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Abstract
Large-scale forest restoration is vital for delivering a broad array of ecosystem services benefits to society. However, it is 
often perceived as an economically noncompetitive land use choice. Integrating economic opportunities into restoration 
aligns socioeconomic and environmental goals, reducing conflicts between forest production and conservation-oriented 
management decisions. Supply chains focusing on high-value goods can enhance the reach of forest restoration efforts and 
unite ecological and economic benefits in a multifunctional manner. The bioeconomy has emerged as a potential but critical 
driver for attracting investments in restoration. We outline the challenges and solutions to reconcile forest restoration and 
bioeconomy, specifically about (i) native timber production, (ii) non-timber forest products, (iii) biotechnological products, 
and (iv) intangible ecosystem services. This requires collaborative and multidisciplinary efforts to improve investment in 
large-scale projects. The intricacies of these issues intersect with research development, market dynamics, legal frame-
works, and regulatory paradigms, underscoring the necessity for nuanced and tailored public policy interventions. These 
integrated approaches should enable tropical countries to lead the global forest-based economy and usher in a new era of 
forest restoration.
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Introduction: a bioeconomic perspective 
on tropical forest restoration

Recent history has revealed humanity's transformative 
power over the biosphere, reaching unprecedented levels of 
environmental degradation, biodiversity loss, and climate 
change, leading to ongoing global change emergencies. 
However, our transformative power may be redeployed to 
face the most urgent problems and to mitigate and adapt 
to the impacts of global change. In particular, the current 
global momentum toward forest restoration can effectively 
contribute to the recovery of ecosystem services for human 
well-being (Hua et al. 2022), extending the benefits to all 
beings. However, the outcomes concerning equity and 
livelihood that result from restoration programs have fre-
quently been disregarded (Löfqvist et al. 2023). Moreover, 
the lack of financing has been identified as a major barrier 
to the recent international pledges toward forest restoration 
(Löfqvist and Ghazoul 2019; Löfqvist et al. 2023).

Making forest restoration economically viable and 
profitable for local people could help improve its equity 
and effectiveness while streamlining its expansion to meet 
global targets (Brancalion et al. 2012). However, despite 
the discussion surrounding the monetary value of biodi-
versity for goods and services provisioning, forest resto-
ration is still perceived as an economically uncompetitive 
land use (Fagan et al. 2020). In this context, the bioec-
onomy concept (Bugge et al. 2016), which has recently 
been gaining much prominence, presents a compelling 
avenue for combining forest restoration endeavors with 
viable economic alternatives stemming from biodiversity-
derived products and services (Gasparinetti et al. 2022).

Integrating tropical forest restoration and bioeconomy 
requires building the science and technical bases to use 
the vast diversity of tropical native species. Until today, 
the industrial use of a few species, such as the Eucalyptus 
genus, exotic outside Australia and a small portion of Asia, 
or Pinus species, has attracted major investments world-
wide. Industrial monoculture plantations are among the 
most popular alternatives to obtain economic profit from 
reforestation investments, even though they can result in 
biodiversity loss (Pörtner et al. 2021) and the reduction of 
carbon storage over time (Hua et al. 2022), and contribute 
to exotic tree invasions (IPBES 2023).

Combining the high technology industry, political 
stewardship, indigenous peoples, local communities, civil 
society, and academia is essential to building innovative 
bioeconomy-based forest restoration models. This per-
spective holds promise for a forest-based economy, sur-
passing conventional rural activities in job creation and 
income generation through the establishment and main-
tenance of forest restoration (Brancalion et al. 2022). In 

these models, effective societal benefits must be ensured, 
including human well-being and the positive impacts of 
biodiversity maintenance on multiple ecosystem services 
provisioning (Cohen-Shacham et al. 2016). We propose 
that this bioeconomic perspective on forest restoration 
is an efficient pathway to make the adaptive movement 
(IPCC 2022) to reverse the current degradation trend and 
guarantee a healthy future for our planet. This vision has 
been promoted by pioneer scientific contributions a decade 
ago (Brancalion et al. 2012). Now, we assess current bar-
riers and solutions to reconcile forest restoration and bio-
economy by presenting examples from forest restoration 
and conservation hotspot areas in the Amazon rainforest 
and the Brazilian Atlantic Forest.

The market for products derived from standing native 
forest species, such as timber, nuts, resins, vegetable but-
ter, oils, and molecules, has been recognized as an impor-
tant opportunity to benefit local communities and national 
economies (Löfqvist and Ghazoul 2019; Antunes et al. 
2021; Carvalho Ribeiro et al. 2024; Clement et al. 2024) 
since the beginning of the discussions about sustainable 
forest management to curb deforestation in developing 
countries, which emerged from the Earth Summit in 1992 
(Sist et al. 2021; IPCC 2022). Additionally, intangible eco-
system services are essential for life. While some services, 
such as carbon stock and water and climate regulation, are 
already being priced, other services, such as the spiritual, 
cultural, identity and capabilities-related, ethnic and social 
benefits of forests, are poorly understood by capitalist soci-
eties but extremely important for indigenous peoples and 
local communities (Coelho-Junior et al. 2021; Normyle 
et al. 2023).

The opportunity to enhance the value of standing forests 
has increased as forest restoration has been incorporated into 
the forest conservation agenda. Additionally, the for-profit 
private sector's commitment to sustainability and engage-
ment in green supply chain initiatives has expanded, par-
ticularly among companies seeking competitive advantages 
in the market (Schimetka et al. 2024). However, to move 
towards practical application and successfully implement 
bioeconomic forest restoration, it is necessary to identify 
potential opportunities and determine how to execute sus-
tainable ecosystem use.

It is imperative to make significant progress in enhancing 
practical knowledge regarding the establishment of viable 
value chains, surpassing the prevailing emphasis on theo-
retical potential alone and integrating the multiple uses and 
benefits of the whole array of ecosystem services produced 
by forests while developing bioproduct innovations (Maximo 
et al. 2022; Pascual et al. 2023) and avoiding forest cover 
homogenization (Clement et al. 2024). This implies tak-
ing risks and challenges toward a multi-faceted interdisci-
plinary effort to structure new and innovative value chains 
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and to promote new pathways to aggregate value to forest 
restoration.

Barriers and solutions to reconcile forest 
restoration and bioeconomy

Native timber production

The production of native species timber is a critical out-
come of forest restoration since recent results suggest that 
sustainable management of mature tropical forests will not 
be able to supply the timber demand and is hardly compat-
ible with economically viable forestry practices (Piponiot 
et al. 2019; Sist et al. 2021). Promoting the use of native 
species for timber production in restored tropical forests is 
critical to curbing deforestation and enhancing technical/
technological capability. This involves fostering the entire 
value chain of forest restoration, from seed collection and 
species selection to silvicultural practices and encouraging 
the industry to utilize native species. Focusing on the native 
species under proper management schemes can yield better 
economic returns than low-productivity livestock on low-
quality lands (Hua et al. 2022).

However, the lack of knowledge of native tree species 
management and market potential in biomes where tree spe-
cies exhibit very contrasting growth dynamics and multiple 
and thin boles has so far hampered the integration of clear 
silvicultural objectives into most ecological restoration pro-
jects (Krainovic et al. 2023a, b). The scientific debate about 
the impacts and opportunities of forest restoration in mitigat-
ing climate change indicates that major wood demand cent-
ers can reduce imports from ecologically sensitive regions 
like the Amazon by gradually replacing these sources with 
productive restoration models, thereby easing pressure on 
these ecosystems (Metzger et al. 2024). To succeed in tim-
ber production through forest restoration, it is essential to 
develop technical criteria, embrace scientific advancements 
(e.g., timber improvement and processing technology), 
and implement silvicultural treatments for native species 
to enhance their productivity and attractiveness (Krainovic 
et al. 2023a, b).

In contrast to species domesticated in conventional agri-
culture, which benefit from high-tech equipment and consol-
idated knowledge that satisfy technical management criteria 
and market needs (Shackleton and Pandey 2014), tropical 
forest restoration projects often rely on wild native tree spe-
cies (i.e., which were never bred in genetic improvement 
programs) exhibiting very high intra-species variability in 
their morphology and growth potential. This results in high 
uncertainty in the production of forest products and contrib-
utes to the low attractiveness of productive forest restoration, 
given the challenges in making precise projections about 

the success of a forest restoration-based business. Develop-
ing large-scale breeding programs of native tree species for 
wood production is an essential target for expanding produc-
tive forest restoration.

However, successful examples of joint tropical forest 
restoration and timber production have been reported. Gua-
nandi wood (Calophyllum brasiliense Cambess.) has gained 
popularity in the market and finds successful use in refor-
estation of areas historically used as pastures for cattle and 
intensive agriculture, such as soybeans (Pereira et al. 2021). 
Other native species with potential timber production have 
been used in forest restoration in the Brazilian northeast and 
southeast, such as jequitibá-rosa (Cariniana legalis (Mart.) 
Kuntze) and araribá (Centrolobium tomentosum Guillem. 
ex Benth), among others. Agroforestry systems also offer 
economic benefits when considering investments in timber 
resource management. Selected Amazonian species like 
Brazil nut (Bertholletia excelsa Bonpl.), andiroba (Carapa 
guianensis Aubl.), paricá (Schizolobium parahyba amazoni-
cum (Huber ex Ducke) Barneby, and taxi-branco (Tachigali 
vulgaris L.G.Silva & H.C.Lima) yield favorable cost/benefit 
ratios and Internal Rates of Return (IRRs) of 21.7% per hec-
tare over 30-year cycles (Brienza-Júnior et al. 2008).

Non‑timber forest products: raw material

Non-timber forest products (NTFP) are crucial in global for-
est restoration (Huber et al. 2023), generating income in an 
intermediate time frame while timber extraction is unavail-
able, which leads to mixed species and multiple-use model/
management plans that integrate various income sources 
over different periods for landowners (de Mello et al. 2020; 
de-Miguel et al. 2014; Shackleton and Pandey 2014). In the 
Brazilian, Peruvian, and French Guinean Amazon, rosewood 
(Aniba rosaeodora Ducke) essential oil offers a sustainable 
economic option, generating jobs and income while reduc-
ing the strain on threatened populations. Ten-year-old trees, 
managed by pruning, yield approximately 35 kg of biomass 
per tree, producing 220 kg of essential oil from branches and 
leaves per hectare, leading to returns of around US$87,000 
per hectare in the first harvest (assuming a 1.5% oil yield at 
US$400 per kg; 833 trees per hectare and 50% water content 
in the biomass). This approach allows for the regrowth of 
approximately 40% of the initial biomass within a year after 
100% crown removal (Krainovic et al. 2018).

Studies have shown that agroforestry systems are more 
profitable in certain parts of the Brazilian Amazon than 
livestock farming or soybean cultivation. In terms of profit 
comparisons, a hectare of pasture generates between US$60 
and US$120 per year (Barbosa et al. 2015), while soybean 
cultivation faces high fluctuations, sometimes becoming 
negative, with peaks ranging between US$104 and US$135 
(Oliveira et al. 2013). Meanwhile, the use of forests as a 
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source of income through the harvest or the management 
of non-timber forest products (NTFP) in agroforestry sys-
tems in the Amazon has the potential to generate an annual 
profit ranging from US$300 to US$650 per hectare (Peters 
et al. 1989; WWF 2020). The typical investment to restore 
degraded lands with agroforests ranged between US$2500 
and US$7000 per hectare in the Amazon (Brandão et al. 
2022), with an average yearly operating cost between 
US$863 and US$1229 per hectare (Gasparinetti et al. 2022). 
Payback periods varied from 2 to 13 years, with internal 
rates of return ranging from 10 to 111% (Brandão et al. 
2022).

The economic and environmental benefits of NTFP and 
its integration into forest restoration income flows provide 
a means of replacing the current land use model based on 
monoculture expansion over tropical forests (Clement et al. 
2024) with a bioeconomic model based on biodiverse forest 
restoration (Metzger et al. 2024). In addition to making for-
est restoration more profitable, the use of native species con-
tributes even more effectively to mitigating global changes 
by regulating hydrological and energy cycles, increasing the 
carbon stock on the earth's surface, preventing soil erosion, 
and serving as food and shelter for flora and fauna compared 
to agricultural monocultures (IPCC 2022).

Several other forestry systems in tropical regions have 
shown potential for restoring degraded areas and creat-
ing income from NTFPs. These include the native ginkgo 
(Ginkgo biloba L.) agroforestry system in Chinese tropical 
and subtropical forests (Sun et al. 2017), mixed plantings 
and agroforestry practices in Indonesia, Tanzania, Laos, 
and Cameroon (Pfund et al. 2011), and the production of 
diverse NTFP in Cambodia and Peru (Gasparinetti et al. 
2022). Box 1 contains examples of the use and management 
of native timber and NTFP in various regions and systems 
mentioned above.

A key factor in boosting a bioeconomic forest restora-
tion related to NTFP is the application of technology to 
transform primary raw materials into high-value products 
(Barata 2012). Machinery for extracting fruit pulp and fixed 
and essential oils from different plant parts and decanta-
tion, filtration, pasteurisation, and refrigeration are crucial to 
ensure a feasible value chain. The simple transformation of 
fruits and seeds into marketable pulp and vegetable oil may 
increase five times the final price of a product, which already 
happens with assai pulp that has its fruit sold at US$0.40 to 
US$0.50 per kilo while its pulp can reach US$3 per kilo. 
Andiroba seeds (Carapa guianensis) are sold between US$ 
0.40 and US$ 2.30 per kilo, while andiroba oil may reach 
US$ 12 (Brandão 2023) through a simple extraction pro-
cess. These examples reinforce the importance of adapted 
and functional technologies for NTFP production chains. 
In many cases, these value chains have already become the 
primary source of income for local families, representing 

an annual average of US$3392, equivalent to 42% of their 
income (Antunes et al. 2021).

Currently, a constant constraint is the low number of 
facilities equipped with technologies to add value to NTFP. 
In the Brazilian Amazon, an assessment identified a lack 
of NTFP processing technology in 80% of the 532 munici-
palities, revealing a technological gap that could compro-
mise productive forest restoration projects (Brandão et al. 
2021). To move towards a biodiversity-based economy in 
the tropics, investments are needed to implement industrial 
raw material processing infrastructure from restoration pro-
jects. Although there are no scientific studies on the costs of 
installing such factories, a well-known case in the Brazilian 
Amazon indicated that US$100,000 is required to establish 
infrastructure capable of receiving production from 300 
local families (Idesam 2020).

As more investment is applied toward technologies 
that add value to NTFP, output from forest restoration can 
become more diverse and valuable. For example, in addi-
tion to NTFPs used as foods or raw materials, forest resto-
ration would benefit from yielding plant parts with active 
substances capable of curing diseases, moisturizing skin, or 
controlling pests. This approach, known as biotechnologi-
cal products, is related to a market with a high potential to 
increase the income of forest restoration projects, showing 
high growth potential (Nobre and Nobre 2019).

High‑value non‑timber forest products: 
biotechnological products

The biotechnological potential of native forest plants is 
likely the most recent and promising bioeconomic prospect 
for forest restoration, where species composition can be 
(at least partly) determined by managers. To gain insight 
into the biotechnological potential of native species and to 
understand the market patterns in a case study, we built a 
database using data from Oliveira and Nogueira (2023) to 
identify patents from the top thirty companies with the most 
patent registrations for biodiversity-derived products at the 
Brazilian National Institute of Industrial Property (INPI) 
in the pharmaceuticals, cosmetics, and crop care segments 
(Krainovic et al. 2023b). We wanted to assess whether com-
panies registered patents on native trees from the Atlantic 
rainforest. According to our survey, that group of companies 
held a total of 738 different patents for raw materials, ingre-
dients, chemical formulations, or processes. Only 11% of 
these patents describe formulations, processes, or products 
that include the use of native species from the Atlantic For-
est biome. Companies continue to favor already existing, 
well-established value chains, and the products or processes 
registered in patents are derived from plant species consid-
ered exotic species (89%), with 45% being commodities such 
as soybean (Glycine max (L) Merr.), sunflower (Helianthus 
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Box 1  Illustrative examples showcasing the diverse utilization of tim-
ber and non-timber forest products across various geographic regions 
and under a spectrum of landscape management strategies.  Credits: 

Pedro Medrado Krainovic, Zenaide Telles, Diego Oliveira Brandão, 
André Naves and Ricardo R. Rodrigues
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annuus L.), and grape (Vitis vinifera L.). Around 55% of 
registered patents are derived from herbaceous plants, 
while only 22% come from trees. The most registered plant 
parts are leaves, fruits, and seeds (Fig. 1). Our assessment 
of patent registration trends aligns with specialized litera-
ture, such as Santos et al. (2023), who found that patents in 
various Brazilian biomes primarily cover the agriculture, 
livestock, pharmaceutical, and cosmetic sectors, with most 
registrations associated with non-endemic species. Regard-
ing the patent registration of native species, the literature 
also reveals that the biodiversity business in Brazil remains 
largely untapped (Carvalho Ribeiro et al. 2024) reinforcing 
the need for research and entrepreneurial efforts concen-
trated on native tree species.

Pursuing a balanced market for goods and services, 
focusing on forest restoration, offers promising opportuni-
ties through biotechnology (Calixto 2019). This approach 
involves scaling up forest restoration and promoting growth 
in the bioproducts sector, counting on the crucial private-
sector investments (Löfqvist and Ghazoul 2019; Smith et al. 
2020). Forest products have a long history of human use, 
particularly in healthcare, and today, approximately 35% 
of medicines are sourced from natural origins, including 
plants (Markets & Markets 2022; Natural Extracts Market 
Size and Industry Report 2022). However, the literature on 

biodiversity use is too concentrated on the screening stages 
(i.e., in vitro and in vivo phases or analytical chemistry 
description phase). There is a need for more studies on how 
to manage species to allow their use (Krainovic et al. 2023b), 
enhancing the connection with bioproduct industries. In 
terms of potential, a literature review done by us on the bio-
technological potential of native species from the Atlantic 
Forest highlights such notable examples as the subtropical 
conifer, Araucaria (Araucaria angustifolia (Bertol.) Kuntze), 
which presents anti-herpes, antioxidant, antibacterial, and 
anti-fungi properties, including Listeria monocytogene, 
responsible for cases of listeriosis in humans. Araucaria is 
also an essential source of pine nuts, a food appreciated for 
its nutritional value and taste. Copaiba oil/resin (Copaifera 
langsdorffii (Desf.) Kuntze) has demonstrated wound heal-
ing, anti-inflammatory effects, and applications in dentistry 
for treating periodontal diseases (Souza et al. 2011). It also 
serves as a larvicide for agricultural and tropical disease vec-
tors, achieving 100% larval mortality for Aedes aegypti (de 
Mendonça et al. 2005). Hymenaea courbaril L., a canopy 
tree with potential for timber production used in forest res-
toration projects (Krainovic et al. 2023a, b), can also have 
its bark used as an antioxidant, myorelaxant, and natural 
anti-inflammatory besides having antifungal activity and low 
toxicity on animal cells (Bezerra et al. 2013).

Fig. 1  Proportion between native and exotic species and plant parts 
used by the top 30 companies that have patented biodiversity-derived 
products with the National Institute of Industrial Property (INPI–

Brazil) in the pharmaceuticals, cosmetics, and crop care segments in 
2022–2023. Database in: https:// zenodo. org/ recor ds/ 78372 48

https://zenodo.org/records/7837248
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Intangible ecosystem services

A variety of ecosystem services are not related to a physical 
or tangible good that is manufactured or produced to meet the 
material needs of consumers but are equally essential for our 
survival and well-being. Amidst the ongoing economic debate 
about forest restoration, it is crucial to emphasize that its suc-
cess hinges on promoting habitat for carbon uptake, biodiver-
sity conservation (Despot-Belmonte et al. 2017), soil protec-
tion (Krainovic et al. 2020), hydrological services (Jones et al. 
2022), and pollination of crops and forest species (Kaiser-Bun-
bury et al. 2017), among other ecosystem services. Regarding 
generating diverse co-benefits for nature and humans, forest 
restoration is one of the most efficient strategies for carbon 
uptake in the tropics (Heinrich et al. 2021). Meanwhile, the 
payment mechanisms for ecosystem services are being regu-
lated and certified, boosting rural property landowners' adop-
tion of ecological restoration associated with the ecosystem 
services market. This is already happening through the crea-
tion of carbon market regulation (e.g., the National Policy on 
Climate Change in Brazil) and discussions on pricing water 
provisioning (Viani et al. 2019). Agroforestry systems, for 
example, can compose a restoration strategy and store more 
carbon than secondary forests succeeding land degradation 
(Cardozo et al. 2022).

The carbon market, economic gains, public policies, and 
social pressure on companies drive the business and research 
on payment for ecosystem services (PES). Technology is 
crucial for accurate carbon measurement and cost reduction 
(Almeida et al. 2021), reducing transactional costs in carbon 
trading, improving reporting on companies' emissions, com-
pliance status, and carbon pricing, and meeting additional 
obligations for regulated trade through precise local carbon 
baselines. On a larger scale, a global system for coordinating 
carbon emissions and markets will emerge, stratifying coun-
tries and companies by emission levels and sectors, allowing 
transfers between countries with distinct economic growth and 
human development worldwide. Other ecosystem services, 
like biodiversity recovery and conservation, pollination, soil 
protection, and water regulation and provisioning (also linked 
to agriculture), will gain market value continuously. This 'bio-
market' is expected to gain visibility and be operated initially 
by national-level PES programs that follow a standardized 
global methodology. Simultaneously, an international policy 
combination will be implemented, offering incentives for 
research and development alongside global PES.

Fostering tropical forest restoration 
outcomes

Demonstrating tropical forest restoration financial feasi-
bility is still limited to a few academic studies and the 
grey literature (Molin et al. 2018). Because data on poten-
tial financial benefits from the restoration are scarce and 
uncertain, studies focus on opportunity and avoided costs 
rather than potential benefits (Schimetka et al. 2024). This 
tendency obscures the fact that restoration can indeed be 
economically viable. Clear demonstration of the trade-offs 
and economic viability of forest restoration is crucial to 
persuade landowners, policymakers, and investors that the 
integration of restored forests into crop production, pas-
tures, or rural landscapes can yield multiple socio-envi-
ronmental "co-benefits" in addition to generating income 
(Hua et al. 2022), even if indirectly. The current scarcity 
of information diminishes stakeholder interest in investing 
in forest restoration due to the high risk stemming from 
the uncertainty related to market access (Edwards et al. 
2021), species performance (Krainovic et al. 2023a, b), 
and understanding of the incentives for forest restoration 
(Tedesco et al. 2023).

More economic data tailored for forest-based enter-
prises can aid in improving forest restoration outcomes and 
enhance the effectiveness of forest restoration efforts while 
accounting for multifunctionality criteria. This approach 
transcends the mere costs linked to planting saplings. Ideally, 
species selection for restoration projects should consider 
multiple criteria beyond local species distribution. Accurate 
prediction of beneficial species at local and regional levels 
can contribute to increasing socio-ecological and economic 
returns on restoration investments, and each time more tools 
are being developed to allow these actions (e.g., ecological 
niche to predict species occurrence at large scales; Diversity 
for Restoration (D4R), to identify suitable tree species for 
climate resilience (Fremout et al. 2022); InVEST model tool, 
to integrate considerations of socioeconomic functionality 
(Natural Capital Project 2023); MARXAN tool to deter-
mine the target species niche and optimize decision making 
in areas to be conserved, and others (Ball et al. 2009). For 
bioeconomic forest restoration, information such as native 
wood and NTFP production, long-term carbon assimilation 
(Brancalion et al. 2018), local key species, genetic selection 
for survival and productivity in degraded areas, and climate 
adaptability (Butterfield et al. 2017; Fremout et al. 2022) and 
the creation of habitat for endemic species, large mammals, 
insects and other living beings must be considered together, 
which is vital for integrating environmental information into 
economic analysis.

Political systems must recognise and learn from past 
failures in implementing policy laws and regulations to 
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make bioeconomic forest restoration effective, given the 
persistent threat to multiple ecosystems. An iconic exam-
ple is the Brazilian Atlantic Forest, a biodiversity con-
servation hotspot, where approximately 30% of the forest 
cover regrowth is cleared again after eight years to avoid 
mandatory conservation based on successional classes 
(Piffer et al. 2022) as foreseen in the Biome protection 
Law (Resende et al. 2023). Meanwhile, innovative land 
use through multifunctional landscapes that could increase 
the attractiveness of forest restoration remains uncertain 
without a definition of the appropriate duration for funding 
programs (Crouzeilles et al. 2020) since ecological time 
scales are often much longer than private investment time 
horizons and political cycles.

A favorable market for forest restoration-origin products 
can encourage the implementation of multifunctional native 
forests, creating an appropriate net of local cases to be moni-
tored and serving as a source of data for econometric models 
from bioeconomic forest restoration. Policy instruments can 
promote fair competition between forest restoration products 
and those from traditional production routes (e.g., extensive 
monoculture). They can establish a responsible certification 
seal for forest restoration products, accompanied by incen-
tives linked to production methods and taxation. Addition-
ally, these instruments can favor access to financing sources, 
such as those from the private sector or in a blended finance 
arrangement, identified as feasible mechanisms for enabling 
forest restoration (Metzger et al. 2024). In the list of market-
related priorities to further bolster the attractiveness of forest 
restoration products, policy measures should aim to boost 
demand for restoration-derived products used by public enti-
ties like hospitals, schools, police stations, public infrastruc-
ture works, and other public procurement thereby favoring 
demand and scaling up. In this way, regulation should pre-
vent capital concentration, ensure the sharing of benefits and 
genetic heritage access, and involve local communities and 
cooperatives of small landowners while controlling overhar-
vesting and biopiracy. The package to promote multifunc-
tional restoration involves training restoration professionals 
to apply scientific advancements and bridge interdisciplinary 
research with practical implementation. This approach cata-
lyzes the generation of multiple revenue streams, appealing 
to a wide range of stakeholders, particularly landowners.

Importantly, forest restoration needs to be envisioned 
and planned at the landscape scale, where different parcels 
achieve multiple objectives through diverse land manage-
ment strategies, while still considering a reference ecosys-
tem to reach ecological goals (Toma et al. 2023). Certain 
parcels of the landscape may be intensively managed to yield 
high-value products, while others can provide intangible 
ecosystem services such as water regulation, microclimate 
enhancement, carbon stock, biodiversity conservation, and 
pleasing views. Forest restoration allocation often focuses 

on marginal areas (low-aptitude agricultural and pasture-
land) and regions with greater significance for connectivity 
(Metzger et al. 2017; Tedesco et al. 2023), ensuring food 
security by not affecting important productive areas. A for-
est restoration pathway for a forest-based economy will use 
an adapted cost–benefit analysis. Here, we are referring not 
only to financial cost–benefit analysis, essential for gaining 
attractiveness to landowners and entrepreneurs but also to 
economic-social cost–benefit analysis, given the need for 
interconnection with the various externalities related to 
ecological restoration, which impact multiple actors beyond 
the governance limits of a forest restoration project. These 
positive externalities—ecosystem services, jobs, income 
generation, and others—are significant in forest restoration 
projects and are currently not added to the cost-and-benefit 
equation because they are not easily quantified (Lamb et al. 
2021). The restorative bio-economic land use model repre-
sents a range of possibilities for transforming resources into 
goods and services usable by society, generating economic 
value. This approach ushers in a new era of global forest 
restoration, providing an excellent opportunity for tropical 
countries to actively participate and take a leading role in 
the sustainable management of their forests and global eco-
system provisioning.
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