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Abstract 
Ecology and forestry sciences are using an increasing amount of data 
to address a wide variety of technical and research questions at the 
local, continental and global scales. However, one type of data 
remains rare: fine-grain descriptions of large landscapes. Yet, this type 
of data could help address the scaling issues in ecology and could 
prove useful for testing forest management strategies and accurately 
predicting the dynamics of ecosystem services.

Here we present three datasets describing three large European 
landscapes in France, Poland and Slovenia down to the tree level. Tree 
diameter, height and species data were generated combining field 
data, vegetation maps and airborne laser scanning (ALS) data 
following an area-based approach. Together, these landscapes cover 
more than 100 000 ha and consist of more than 42 million trees of 51 
different species.

Alongside the data, we provide here a simple method to produce 
high-resolution descriptions of large landscapes using increasingly 
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available data: inventory and ALS data.

We carried out an in-depth evaluation of our workflow including, 
among other analyses, a leave-one-out cross validation. Overall, the 
landscapes we generated are in good agreement with the landscapes 
they aim to reproduce. In the most favourable conditions, the root 
mean square error (RMSE) of stand basal area (BA) and mean 
quadratic diameter (Dg) predictions were respectively 5.4 m2.ha-1 and 
3.9 cm, and the generated main species corresponded to the 
observed main species in 76.2% of cases.

Keywords 
forest, inventory, landscape, tree-level, airborne laser scanning, 
downscaling
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Introduction
In recent years, a considerable effort has been made to make 
forest inventory data available, and to aggregate them at the 
continent [Mauri et al., 2017] or at the global scale [Cazzolla 
Gatti et al., 2022; Liang et al., 2016]. These data make it  
possible to study ecological processes at fine scales (at the 
inventory plot scale) as well as at coarse scales (by aggregat-
ing inventory plots). At the forest or landscape scale how-
ever, they are of limited use as they hardly capture forest- or  
landscape-level ecological processes. Denser networks of inven-
tory plots or large-scale inventories are needed. However,  
beyond a certain area, large-scale inventories become too costly 
and plot networks are preferred. Yet, fine-grain descriptions of  
large forest areas could help address the pervasive scaling 
issues in forest ecology, modelling and management. In  
practice, such data could help better understand at which  
spatial scale ecological processes emerge in forest ecosystems  
[Craven et al., 2020; With, 2019]. They could also be extremely 
valuable to compare forest dynamics models operating at  
different scales (organ, tree, stand, landscapes) and evalu-
ate their validity across scales [Papaik et al., 2010]. They could 
ultimately help develop and test management strategies at  
different spatial scales [Seidl et al., 2013].

Airborne Laser Scanning (ALS) surveys are a promising  
way forward to address this challenge, as they can provide 
high-resolution data over wide areas. However, retrieving  
individual tree attributes from ALS point clouds remains a  
challenge in particular in closed-canopy forests. At present, 
one solution is to combine ALS data with tree-level field data  
[Lamb et al., 2018; Silva et al., 2016].

Here we present three datasets describing three large Euro-
pean landscapes in France (Bauges Geopark ≈ 89,000 ha), 
Poland (Milicz forest district ≈ 21,000 ha) and Slovenia  
(Snežnik forest ≈ 4700 ha) down to the tree level. Individual 
trees were generated combining inventory plot data, vegetation 
maps and ALS data. Together, these landscapes (hereafter  
virtual landscapes) cover more than 100,000 ha including about 
64,000 ha of forest and consist of more than 42 million trees  
of 51 different species.

In addition to the datasets, we provide here a simple method 
to predict the diameter, height and species of all trees in a  
landscape using increasingly available data: inventory and 
ALS data. This method also has the advantage of being fast: 
about 1 hour on an height-core laptop is needed to generate the 
42 million trees making up the 64,000 ha of forest of our three  
landscapes.

Methods
Three study areas
Three European study areas were used as bases for our virtual 
landscapes: the Bauges Geopark, the Milicz forest district  
and the Snežnik forest (Figure 1).

The Bauges Geopark is a mountainous area located in the 
French Alps between 255 and 2672 m above sea level (a.s.l.). 
It is a karst mountain range characterised by a steep and  
irregular topography. The annual rainfall is about 1100 mm, 
and the average annual temperature is 8°C at Bellecombe-
en-Bauges (850 m a.s.l.). Monthly temperatures range from 
-1.3 to 17.1°C. The Bauges Geopark covers a total area of  
89,324 ha including 51,564 ha of forest (21,073 ha of public 
forest and 30,491 ha of private forest). The main tree species 
are beech (Fagus sylvatica), fir (Abies alba) and spruce  
(Picea abies) which are mostly found in uneven-aged mixed 
stands, but the area is characterised by a great diversity of tree 
species. In particular, mixed stands of broadleaf species are  
found at low elevation.

The Milicz forest district is located in the province of Lower 
Silesia in south west Poland at a mean elevation of 126 m 
a.s.l. (elevation ranging from 96 to 227 m a.s.l.). Much of the 
area is almost flat or slightly undulating with gentle slopes.  
This part of the landscape is covered by developed terraces 
and aeolian formations. The remaining part of the landscape is 
a slightly undulating moraine plateau above which irregularly  
shaped moraine hills are found. The average annual rainfall is 
565 mm and the mean annual temperature is 8.2°C. Monthly 
temperatures range from -1.3 to 17.8°C. The Milicz forest  
district covers a total area of 21,086 ha including 7713 ha of 
public forest. Small patches of private forest are also found 
in the landscape but they were not considered here as no  
field data were collected there. The public forest is largely 
dominated by pure stands of Scots pine (Pinus sylvestris). 
Pure and mixed stands of oak (Quercus robur) and beech  
are also found, but in a much smaller proportion.

The Snežnik forest is located in the Dinaric Mountains in  
southern Slovenia between 572 and 1792 m a.s.l. The Dinaric 
Mountains are a karst mountain range composed mainly of  
limestone and dolomite and characterised by an irregular and 
diverse topography and rockiness. The area has abundant pre-
cipitation (over 2000 mm annually on average), which is evenly  
distributed throughout the year. The average annual temperature 
is 6.5°C, with a mean monthly maximum temperature of 
around 16°C in July and a mean minimum of -3.4°C in January. 

          Amendments from Version 1
In this new version we provide an in-depth evaluation of the 
generated landscapes. The Dataset validation section has  
been completely revised. This new evaluation is presented 
synthetically in the General approach section and some results  
are mentioned in the abstract. In the Algorithm section, we have 
gone into more detail to clarify the functioning of our downscaling  
algorithm. In the introduction, we further explain the interest of 
our fine-grain large-scale datasets. In the ALS metrics section, 
additional information were provided on how the sensitivity of 
point cloud metrics to scanner acquisitions was handled. 

Any further responses from the reviewers can be found at 
the end of the article
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The study area spans over 4725 ha and is almost completely  
covered by public forest (4660 ha). The main tree species 
are fir and beech, which are mostly found in uneven-aged 
mixed stands. Interestingly, in this study area, the upper forest  
limit is formed by beech stands and not conifer  
stands.

General approach
Here we outline the approach we adopted to produce the 
virtual landscapes corresponding to our three study areas  
(Figure 2).

First, we produced raster maps of stand total basal area (BA), 
mean quadratic diameter (Dg) and proportion of broadleaf 
trees BA (BA

b
) at a 25 m resolution (see ALS mapping). For 

that, we used ALS point clouds along with field data (tree  
diameter and species identity). Thereafter, we generated trees 
in each 25x25 m2 cell, specifying their diameter at breast 
height (dbh), number (n) and species (sp; see Downscaling  
algorithm). For that, we first assigned to each cell a stand 
from the field data based on the similarity of their BA, Dg 
and BA

b
 values (calculated as the Euclidean distance between 

each cell and each field plot in the three-dimensional space  
made up by the scaled values of BA, Dg and BA

b
). We then 

transformed the structure of the stand chosen from the field 
data (by changing the trees dbh, basal area and weight) to reach 

the BA and BA
b
 values of the cell. Finally, we used diameter- 

height models to assign heights (h) to all trees (see Heights  
models).

We evaluated the overall reliability of our workflow, i.e. its abil-
ity to produce virtual landscapes as close as possible to the 
real ones (see Dataset validation). In particular we carried 
out a leave-one-out cross validation (LOOCV) on our entire  
workflow. This analysis consisted in:

•   comparing the observed and predicted values of BA, Dg, Ba
b
  

and the quantiles of tree height and diameter;

•  comparing the observed and predicted values of species  
abundance at the landscape level;

•   calculating the frequency at which the most abundant species  
was correctly predicted at the cell level;

As a complement, we also compared the stands dominant 
heights measured by ALS (Hdom

ALS
) to those calculated from 

the trees we generated (Hdom
T
). Finally, we compared the  

spatial distribution of species to current expert knowledge.

ALS mapping
The so-called “area-based” approach is a workflow com-
monly implemented for mapping stands variables in operational  

Figure 1. Location of study areas. The black areas show the forested areas.
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conditions [White et al., 2013]. It is based on the synergistic 
use of field plots and ALS point clouds. Estimation models for  
target forest variables are fitted with point clouds statis-
tics, also called metrics, as predictor variables. Field plots 
are used for training the models. For the mapping step the  
predictor variables are computed in each cell of a raster lay-
out over the whole acquisition area, and then the models 
are applied to obtain wall-to wall-estimates. This workflow  
was implemented in each study area.

Forest areas. Reference areas for forest mapping were defined 
as the intersection of two layers for each site, one defining 
the administrative boundary and one defining the forest mask.  
Those extents are respectively:

•    Bauges: the Geopark administrative extent with the 
forest mask defined by the BD Forêt v2 from the 

National Institute of Geographic and Forest Information  
[IGN, 2019], excluding the “herbaceous”, “moors” and 
“Populus plantations” categories;

•    Milicz: the public forests of Milicz with the forest  
mask defined by the Forest Data Bank [Bureau for  
Forest Management and Geodesy, 2020];

•    Snežnik: the forest management units of Leskova 
Dolina and Snežnik with the forest mask defined by  
Snežnik-forest cover [Service, 2020].

Field data. In the Bauges, a local forest inventory with 320 
plots was implemented in 2018. On each plot, all living trees 
with a dbh larger than 17.5 cm and within a 15 m horizontal 
distance from the plot centre had their dbh, position and  
species recorded. Trees with a dbh between 7.5 and 17.5 cm 

Figure 2. Workflow overview. Black boxes correspond to data generation steps feeding each other with datasets represented by grey 
boxes. BA: basal area; Dg: mean quadratic diameter; BAb: BA proportion of broadleaf trees; sp: species; dbh: diameter at breast height; 
h: height; n: number of trees; HdomALS and HdomT: stands dominant heights measured by ALS or calculated from the generated trees, 
respectively.
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were counted according to simplified categories of diameter and 
species (coniferous / broadleaf). Plot centres were geolocated  
with survey-grade GNSS (Global Navigation Satellite System) 
receivers. Plots co-registration with the ALS data was 
improved when possible by comparing the positions of trees 
with the Canopy Height Model (CHM) derived from the  
point cloud.

At Milicz, a local forest inventory with 901 plots of 12.62 
m radius was carried out in 2015. Species and diame-
ter of all living trees with dbh above 7 cm were recorded. 
Plot centres were geolocated with survey-grade GNSS  
receivers.

At Snežnik, a total of 515 plots were inventoried, in 2013 for 
plots located in the Leskova Dolina management unit and 
in 2014 for plots located in the Snežnik management unit.  
Trees with a dbh above 30 cm within a 12.61 m distance 
from the plot centre had their diameter and species recorded. 
Trees with a dbh between 10 and 30 cm were recorded  
within a 7.98 m distance from the plot centre. Plot centres  
were geolocated with commercial-grade GNSS receivers.

The following stand-level variables were computed for each 
plot: total basal area (BA) in m2.ha-1, mean quadratic diameter 
(Dg) in cm and the proportion of broadleaf species in basal 
area (BA

b
). Weights were applied to correct for sampling  

intensity in the case of nested plots (Bauges and Snežnik).

ALS data. The Bauges was covered by two ALS acquisitions 
with different settings and equipment. The southern part was 
covered between June and September 2016, the northern part in  
September 2018. Point densities computed at 25 m resolu-
tion in forest areas were respectively 5.9 ± 3.1 and 27.6 ±  
13.3 m-2. Intensity values were normalised by dataset, by sub-
tracting the mean and dividing by the standard deviation of 
intensity values of points located inside the extent of field plots  
covered by each acquisition.

Milicz was covered by an ALS acquisition in August 2015. The 
point density was 16.5 ± 7.1 m-2. The point cloud contains col-
our values extracted from aerial pictures with near infra-red,  
red and green bands.

Snežnik was covered by an ALS acquisition between February 
14th and November 21st 2014. Forests might have been both  
in leaf-on and leaf-off conditions. The point density was  
18.4 ± 10.1 m-2. An ice storm occurred in Leskova Dolina  
management unit between January 30th and February 10th 
2014. This event damaged the forest stands, and happened 
between the field inventory and the ALS acquisition. It affected 
the quality of the derived maps (see Mapping) and the realism  
of our virtual landscape (see Dataset validation).

ALS metrics. All computations were performed with R software. 
Terrain metrics (aspect, elevation and slope) were computed 
by fitting a plane surface to points classified as ground.  

Before the computation of vegetation metrics, ALS point 
clouds were normalised, i.e. height above ground was com-
puted for each point. Two types of metrics were then computed 
from the points classified as vegetation with a height above 
2 meters (this limit was set to remove points of shrubs and low  
vegetation from the analysis):

•    Point cloud metrics were directly computed from the point 
cloud using the aba_metrics function from the lidaR-
tRee R package. Those metrics summarise the geometry  
of the point cloud in a given area.

•    Tree metrics were computed with the std_tree_metrics 
function from the characteristics of local maxima 
extracted from the CHM with the tree_segmentation 
function. CHM resolution was set to 0.5 m at Milicz, and  
1 m at Snežnik and the Bauges due to higher variability 
of point density. Local maxima with a height lower than 
5 m were discarded. Those metrics summarise the char-
acteristics of trees detected in a given area of the point 
cloud. One of the tree metrics is the ALS dominant height   
(Hdom

ALS
), which is the mean height of the six high-

est local maxima. In case less than six maxima were  
present, the mean height of all maxima was used.

The metrics were computed for each field plot based on the 
point cloud located inside their extent, in order to build the 
dataset for model calibration (training step). The metrics  
were also computed in each 25×25 m2 cell of the raster lay-
out covering each acquisition, in order to build the prediction  
dataset (mapping step). Each metric map was visually checked 
for spatial patterns potentially linked to acquisition patterns,  
which eventually led to:

•  discard some intensity-related metrics in Sneznik  
study area;

•  remove ALS points acquired with a scan angle 
larger than 21 degrees in Milicz study area, in order 
to achieve a trade-off between metrics robustness, 
point density and comprehensive coverage of the  
study area.

Models. For BA and Dg, we searched for the linear regres-
sion model that yielded the highest adjusted-R2 with at most 
n = 6 independent variables among the above-mentioned  
ALS metrics. The model was given by:

                                      ˆ
=

= + ∑y a0
1

n

i i
i

a x                                      (1)

with ŷ the estimated value, (a
i
)i∈{0,...,n} the model 

parameters and (x
i
)i∈{1,...,n} the selected metrics. 

Two data transformations were also tested: a logarithm  
transformation of all variables and a Box-Cox transforma-
tion of the dependent variable. The logarithm transformation  
of all variables turns the model at Equation 1 into:

                                    ( )ˆ
=

= ×∏a
y e 0

1

i
n a

i
i

x                                     (2)
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A bias correction factor had to be applied to the fitted values  
to obtain the predictions (P):

                                         ˆ
 
 
 = ×y 2
v

P e
                                        (3)

with υ the variance of the model residuals.

The Box-Cox transformation consists in determining the λ 
parameter that best normalises the distribution of the dependent 
variable (Y ). It is determined using the maximum likeli-
hood-like approach of Box & Cox [1964] (powerTransform  
function of car R package). Y is given by:

                                        ( −= y 1)¸

Y
¸

                                        (4)

Equation 1 is then fitted with Y instead of y. The predictions P 
are obtained by applying the inverse Box-Cox transformation  
to the fitted values Ŷ  and a bias correction factor:

                     ˆ( )
ˆ( )

 −= + × × 
+ 

1

2
1

1 1+
2 1

¸ v ¸
P ¸Y

¸Y
                    (5)

For broadleaf proportion (BA
b
), values are bounded to [0, 

1]. A binomial generalised linear model with logit link was  
therefore fitted with the glm R function. The model was given by:

                           
�

�
 
  = +
 − 

∑01
b

i i
b

BA
log a a x

BA
                           (6)

All metrics were at first included in the model and then a step-
wise selection was used to reduce their number (stepAIC  
function of the MASS R package).

Stratification. When calibrating a statistical relationship 
between forest stand variables, which are usually derived from 
diameter measurements and ALS metrics, one relies on the 
hypothesis that the interaction of laser pulses with the leaves  

and branches structure is constant on the whole area. How-
ever, differences can be expected either due to variations in 
acquisition settings (flight parameters, scanner model), in  
forests (stand structure and composition) or in topography 
(slope). Better models might be obtained when calibrating 
stratum-specific relationships, provided each stratum is more 
homogeneous regarding the laser interaction with the veg-
etation. A trade-off has to be achieved between the within-strata  
homogeneity and the number of available plots for calibration in 
each stratum.

Depending on the study areas, different ancillary data are avail-
able for stratification. At the Bauges, two layers were used: spe-
cies composition (mixed, broadleaf, coniferous) derived from 
the BD Forêt v2 and ALS survey. At Milicz, the following  
information was available for a total of 2175 stands: domi-
nant species (coniferous, Quercus, other broadleaf) and stand 
age. At Snežnik, the following information was available  
for a total of 1536 stands: forest management unit (FMU: 
Snežnik or Leskova Dolina) and broadleaf proportion in  
volume, which is converted into a two (broadleaf or coniferous)  
or three-levels factor (adding the mixed category). The metrics 
selected in the 32 models for BA and Dg (which include at 
most six independent variables) are presented in Table S1  
of the Extended data.

Field plots and raster cells were assigned to the category  
of the polygon which contains their centres.

Mapping. Stratifications were compared based on expert knowl-
edge taking into account the following criteria: minimum 
number of observations in strata, prediction error and number 
of variables in the model. The retained stratifications for the 
prediction models and the root mean square error (RMSE) 
of prediction estimated in leave-one-out cross validation are  
presented in Table 1.

Table 1. Stratification and root mean square error (RMSE) of predictions for the three 
study areas and three forest variables. BA: basal area (m2.ha-1); Dg: mean quadratic 
diameter (cm); BAb: broadleaf BA proportion (%).

study area Variable RMSE Stratification: number and combinations

Bauges

BA 8.3 6: composition x ALS survey

Dg 4.2 6: composition x ALS survey

BAb 20.3 3: composition

Milicz

BA 5.4 7: (coniferous x 5 age classes), Quercus sp., other broadleaf

Dg 3.7 3: coniferous, Quercus sp., other broadleaf

BAb 12.9 2: coniferous, broadleaf

Snežnik

BA 9.6 4: FMU x composition (2 classes)

Dg 7.6 6: FMU x composition (3 classes)

BAb 19.3 2: FMU
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Prediction accuracy is better for mean diameter and lower for 
BA, which is common when estimated with ALS. Precision is 
quite low for broadleaf proportion, which could be expected 
as spectral data are usually better than ALS at classifying  
species. Prediction accuracy was higher at Milicz, intermedi-
ate at the Bauges and lower at Snežnik. Milicz was well suited 
for making predictions with its dense ALS data, homogene-
ous stands and precise co-registration. The Bauges has precise  
co-registration, but heterogeneous forest stands and two dif-
ferent ALS datasets. At Snežnik the data were much noisier, 

especially because of the ice storm event. The maps we created  
are presented in Figure 3.

Downscaling algorithm
Field data. At Milicz and Snežnik, we used the same dbh meas-
urements as those used to calibrate the ALS models (from 
901 plots at Milicz and from 515 plots at Snežnik, see ALS  
mapping - Field data). At the Bauges, we could not use the dbh 
measurements used to calibrate the ALS models because trees  
with a dbh smaller than 17.5 cm were not measured but 

Figure  3. Airborne laser scanning (ALS) maps of forest variables for our three study areas at a 25 m resolution. Dg: mean 
quadratic diameter (cm), BA: basal area (m2.ha-1) and (BAb): proportion of broadleaf BA.
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counted by diameter classes. Instead, we used the tree diameter 
measurements from the 258 forest plots of the French  
National Forest Inventory (NFI) located in the study area. 
Those plots were inventoried between 2005 and 2018. They 
consist of three concentric plots of 6 m, 9 m and 15 m radius,  
where small (7.5 < dbh < 22.5 cm), medium (dbh < 37.5 cm) 
and big trees (dbh > 37.5 cm) were measured, respectively. 
At the Bauges, we used an additional information on forest 
vegetation: the map of forest types [IGN, 2019], which we  
also used to delineate the forest areas (see Forest areas).

Algorithm. Our algorithm consisted in associating to each 
25×25 m2 cell a field plot based on the similarity of their den-
drometrical variables, and then in modifying the trees dbh,  
basal area and weight of this field plot in order to reach the 
total BA and the proportion of broadleaf BA (BAb) of the cell 
(i.e. the values provided by the ALS maps). The algorithm  
breaks down as follows:

1.    First, we calculated the total basal area (BA), mean 
quadratic diameter (Dg) and proportion of broadleaf BA  
(BA

b
) of all field plots.

2.    Second, we associated to each 25×25 m2 cell a 
field plot based on the similarity of their BA, Dg  
and BA

b
. These 3 variables were chosen for match-

ing because together they provide a synthetic yet fairly  
accurate picture of the stands.

(a)    For this, we scaled the values of BA, Dg and BA
b
 

between 0 and 1. We scaled the ALS and field data  
together to account for the possible differences in 
their range.

(b)    We then calculated the Euclidean distance between 
each cell and each field plot in the three-dimensional  
space made up by the scaled values of BA, Dg and 
BA

b
.

(c)    Finally, we associated to each cell the closest field 
plot in this three-dimensional space. For the Bauges 
study area, we assigned to each 25×25 m2 cell a 
forest type (e.g. pure beech, mixed deciduous for-
est, among others) from the map of forest types. 
We then associated the closest field plot sharing  
the same forest type to each cell.

3.    Third, we transformed the field plots stand structure so 
that it matched the BA and BA

b
 values of the cells they  

were associated with.

(a)    For this, we first calculated α, a multiplier correc-
tion coefficient to be applied to all tree diameters 
of a field plot. The idea is to increase or decrease 
tree diameters so that their Dg reaches the Dg 
value of the cell to which they are associated. α is  
given by:

                                         = ALS

F

Dg
®

Dg
                                         (7)

         with Dg
ALS

 the Dg value of the cell given by the 
ALS mapping, and Dg

F
 the Dg value calculated  

with the dbh of the trees from the field plot.

(b)    Thereafter, we calculated the weight (ω in n.ha-1)  
of these trees with corrected diameters, so that the 
generated stand matches the BA and BAb values  
of the cell it is associated with. ω is given by:

                             
1

,

( . )
ω

π α
= × ALS F

F

treeba

dbh 2
40000

                             (8)

         where dbh
F
 is the tree dbh in the field plot, and 

ba
treeALS,F

 is the tree individual basal area 

derived from the ALS mapping and the field plot  
data using the following equation:

    ,
= × × ×BC SALS ALSALS F F F

ptree treeba BA Prop Prop Prop    (9)

         where BA
ALS

 is the total BA of the cell given by 
the ALS mapping, Prop

BCALS
 is the BA propor-

tion of broadleaf (resp. coniferous) trees given  
by the ALS mapping, Prop

SpF
 is the BA propor-

tion of species Sp in broadleaf (reps. coniferous) 
species in the field plot, and Prop

treeF
 is the BA  

proportion of this tree in species Sp in the field  
plot.

(c)    Finally, we divided ω by 16 to get the weight of 
the trees in the 25×25 m2 cells (ω being a weight 
per ha and 16 being the surface area ratio between  
1 ha and a 25×25 m2 cell). In doing so, the obtained 
tree weights can be either integer or decimal. How-
ever, the objective of our algorithm is to gener-
ate for each cell a list of individual trees with  
their associated diameter, height and species. From 
this perspective, decimal weights are not use-
ful. We cannot simply round the tree weights to 
the nearest integer as this can lead to a significant  
over- or underestimation of the total number of 
trees in the cells. This is because the decimal part 
of the tree weights in the 25×25 m2 cells is not the 
result of a random draw but directly depends on 
the surface area ratio between the field plot and 
the cell. As an example: 1 tree inventoried on a  
400 m2 field plot will always obtain a weight of 
1.56 in a 25 × 25 m2 cell, and a weight of 2 after  
rounding to the nearest integer. In order to obtain 
integer tree weights in the 25 × 25 m2 cells while  
avoiding this bias, we performed a Bernoulli 
draw on the decimal part of the tree weights. As 
an example, a weight of 1.56 has a 56% chance of  
becoming 2, and a 44% chance of becoming 1. As 
this rounding of the weights slightly modifies the 
total BA of the generated stand, we transformed 

1 The scale factor 40000 is the product of two scale factors: 4 × 10000. The 
scale factor 4 comes from the formula linking a surface area S to a diameter 

d 
2

( )
4
dS π= ; while the scale factor 10000 accounts for the difference  

in units between the diameters (in cm) and the basal areas (in m2).
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again the trees dbh to reach the total BA pro-
vided by the ALS mapping using the trees BA and  
their integer weights  (ω

int
) as follows:

                     
,

π ω
= ×

ALS Ftree

final
int

ba

dbh
140000 16                      (10)

         As this last transformation only compensates for  
the rounding, the changes in dbh are minor.

This procedure has multiple benefits (see proofs in Extended 
data): it makes it possible to reach the BA and BA

b
 values given 

by the ALS mapping. It also maintains the Dg ratios observed 
on the field plots between the different species. The Bernouilli 
draw used to get integer tree weights only adds a minor vari-
ability. We created the three virtual landscapes by applying  
this algorithm to each study area separately.

Heights models
We developed individual diameter-height models for the  
three study areas to assign heights to all generated trees.

Field data. At Snežnik and Milicz, the diameter and height 
measurements come from the same field plots used for the 
ALS models calibration (see ALS mapping - Field data). At 
the Bauges, no height measurements were collected in the  
field plots used to calibrate the ALS models. We therefore 
used the tree diameter and height measurements of the 240 
French NFI plots located in the study area (inventoried between  
2005 and 2016). At Milicz and the Bauges, the heights were 
measured for all species in all diameter classes. At Snežnik, 
tree heights were measured only on two to four trees from 
the upper layer. The number of trees with both diameter 
and height measurements in each study area is summarised  
per species in Table 2.

Models. We used a mixed effect model to predict individual 
tree height from the ratio between the tree dbh and the stand 
Dg (to account for the tree social status) and from the stand Dg 
(to account for the stand development stage). We considered  
the site effect as a random effect. Finally, as the variance of 
height increases with height due both to increasing meas-
urement errors and to individual cumulative variations, we  
accounted for heteroscedasticity by modelling the error term  
with a power of the fitted values. The model is given by:

( )( )
.

− ×− ×   = × × − × − +     
h α α

2
11 3+(1+ ) 1 1

°dbh® ¯sp® Dg Dg
sptot site e e ² (11)

where α
sp

, α1, α2, β
sp

 and γ are parameters to be estimated; 
and α

site
, a random effect accounting for the site effect. This  

model has an asymptotic form: α
sp

 corresponds to the species-
specific asymptotic value, and β

sp
 is the species-specific speed  

for reaching the asymptotic value.

At Snežnik, most of the trees selected for height measure-
ment were dominant or co-dominant trees. Moreover, more 

than half of the plots only had two observations. This precludes  
to fit the part of the curve with small diameters within the 
stand. We solved this issue by assuming that the within-stand 
relationship at the Bauges was similar at Snežnik, as these  
landscapes are quite similar in terms of species, stand  
structure (mostly uneven-aged), or elevation (mountains).  
Therefore, for Snežnik height predictions, we used the β

sp
 and  

γ fitted values of the Bauges model.

We fitted one mixed effect model for each study area using 
the nlme function from the nlme R package. We modelled the 
residual errors using a varPower function of the fitted val-
ues. The parameters are presented in Table 3, Table 4, and  
Table 5 for the three study areas.

Dataset validation
Method
We carried out a leave-one-out cross validation (LOOCV) to 
evaluate the realism of the virtual landscapes we generated.  
This consisted in excluding a field plot from our entire  

Table 2. Number of trees for the diameter-height 
models calibration in each study area and for 
each species. For each study area, all the species 
with less than 100 observations are grouped into the 
”other species” category.

Species
Number of trees for

Bauges Milicz Snežnik

Abies alba 468 638

Acer pseudoplatanus 181 228

Alnus glutinosa 823

Betula pendula 1 519

Carpinus betulus 808

Fagus sylvatica 705 2 199 435

Fraxinus excelsior 209

Larix decidua 709

Picea abies 551 2 183 325

Pinus sylvestris 24 995

Prunus serotina 191

Quercus petraea 130

Quercus rubra 308

Quercus undefined* 1 916

Tilia cordata 311

Other species 642 522 29

TOTAL 2 886 36 712 1 427
*At Milicz, the Quercus undefined is mainly Quercus robur.
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Table 4. Parameters of the Milicz diameter-height 
model.

Parameter Value Standard error p-value
α

Pi.sy. 48.55802 2.3 <10–3

α
Fa.sy. 48.01692 2.3 <10–3

α
Pi.ab. 60.35196 3.1 <10–3

α
Qu.un. 52.24210 2.5 <10–3

α
Be.pe. 51.60844 2.5 <10–3

α
Al.gl. 49.34039 2.4 <10–3

α
Ca.be. 36.73985 1.8 <10–3

α
La.de. 52.06992 2.5 <10–3

α
Ti.co. 45.25535 2.4 <10–3

α
Qu.ru. 45.74754 2.4 <10–3

α
Ac.ps. 41.50894 2.2 <10–3

Table 3. Parameters of the Bauges diameter-height 
model.

Parameter Value Standard error p-value
α

Fa.sy. 41.05595 4.3 <10–3

α
Pi.ab. 55.11821 5.8 <10–3

α
Ab.al. 48.46640 5.1 <10–3

α
Fr.ex. 40.94293 4.3 <10–3

α
Ac.ps. 37.95001 4.0 <10–3

α
Qu.pe. 36.64676 4.2 <10–3

α
OtherSp. 36.87834 3.8 <10–3

α
1 0.01594 0.0030 <10–3

α
2 1.26326 0.10 <10–3

β
Fa.sy. 1.71474 0.08 <10–3

β
Pi.ab. 0.99226 0.05 <10–3

β
Ab.al. 1.17894 0.06 <10–3

β
Fr.ex. 2.01951 0.12 <10–3

β
Ac.ps. 2.08068 0.12 <10–3

β
Qu.pe. 1.56216 0.16 <10–3

β
OtherSp. 1.84067 0.08 <10–3

γ 1.42595 0.05 <10–3

Power of the variance model 0.51

Standard deviation of the plot level random 
effect

0.14

Standard deviation of residual error 0.59

Table 5. Parameters of the Snežnik diameter-height 
model.

Parameter Value Standard error p-value
α

Ab.al. 66.17413 5.4 <10–3

α
Fa.sy. 53.81402 4.4 <10–3

α
Pi.ab. 76.82544 6.3 <10–3

α
1 0.0251 0.0036 <10–3

α
2 1.00672 0.075 <10–3

β
Ab.al.

* 1.17894
* taken from the Bauges 

modelβ
Fa.sy

.* 1.71474

β
Pi.ab

.* 0.99226

γ* 1.42595

Power of the variance model -0.56

Standard deviation of the plot level 
random effect

0.077

Standard deviation of residual error 15.8

Parameter Value Standard error p-value
α

Pr.se. 36.18532 2.9 <10–3

α
OtherSp. 54.94652 2.8 <10–3

α
1 0.01958 0.001 <10–3

α
2 1.13831 0.035 <10–3

β
Pi.sy. 2.73192 0.024 <10–3

β
Fa.sy. 1.98085 0.032 <10–3

β
Pi.ab. 1.20700 0.035 <10–3

β
Qu.un. 1.62943 0.027 <10–3

β
Be.pe. 2.11097 0.037 <10–3

β
Al.gl. 2.04760 0.045 <10–3

β
Ca.be. 2.86677 0.063 <10–3

β
La.de. 2.33369 0.050 <10–3

β
Ti.co. 1.89682 0.064 <10–3

β
Qu.ru. 2.38748 0.095 <10–3

β
Ac.ps. 2.56340 0.102 <10–3

β
Pr.se. 2.04373 0.150 <10–3

β
OtherSp. 1.50792 0.019 <10–3

γ 1.55264 0.040 <10–3

Power of the variance model 0.16

Standard deviation of the plot level random 
effect

0.09

Standard deviation of residual error 1.09
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workflow and comparing the predicted values obtained to the 
observed values. This operation was repeated within each land-
scape for all field plots. We calculated the root mean square  
error (RMSE) of the predictions of BA, Dg, Ba

b
 and the quan-

tiles of tree height and diameter. As part of the LOOCV, we 
also compared the observed and predicted values of species 
abundance at the landscape level (in BA) and calculated the 
frequency at which the most abundant species was correctly  
predicted at the cell level.

As a general validation of our approach, we compared 
the stand dominant heights estimated by ALS (Hdom

ALS
) 

to those calculated from the trees we generated (Hdom
T
). 

We expect Hdom
ALS

 to be as close to reality as possible, as 
tree height is among the most reliable ALS measurement 
[Van Leeuwen & Nieuwenhuis, 2010] and can be derived  
from ALS data with little processing and no field data. Hdom

ALS
 

therefore serves here as a reference to which Hdom
T
 is  

compared. 

In practice, Hdom
T
 is calculated as the mean height of the 

six highest trees, while Hdom
ALS

 is calculated as the mean 
height of the six highest local maxima (see ALS metrics). In 
case less than six trees/maxima were found, the mean height 
of all trees/maxima was used. These dominant heights are  
calculated at the 25×25 m2 cell level. There is some circular-
ity in comparing HdomALS and HdomT as models predict-
ing BA, Dg and BA

b
 from ALS point clouds may include 

ALS derived height metrics or more generally metrics which 
are correlated with the dominant height estimated from ALS 
point clouds. The results of this comparison must therefore  
be interpreted with caution.

Finally, we examined the spatial distribution of species at each  
site and compared it to current expert knowledge.

Results
Overall, the virtual landscapes are in good agreement with the 
landscapes they aim to reproduce. The generated stand struc-
tures and compositions are consistent with the observations 
and make it possible to distinguish stands at different stages of  
development and with different compositions.

At Milicz, predictions are the most accurate. The RMSE of 
all evaluated variables are the lowest in comparison with the 
other landscapes (Table T1). Species abundance at the land-
scape level is also better reproduced (Figure F1). Finally, in  
76.2% of cases, the generated main species corresponds to 
the observed main species. This higher quality of predictions 
can be explained by the fact that Milicz has the highest den-
sity of inventory plots and the least complex landscape, with 
a predominance of even-aged monospecific stands and the  
lowest species diversity among our three landscapes.

At the Bauges and Sneznik, the RMSE of the evaluated vari-
ables are comparable (Table T1.). In contrast, predictions of 
species abundance at the landscape level are more accurate at 

Table T1. Root mean square error 
(RMSE) of predictions for the three 
study areas obtained from the 
leave-one-out cross validation 
(LOOCV) carried out on our entire 
workflow. BA: basal area (m2.ha-1); 
Dg: mean quadratic diameter (cm); 
BAb: broadleaf BA proportion (%); dbh: 
diameter at breast height (cm); h: tree 
height (m); Q0.5 and Q0.95: fiftieth and 
ninety-fifth percentiles, respectively, of 
the distribution of dbh and h. dbhQ0.5 
is not considered as it is almost similar 
to Dg. The RMSE values from the 
LOOCV of ALS models presented in 
Table 1, are added here in brackets 
to facilitate comparisons. At Sneznik, 
RMSE of hQ0.5 could not be calculated 
as only dominant trees were 
measured on the field. At the Bauges, 
RMSE of hQ0.5 and hQ0.95 could not be 
calculated as no tree heights were 
measured in the field plots used to 
calibrate the ALS models.

Study area Variable RMSE

Bauges BA 9.5 (8.3)

Dg 5.4 (4.2)

BAb 21.6 (20.3)

dbhQ0.95 16.1

hQ0.5 -

hQ0.95 -

Milicz BA 5.4 (5.4)

Dg 3.9 (3.7)

BAb 13.1 (12.9)

dbhQ0.95 8.8

hQ0.5 5.0

hQ0.95 2.6

Sneznik BA 9.6 (9.6)

Dg 7.9 (7.6)

BAb 20.0 (19.3)

dbhQ0.95 13.1

hQ0.5 -

hQ0.95 4.7

Sneznik (Figure F1). The same applies to the compositions  
predicted at the plot level: the predicted main species  
corresponds to the observed main species in 63.1% of cases at 
Sneznik and in 37.2% of cases at the Bauges. However, two 
datasets were used in the Bauges. In the local forest inventory  

Page 12 of 37

Open Research Europe 2023, 3:32 Last updated: 29 JAN 2024



Figure  F1. Predicted (blue) and observed (red) species abundance in BA (m2) at the landscape level. In the Bauges, we only 
considered trees with a dbh greater than 17.5, as smaller trees were not identified in the local forest inventory (LFI) but only grouped in two 
categories (coniferous and broadleaf). Also, some predictions are missing in the Bauges because some trees in the LFI were not identified 
at the species level and therefore can’t find a match in the generated trees which all receive a species name.
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(LFI) not all trees were identified at the species level and 
trees with a dbh between 7.5 and 17.5 cm were not measured 
but counted by diameter classes and grouped in two catego-
ries (coniferous and broadleaf). This led us to use a local subset  
of the NFI from which composition is derived in our downscaling 
algorithm. The poorer composition predictions in the Bauges 
might therefore partly be an artefact arising from the evalu-
ation itself, as the LFI may not be suitable to serve as a  
field reference.

The fact that the RMSE values obtained from the LOOCV 
carried out on our entire workflow are almost similar to the 
RMSE values obtained from the LOOCV of ALS models 
shows that the downscaling algorithm hardly adds any error  
(Table 1, Table T1). The main way of increasing the  
realism of our virtual landscapes would therefore be to improve  
the ALS models.

With R2 values ranging from 0.61 to 0.83 (Figure 4) and 
RMSE values below 5 m, HdomALS and HdomT are consist-
ent with one another. This provides a general validation of our  
workflow. As discussed above, the better predictions obtained 
at Milicz might steam from the higher density of inven-
tory plots and the lower complexity of the landscape. At  
Sneznik, HdomT tends to be overestimated as HdomALS 
decreases. This divergence could be due to the ice storm that 
occurred between the field inventory and the ALS acquisition and  
that might have biased the ALS models.

Overall, species spatial distribution in the virtual landscapes 
is consistent with field observations. In the Bauges, pure and  
mixed stands of fir and spruce are more abundant at higher 
elevation while mixed stands of broadleaf species are  
found at lower elevation. At Milicz, pure stands of Scots pine 
are found at lower elevation while broadleaf species and mixed 
stands appear at higher elevation. Finally, at Sneznik, pure 
beech stands are found at higher elevation while fir is found 
at lower elevation in pure or mixed stands (a specific feature  
of the site).

Our procedure is not free of flaws and some outliers are 
present in the generated data (i.e. stands with extreme values of  
BA, Dg, tree height or density). These outliers are a direct  
consequence of the uncertainties associated with the models 
we used. The realism of the stands associated with these  
extreme values is open to question. However, separating  
realistic from unrealistic stands seems difficult as extreme  
values can be locally observed. It is therefore up to the users 
of the dataset to decide whether or not to consider these  
stands depending on their objectives.

Virtual landscapes overview
Overall, 42,394,479 trees belonging to 51 different species 
were generated: 35,134,985 trees of 40 different species 
were generated at the Bauges, 5,726,420 trees of 32 different  
species at Milicz and 1,533,074 trees of 16 different  
species at Snežnik. The main species BA proportion as well 
as their h and dbh distributions are shown in Figure 5 for  
each virtual landscape.

Figure  4. Comparison of the stands dominant heights 
measured by ALS (HdomALS, in m) to those calculated from 
the generated trees (HdomT, in m). The top panels show the 
distribution of HdomT. The dashed lines indicate the y = x line. The 
red lines correspond to the regression lines. The root mean square 
error (RMSE) values between HdomALS and HdomT, as well as the 
regression R-Squared values are shown in red.
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Data availability
Underlying data
Bauges

•    The maps of forest types (BD Forêt®V2) are avail-
able to download from the National Institute for  
Geographic and Forestry Information website at https://
geoservices.ign.fr/bdforet, under the Etalab open license  
2.0.

•    The French National Forest Inventory data are available 
to download from the National Institute for Geographic 
and Forestry Information website at https://inventaire-
forestier.ign.fr/dataifn/, under the Etalab open license  
2.0.

•    The local forest inventory dataset is available for non-
commercial use upon request to Jean-Matthieu Monnet 
(jean-matthieu.monnet@inrae.fr). A data sharing agree-
ment will have to be established, with the following  
restrictions:

–    data are available for internal use only and cannot  
be distributed;

–    results obtained from the data can be displayed or 
distributed provided they do not allow the estimation  
of growing stock in individual private properties;

–    data funding (Ademe grant 1703C0069) should be 
cited.

•    ALS data in the northern part (Haute-Savoie) are availa-
ble to download from the Recherche Data Gouv dataverse 
at https://doi.org/10.57745/ZUT1MJ, under the Etalab  
open license 2.

•    ALS data in the southern part (Savoie) can be pur-
chased upon request to (Régie de Gestion des Données  
Savoie Mont Blanc) at https://www.rgd.fr/.

Milicz
•    The stand data in the ESRI Shapefile format are avail-

able to download from the Polish Forest Data Bank at  
https://www.bdl.lasy.gov.pl/portal/wniosek-en.

•    The local forest inventory dataset and ALS data are avail-
able for non-commercial use upon request to Jarosław  
Socha (jaroslaw.socha@urk.edu.pl). A data sharing  
agreement will have to be established, with the  
following restrictions:

–    data are available for internal use only and cannot  
be distributed;

–    data funding (REMBIOFOR - BIOSTRATEG1/ 
267755/4/NCBR/2015) should be cited.

Sneznik
•    The forest inventory data (in *.xlsx and *.shp formats) 

and maps of forest types and species mixture (in *.shp 
format) are available upon request to Slovenia Forest 
Service (zgs.tajnistvo@zgs.si; rok.pisek@zgs.si). A 
data sharing agreement will have to be established, with  
the following restrictions:

–    data are only available for the study that is the  
subject of the agreement;

–    Slovenia Forest Service should be acknowledged  
for providing the data in all publications.

•    ALS data are available to download from the Slovenian 
Environment Agency website at http://gis.arso.gov.
si/evode, under the terms of the international Creative  
Commons 4.0 license (http://www.evode.gov.si/fileadmin/
user_upload/Lidar_pogoji_uporabe.pdf):

–    the data user must indicate the data source at each 
publication of data or products, specifying ”Slov-
enian Environmental Agency, type of data and period  
to which the data refer or the date of the database”.

Extended data
Zenodo: I-MAESTRO data: 42 million trees from three large 
European landscapes in France, Poland and Slovenia. https://doi.
org/10.5281/zenodo.7462440 [Aussenac et al., 2022].

For each virtual landscape we provide a table (in .csv format)  
with the following columns:

•    cellID25: the unique ID of each 25x25 m2 cell

•    sp: species latin names

•    n: number of trees. n is an integer >= 1, meaning that a 
specific set of species “sp”, diameter “dbh” and height  
“h” can be present multiple times in a cell.

•    dbh: tree diameter at breast height (cm)

•    h: tree height (m)

We also provide, for each virtual landscape, a raster (in .asc  
format) with the cell IDs (cellID25) which makes data spatialisa-
tion possible. The coordinate reference systems are EPSG: 2154 
for the Bauges, EPSG: 2180 for Milicz, and EPSG: 3912 for  
Sneznik.

We provide Table S1 presenting the metrics used in the 32  
stratum-specific prediction models of BA and Dg.

Finally, we provide a proof of how, in the downscaling  
algorithm, multiplying the trees dbh by the α correction  
coefficient makes it possible to reach the cells BA value  
derived from the ALS mapping.
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The authors have done an impressive job addressing the reviewers' comments and the paper now 
presents an intriguing study of how one could produce large-scale inventory maps. The validation 
procedure, in particular, is now comprehensive and, by relying on leave-one-out cross validation 
(LOOCV) across the whole workflow, provides readers with a clear idea of the quality of the 
product. 
 
I have only a few minor comments:

R packages should generally be cited in the references, but this seems not the case (I could 
not find references for, e.g, MASS package, lidaRtRee package)

○

From my understanding, the whole workflow was applied separately at each site, but this is 
not immediately clear when reading the paper. It would be worth mentioning this early on 
somewhere in the methods section.

○

For the validation tables (Tables 1 and T1), it would have been nice to also see a relative 
RMSE (rRMSE), i.e., RMSE divided by the standard deviation or mean of the corresponding 
variable. This would help readers understand whether these prediction errors are large or 
not, make BA/Dg/BAb errors comparable between each other and also make estimates 
better comparable across sites

○

Generally speaking, I found that there was not much information on the ALS data 
processing. How was ground classification done? Did you remove noise? Is it all done with 
the lidaRtRee R package? This is not hugely important for your study, and if it was all done 
already by the data providers and with a variety of methods, you could also just state that.

○
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The paper presents an innovative approach to generate forest stand structure information at 
landscape extent and single tree resolution based on airborne lidar data and inventory plots. The 
approach is not based on individual tree detection (ITD) from lidar, but operates in an area-based 
(ABA) fashion at 25 m x 25 m cell scale. The inventory plots serve as lookup tables. Structure 
metrics are being estimated for every cell in the landscape based on lidar metrics. Then, each cell 
is being assigned to the most similar stand from the inventory lookup table based on a minimum 
distance of a set of structure metrics. The dbh values of the trees are then adjusted according to a 
proposed algorithm, such that the final structure metrics match the ones predicted for the cell. 
Finally, the generated forest landscapes are being validated by calculating dominant height for 
each cell based on the generated stands and comparing them to dominant heights directly 
obtained from lidar. The approach has been applied to three different regions in France, Poland 
and Slovenia. 
 
The presented approach is very interesting and useful as an efficient solution to generate maps at 
single tree resolution and landscape extent, which are highly relevant, e.g., for spatial and 
temporal interpolation of forest inventories and for modelling tasks. The method is well 
documented and the case studies along with the provided datasets make it an innovative 
publication. However, I have listed some comments below, which the authors should consider 
during revision. 
 
Detailed comments:

In the Abstract, I suggest to remove the tilde signs from 100~000~ha. 
 

○

On page 4 “For that, we first assigned to each cell a stand from the field data based on the 
similarity of their BA, Dg and BAb values.” it should already be briefly mentioned how 
“similarity” is defined, i.e. minimum distance of normalized values. 
 

○

I suggest to mention earlier (in the Abstract or Introduction), that the study follows an ABA 
approach, because readers might expect an ITD approach, if the final product are 
landscapes at tree level. 
 

○

Why were BA and Dg chosen as the structure metrics for matching? Would it not be 
important to also consider metrics that capture stem size heterogeneity / stem size 
distribution? 
 

○

On page 6, what is meant by “Point cloud metrics were directly computed from the point 
cloud or(?) from the derived CHM”? I suggest to list all lidar metrics which were used in a 
table. 
 

○

In Table 1, why are RMSE values for BAb > 1? In case they are given in percent, please add 
“(%)” to the caption. 
 

○

On page 9, the multiplication by 40000/pi and the division by 16 need to be explained. I 
suspect they convert values to the 1 ha and then back to the 25-m scale, however these 
scale factors should be explained explicitly. Also, the purpose of the rounding under “c)” 
should be better explained. 
 

○

Figure 4: What is the explanation for the seemingly better fit (higher R²) in Milicz compared ○
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to Bauges?
General comments (for a possible Outlook):

Unlike an ITC approach, the presented method does not provide precise tree positions 
within the 25-m cells. Are there ways to expand the approach to additionally generate tree 
positions? 
 

○

Would it be possible/useful to add a height correction algorithm based on ALS heights (local 
maxima), similar to the dbh adjustment algorithm?

○

Comments about the data:
The information about the coordinate reference system is missing. I was not able to 
georeference the asc files in a GIS.

○

It would be better to use unique file names, e.g. “milicz_cellID25.asc” etc. to be able to load all 
rasters in one GIS session.
 
Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes
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significant reservations, as outlined above.
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We would like to thank the reviewers for their useful comments which have helped 
significantly improve the manuscript. A special effort has been made to provide an in-
depth evaluation of the generated landscapes, to clarify the functioning of our 
downscaling algorithm and to consolidate the rational of our work. 
 
This revision has led us to optimise our code (better memory management, more 
effective parallelisation, etc.). It is now much faster, taking less than 1 hour to 
generate the 42 million trees of our three landscapes, while it used to take “less than 5 
hours” to generate the 35 million trees of the Bauges landscape. We updated the 
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introduction accordingly. 
 
Please find below our replies to your comments. 
 
The paper presents an innovative approach to generate forest stand structure information 
at landscape extent and single tree resolution based on airborne lidar data and inventory 
plots. The approach is not based on individual tree detection (ITD) from lidar, but operates 
in an area-based (ABA) fashion at 25 m x 25 m cell scale. The inventory plots serve as lookup 
tables. Structure metrics are being estimated for every cell in the landscape based on lidar 
metrics. Then, each cell is being assigned to the most similar stand from the inventory 
lookup table based on a minimum distance of a set of structure metrics. The dbh values of 
the trees are then adjusted according to a proposed algorithm, such that the final structure 
metrics match the ones predicted for the cell. Finally, the generated forest landscapes are 
being validated by calculating dominant height for each cell based on the generated stands 
and comparing them to dominant heights directly obtained from lidar. The approach has 
been applied to three different regions in France, Poland and Slovenia. 
 
The presented approach is very interesting and useful as an efficient solution to generate 
maps at single tree resolution and landscape extent, which are highly relevant, e.g., for 
spatial and temporal interpolation of forest inventories and for modelling tasks. The 
method is well documented and the case studies along with the provided datasets make it 
an innovative publication. However, I have listed some comments below, which the authors 
should consider during revision. 
 
Detailed comments:   
 
In the Abstract, I suggest to remove the tilde signs from 100~000~ha. Done as suggested   
 
On page 4 “For that, we first assigned to each cell a stand from the field data based on the 
similarity of their BA, Dg and BAb values.” it should already be briefly mentioned how 
“similarity” is defined, i.e. minimum distance of normalized values. We added a definition 
of similarity at the end of the sentence as follows: “For that, we first assigned to each 
cell a stand from the field data based on the similarity of their BA, Dg and BA b values 
(calculated as the Euclidean distance between each cell and each field plot in the 
three-dimensional space made up by the scaled values of BA, Dg and BA b).”   
 
I suggest to mention earlier (in the Abstract or Introduction), that the study follows an ABA 
approach, because readers might expect an ITD approach, if the final product are 
landscapes at tree level. Thank you for pointing that out. To make that point clear from 
the beginning, we now specify in the abstract that we use an ABA: “Tree diameter, 
height and species data were generated combining field data, vegetation maps and 
airborne laser scanning (ALS) data following an area-based approach.”  To be 
consistent throughout the article, we also replaced, in the ALS mapping section, “area-
based method” for “area-based approach.”   
 
Why were BA and Dg chosen as the structure metrics for matching? Would it not be 
important to also consider metrics that capture stem size heterogeneity / stem size 
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distribution?   BA and Dg were chosen because together they capture the development 
stage of stands. Along with BAb, they provide a synthetic yet fairly accurate picture of 
the stands and seem therefore appropriate for our matching procedure. We added 
this point in the Algorithm section as follows: “2. Second, we associated to each 25×25 
m 2 cell a field plot based on the similarity of their BA, Dg and BAb. These 3 variables 
were chosen for matching because together they provide a synthetic yet fairly 
accurate picture of the stands.” Stem size heterogeneity or distribution would 
certainly bring another information layer. However, stem-related measurements 
(number, size, etc.) obtained from ALS are not very accurate. Including such variables 
in the procedure could in fact lead to less relevant matches.   
 
On page 6, what is meant by “Point cloud metrics were directly computed from the point 
cloud or(?) from the derived CHM”? I suggest to list all lidar metrics which were used in a 
table. We removed the second part of the sentence “or from the derived CHM” for 
better clarity. As for the lidar metrics, see response to Reviewer 1’s comment on ALS 
metrics.   
 
In Table 1, why are RMSE values for BAb > 1? In case they are given in percent, please add 
“(%)” to the caption. RMSE values are indeed given in percent. We modified the table 
caption as suggested.   
 
On page 9, the multiplication by 40000/pi and the division by 16 need to be explained. I 
suspect they convert values to the 1 ha and then back to the 25-m scale, however these 
scale factors should be explained explicitly. Also, the purpose of the rounding under “c)” 
should be better explained. We added an explanation of the 40000 scale factor in a foot 
note as it appears in two different equations: “The scale factor 40000 is the product of 
two scale factors: 4 x 10000. The scale factor 4 comes from the formula linking a 
surface area S to a diameter d (S=πd42); while the scale factor 10000 accounts for the 
difference in units between the diameters (in cm) and the basal areas (in m2).” 
 
We also clarified the rounding procedure and the use of the scale factor 16 by 
modifying the “c)” paragraph as follows:   “c) Finally, we divided ω by 16 to get the 
weight of the trees in the 25×25 m2 cells (ω being a weight per ha and 16 being the 
surface area ratio between 1 ha and a 25×25 m2 cell). In doing so, the obtained tree 
weights can be either integer or decimal. However, the objective of our algorithm is to 
generate for each cell a list of individual trees with their associated diameter, height 
and species. From this perspective, decimal weights are not useful. We cannot simply 
round the tree weights to the nearest integer as this can lead to a significant over- or 
underestimation of the total number of trees in the cells. This is because the decimal 
part of the tree weights in the 25×25 m2 cells is not the result of a random draw but 
directly depends on the surface area ratio between the field plot and the cell. As an 
example: 1 tree inventoried on a 400 m2 field plot will always obtain a weight of 1.56 in 
a 25 x 25 m2 cell, and a weight of 2 after rounding to the nearest integer. In order to 
obtain integer tree weights in the 25 x 25 m2 cells while avoiding this bias, we 
performed a Bernoulli draw on the decimal part of the tree weights. As an example, a 
weight of 1.56 has a 56% chance of becoming 2, and a 44% chance of becoming 1. As 
this rounding of the weights slightly modifies the total BA of the generated stand, we 
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transformed again the trees dbh to reach the total BA provided by the ALS mapping 
using the trees BA and their integer weights ( ω int ) as follows: […]” 
 
Figure 4: What is the explanation for the seemingly better fit (higher R²) in Milicz compared 
to Bauges? The better predictions obtained at Milicz are discussed in the revised 
version of the validation section: “This higher quality of predictions can be explained 
by the fact that Milicz has the highest density of inventory plots and the least complex 
landscape, with a predominance of even-aged monospecific stands and the lowest 
species diversity among our three landscapes.”   
 
General comments (for a possible Outlook):  We provide below some answers to the 
following two general comments. However, we would rather not include in the article 
the discussed points because our responses can only be speculative at this stage and 
further analyses would be required to provide solid answers. Our article is already 
rather dense for a data note, as pointed out by reviewer1, and we would prefer not to 
lengthen it further with speculative considerations.   
 
Unlike an ITC approach, the presented method does not provide precise tree positions 
within the 25-m cells. Are there ways to expand the approach to additionally generate tree 
positions? With the ABA and the LFI (local forest inventory) field plots as look up table, 
the tree lists in each pixel is very close to existing stands from the landscape. With an 
ITC method, the dominant trees and their position and heights can be retrieved, and 
the diameter and species estimated. In case the detection parametrization is chosen 
so as to avoid comission errors, stands need to be populated with additional trees to 
compensate for the omission errors. Our proposed workflow could be adapted to 
assign detected positions to trees in the list according to their sorted heights and then 
to randomly (or based on a model) assign positions to trees with no detected position. 
  Another possibility would be to use a semi-ITC approach as proposed by 
[https://doi.org/10.1016/j.rse.2009.12.004] to assign tree groups from detected clusters 
in the LFI reference plots to similar detected clusters in the landscape. This approach 
is interesting as it:

provides the coordinates of the main detected trees○

directly provides a tree list at the lidar « detection cluster » scale, which can 
then be aggregated in larger areas (pixels, polygons)

○

The main drawback with this approach is that it requires a point density compatible 
with ITC analysis. In the southern part of the Bauges study area, the point density is 
too low to implement this approach.   
 
Would it be possible/useful to add a height correction algorithm based on ALS heights (local 
maxima), similar to the dbh adjustment algorithm? Our approach is based on the fact 
that stands basal area (BA), quadratic diameter (Dg) and density (N) are 
deterministically linked. As it stands, it seems difficult to add a height correction 
based on ALS heights to our approach. There would be one too many unknowns in the 
equation system, making it intractable.   A different approach could be developed, 
where instead of trying to reach the stands BA by modifying tree diameters, the aim 
would be to reach the stands total volume by modifying individual tree volumes. For 
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this purpose, stand volume models from ALS point cloud should be created as well as 
models predicting individual tree volume as a function of tree height and diameter. 
The latter could be constrained by ALS heights.   However, volume allometries come 
with their own uncertainty and whether the generated stands would be more realistic 
following this procedure remains to be tested. More generally, there might be a trade-
off between adjusting to the local lidar values, and making sure that we create an 
unbiased landscape with valid stands.   
 
Comments about the data:   
 
The information about the coordinate reference system is missing. I was not able to 
georeference the asc files in a GIS. This is indeed an oversight. Thank you for pointing it 
out. We specified the coordinate reference systems for each site in the presentation of 
our dataset on the zenodo website and in the Extended data section:   “We also 
provide, for each virtual landscape, a raster (in .asc format) with the cell IDs (cellID25) 
which makes data spatialisation possible. The coordinate reference systems are EPSG: 
2154 for the Bauges, EPSG: 2180 for Milicz, and EPSG: 3912 for Sneznik.”   We also added 
the coordinate reference systems in the R script provided alongside our dataset on the 
zenodo website. We took this opportunity to replace the raster package, which may no 
longer be fully maintained in the near future, with the terra package.   
 
It would be better to use unique file names, e.g. “milicz_cellID25.asc” etc. to be able to load 
all rasters in one GIS session. Modified as suggested  
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Overall assessment 
 
The article by Aussenac et al. describes a statistical procedure to generate a large data set of 
individual trees from airborne laser scanning (ALS) and inventory data. The variables include trunk 
diameter, tree height and species identity, and are provided across three European landscapes. 
The result is an impressive number of simulated/potential trees, which is a useful data set in forest 
ecology. As applications, the authors mention studies of scale and (more vaguely) forest 
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management/ecosystem prediction, but one could easily think of a number of other concrete 
applications, such as input/validation of individual-based models of forest dynamics, or 
comparisons with automatically mapped tree crowns from airborne imagery, e.g. as in Weinstein 
et al. 20211, Ball et al. 20222, or spaceborne imagery, as in Tucker, Brandt, Hiernaux, et al. 20233. 
 
I also found the paper generally well-written and with a well-thought through methodology for 
the mapping. The authors carefully tune their models to obtain optimal performance at every step 
and clearly have spent considerable amounts of time and effort to improve the prediction of stand 
attributes. In particular, I found the idea of matching predicted basal area to real stands and then 
filling in/removing trees until the basal area matches intriguing. This bears similarities with model-
based estimations of forest attributes/tree attributes from lidar (Hurtt et al. 20044, Taubert et al. 
20155, Rödig et al. 20176, Fischer et al. 20207) and shares some of these models’ advantages (e.g. 
more fine-scale distribution of biomass, no shrinking to the mean). 
 
However, like these models, the authors' method also involves a lot of complex modelling steps, 
and it is in the validation step of the procedure that I see deficiencies that need to be addressed. I 
see two main issues: 
 
a) the robustness of the models to extrapolation issues and spatial autocorrelation is not 
evaluated, so it is hard to assess how good the models are outside their calibration range and how 
much we can trust the predictions across the landscape. 
 
b) two of the key attributes of the data set (tree diameter and species identity) are not validated at 
all, despite featuring prominently in the title and in the results section (Figure 5). This should be a 
priority in a revised version.  
 
In the following I will provide a few comments on the article following roughly the overall 
structure, and give suggestions on how to improve the model validation. 
 
Justification for the data set 
 
I see the value of a fine-grain large-scale data set, and having such a data set is indeed rare, but it 
would be helpful to mention concrete applications. At the moment, the only justification given is 
the sentence: “Yet, this type of data could help address the scaling issues in ecology and could 
prove useful for testing forest management strategies and accurately predicting the dynamics of 
ecosystem services”. This is the sentence from the abstract, but the same point is made at the end 
of the first paragraph. Could the authors rephrase and add literature references in the main text? 
The vast majority of data sets can be useful for the testing of forest management strategies or 
predicting dynamics of ecosystem services. What is unique to your data set? Why do we need 
detailed, tree-based data at large scales? 
 
Model for mapping of tree attributes 
 
ALS metrics: which metrics precisely did you use? 
 
Point cloud properties: Could the authors add information on/discussion of the sensitivity of their 
point metrics to scanner acquisitions? Lidar scans often exhibit considerable variation in pulse 
density even within a single acquisition (e.g. scan line centre vs. overlapping scan lines). What is 
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each scan’s standard deviation of point/pulse density? Could you include that as a variable in 
stratification? Could this improve your models (e.g. stratify by pulse densities between 5 and 10, 
10 and 15, 15 and 20, etc., or even smaller step sizes)? 
 
Descriptions: I appreciate that the paper is already quite dense, but quite a few steps in the 
methods section remain unclear to me, particularly in step 3. E.g., in the matching of BA and BAb, 
why do you need a correction value alpha? Can you explain the weighting better and why it is 
divided by 16? Maybe this is more exhaustively explained in the Extended Data, but this needs to 
be clear from the main text already.   
 
Model validation 
 
As pointed out above, this is the point of the paper that needs to be more comprehensive. At the 
moment, the authors validate their approach by comparing dominant height, as obtained from 
lidar (mean height of six highest local maxima), to dominant height of the simulated stands, 
obtained via local allometries (mean height of six highest trees). It is definitely useful to do this 
comparison and good to see that the results are broadly consistent, so I would keep it in the 
paper. However, there are issues with circularity, as the authors first use a number of lidar metrics 
that involve height / basal area-to-height relationships to create the maps and then compare the 
inferred results (+ independently derived height allometries) again to lidar-derived height metrics. 
Furthermore, height of the dominant trees may be related to basal area, but it cannot be used to 
evaluate basal area/tree diameter predictions as such, nor does it validate predicted species 
composition - both are key features of the data set. 
 
Given that the author’s simulation approach seems fast (only ca. 5 hours on a modern laptop, 
amazing!), another approach suggests itself, namely within-site cross-validation, ideally in the 
form proposed by Ploton et al. 20208. Since a spatially explicit leave-one-out cross-validation, as 
suggested in Ploton et al. 20208, may be too computationally intensive, I would recommend the 
simpler approach proposed in the same paper: for each of the European landscapes, I would 
recommend the authors to split their field data sets into, e.g., 5 spatially aggregated folds (i.e., 
spatial clusters), and run their model 5 times, each times using 4 folds to train the model and 1 
separate geographic fold of plots to validate the model. In this 1 fold, the authors could directly 
compare predictions of tree values to actual data according to some simple standard metrics (total 
basal area, mean quadratic diameter, 95th percentile of diameter, percentage of species xyz, 95th 
percentile of height, mean height, dominant height). For comparison and to broadly assess 
whether spatial autocorrelation makes a difference, the authors could do the same validation 
procedure also with 5 folds containing plots randomly distributed in space (so no spatial clusters). 
This would only take 25 hours for each validation and give a good impression of how easy it is to 
accurately map individual trees and species at landscape scale and how realistic the produced 
inventories are. It would likely also increase interest in the data set, as it would give potential 
users higher confidence in the results. 
 
Since the paper puts its focus on the value of individual trees, there should, in my opinion, also be 
one result/validation graph that shows individual trees in some way. It could be, for example, a 
zoomed-in image of lidar-derived canopy height models + a predicted distribution of trees. If the 
5-fold cross-validation is carried out, as above, the authors could simply show sample lidar canopy 
height models on top of plots, and the diameter distributions for the simulated and the inferred 
plots. 
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Overall, it would also be interesting to readers to understand in how far the predicted species 
distributions reflect current expert knowledge, but this is not a necessity. 
 
Data set 
 
I had a quick look at the data set. One variable I did not understand was the variable “n” or 
“number of trees”. Could you explain it a bit better? Does this mean that the specific diameter 
exists n times in the specific data set? If this is true (and only in this case), I seem to get some cells 
(very few) of 25m by 25m (e.g. cellID25 = 2439821 in the “Bauges” data set) that contain more than 
500 trees with dbh >= 9-10cm per 625m2 and a total basal area >= 6m2 (which would yield roughly 
100m2 per hectare, at densities of 8000 trees). These are outliers, and every model is allowed to 
have outliers (and nature is full of them too), but it would be interesting to get your take on that in 
terms of realism/stand type. It could also be part of the validation to assess the edges of the basal 
area distribution or to give readers a hint what to make of the most extreme values. 
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Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: My areas of expertise are in lidar processing, individual-based modelling, as 
well as the creation of simulated forest stands (cf. my 2020 paper on this topic, mentioned in the 
review), which is very close to what the authors have been working on.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 24 Nov 2023
Raphaël Aussenac 

We would like to thank the reviewers for their useful comments which have helped 
significantly improve the manuscript. A special effort has been made to provide an in-
depth evaluation of the generated landscapes, to clarify the functioning of our 
downscaling algorithm and to consolidate the rational of our work. 
 
This revision has led us to optimise our code (better memory management, more 
effective parallelisation, etc.). It is now much faster, taking less than 1 hour to 
generate the 42 million trees of our three landscapes, while it used to take “less than 5 
hours” to generate the 35 million trees of the Bauges landscape. We updated the 
introduction accordingly. 
 
Please find below our replies to your comments. 
 
The article by Aussenac et al. describes a statistical procedure to generate a large data set of 
individual trees from airborne laser scanning (ALS) and inventory data. The variables include 
trunk diameter, tree height and species identity, and are provided across three European 
landscapes. The result is an impressive number of simulated/potential trees, which is a 
useful data set in forest ecology. As applications, the authors mention studies of scale and 
(more vaguely) forest management/ecosystem prediction, but one could easily think of a 
number of other concrete applications, such as input/validation of individual-based models 
of forest dynamics, or comparisons with automatically mapped tree crowns from airborne 
imagery, e.g. as in Weinstein et al. 20211, Ball et al. 20222, or spaceborne imagery, as in 
Tucker, Brandt, Hiernaux, et al. 20233. 
 
I also found the paper generally well-written and with a well-thought through methodology 
for the mapping. The authors carefully tune their models to obtain optimal performance at 
every step and clearly have spent considerable amounts of time and effort to improve the 
prediction of stand attributes. In particular, I found the idea of matching predicted basal 
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area to real stands and then filling in/removing trees until the basal area matches 
intriguing. This bears similarities with model-based estimations of forest attributes/tree 
attributes from lidar (Hurtt et al. 20044, Taubert et al. 20155, Rödig et al. 20176, Fischer et al. 
20207) and shares some of these models’ advantages (e.g. more fine-scale distribution of 
biomass, no shrinking to the mean). 
 
However, like these models, the authors' method also involves a lot of complex modelling 
steps, and it is in the validation step of the procedure that I see deficiencies that need to be 
addressed. I see two main issues: 
 
a) the robustness of the models to extrapolation issues and spatial autocorrelation is not 
evaluated, so it is hard to assess how good the models are outside their calibration range 
and how much we can trust the predictions across the landscape.The leave-one-out cross 
validation (LOOCV) performed on our entire workflow presented in this revised 
version of the article gives an indication on the robustness of our approach (see 
responses to the comments on model validation).  
 
Regarding lidar modelling, cross-validation (such as used in this study) remains a 
common method for accuracy assessment of landscape predictions, although some 
limitations have been highlighted in the literature. Accuracy assessment remains an 
important research topic, with no consensus on the best practices, as field data are 
usually scarce and modeling approaches complex (see paragraph 2.5 of the review in 
https://doi.org/10.1016/j.rse.2021.112477).   
 
We acknowledge that spatial autocorrelation is necessarily present both in the lidar 
acquisition and in the forest structure. Hence spatial autocorrelation can be expected 
in the lidar model predictions and errors. Unfortunately, calibration plots were 
sampled on a regularly spaced grid in each study area which does not make it possible 
to quantify spatial autocorrelation at distances smaller than the grid step. 
 
b) two of the key attributes of the data set (tree diameter and species identity) are not 
validated at all, despite featuring prominently in the title and in the results section (Figure 
5). This should be a priority in a revised version. In this revised version, we provide an in-
depth evaluation of the generated landscapes (see responses to the specific 
comments below).   We changed the abstract accordingly: “We carried out an in-depth 
evaluation of our workflow including, among other analyses, a leave-one-out cross 
validation. Overall, the landscapes we generated are in good agreement with the 
landscapes they aim to reproduce. In the most favourable conditions, the root mean 
square error (RMSE) of stand basal area (BA) and mean quadratic diameter (Dg) 
predictions were respectively 5.4 m2 and 3.9 cm, and the generated main species 
corresponded to the observed main species in 76.2% of cases.”   
 
We also modified the paragraph presenting the evaluation in the General Approach 
section: “We evaluated the overall reliability of our workflow, i.e. its ability to produce 
virtual landscapes as close as possible to the real ones (see Dataset validation). In 
particular we carried out a leave-one-out cross validation (LOOCV) on our entire 
workflow. This analysis consisted in: • comparing the observed and predicted values of 
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BA, Dg, Bab and the quantiles of tree height and diameter; • comparing the observed 
and predicted values of species abundance at the landscape level; • calculating the 
frequency at which the most abundant species was correctly predicted at the cell 
level; As a complement, we also compared the stands dominant heights measured by 
ALS (HdomALS) to those calculated from the trees we generated (HdomT). Finally, we 
compared the spatial distribution of species to current expert knowledge.” 
 
In the following I will provide a few comments on the article following roughly the overall 
structure, and give suggestions on how to improve the model validation. 
 
Justification for the data set 
 
I see the value of a fine-grain large-scale data set, and having such a data set is indeed rare, 
but it would be helpful to mention concrete applications. At the moment, the only 
justification given is the sentence: “Yet, this type of data could help address the scaling 
issues in ecology and could prove useful for testing forest management strategies and 
accurately predicting the dynamics of ecosystem services”. This is the sentence from the 
abstract, but the same point is made at the end of the first paragraph. Could the authors 
rephrase and add literature references in the main text? The vast majority of data sets can 
be useful for the testing of forest management strategies or predicting dynamics of 
ecosystem services. What is unique to your data set? Why do we need detailed, tree-based 
data at large scales? As suggested, we rephrased this part and added some references:  
“Yet, fine-grain descriptions of large forest areas could help address the pervasive 
scaling issues in forest ecology, modelling and management. In practice, such data 
could help better understand at which spatial scale ecological processes emerge in 
forest ecosystems [Craven et al., 2020; With, 2019]. They could also be extremely 
valuable to compare forest dynamics models operating at different scales (organ, 
tree, stand, landscapes) and evaluate their validity across scales [Papaik et al., 2010]. 
They could ultimately help develop and test management strategies at different 
spatial scales [Seidl et al., 2013].”   Added references: Craven, Dylan, et al. "A cross‐
scale assessment of productivity–diversity relationships." Global Ecology and 
Biogeography 29.11 (2020): 1940-1955. Papaik, Michael J., et al. "Forest processes from 
stands to landscapes: exploring model forecast uncertainties using cross-scale model 
comparison." Canadian journal of forest research 40.12 (2010): 2345-2359. Seidl, Rupert, 
et al. "deepl" European Journal of Forest Research 132 (2013): 653-666. 
 
Model for mapping of tree attributes 
 
ALS metrics: which metrics precisely did you use? Candidate metrics for selection are 
those computed with the aba_metrics and std_tree_metrics functions from the 
lidaRtRee R package, as stated in section ALS mapping. Selected metrics result from 
an automated procedure applied separately on each study area, forest parameter, 
stratum (in case a specific model is calibrated for each stratum). The following 
sentence was added to the Stratification”subsection of the ALS mapping section: “The 
metrics selected in the 32 models for BA and Dg (which include at most six 
independent variables) are presented in Table S1 of the Extended data.”   
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The seven stratum-specific logistic regression models obtained for BAb with stepaAIC 
variable selection include 20 to 30 metrics and are not presented. 
 
Point cloud properties: Could the authors add information on/discussion of the sensitivity of 
their point metrics to scanner acquisitions? Visual inspection of metrics maps was 
performed to exclude metrics exhibiting spatial patterns which might be linked to 
acquisition. We hypothesise that the selected metrics and models based on them are 
robust to variations in acquisition settings, as a systematic sampling of field plots 
should ensure that the heterogeneities of lidar acquisition and forest structure on the 
whole landscape are represented in the data. In the case of Milicz, several metrics 
seemed quite sensitive to points acquired with a large scan angle. Scan angle values 
above 21 degrees were excluded in order to achieve a trade-off between metrics 
robustness, point density and comprehensive coverage of the study area. In the case 
of Sneznik, some intensity-related metrics where also found to be influenced by 
acquisition pattern and where thus removed from the analysis ("imean", "imax", "isd", 
"iskew", "ikurt"). The following sentences were added to the manuscript: “Each metric 
map was visually checked for spatial patterns potentially linked to acquisition 
patterns, which eventually led to: - discard some intensity-related metrics in Sneznik 
study area; - remove ALS points acquired with a scan angle larger than 21 degrees in 
Milicz study area, in order to achieve a trade-off between metrics robustness, point 
density and comprehensive coverage of the study area.”   
 
Lidar scans often exhibit considerable variation in pulse density even within a single 
acquisition (e.g. scan line centre vs. overlapping scan lines). What is each scan’s standard 
deviation of point/pulse density? The mean +- sd point density (/m2) for each study site, 
computed at 25 m resolution for pixels with at least 1 point above 2 m height is : 
Bauges (southern part) : 5.9 +- 3.1 Bauges (northern part) : 27.6 +- 13.3 Milicz : 16.5 +- 
7.1 Sneznik : 18.4 +- 10.1 Those values are now indicated in the article. Mean values 
slightly differ from the previous ones which were computed for pixels of the whole 
landscapes.   
 
Could you include that as a variable in stratification? Could this improve your models (e.g. 
stratify by pulse densities between 5 and 10, 10 and 15, 15 and 20, etc., or even smaller step 
sizes)? In order to obtain robust models and valid inferences, 
[https://doi.org/10.5589/m12-052] suggests to use at least 55 observations in 
calibration, which limits the number of strata that the whole dataset can be 
partitioned in. We hypothesised that a stratification based on forest structure defined 
by ancillary data would help in reducing the prediction error. For the Bauges study 
area where ALS data originate from two different ALS campaigns, campaign was also 
tested as stratification criterion. Several stratifications where tested, and the one 
retained for the final map production is the one with the best RMSE improvement in 
cross validation compared to the single model. Parcimony was also considered when 
selecting the model. We have not tested a stratification based on pulse densities, as 
most computed metrics are a priori robust to density and as we have checked that 
metrics maps did not display any pattern due to acquisition conditions, such as 
density variations. 
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Descriptions: I appreciate that the paper is already quite dense, but quite a few steps in the 
methods section remain unclear to me, particularly in step 3. E.g., in the matching of BA and 
BAb, why do you need a correction value alpha? Can you explain the weighting better and 
why it is divided by 16? Maybe this is more exhaustively explained in the Extended Data, but 
this needs to be clear from the main text already. We have gone into more detail on 
points 3a and 3b. They now read as follows:

“(a) For this, we first calculated α, a multiplier correction coefficient to be 
applied to all tree diameters of a field plot. The idea is to increase or 
decrease tree diameters so that their Dg reaches the Dg value of the cell 
to which they are associated. α is given by:”

○

“(b) Thereafter, we calculated the weight (ω in n.ha-1) of these trees with 
corrected diameters, so that the generated stand matches the BA and BA 
b values of the cell to which it is associated. ω is given by:”

○

○

As for the weighting, it is now explained (in a foot note and in point 3c), but see 
answer to Reviewer 2’s comment on scale factors.   
 
Model validation 
 
As pointed out above, this is the point of the paper that needs to be more comprehensive. 
At the moment, the authors validate their approach by comparing dominant height, as 
obtained from lidar (mean height of six highest local maxima), to dominant height of the 
simulated stands, obtained via local allometries (mean height of six highest trees). It is 
definitely useful to do this comparison and good to see that the results are broadly 
consistent, so I would keep it in the paper. However, there are issues with circularity, as the 
authors first use a number of lidar metrics that involve height / basal area-to-height 
relationships to create the maps and then compare the inferred results (+ independently 
derived height allometries) again to lidar-derived height metrics. Furthermore, height of the 
dominant trees may be related to basal area, but it cannot be used to evaluate basal 
area/tree diameter predictions as such, nor does it validate predicted species composition - 
both are key features of the data set. We agree with the reviewer, the comparison of 
Hdom only partially validates our virtual landscapes. The revised version of the article 
includes a much more comprehensive evaluation of the virtual landscapes.   
 
We added this point on circularity in the section presenting the comparation of Hdom 
as follows: “There is some circularity in comparing Hdom ALS and Hdom T as models 
predicting BA, Dg and BA b from ALS point clouds may include ALS derived height 
metrics or more generally metrics which are correlated with the dominant height 
estimated from ALS point clouds. The results of this comparison must therefore be 
interpreted with caution.” 
 
Given that the author’s simulation approach seems fast (only ca. 5 hours on a modern 
laptop, amazing!), another approach suggests itself, namely within-site cross-validation, 
ideally in the form proposed by Ploton et al. 20208. Since a spatially explicit leave-one-out 
cross-validation, as suggested in Ploton et al. 20208, may be too computationally intensive, I 
would recommend the simpler approach proposed in the same paper: for each of the 
European landscapes, I would recommend the authors to split their field data sets into, e.g., 
5 spatially aggregated folds (i.e., spatial clusters), and run their model 5 times, each times 
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using 4 folds to train the model and 1 separate geographic fold of plots to validate the 
model. In this 1 fold, the authors could directly compare predictions of tree values to actual 
data according to some simple standard metrics (total basal area, mean quadratic diameter, 
95th percentile of diameter, percentage of species xyz, 95th percentile of height, mean 
height, dominant height). For comparison and to broadly assess whether spatial 
autocorrelation makes a difference, the authors could do the same validation procedure 
also with 5 folds containing plots randomly distributed in space (so no spatial clusters). This 
would only take 25 hours for each validation and give a good impression of how easy it is to 
accurately map individual trees and species at landscape scale and how realistic the 
produced inventories are. It would likely also increase interest in the data set, as it would 
give potential users higher confidence in the results. We carried out a leave-one-out 
cross-validation (LOOCV). This validation is actually not too computationally intensive 
because it has to run only on a few hundred field plots and not on the whole 
landscape. We also preferred this LOOCV to a k-fold cross-validation because the latter 
would require to check that sample size in each stratum would remain relevant in 
each calibration fold, while performing repetitions of the k-fold samples to assess the 
reliability of the statistics. Besides we are not certain that spatially correlated folds 
will help in understanding the robustness of the map. One can expect a model 
calibrated on a spatially-selected subset to perform poorly on another spatial subset 
as the predicted area may be different from the calibration area both for the lidar and 
forest. Spatial k-folds do not allow to assess the local spatial variations of performance 
of a model calibrated with systematic samples (which is what our models are) in a 
better way than what a LOOCV does. In both cases, spatial correlation at distances 
smaller than the grid step, which is interesting e.g. for small area estimations, is 
impossible to evaluate.   
 
We added the following paragraph to the method subsection of the validation section: 
  “We carried out a leave-one-out cross validation (LOOCV) to evaluate the realism of 
the virtual landscapes we generated. This consisted in excluding a field plot from our 
entire workflow and comparing the predicted values obtained to the observed values. 
This operation was repeated within each landscape for all field plots. We calculated 
the root mean square error (RMSE) of the predictions of BA, Dg, Bab and the quantiles 
of tree height and diameter. As part of the LOOCV, we also compared the observed 
and predicted values of species abundance at the landscape level (in BA) and 
calculated the frequency at which the most abundant species was correctly predicted 
at the cell level.”   
 
We presented the results of this new evaluation procedure in the results subsection of 
the validation section: “Overall, the virtual landscapes are in good agreement with the 
landscapes they aim to reproduce. The generated stand structures and compositions 
are consistent with the observations and make it possible to distinguish stands at 
different stages of development and with different compositions.   
 
At Milicz, predictions are the most accurate. The RMSE of all evaluated variables are 
the lowest in comparison with the other landscapes (Table T1, Figure 4). Species 
abundance at the landscape level is also better reproduced (Figure F1). Finally, in 
76.2% of cases, the generated main species corresponds to the observed main species. 
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This higher quality of predictions can be explained by the fact that Milicz has the 
highest density of inventory plots and the least complex landscape, with a 
predominance of even-aged monospecific stands and the lowest species diversity 
among our three landscapes.   
 
At the Bauges and Sneznik, the RMSE of the evaluated variables are comparable (Table 
T1., Figure 4). In contrast, predictions of species abundance at the landscape level are 
more accurate at Sneznik (Figure F1). The same applies to the compositions predicted 
at the plot level: the predicted main species corresponds to the observed main species 
in 63.1% of cases at Sneznik and in 37.2% of cases at the Bauges. However, two 
datasets were used in the Bauges. In the local forest inventory (LFI) not all trees were 
identified at the species level and trees with a dbh between 7.5 and 17.5 cm were not 
measured but counted by diameter classes and grouped in two categories (coniferous 
and broadleaf). This led us to use a local subset of the NFI from which composition is 
derived in our downscaling algorithm. The poorer composition predictions in the 
Bauges might therefore partly be an artefact arising from the evaluation itself, as the 
LFI may not be suitable to serve as a field reference.   
 
The fact that the RMSE values obtained from the LOOCV carried out on our entire 
workflow are almost similar to the RMSE values obtained from the LOOCV of ALS 
models shows that the downscaling algorithm hardly adds any error (Table 1, Table 
T1). The main way of increasing the realism of our virtual landscapes would therefore 
be to improve the ALS models.”   
 
Finally, we added the RMSE values associated to the three scatter plots of our Figure 4 
for greater consistency in the document and modified the paragraph where this figure 
is presented: “With R 2 values ranging from 0.61 to 0.83 (Figure 4) and RMSE values 
below 5 m, Hdom ALS and Hdom T are consistent with one another. This provides a 
general validation of our workflow. As discussed above, the better predictions 
obtained at Milicz might steam from the higher density of inventory plots and the 
lower complexity of the landscape. At Sneznik, Hdom T tends to be overestimated as 
Hdom ALS decreases. This divergence could be due to the ice storm that occurred 
between the field inventory and the ALS acquisition and that might have biased the 
ALS models.” 
 
Since the paper puts its focus on the value of individual trees, there should, in my opinion, 
also be one result/validation graph that shows individual trees in some way. It could be, for 
example, a zoomed-in image of lidar-derived canopy height models + a predicted 
distribution of trees. If the 5-fold cross-validation is carried out, as above, the authors could 
simply show sample lidar canopy height models on top of plots, and the diameter 
distributions for the simulated and the inferred plots. Here, we do not exactly agree with 
the reviewer. We do not generate individual trees, per se, but rather a list of trees for 
each cell, and those generated trees are not spatialised within the cells. For such a 
purpose different methods and denser ALS data would be required. Also, it is not clear 
to us how the comparison of canopy height models and diameter distributions would 
constitute an evaluation of our algorithm. The comparison of diameter and height 
quantiles carried out in response to the previous comment seems to us a better way 
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to evaluate the quality of the generated tree lists. 
 
Overall, it would also be interesting to readers to understand in how far the predicted 
species distributions reflect current expert knowledge, but this is not a necessity. In the 
method subsection of the validation section, we added: “Finally, we examined the 
spatial distribution of species at each site and compared it to current expert 
knowledge.”   
 
And in the results subsection of the validation section, we added: “Overall, species 
spatial distribution in the virtual landscapes is consistent with field observations. In 
the Bauges, pure and mixed stands of fir and spruce are more abundant at higher 
elevation while mixed stands of broadleaf species are found at lower elevation. At 
Milicz, pure stands of Scots pine are found at lower elevation while broadleaf species 
and mixed stands appear at higher elevation. Finally, at Sneznik, pure beech stands 
are found at higher elevation while fir is found at lower elevation in pure or mixed 
stands (a specific feature of the site).”   
 
Data set 
 
I had a quick look at the data set. One variable I did not understand was the variable “n” or 
“number of trees”. Could you explain it a bit better? Does this mean that the specific 
diameter exists n times in the specific data set? If this is true (and only in this case), I seem 
to get some cells (very few) of 25m by 25m (e.g. cellID25 = 2439821 in the “Bauges” data set) 
that contain more than 500 trees with dbh >= 9-10cm per 625m2 and a total basal area >= 
6m2 (which would yield roughly 100m2 per hectare, at densities of 8000 trees). These are 
outliers, and every model is allowed to have outliers (and nature is full of them too), but it 
would be interesting to get your take on that in terms of realism/stand type. It could also be 
part of the validation to assess the edges of the basal area distribution or to give readers a 
hint what to make of the most extreme values. The variable “n” indeed means that a 
specific diameter exists n times. We clarified that in the presentation of our dataset 
on the zenodo website and in the Extended data section as follows: “- n: number of 
trees. n is an integer >= 1, meaning that a specific set of species “sp”, diameter “dbh” 
and height “h” can be present multiple times in a cell.”   
 
The extreme values you identified are indeed outliers. They are a direct consequence 
of the uncertainties associated with the models. The realism of the stands associated 
with these extreme values is, of course, open to question. However, it seems difficult 
to define thresholds separating realistic from unrealistic stands as extreme values can 
be locally observed. We believe it is up to the users of the dataset to decide whether or 
not to use all the stands depending on their objectives. We drew the reader’s 
attention to the outliers at the end of the validation section as follows: “Our 
procedure is not free of flaws and some outliers are present in the generated data (i.e. 
stands with extreme values of BA, Dg, tree height or density). These outliers are a 
direct consequence of the uncertainties associated with the models we used. The 
realism of the stands associated with these extreme values is open to question. 
However, separating realistic from unrealistic stands seems difficult as extreme 
values can be locally observed. It is therefore up to the users of the dataset to decide 
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whether or not to consider these stands depending on their objectives.”   
 
Finally, it is always tricky to assess the relevance of extreme values as the field data 
itself does not allow to estimate them accurately. We believe such an analysis could 
hardly help in evaluating our approach and we would rather not include it as part of 
the validation.  
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