 0.05 % in Hwange/Dete, 7.46 % in Gonar-
ezhou/Malipati, and 58 % in Kruger/Pesvi.

The three study sites are located in semi-arid climates with annual 
mean temperatures of 22 ◦C and mean annual precipitation ranging 
from 450 to 650 mm for Hwange/Dete (Chamaillé-Jammes et al., 2007), 
and mean annual temperatures ranging from 25 ◦C to 27 ◦C and mean 

annual precipitation ranging from 300 to 600 mm in both Gonar-
ezhou/Malipati and Kruger/Pesvi. On average, excluding climatic 
anomalies (e.g., drought), the dry season occurs from April-May to 
October-November and the wet season from November to March for the 
three study sites. The vegetation in these areas is typical of a highly 
heterogeneous dystrophic wooded savanna (Arraut et al., 2018). The 
woody cover increases with distance from water pans 
(Chamaillé-Jammes et al., 2009), and the open grassland is located 
along drainage lines. In Hwange/Dete, the surface water mainly consists 
of seasonal natural pans of different sizes widely distributed across the 
area, complemented with artificial pans fed by underground water 
pumping stations during the drier months. In Gonarezhou/Malipati and 
Kruger/Pesvi, the surface water is composed of river systems with water 
along their entire courses during the wet season. During the dry season, 
intermittent river branches inside the riverbed and ephemeral rainfed 
natural pans located on sandstones are present and constitute primary 
water resources for wild and domestic animal species alike.

2.2. Telemetry data

Collars manufactured by African Wildlife Tracking have been used in 
previous studies to monitor the movements and contacts between 
selected cattle and buffalo herds (Miguel, 2012; Valls Fox, 2015). The 
collars were equipped with Iridium Satellite Tag (Iridium Satellite and 
Ultra-High Frequency - UHF) providing secure near real-time GPS ani-
mal tracking with meter accuracy. UHF, referring to the portion of the 
radio frequency spectrum from 300 MHz to 3 GHz presents several ad-
vantages in the animal tracking data context. UHF have been chosen 
because of its favorable propagation characteristics such as range and 

Fig. 1. Location maps of the three study sites. Note that the interface delineations are not based on administrative borders. Their shapes and locations serve as 
illustration purposes and translate ecological assessments realized in-situ.
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penetration (UHF signals have a shorter range compared to lower fre-
quency bands like VHF but offer better penetration through a wide va-
riety of terrain) as well as extended coverage (communications can be 
maintained even in remote and challenging environments as the UHF 
system consists of 66 active satellites in low Earth orbit).

The UHF telemetry data were collected at different periods of time 
(Appendix A) but with the same time frequency (i.e., 1-hour) at the three 
study sites. In total, 10 cattle and 8 buffalo individuals were monitored 
in Hwange/Dete, 4 cattle and 2 buffalo individuals in Kruger/Pesvi, and 
4 cattle and 4 buffalo individuals in Gonarezhou/Malipati (Appendix A). 
The data have been pre-processed to derive metrics allowing the design 
and validation of the movement model used in this study. Pre-processing 
steps included: 1) The re-projection of the entire telemetry dataset, the 
correction of outlier data, and the harmonization of time delays, all 
following the methodology developed by Wielgus (2020a); 2) The 
grouping of buffalo and cattle telemetry data by locations and time of 
recording for each of the three study sites to derive herd entities sharing 
the same location at the same time.

2.3. Pre-processing of remote sensing data

Seventy-two Sentinel-2 satellite images (Drusch et al., 2012) ac-
quired in 2018 and covering the three study sites have been downloaded 
in Level 1C, which provides Top of Atmosphere reflectance and 
orthorectified images (Appendix B). The Sen2Cor v2.8 application 
(Sen2Cor, ESA, http://step.esa.int/main/third-party-plugins-2/sen2 
cor/) has been used to apply atmospheric corrections, thus trans-
forming L1C images to Level L2A (Top of Canopy) images. Six tiles were 

required to cover the entire spatial extent of the three study sites. The 
dates of the selected images represent days with <10 % cloud cover for 
the entire year 2018, with one image per month for each tile. For the 
month of February, however, no images were cloud-free in 2018. As a 
result, Sentinel-2 satellite images from February 2019 have been 
selected instead. The 20-meter spatial resolution spectral bands of the 
L2A Sentinel-2 images have been resampled by bilinear interpolation to 
10-meter spatial resolution while ensuring the continuity of the 
WGS84/UTM35S and WGS84/UTM36S projection systems and clipped 
to correspond to the respective spatial extent of the three study sites. 
Sentinel-2 satellite images were selected due to their higher spatial 
resolution and detailed spectral bands, which offer more precise infor-
mation for surface water and landcover classification compared to older 
data, such as Landsat satellite images. Although there is a temporal 
offset between the Sentinel-2 images and the telemetry data used in this 
study (refer to the “Telemetry Data” section), the year 2018 was spe-
cifically chosen because it accurately reflects the current environmental 
conditions observed in situ during fieldwork. Furthermore, advanced 
processing techniques optimized for Sentinel-2 data enable more precise 
analysis, enhancing the study’s relevance and alignment with contem-
porary research efforts regarding surface water and landcover classifi-
cation (Du et al., 2016).

2.4. Surface water and landcover detection

The detection of surface water and landcover is designed in three 
steps (Fig. 2) that correspond respectively to surface water classification 
(Step 1), agricultural area classification (Step 2), and vegetation 

Fig. 2. Classification general process in three main steps: 1) surface water classification, 2) agricultural area classification, 3) vegetation classification.
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classification (Step 3).
Surface water classification: Two water indices, the Modified 

Normalized Difference Water Index (MNDWI) and the Normalized Dif-
ference Water Index (NDWI), were computed from Sentinel-2 images 
following Du et al. (2016). A set of 100 reference polygons (tagged as 
“surface water” or “other”) were delineated from image interpretation 
using very-high spatial resolution SRS images (e.g., Airbus provided 
Pleiades satellite images of 50 cm spatial resolution) accessed via the 
XYZ Tile tool in the QGIS software (version 3.35.1 “Prizren”) and split 
into a 50/50 ratio to constitute a reliable comparison between training 
and validation samples (Mercier et al., 2019). The classification using 
the Random Forest (RF) algorithm was then applied using the method-
ology developed in Rumiano et al. (2021). The algorithm produced a 
time series of classified rasters at a spatial resolution of 10 m for each of 
the study sites. All rasters were then converted to vector layers to 
facilitate subsequent processing steps. The vector layers for March, 
representing maximum water extents due to peak precipitation, were 
selected as templates for each tile. Subsequently, these March vector 
layers were used to mask noise polygons from the vector layers of the 
other 11 months across all three study sites.

Agricultural areas classification: Vegetation indices, namely the 
Normalized Difference Vegetation Index (NDVI), the Enhanced Vege-
tation Index (EVI), and the Soil Adjusted Vegetation Index (OSAVI) 
(Fern et al., 2018), were derived from Sentinel-2 images for the month of 
March, corresponding to the peak of the wet season when the contrast 
between vegetation and bare soil is strongest. These spectral indices 
were considered for supervised classification of agricultural areas, as 
they have proven efficient in previous studies for characterizing such 
areas using medium spatial resolution SRS images (Bellón et al., 2017; Y. 
Zhao et al., 2020). A set of 100 reference polygons (tagged as “agricul-
tural areas” or “other”) were delineated from image interpretation using 
very-high spatial resolution SRS images (e.g., Airbus provided Pleiades 
satellite images of 50 cm spatial resolution) accessed via the XYZ Tile 
tool in the QGIS software (version 3.35.1 “Prizren”) and were split into a 
50/50 ratio. Supervised classifications were then performed using the 
RF algorithm. The resulting classification rasters were subsequently 
vectorized to manually detect and remove false positives.

Vegetation classification: Three Sentinel-2 red-edge spectral bands 
(band 5, band 6, and band 7) were masked using manually digitized 
polygons of road networks, surface water, and agricultural areas. These 
masked bands were then utilized to classify five vegetation and land-
scape classes (woodland, mixed-woodland shrubland, shrubland, mixed 
shrubland-grassland, bare soil) at each of the three study sites. The 
classification employed a pixel-based non-supervised K-means clus-
tering method (Burrough, van Gaans, and MacMillan, 2000). Previous 
studies have shown that the inclusion of red-edge bands in the classifi-
cation scheme improves the characterization of vegetation classes and 
overall classification accuracies (Schuster et al., 2012).

Post-classification: For each of the study sites, the rasters produced 
from the non-supervised classification were combined with its respec-
tive surface water, agricultural area, and road network rasters to create 
final landcover classification rasters of an eight-element typology 
(Fig. 1) at a spatial resolution of 10 m.

Classification validation: Regarding the surface water and agricultural 
areas classifications (steps 1 and 2), sets of reference polygons from the 
three study sites were used as training and validation data to perform 
cross-validation using two classification accuracy indicators: overall 
accuracy (OA) and Kappa index. Fifty iterations of classification were 
conducted using randomly selected reference polygons for each study 
site to assess the robustness and stability of the classification method. 
For the validation of the non-supervised classification of vegetation 
(step 3), three sets of reference polygons (one for each study site) were 
manually digitized "a priori" before classification. These polygons con-
sisted of 50 reference polygons per class and were derived from photo-
interpretation using very-high spatial resolution SRS images (e.g., 
Airbus provided Pleiades satellite images of 50 cm spatial resolution) 

accessed via the XYZ Tile tool in the QGIS software (version 3.35.1 
“Prizren”) for each study site. The reference polygon datasets were then 
used to calculate the OA and Kappa index for the vegetation 
classifications.

2.5. A spatialized movement model

A model of collective motion of self-propelled individuals (Grégoire 
et al., 2003)has been chosen to model the two focal species movements 
at the individual and herd scales as developed in Rumiano et al. 2021
(1). In this model, each individual i moves from its starting location to 
the next at discrete time steps by a fixed distance v0, its direction defined 
for each timestep t as an angle θt

i : 

θt+1
i = arg

[

α
∑

j∕=i
v→t

j + β
∑

j∕=i
fi
→

j

]

+ hξt
i (1) 

α (1) regulates the herd alignment (expressed as the sum of all other 
individuals’ speed vectors vj

→) and may vary according to herd behaviour 
(Table 1): when α is null, the model simulates a situation where the herd 
remains stationary (such as during a rumination phase) whereas when 
α ∕= 0, the model simulates a movement of the herd with a direction (for 
example during the phase when the animals are moving towards a 
surface water); β (1) regulates the herd cohesion (expressed as the sum of 

the vectors fij
→

that link two individuals i and j) and is fixed; However, fi
→

j 

is regulated by repulsion and attraction forces between individuals and 
is expressed as follows: 

fi
→

j = ei
→

j

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− ∞ if rij < rc,

1
4

rij − re

ra − re
if rc < ra,

1 if ra < rij < r0

(2) 

fi
→

j (2) is characterized by several sub-parameters—namely, the limit 
of interaction distance, the repulsion distance, the equilibrium distance, 
and the minimal distance (Table 1). These sub-parameters define the 
intrinsic ecological cohesion behavior of individuals within a collective, 
thereby establishing species distinctiveness within the model’s concep-
tual framework. The limit of interaction distance (r0) represents the 
maximum distance within which an individual can interact with other 
individuals. Any individuals beyond this distance are not considered 
when calculating the forces (i.e., attraction/repulsion) acting on a given 
individual. This distance sets the spatial scale of the interaction neigh-
borhood. The repulsion distance (rc) is the distance below which two 
individuals start to experience a strong repulsive force. The purpose of 
this force is to prevent the individuals from overlapping or getting too 
close to each other. This distance helps to maintain a minimum 

Table 1 
Model parameters estimated from telemetry data (*), expert knowledge (**), or 
calibration (***) (for the estimation of the animal speed, see details in the Ap-
pendix C, for the calibration of alpha, beta and the noise, see details in (Rumiano 
et al. 2021)).

Parameters Definition Values 
Buffalo

Values 
Cattle

v0 animal speed 0.24 km/ 
h*

0.46 km/ 
h*

r0 limit of interaction distance 500m** 300m**
rc repulsion distance 5m** 0.5m**
re equilibrium distance 10m** 5m**
ra minimal distance 150m** 150m**
α0 alignment regulation – resting or 

rumination/drinking phases
0.0**

α1 alignment regulation - randomly move 1.2***
α2 alignment regulation – directional move 1.6***
β cohesion regulation 1***
h noise regulation 0.4***
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separation between individuals, avoiding physical collisions. The equi-
librium distance (re) corresponds to the distance at which the attractive 
and repulsive forces between individuals balance each other out, 
resulting in no net force. At this distance, individuals are neither pushed 
away nor pulled towards each other. It can be thought of as the optimal 
spacing where the herd is in a state of equilibrium. The minimal distance 
(ra) is the shortest distance observed between any two individuals. It can 
be influenced by the repulsion distance, as individuals should ideally not 
come closer than this specified distance due to the repulsive forces in 
play. This distance helps in quantifying the closest approach between 
individuals. For buffalo and cattle, the values of these sub-parameters 
are based on empirical knowledge and in-situ observations (Table 1).

In addition to the parameters α (1) and β (1), h (1) represents de-
viations (i.e., noise) from the deterministic part of the model, which 
includes the forces (i.e., attraction, repulsion, alignment and cohesion) 
with which the direction of each individual is influenced by the others (ξ 
being a random angle). A higher noise value means more significant 
deviations, leading to more erratic movement, while a lower noise value 
means less deviation and more orderly movement. The value h (1) is 
fixed. For more detailed information regarding (1) and (2), please refer 
to Rumiano et al. 2021.

2.6. Application: designing a buffalo - cattle contact model

The movement model is applied to simulate the respective move-
ments of the two focal animal species, the African buffalo and domestic 
cattle, aiming at determining the geographical location, frequency and 
temporality of their contacts at the three studied WLIs. For each species, 

the model simulates their respective movements over a 24-hour period, 
considering their main behavior phases, i.e., feeding, drinking and 
resting (Fig. 3).

Behavior phases: During the first "feeding phase," which occurs at 
night from 9pm to 7am, the buffalo herd moves until it reaches suitable 
landcover. Subsequently, it enters a "ruminating phase" before moving 
towards a surface water point during the "drinking/feeding phase." 
Upon reaching the designated surface water point, the herd remains 
nearby to drink before randomly dispersing across the landscape, thus 
completing the 24-hour period. In contrast, cattle behavior varies 
significantly due to domestication, where human decisions directly in-
fluence their movements in both space and time. A cattle herd typically 
spends most of its time within the confines of its enclosure or "kraals," 
serving as a central place. Outside the kraal, the herd grazes while 
moving across the landscape. When it’s time to drink, the herd heads 
towards a surface water point where it can also feed, before returning to 
its enclosure for protection from predators at night. Throughout these 
behavioral phases, the movements of both buffalo and cattle are simu-
lated according to Eq (1), with different values of α, which determines 
herd alignment (see Table 1) (Fig. 3).

Impact of the landscape: Surface water availability and landcover 
types, derived from Sentinel-2 images (as described in the previous 
section), are critical factors influencing the mobility of buffalo and cattle 
in the model. Each species follows specific rules for selecting feeding and 
watering areas during different behavior phases.

For buffalo, during the ’feeding phase,’ a patch of suitable landcover 
(such as mixed-woodland-shrubland, shrubland, mixed shrubland- 
grassland) is chosen within a buffer. The buffer’s radius corresponds 

Fig. 3. Diagram representing the designed behavioral chronologies of the two focal species movement models (the buffalo model and the cattle model).
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to the average distance traveled per hour by buffalo individuals. In the 
subsequent ’drinking/feeding’ phase, the buffalo herd selects the near-
est available surface water point based on their centroid position. It’s 
important to note that the availability of surface water varies seasonally 
and is depicted using monthly surface water maps derived from Sentinel- 
2 images.

In contrast, cattle movements are influenced by herder decisions, 
solely with regard to the seasonal avoidance of crops. During the crop-
ping season (December to April in Hwange/Dete, November to April in 
Kruger/Pesvi, and January to June in Gonarezhou/Malipati), cattle are 
directed away from cultivated fields to prevent crop damage. Outside of 
this period, they are allowed to move freely in agricultural areas to feed 
on secondary agricultural products (Miguel, 2012; Perrotton et al., 
2017). During the ’drinking/feeding’ phase, the suitability of surface 
water points is evaluated based on a ’suitability’ score. This score con-
siders both proximity to the cattle herd’s centroid and the proportion of 
suitable landcover within a 50-meter buffer. Thus, water selection for 
cattle is influenced by seasonal cropping activities, where crop areas are 
deemed ’unsuitable’ during the cropping season.

2.7. Choice of the modelling language

The modelling approach utilizes the domain-specific language Ocelet 
(Degenne and Lo Seen, 2016) to implement the buffalo-cattle contact 
model. Ocelet, integrated with a modelling platform (www.ocelet.org), 
specializes in spatially explicit modelling of dynamic systems. It facili-
tates the incorporation of geographic information, such as vegetation 
and water surface maps. In the Ocelet formalism, the buffalo-cattle 
contact model encompasses six interacting spatial entities: (i) buffalo 
individuals, (ii) buffalo herd, (iii) cattle individuals, (iv) cattle herd, (v) 
surface water, and (vi) landcover. A simulation is defined as a ’scenario’ 
where these entities evolve over time, interacting with each other 
dynamically (e.g., interactions between buffalo individuals and buffalo 
herd, buffalo herd and surface water, etc.).

2.8. Simulations

Buffalo individuals present at the same time and in the same area 
with inter-distances inferior to one kilometer were considered to form 
observed groups (i.e., buffalo herds). As a result, considering the entire 
telemetry dataset, seven buffalo groups, each with different numbers of 
individuals, have been constituted across the three WLIs (two buffalo 
groups for Gonarezhou/Malipati, three buffalo groups for Hwange/ 
Dete, and one buffalo group for Kruger/Pesvi). The grouping of in-
dividuals therefore dictated the considered time periods for the simu-
lations. In total, seven simulation time periods, each corresponding to a 
constituted buffalo group, were computed (Appendix A). All buffalo 
group’s simulation time periods had a one-hour time frequency (i.e., 
time step) to match the time frequency of the buffalo telemetry dataset. 
The lasting of the simulation time periods differs between constituted 
groups and can range from 133 days to 871 days, depending on the 
buffalo telemetry data recording time periods (Appendix A). For every 
simulation, one herd consisting of 200 buffalo individuals was modeled 
to correspond to the order of magnitude of buffalo herd sizes observed at 
the three study sites in previous studies (Miguel et al., 2013; Valls-Fox 
et al., 2018a). For each buffalo simulation, the starting point corre-
sponds to the centroid location of each constituted groups at the earliest 
date (i.e., hour:day:month:year) of the corresponding telemetry data.

Similarly, for cattle, simulated herds were created with a random 
number of individuals ranging from 5 to 15, reflecting field observations 
(Miguel, 2012). Each simulated herd were to represent individual cattle 
at time periods corresponding to the observed cattle data considering 
that none of the collared cattle constituting the telemetry dataset were 
part of the same herd nor being linked to the same enclosure. Taking the 
entire telemetry dataset into account, eighteen cattle groups have 
therefore been modeled with their respective simulation time periods 

being synchronized with the recording periods of the observed cattle 
individuals for each study site (Appendix A - 4 periods for Gonar-
ezhou/Malipati, 10 periods for Hwange/Dete, and 4 periods for Kru-
ger/Pesvi). All cattle group’s simulation time periods had a one-hour 
time frequency (i.e., time step) to match the time frequency of the cattle 
telemetry dataset. The lasting of the simulation time periods differs 
between constituted individuals (with the exception of three time pe-
riods concerning eleven individuals) and can range from 243 days to 735 
days, depending on the cattle telemetry data recording time periods 
(Appendix A). The starting point of the simulation corresponds to the 
enclosure location attached to a specific collared individual from the 
telemetry dataset with the earliest date (i.e., hour:day:month:year) 
considered as the initial time.

All the buffalo and cattle simulation time periods have been syn-
chronized with telemetry data where buffalo and cattle individuals have 
overlapping recording time periods (Appendix A). In addition, for every 
buffalo and cattle constituted groups, 10 simulation iterations have been 
computed to express and measure the stochasticity nature of the model.

2.9. Comparison with observed data

To compare observed and simulated datasets, we calculated the 
centroids of four randomly selected buffalo individuals within simulated 
herds (comprising 200 individuals), the centroids of in-situ buffalo 
groups (ranging from two to seven individuals), and the centroids of 
simulated cattle herds (ranging from 5 to 15 individuals) at hourly in-
tervals. Centroids were computed using the "Centroids" tool in QGIS 
software (version 3.35.1 “Prizren”), located in the “Processing Toolbox” 
under “Vector Geometry Tools.” Each centroid represents the central 
point for simulated buffalo, observed buffalo, and simulated cattle at 
time T.

To represent the space use and contact areas of observed and simu-
lated buffalo and cattle, Kernel Density Estimations (KDEs) were 
calculated from centroid datasets for each of the three WLIs, across all 
simulation periods, as well as on a monthly basis. Intersection areas 
between KDEs derived from observed centroid datasets and KDEs 
derived from simulated centroid datasets for corresponding time periods 
were also computed. For each simulation, we performed 10 iterations 
and used the maximum spatial extent KDE (KDE-max) and the minimum 
spatial extent KDE (KDE-min) from these iterations to derive intersec-
tion areas with the observed KDEs for the corresponding time periods. 
We focused on 95 % KDEs to emphasize core areas of buffalo and cattle 
activity, reducing the influence of atypical movements, potential loca-
tion errors, and infrequent long-distance excursions. The 95 % KDEs 
provide a statistically robust and ecologically relevant estimate by 
excluding the extreme 5 % of location data, which often consists of 
outliers or occasional exploratory movements not representative of the 
animals’ regular home range (Silverman, 1998; Börger et al., 2006). KDE 
also offers a standardized method for comparisons across areas and 
species, facilitating meta-analyses and comparative studies (Worton, 
1989; Laver and Kelly, 2008). Univariate KDEs were computed using the 
“ks” package version 1.14.2 (Duong, 2021) in R programming language 
(R version 4.4.0). The optimal bandwidth selection (i.e., smoothness of 
the kernel density estimate) was set to 2 stages, with a Smoothed 
Asymptotic Mean Squared Error (SAMSE) pilot bandwidth, and data 
pre-transformation using "sphere" normalization to ensure 
scale-invariance. Fig.4 illustrates the herd centroids and their corre-
sponding annual KDEs for simulated and observed buffalo centroid 
datasets.

Additionally, we computed an index of buffalo-cattle contact rate 
using the method outlined by Miguel et al. (2013). We defined a 
potentially infective contact for foot-and-mouth disease as occurring 
when a cattle location was recorded within 500 m of a buffalo location 
within a 15-day temporal window. These parameters were selected to 
account for the potential survival of the pathogen in the environment 
and the precision of herd centroid locations. The number of contacts 
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meeting this criterion was divided by the total number of cattle herd 
locations and buffalo herd locations recorded within the same study site. 
To standardize the contact rate estimates, they were scaled by 108 and 
then logarithmically transformed, in accordance with Miguel et al. 
(2013). The buffalo-cattle contact rate indices were computed from both 
simulated and observed centroid datasets for buffalo and cattle on a 
monthly basis.

3. Results

3.1. Environmental variables characterized at a landscape scale

The supervised surface water classification demonstrates notably 
high accuracy across the three study sites. In Hwange/Dete, the mean 
overall accuracy (OA) of the time series supervised classification is 0.88, 
with a kappa index of 0.75. Comparatively, Gonarezhou/Malipati ach-
ieves an OA of 0.99 and a kappa of 0.97, while Kruger/Pesvi shows an 
OA of 0.97 and a kappa of 0.93. However, the supervised classification 
in Hwange/Dete slightly underperforms relative to the other sites, with 
accuracy ranging from OA 0.81 to 0.91 and kappa 0.63 to 0.82 within its 
time series. In contrast, classification accuracy remains stable 
throughout the time series for Gonarezhou/Malipati and Kruger/Pesvi.

Regarding agricultural areas, the supervised classification achieves 
an OA of 0.91 and a kappa of 0.83 in Hwange/Dete. In Gonarezhou/ 
Malipati, the OA is 0.77 and the kappa is 0.53, while Kruger/Pesvi has 
an OA of 0.83 and a kappa of 0.66. Overall, the supervised classification 
accuracy is optimal for Hwange/Dete but more variable for Gonar-
ezhou/Malipati and Kruger/Pesvi, where there is an equal number of 

confusions between the ’agricultural areas’ and ’other’ classes.
Finally, non-supervised classifications of landcover across the three 

study sites show comparable accuracy, with OA and kappa values of 
0.75 and 0.67 for Hwange/Dete, 0.71 and 0.64 for Gonarezhou/Mali-
pati, and 0.73 and 0.66 for Kruger/Pesvi. The classifications tend to 
overpredict the shrubland class, which is frequently confused with the 
mixed-woodland-shrubland and mixed-shrubland-grassland classes. In 
Hwange/Dete, there is also some confusion between the mixed- 
woodland-shrubland and woodland classes, though this is less pro-
nounced. Overall, the woodland, mixed-shrubland-grassland, and bare 
soil classes are well classified across all study sites.

3.2. Simulations of the buffalo and cattle mobility across the landscapes

Fig. 4 illustrates that the areas covered by simulated centroid tra-
jectories of buffalo herds are comparable in size to those covered by 
observed centroid trajectories across the three WLI study sites, although 
perfect overlap is not achieved due to the stochastic nature of the model. 
Furthermore, the model successfully reproduced the order of magnitude 
of KDE areas for both cattle and buffalo groups across these sites (Fig.5). 
For observed datasets, the annual KDE area of cattle herds ranges from 
2.51 km2 to 9.25 km2, with an average KDE area of 5.76 km2. In sim-
ulations, this range extends from 1.25 km2 to 13.49 km2, with an 
average KDE area of 5.04 km2. For buffalo, observed KDE areas range 
from 9.72 km2 to 158.68 km2, with an average KDE area of 66.59 km2, 
while simulations yield KDE areas from 36.21 km2 to 220.38 km2, with 
an average KDE area of 95.43 km2. The model also captured site-specific 
variations, predicting smaller KDE areas in the Kruger/Pesvi WLI 

Fig. 4. Illustration of observed and simulated centroids of one buffalo herd and corresponding Kernel Density Estimations (KDEs) in Hwange/Dete, Kruger/Pesvi and 
Gonarezhou/Malipati Wildlife-Livestock-Interfaces.
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compared to the Gonarezhou/Malipati and Hwange/Dete WLI (Fig.5). It 
is noteworthy that site-specific variations in KDE areas are more pro-
nounced for buffalo than for cattle (Fig.5). Finally, the model replicated 
variations between herds observed in the data, showing a closer fit for 
buffalo (Pearson r = 0.90, p < 1.59 × 10⁻⁴) compared to cattle (Pearson r 
= 0.53, p = 2.45 × 10⁻2) (Fig.5).

3.3. Simulations of buffalo - cattle contacts

In Hwange/Dete, the observed contact area was 1.18 km2, a value 
situated between the simulated contact areas estimated using KDE-max 
(10.2 km2) and KDE-min (7 km2). The observed and simulated contact 
areas differed in both morphology and overall size: the observed KDE 
intersection was discontinuous and smaller, whereas the simulated KDE 
intersections were continuous and larger. Additionally, the observed 
and simulated contact areas did not overlap on the east side of the study 
site and only partially overlapped on the west side. The simulated 
contact areas were closer to the communal areas, whereas the observed 
contact areas were confined to the Sikumi Forest Reserve (Fig.6, 
Hwange/Dete). The distance between the centroids of the observed 
contact areas and the different simulated contact areas ranged from 1.9 
to 3 km (Fig.6, Hwange/Dete).

In Gonarezhou/Malipati, the observed contact area was 1.45 km2, 
while the simulated contact areas were defined by KDE-max (5.25 km2) 
and KDE-min (1.1 km2). Although the observed and simulated contact 
areas were within a similar surface area range, they did not perfectly 
overlap. The centroid distances between observed and simulated contact 
areas ranged from 1.3 to 2 km (Fig.6, Gonarezhou/Malipati). Like 
Hwange/Dete, the simulated contact areas were positioned deeper into 
the communal area (Fig.6, Gonarezhou/Malipati).

In Kruger/Pesvi, the observed contact area was 2.97 km2, while the 
simulated contact areas defined by KDE-max and KDE-min had areas of 
19.8 km2 and 14.6 km2, respectively. The KDE-max estimate over-
estimated the contact area, whereas the KDE-min estimate was quite 

comparable to the observed contact area (Fig.6, Kruger/Pesvi). All 
contact areas were located within the same general region, with similar 
morphology and superposition. The centroid distances between 
observed and simulated contact areas ranged from 0.89 to 0.9 km 
(Fig.6).

In Hwange/Dete, the model effectively reproduced the monthly 
variations in buffalo-cattle contact rates, particularly the decline in 
contacts from June to October, followed by an increase at the end of the 
hot-dry season (Fig.7a). In Gonarezhou/Malipati (Fig.7b), however, the 
simulated buffalo-cattle contact rates were overestimated at the end of 
the hot-dry season (November-December) and the beginning of the cold- 
dry season (April), periods during which contact rates from in-situ 
datasets decreased significantly. In Kruger/Pesvi (Fig.7c), the model 
captured the overall pattern of monthly variations in buffalo-cattle 
contact rates—high contact rates during the cold-dry and hot-dry sea-
sons—although it overestimated contact rates during the rainy season 
(January-February).

Overall, Kruger/Pesvi exhibited the highest contact rates (annual 
mean = 4.19), while Hwange/Dete had the lowest (annual mean =
1.17), with Gonarezhou/Malipati showing intermediate values (annual 
mean = 2.65). These trends were generally well replicated by the model, 
with a correlation coefficient of r = 0.53 (p < 10⁻3) (Fig.7d).

4. Discussion

4.1. Ecological implications

The model demonstrated the capacity to reproduce seasonal patterns 
of contact between buffalo and cattle in three different WLIs by 
considering only two environmental variables: surface water and land-
cover, alongside the indirect consequences of herders’ decisions. Using a 
set of simple rules that combine basic daily resource requirements (i.e., 
water and grazing) and herding practices (i.e., avoidance of growing 
crop fields), the model simulated the movements of buffalo and cattle, 

Fig. 5. Bi-dimensional representation of simulated and observed Kernel Density Estimation (KDE) of buffalo (Pearson r = 0.90, p < 1.59 × 10− 4) and cattle herds 
(Pearson r = 0.53, p = 2.45 × 10− 2) in three Wildlife-Livestock-Interfaces, Zimbabwe (diagonal line with slope = 1 and intercept = 0).
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delineating areas of inter-species overlap (Fig. 4) as well as monthly 
variations in contact rates (Fig. 7). Within the three study sites with 
contrasting landscapes, the distribution of available surface water 
spatially concentrates animal movements around water sources and 
creates spatial interfaces that align with the landscape structure 
(Rumiano et al., 2021). Additionally, the model’s consideration of 
grazing behaviors adds an ecological component that refines the 
movements of buffalo and cattle in response to landcover variability and 
seasonal changes. Sensitivity analysis revealed that the noise parameter 
is the most sensitive of all the parameters, underscoring the model’s 
robustness to minor perturbations in structured interactions (i.e., 
alignment and cohesion) and its sensitivity to random fluctuations 
(Appendix D). The noise parameter, which introduces randomness, en-
ables the model to capture the variability and unpredictability observed 
in the ecological context of the three WLIs, beyond the mapped land-
cover and surface water. The influence of deterministic factors such as 
alignment and cohesion is mitigated by stochastic phenomena not 
explicitly defined but implicitly suggested in our model (e.g., sudden 
changes in direction due to fear of predation). Consequently, the model 
is less deterministic despite having a set of fixed parameters (Table 1). 
This model design allows us to mitigate potential biases when deriving 
parameters that define buffalo and cattle behaviors (refer to the 
“Method” section and Table 1).

Despite the coherent design and outputs of the model, there are 
discrepancies between the model’s predictions and the observed be-
haviors of both buffalo and cattle (Fig. 6 and Fig. 7). Specifically, the 
model’s predictive accuracy is less reliable for cattle movements, as 

indicated by the lower significance of the model’s outputs compared to 
the observed data (Fig. 5). These discrepancies may be attributed to 
several factors, including the limited amount of telemetry data (e.g., the 
bias introduced by using only two buffalo individuals to represent a herd 
of approximately 200, or the inherent subjectivity in classifying surface 
water and landcover) and the lack of external and instrumental variables 
relevant to buffalo and cattle ecology (e.g., herder decisions, predation). 
In terms of methodology, only buffalo and cattle herd centroids were 
used to reproduce and validate interactions between these two species. 
While this approach helps mitigate the issue of having a small number of 
collared animals as reference data, it also reduces the spatial accuracy 
and temporal frequency of potential contacts. This study thus contrasts 
with the approach used by Miguel et al. (2013), which involved indi-
vidual animals to ascertain and validate contacts between buffalo and 
cattle at the three WLIs. Regarding external and instrumental variables 
influencing buffalo and cattle movements, it is noteworthy that cattle 
are sometimes moved further into protected areas in search of available 
water sources. This suggests that erratic and individual herder decisions, 
not accounted for by the model, may have a more significant impact 
than surface water availability alone. For instance, as the dry season 
progresses and grazing resources become depleted, cattle might move 
deeper into protected areas, away from the boundary. Additionally, 
political claims on protected land, formerly community-owned before 
the establishment of protected areas, could influence herder decisions 
and cattle movements. Using protected areas more extensively could be 
a tactic to exert pressure on political land claims directed towards the 
state (Perrotton et al., 2017). This practice may explain the observed 

Fig. 6. Maps representing the observed and simulated contact area spatial extensions regarding the proximity of the communal area for the three study sites. Note 
that the interface delineations are not based on administrative borders. Their shapes and locations serve as illustration purposes and translate ecological assessments 
realized in-situ.
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shift of contact areas towards the interior of the park, particularly in the 
Hwange/Dete study site.

Therefore, a more refined understanding of herder decision-making 
processes and livestock rearing practices must be integrated into the 
model to enhance its accuracy in reproducing cattle behaviors. Observed 
data for buffalo indicate that they move less towards the communal land 
boundary than the model predicts. This suggests that incorporating 
behavioral factors, such as buffalo’s avoidance of cattle (Valls et al., 
2018), could improve the accuracy of simulated buffalo distributions. 
Additionally, there are time lags between the date when environmental 
variables were characterized through remote sensing (i.e., 2018) and the 
years when in-situ telemetry data for buffalo and cattle were collected 
(2011–2012). Consequently, the surface water data obtained from the 
SRS satellite images may not align spatially and temporally with the 
actual surface water conditions during the telemetry data collection 
period. This discrepancy can introduce bias between observed and 
predicted movements and contacts of the focal species at the landscape 
scale (Fig. 7).

We also observed varying levels of accuracy in the model’s spatial 
and temporal predictions across different study sites (Fig. 5, Fig. 6, and 
Fig. 7). Variations in the spatial distribution and seasonality of water 
sources, coupled with local topographical features, can lead to differing 
movement dynamics in space and time. For example, at the Hwange/ 
Dete study site, the boundary with the protected area is not delineated 
by a river, unlike the other two study sites, which may directly affect the 

model’s performance. Furthermore, local ecological conditions that are 
not fully or partially accounted for in the model—such as predator 
presence, forage availability, and human activity—could also influence 
its accuracy across study sites. Additionally, the Gonarezhou/Malipati 
and Kruger/Pesvi study sites have less telemetry data compared to the 
Hwange/Dete study site (Appendix A). This discrepancy in data avail-
ability can lead to variability in model accuracy, as more comprehensive 
and precise tracking data generally result in better model performance. 
Beyond differences in model accuracy across study sites, we observed 
variations in prediction accuracy between species, with the model 
struggling more to simulate cattle movements (Fig. 5). At the three WLIs, 
cattle movements are frequently influenced by human decisions 
(Perrotton et al., 2017; Valls-Fox et al., 2018a), which may not align 
with the natural patterns (e.g., landcover and surface water) the model is 
designed to simulate. Unlike buffalo, which rely on natural water 
sources, cattle are often provided with artificial water sources (Valls-Fox 
et al., 2018a). These water points can be relocated or altered based on 
management decisions, resulting in unpredictable movement patterns 
that are more challenging for the model to capture. Additionally, cattle 
are typically grazed in more homogeneous, managed environments such 
as pastures (Mudzengi et al., 2020), which may lack the varied envi-
ronmental cues (e.g., diverse landcover and water sources) that the 
model uses to predict movement. This environmental homogeneity can 
reduce the model’s ability to distinguish between different movement 
motivations. Variability in cattle management practices across the three 

Fig. 7. Monthly variations of the buffalo-cattle contact rates computed from in-situ (red line) and simulated (black line) datasets in Hwange/Dete (A), Gonarezhou/ 
Malipati (B) and Kruger/Pesvi (C) Wildlife-Livestock Interfaces. D) Bi-dimensional representation of simulated and observed buffalo-cattle contact rate indices in the 
three study sites (diagonal line with slope =1 and intercept = 0).
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study sites further complicates the generalization and accuracy of 
movement predictions.

Nevertheless, the model, in its current configuration, allows for ob-
servations that highlight the different influences of surface water 
availability and landcover on the frequency and intensity of contact 
between buffalo and cattle at the three study sites. In Hwange/Dete, the 
contact rate is highest during the cropping season and the wet season, 
when water resources are abundant (Fig. 7). Between December and 
May, herders drive their cattle into protected areas to avoid damage to 
cultivated fields (Amon et al., 2017; Miguel et al., 2017), which aligns 
with the trends observed in the model’s output simulations for this site. 
In Gonarezhou/Malipati, two peaks of contact between buffalo and 
cattle were observed (Fig. 7). The first peak, occurring during the 
cropping season in April/May, represents the attraction of buffalo to 
forage in agricultural areas. The model did not reproduce this trend 
because agricultural areas were not considered a buffalo landcover 
preference based on observations extrapolated from the three study sites 
for generalizability purposes. The second peak of activity, from 
September to November, corresponds to the dry season. During this 
period, surface water availability is limited to a few pools in the Mwe-
nezi riverbed, and the river, being closed to communal areas, leads to 
more frequent contacts between buffalo and cattle. Surface water sea-
sonal variability and potential forage resources provided by agricultural 
areas are the primary factors driving contact between buffalo and cattle 
in Gonarezhou/Malipati. In Kruger/Pesvi, the model outputs follow 
similar patterns, with contact rates peaking in October at the end of the 
dry season and decreasing during the cropping season, alternating with 
the winter period.

4.2. Epidemiological implications

Understanding the ecological and human-induced processes that 
drive the frequency, intensity, and location of inter-species contacts at 
the WLIs through mechanistic mathematical models can enhance our 
ability to quantify and characterize HWC, including pathogen circula-
tion between wild and domestic animal species within specific multi- 
host systems (Caron et al., 2015; Roche et al., 2012). One advantage 
of mechanistic mathematical models is their ability to reproduce com-
plex ecological processes, such as movements, watering, and foraging, 
with minimal empirical data (Rastetter et al., 2003). These models are 
promising as they can guide future data collection or clarify certain traits 
(e.g., targeted species’ habitat preferences, herding decisions) of po-
tential host animal species in areas where in-situ data is scarce or 
incomplete (Doherty and Driscoll, 2018). While some models have 
explored the sensitivity of pathogen dynamics to dispersal and migration 
rates (White et al., 2018a), few studies have examined animal move-
ments and contacts in relation to spatially explicit landscapes and 
pathogen transmission (Dion et al., 2011; Lane deGraaf et al., 2013; 
Tracey et al., 2014). Pathogen transmission models with mechanistic 
representations of animal movements in space and time are still scarce 
(Fofana and Hurford, 2017), highlighting the need to address this gap 
(White et al., 2018b). Our results suggest that interspecific contacts, 
which carry the risk of infectious contact and pathogen transmission, are 
clustered and influenced by the seasonality of natural resources 
(Guerrini et al., 2019) and herding practices at the three studied WLIs. 
This information presents opportunities to improve pathogen manage-
ment by controlling access to key natural resources (i.e., forage and 
surface water) or by adapting livestock and/or wildlife management 
practices to reduce the frequency of buffalo-cattle contacts. However, 
pathogen circulation among hosts varies along a gradient from direct to 
indirect transmission (Altizer et al., 2003). Thus, the definition of a 
‘relevant contact’ for pathogen transmission depends on the specific 
pathogen and the spatial and temporal windows that define potential 
infectious contacts between focal animal species (Wielgus et al., 2021). 
A spatially explicit movement and contact model, such as the one 
developed in this study, which provides high spatial and temporal 

resolution outputs, could address the different temporal and spatial 
scales relevant for various pathogen transmission assessments.

As a future direction, the mechanistic mathematical movement and 
contact model presented here could be utilized to develop real-time 
early warning systems that coordinate efforts among governments, 
communities, resource partners, and international networks for path-
ogen transmission risk assessment (e.g., FAO’s Event Mobile Application 
(EMA-i)). Additionally, the model could serve as a tool for testing 
various change scenarios, such as climate change, the rarefaction of 
water bodies, and changes in herd practices. This spatially explicit 
model could also be applied to alternative scenarios involving changes 
in landscape, climate, and land management to assess the impact of 
various disease transmission risks, as demonstrated by Dion and Lambin 
(2012). Moreover, analyzing spatial interactions between animal species 
and other entities (e.g., humans, pathogens) at different spatial and 
temporal scales could be incorporated into a systemic and predictive 
approach.

4.3. Room for improvements

Mechanistic mathematical models involve significant development 
and implementation costs but are less dependent on the correlation 
between ecological processes (e.g., movements, contacts, watering) and 
environmental properties (e.g., surface water, forage) compared to 
empirical models (Gaucherel, 2018). The ability of such mechanistic 
models to integrate interactions between animal behavior and related 
environmental variables enhances their capacity to describe holistic 
ecological functioning (Kearney and Porter, 2009), particularly in areas 
where in-situ data are lacking or expensive to collect, or when knowl-
edge about focal animal behavior is limited. Despite the potential for 
generalizability demonstrated by this study, mechanistic mathematical 
models are often based on quantitative assessments in their design, 
which can lead to output redundancy and similarity (Eriksson et al., 
2010). Intra-herd dynamics are simplified to parameters defining herd 
cohesion (see “A Spatialized Movement Model” section), while more 
complex field dynamics, such as the fusion-fission dynamics of buffalo 
herds (Caron et al., 2023b; Wielgus et al., 2020b) or cattle herding de-
cisions influenced by collective social determinants (Valls-Fox et al., 
2018a), are not fully captured. Additionally, the current temporal 
structure of the model, which is divided into several behavioral phases 
(Fig. 3), remains simplistic and relies solely on empirical knowledge and 
bibliographical analyses. Further information on herd practices or 
additional telemetry data from other areas would be valuable for testing 
the robustness and generalizability of the model. In its current design, 
the model demonstrates true generalizability potential. It is 
context-independent, as only input files (e.g., starting point locations, 
surface water, and landcover rasters) dynamically define environmental 
variables that dictate buffalo and cattle movements. Several functions 
are already implemented to read and apply potential site-specific pa-
rameters and data. The model also offers validation possibilities across 
study sites, ensuring its performance can be assessed in different 
ecological contexts. Finally, the model is capable of incorporating 
diverse data types, which helps capture varying environmental condi-
tions, animal behaviors, and potential human management practices if 
needed.

Currently, the model does not facilitate the extrapolation of quali-
tative analyses, such as the propensity of buffalo to avoid contact with 
livestock (Miguel et al., 2013). Variables such as anthropogenic and 
climate changes, predator/prey dynamics, and species population het-
erogeneity could be considered and integrated, as they play a crucial 
role in influencing buffalo and cattle movements in space and time 
(Naidoo et al., 2012). However, the developed model has the advantage 
of being easily scalable and requiring only a limited amount of input 
data to produce coherent and meaningful results. The model is designed 
to efficiently handle large datasets and can utilize various data struc-
tures (e.g., rasters, shapefiles, CSV files). It supports parallel processing, 
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allowing for multiple simulations to be run simultaneously. To ensure 
and enhance the model’s reproducibility, it is crucial to broadly 
disseminate the model’s instructions, data, and code via a public online 
repository. Encouraging collaboration through communication and 
conducting workshops or webinars to train new users on the use and 
extension of the model would also be highly beneficial.

The democratization of remote sensing (SRS) technologies for ecol-
ogists (Remelgado et al., 2018), coupled with advances in technologies 
that remotely monitor animal physiology and movements (Kays and 
Crofoot, 2015), presents opportunities to further enhance mechanistic 
mathematical models such as the one developed in this study. The 
model’s outputs and its application under different scenarios (e.g., 
varying climate patterns, different rearing practices) could be utilized 
through action research to co-produce knowledge and explore man-
agement options with local stakeholders (e.g., livestock owners, tradi-
tional authorities) to promote better coexistence between wild and 
domestic animals at these WLIs areas (Perrotton et al., 2017). Inte-
grating animal movements and contacts at the landscape scale into 
spatially explicit epidemiological models could offer a valuable 
approach to address the increasing risk of pathogen transmission at the 
WLIs (Caron et al., 2023a).
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Tran, Annelise, 2022, "Monthly surface water maps, North Kruger Na-
tional Park, 2018", https://doi.org/10.18167/DVN1/DAVZUY, CIRAD 
Dataverse, V1

Rumiano, Florent; Miguel, Eve; Valls-Fox, Hugo; Chamaillé-Jammes, 
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Arraut, E.M., Loveridge, A.J., Chamaillé-Jammes, S., Valls-Fox, H., Macdonald, D.W., 
2018. The 2013-2014 vegetation structure map of Hwange National Park, 
Zimbabwe, produced using free satellite images and software. Koedoe 60 (1), 1–10. 
https://doi.org/10.4102/KOEDOE.V60I1.1497.
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Cornélis, D., de Garine-Wichatitsky, M., Fritz, H., Caron, A., Tran, A., 2021. 
Combined use of remote sensing and spatial modelling: when surface water impacts 
buffalo (Syncerus Caffer Caffer) movements in savanna environments. The 
International Archives of the Photogrammetry. Remote Sens. Spatial Inf. Sci. 
631–638. https://doi.org/10.5194/ISPRS-ARCHIVES-XLIII-B3-2021-631-2021. 
XLIII-B3-2021(B3-2021. 

Rumiano, F., Wielgus, E., Miguel, E., Chamaillé-Jammes, S., Valls-Fox, H., Cornélis, D., 
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Resource depletion versus landscape complementation: habitat selection by a 
multiple central place forager. Landsc. Ecol. 33 (1), 127–140. https://doi.org/ 
10.1007/S10980-017-0588-6/FIGURES/5.

Wang, G., Hobbs, N.T., Boone, R.B., Illius, A.W., Gordon, I.J., Gross, J.E., Hamlin, K.L., 
2006. Spatial and temporal variability modify density dependence in populations of 
large herbivores. Ecology 87 (1), 95–102. https://doi.org/10.1890/05-0355.

Warchol, G.L., Zupan, L.L., Clack, W., 2003. Transnational Criminality: an Analysis of the 
Illegal Wildlife Market in Southern Africa. Int. Crim. Justice Rev. 13 (1), 1–27. 
https://doi.org/10.1177/105756770301300101</bib.

Westley, P.A.H., Berdahl, A.M., Torney, C.J., Biro, D., 2018. Collective movement in 
ecology: from emerging technologies to conservation and management. Philos. 
Trans. R. Soc. B: Biol. Sci. 373 (1746). https://doi.org/10.1098/RSTB.2017.0004.

White, L.A., Forester, J.D., Craft, M.E., 2018a. Disease outbreak thresholds emerge from 
interactions between movement behavior, landscape structure, and epidemiology. 
Proc. Natl. Acad. Sci. U.S.A. 115 (28), 7374–7379. https://doi.org/10.1073/ 
PNAS.1801383115/SUPPL_FILE/PNAS.1801383115.SAPP.PDF.

White, L.A., Forester, J.D., Craft, M.E., 2018b. Dynamic, spatial models of parasite 
transmission in wildlife: their structure, applications and remaining challenges. 
J. Anim. Ecol. 87 (3), 559–580. https://doi.org/10.1111/1365-2656.12761.

Wielgus, E., 2020a. The Social Dynamics of the Cape buffalo and the Epidemiological 
Implications. The Manchester Metropolitan University. P.h.D. Thesis. https://e-space 
.mmu.ac.uk/627391/1/Elodie%20Wielgus%20-%20FINAL%20VERSION%20T 
HESIS.pdf.

Wielgus, E., Caron, A., Bennitt, E., de Garine-Wichatitsky, M., Cain, B., Fritz, H., 
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