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Abstract
In the Highlands of Madagascar, where rice is the main staple food, explosive demographic growth has
driven the need for the development of upland rice. In that context, a Participatory Plant Breeding (PPB)
program conducted by the FOFIFA-Cirad partnership, aims to develop upland rice varieties adapted to
farmers’ needs, with superior agronomic performances, and with high grain zinc concentration. In the area,
where ferralitic soils with N and P deficiencies prevail, limited fertilizer usage persists due to elevated costs,
and upland rice varieties must adapt to these low fertility environments. Thus, this paper aims to identify
the adequate selection conditions and methods that allow combining the above-mentioned criteria for
selection. So, 56 rice breeding lines, including high-zinc genotypes, were evaluated in field trials with
contrasting fertility conditions. A relative selection efficiency analysis demonstrated that selection for yield
should be done in moderate fertility environments, while selection for grain zinc concentration could be
done across a diverse range of conditions. Through participatory evaluations, we identified that, for this
case, grain appreciation was the most important character for deciding whether to select a line, followed by
productivity and earliness. We also noted that farmers were more willing to accept a variety if it had higher
grain zinc concentration. Finally, we proposed a selection index that combines agronomic, farmers’ and
nutritional criteria, with the purpose of selecting lines that fulfill the expectations on these areas. Overall,
this paper proposes an adapted methodology for the combination of PPB and biofortification in marginal
environments.

Keywords: upland rice; biofortification; G× E interactions; participatory plant breeding; relative selection efficiency; selection
index

Introduction
In Madagascar, rice (Oryza sativa L.) is by far the main staple food, with an estimated yearly
consumption of 115 kg per person (Nikiema et al., 2023). The Central Highlands region
(1300–2000 masl) faces unique challenges stemming from high population density and decreasing
farm sizes per household. While rice cultivation has traditionally occurred in irrigated paddies,
there has been a significant expansion of strictly rainfed upland rice cultivation to meet the
growing demand. This process has been largely driven by a national breeding program, jointly
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conducted by the Malagasy National Research Center for Rural Development (FOFIFA) and the
French Agricultural Research Center for International Development (CIRAD), which delivers
varieties specifically tailored to the conditions of the Highlands (Breumier et al., 2018; Raboin
et al., 2013). Since 2007, the program extended its operations from the Highlands to the mid
altitude regions (900–1300 masl), operating mainly in the Mid-West area of the Vakinankaratra
region, a less densely populated area where the culture of upland rice is rather recent and
expanding.

In this region, most soils are desaturated ferralitic with important P deficiency and N depletion
(Rabeharisoa et al., 2012; Naudin et al., 2019; Raminoarison et al., 2020), and farmers’ use of
inputs, such as mineral fertilizers, is limited mainly due to affordability and accessibility (Minten
et al., 2007). Delivering varieties for marginal and low-input farms is challenging, especially when
breeding is conducted on high-input research stations, because genotype performance often
differs significantly between these contrasting conditions, particularly for traits with strong
Genotype–Environment Interactions (GEI) such as grain yield (Atlin et al., 2001). A decentralised
plant breeding scheme, which includes testing and selecting materials from early generations in
farmers’ fields, could be a viable option to maximise genetic gain and deliver adapted genotypes
(Bänziger and Cooper, 2001; Ceccarelli and Grando, 2007). However, logistical complexities,
including transportation costs, limited seed quantity in early breeding stages, and the
implementation of complex experimental designs, may restrain this possibility, especially for
small breeding programs with limited resources (Desclaux et al., 2012; Mangione et al., 2006).
Therefore, a practical alternative is to modify the research station conditions to mimic those found
in real farming environments, for example, by reducing or eliminating mineral fertilizer use
(Leiser et al., 2014; Rattunde et al., 2016).

Decentralised plant breeding schemes often align with the participatory plant breeding (PPB)
principles, involving farmers throughout the breeding process, from ideotype conception to the
evaluation of segregating and elite lines (Ceccarelli and Grando, 2007). Besides direct benefits like
increased variety adoption and farmer empowerment (Sperling et al., 1993; Ceccarelli, 2015), this
approach fosters mutual understanding of breeding objectives and selection criteria, as farmers’
priorities may differ from those of breeders (vom Brocke et al., 2010). Yet, PPB principles can also
be applied in non-decentralised contexts, including the evaluation of segregating materials on
research stations (Rattunde et al., 2016; Trouche et al., 2012), and the FOFIFA-Cirad breeding
program has embraced this approach.

While the primary focus of this program is improving yield stability and potential, there is also
an urgent need to address nutritional quality. In Madagascar, heavy reliance on rice has led to
severe micronutrient deficiencies, and the Central Highlands experience one of the world’s highest
rates of child stunting and underweight, at 52% (INSTAT, 2021). Among other causes, this has
been particularly attributed to zinc (Zn) deficiency (Nikiema et al., 2023), which is linked to
several physiological disorders, such as growth retardation, cognitive impairment, and immune
dysfunction (Wessels et al., 2017; Majumder et al., 2019).

Chronic malnutritions, including zinc deficiency, should be addressed through integrated
strategies, primarily focusing on dietary diversification (van Ginkel and Cherfas, 2023). This
approach is particularly effective in rural areas where increased production diversity can lead to
improved diets (Bechoff et al., 2023). Paradoxically, the Vakinankaratra region, despite being one
of Madagascar’s largest producers of fruits, vegetables, and milk, also suffers one of the highest
rates of chronic malnutrition (Rakotomanana et al., 2020). In such contexts, where cultural and
economic factors make local populations highly vulnerable to nutritional risks, biofortification
through plant breeding offers a complementary, cost-effective, and mid-term strategy against
chronic malnutrition (Malézieux et al., 2024; Wissuwa et al., 2008).

Important genetic variability for grain zinc concentration has been found in rice, ranging from
8 ppm to 58 ppm, but the majority of globally cultivated varieties have concentrations of around
16 ppm in brown rice (Graham et al., 1999). So, in countries with high rice consumption such as
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Madagascar, delivering rice varieties with a grain zinc concentration of at least 28 ppm could fulfil
up to 80% of the estimated average requirement for children between 4 and 6 years (Bouis and
Saltzman, 2017). Rice zinc biofortification efforts have been conducted in other countries like
India (Naik et al., 2020) and Colombia (Baertschi et al., 2021). In Madagascar, this strategy has
been recently adopted for lowland rice (Rakotondramanana et al., 2024) and upland rice, the latter
by the FOFIFA-CIRAD PPB program.

To effectively incorporate this trait into a participatory breeding program, it is essential to
employ tailored methodologies for collecting, analysing, and integrating varied information from
different sources (Trouche et al., 2012; Ceccarelli, 2015). Therefore, the current study seeks to
establish an approach that integrates farmers’ preferences for selecting new varieties, alongside the
assessment of zinc concentration and the evaluation of agronomic performances across a range of
soil fertility conditions. Our objectives were: (1) to dissect the GEI associated to the traits of
interest, in order to determine the adequate environmental selection conditions, (2) to better
understand and use farmers’ priority criteria, and (3) to develop a Selection Index (SI) combining
agronomic data, zinc values and farmers’ varietal priority criteria. For this purpose, a set of
advanced upland rice lines from the FOFIFA-CIRAD breeding program along with breeding lines
from the International Center for Tropical Agriculture (CIAT, now called the ‘Alliance Bioversity
International CIAT’) zinc biofortification program were tested and evaluated with farmers though
a gradient of fertility conditions in the Mid-West area of Vakinankaratra, Madagascar.

Materials and methods
Plant material and experimental design

A total of 56 rice genotypes, mostly from the tropical japonica group, were evaluated in this study.
Among those, 41 represent advanced F6 and F7 breeding lines from the local FOFIFA-CIRAD
pedigree breeding program, also called SCRID program (Systèmes de Culture et Riziculture
Durable). These lines had been selected during previous years on a research station under
conventional conditions. There were also 11 biofortified (BF) high zinc lines from the CIAT-
CIRAD upland recurrent selection program in Colombia. Two locally popular varieties (Nerica 4
and FOFIFA 182), as well as two worldwide known varieties (Azucena and IR64) were added as
controls (Table S1). FOFIFA 182 was only tested during the second year.

These genotypes were cultivated over two consecutive seasons (2019–2020 and 2020–2021,
hereafter referred to as year 1 and year 2) in different fields managed by FOFIFA at Ivory
(19° 33’26.6 S, 46° 24’42.6 E; 900masl), a village in theMid-West area of Vakinankaratra, Madagascar.
All trials were conducted during the main growing season (November to April). For each year, two
independent fields with different fertility management strategies were used, resulting in a total of four
environments (Table 1). The management options included either zero fertilizer, fertilization using
cattle manure at 5t ha–1, or a combined fertilization scheme, which consisted of 5t ha–1 cattle manure
at sowing, 120 kg ha–1 mineral fertilizer (11N-22P-16K) at sowing and 80 kg ha–1 of urea in two
applications, one at booting and one at flowering stage. All treatments, except the combined
fertilization scheme, intend to mimic farmer field conditions, which mainly rely on organic matter
input and rotation with legume crops (Razafimahatratra et al., 2017).

All four trials followed an alpha-lattice design with three repetitions; each of the eight blocks
held six test genotypes and Nerica 4 as a check. Plot dimensions varied across the environments
(Table 1), with plant spacings being constant at 0.2 m between rows and hills. A total of six grains
were sown per hill and no thinning was conducted. All agronomic management was done
manually and followed common practices in the region; this included plowing for field
preparation, chemical treatment for soil insects and weeding when needed. These trials represent,
within the breeding pipeline, the first replicated field trials for evaluating quantitative and
qualitative traits to be used as selection criteria.
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Evaluation of selection criteria

The following morphologic traits were observed on five random hills per plot: plant height (PH),
panicle length (PL), number of tillers (NT), and number of panicles (NP). We also determined
days to 50% flowering (DTF) at the plot level. Total dry grain yield (GY) was measured per plot
and extrapolated to kg per hectare. The percentage of spikelet fertility (FERT), which represents
the ratio of filled grains over total grain number, and thousand-grain weight (TGW) were also
calculated. Due to a marked abundance of the parasitic weed Striga asiatica at two locations (LNO
and LFO), an incidence score was recorded using a visual scale ranging from 1 to 5 per plot. A
score of 1 indicated no damaged plants, while a score of 5 represented more than 40% of rice
plants being damaged.

A participatory evaluation of the 56 genotypes was conducted during maturity in the second
year; evaluations on the first-year trials were cancelled due to Covid-19 restrictions. A total of 24
farmers (10 women and 14 men) participated, all of which are part of a group involved in the
upland rice breeding program for more than five years. The participatory evaluation method
described by vom Brocke et al. (2010) was adapted to the local context for our selection program.
This method entails a group discussion in order to identify and define the relevant evaluation
criteria for selecting a new variety, followed by the evaluation on each genotype by the members of
the group. The exercise was conducted in five small groups of four to five farmers (two groups of
women and three of men) and using a preference score on a 1 to 4 scale (4 = ‘most appreciated’,
3 = ‘appreciated’, 2 = ‘acceptable’, and 1 = ‘rejected’). Each small group was accompanied by a
researcher or a technician that encouraged discussions among farmers within the groups. The
assessment was conducted within a single replication of the LNO trial, which was selected due to
its alignment with farmers’ conditions and consistent plant stand uniformity.

Prior to the exercise, participants were informed of the nutritional value of zinc, its potential
impact on health for young generations and the new breeding objective to increase zinc
concentration in rice grains. In order to have a first appraisal of farmers’ considerations on
biofortification, the evaluation included a preference voting exercises for two scenarios: a case of a
hypothetical high zinc value on the breeding lines, and a case of not considering potential zinc
values. For each scenario, each group indicated a consensual approval or refusal of whether the
variety should be kept in the program for further testing.

The grains from five random hills in each plot were collected for the evaluation of zinc
concentration. The paddy grains were hulled into brown rice using a manual Teflon dehuller and
were then prepared using the analytical methods referenced in Wheal et al. (2011). Samples from

Table 1. Description of trial environments used for the evaluation of 56 upland rice genotypes in the mid-west region of
Vakinankaratra during the 2019–2020 (year 1) and 2020–2021 (year 2) growing seasons

Year Environment
Historical field management
characterisation Fertilization during trials

Elementary plot
dimensions (m)

1 HFM High Fertility and Mineral Fertilizer:
Combined organic and mineral fertilizer
in rotation with soy bean.

5t ha–1 cattle manure
120 kg ha–1

NPK 80 kg ha–1

Urea

2.4× 1.4

LFZ Low Fertility and Zero Fertilizer: Manure
application of 5T ha–1 in rotation with
ground nut since 2012.

None 3.2× 1.2

2 LNO Low Nitrogen and Organic Fertilizer: No
mineral N fertilizer but additional mineral
P and K application during 2015–2018.

5t ha–1 cattle manure 2× 1.2

LFO Low Fertility and Organic Fertilizer: Field in
fallow for 5 years, then used as low
fertility field for upland rice for two years
in rotation with Bambara groundnut.

5t ha–1 cattle manure 2× 1.4
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the first-year field trials were analysed at Flinders University using Inductively Coupled Plasma
Mass Spectrometry (ICP-MS). Second-year samples were analysed trough energy dispersive X-ray
fluorescence spectrometry (X-supreme 8000, Oxford Instruments, Shanghai, CN) available at the
CIAT-Harvest Plus Nutritional Laboratory.

For a better characterisation of the trial environments, total daily rainfall was measured with an
automatic meteorological station (CIMEL, Paris, France). Soil samples were also taken at 6
random points per field, at depths between 0 and 20 cm and they were analysed at the Laboratoire
des RadioIsotopes from the University of Antananarivo, Madagascar.

Estimation of heritability and BLUPs

All statistical analyses were performed using R through the RStudio platform (RStudio Team,
2023). In a first step, variance components and best linear unbiased predictors (BLUP) for
quantitative agronomic traits were estimated per genotype according to the underlying alpha
design for each environment using a mixed model:

yijk � µ� rj � bk�rj� � αi � εijk

Where yijk is the observed value of the ith genotype in the kth block of the jth replication; μ is the
overall mean; r is the fixed replication effect; b is the random block effect nested within each
replication; αi is the random genotype effect; and εijk is the random error. The Nerica 4 plots used
as check in each block were only phenotyped for GY and DTF. Thus, the models for these two
traits included the check value within the block as a fixed effect.

In order to extract overall BLUPs and to quantify GEI, a combined multi environment analysis
was performed by using the previous model, but adding the e fixed effect for environments,
nesting the replication effect within the environment and adding a random genotype ×
environment (αi el) effect. The models were fitted using the lme4 package (Bates et al., 2015).
Significance of the random effects was tested via the Satterthwaite’s degrees of freedom method
(Kuznetsova et al., 2017). Based on these models, and in order to obtain a measure for precision,
broad-sense heritability (H2) on a genotype-difference basis was calculated for each trait in single
environments and for the combined multi environment analysis, following Piepho and Möhring
(2007) and Schmidt et al. (2019).

Genotype × environment effects

To further investigate GEI for GY and zinc concentration, correlation coefficients were calculated
between single-environment BLUPs for the same genotypes. Additionally, the stability of all
breeding lines was analysed using the Additive Main effects and Multiplicative Interaction
(AMMI) model of the metan R package (Olivoto and Lúcio, 2020). This model was chosen
because of its straightforward and easy to interpret graphical representation (Gauch et al., 2008).
In this case, the block, the repetition, the environment, the genotype, and the GEI are all taken as
fixed effects.

Estimation of relative efficiency of selection

In an effort to identify which of the available selection environments might be more suitable for
selecting genotypes that better adapt to farmers’ conditions and preferences, the relative selection
efficiency (RSE) was calculated between the four selection environments differing in fertility
conditions and management. For that purpose, the same multi environment mixed model
described above was used, but an unstructured variance-covariance matrix was imposed, where
the diagonal of corresponds to the genetic variance at each environment, and the off-diagonal
represents the genetic covariance between every pair of environments (van Eeuwijk et al., 2021).
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This model was fitted using the nlme package in R (Pinheiro and Bates, 2022). Genetic variances
for each environment, σeand σe0as well as covariances between pairs of environments (σee0 �were
used to calculate the genetic correlations (ree0) between two environments as follows:

ree0 � σee0=
����������������

σe � σe0
p

For the calculation of the RSE, every environment was considered once as a possible ‘selection’
environment and the other three environments were taken separately as possible ‘target’
environments, as follows:

RSE � ree0 × H2
e=H

2
e0

Where e is the ‘selection’ environment and e0 is the ‘target’ environment.

Analysing farmers’ preferences and variety acceptance

The preference scores obtained from farmer evaluations were first analysed using an ANOVA as
recommended by vom Brocke (2010), in order to detect gender, group and genotype effects for trait
appreciation. In addition, a logarithmic binomial model was constructed in order to determine
which of the farmer’s evaluation criteria could better predict the variety acceptance or rejection:

Aij � t1 ij � t2 ij � t3 ij � t4 ij � εij

Where A is the acceptance/rejection of the ith genotype by the jth group, t1 to t4 are the evaluated
traits; and ε represents the error. This model was also fitted with the lme4 package (Bates et al.,
2015). In order to characterise the relationship between measured agronomic observations and
farmers’ trait evaluations, a pairwise Pearson correlation test was carried out for each pair of traits.
For this purpose, only the data obtained from the third replicate of the LNO trial were used, as the
plots of this replication were the ones evaluated by farmers. This analysis was restricted to the
SCRID lines, in order to avoid data structure biases, which were caused by marked phenotypic
differences observed between the SCRID lines and the imported BF lines, as the latter had later
maturity and lower yields. Pearson correlations were also computed between the measured traits
at each environment, and this analysis was also conducted exclusively using SCRID lines due to
the same reasons.

Selection index

Following previous experiences on using SIs considering farmers’ preferences and breeders’
observations (Trouche et al., 2012; Annicchiarico et al., 2019), a weighted SI for the breeding lines
was elaborated. The index was based on the most relevant agronomic traits and farmer evaluation
scores, using the formula:

Ii � W1Vi1 �W2Vi2::::�WtnVin

Where I is the Index value for the ith individual,W1 is the weight assigned to the trait 1, and Vi1 is
the standardised phenotypic value of a given trait for the ith genotype. Standardisation was done
via z-score normalisation.

Results
Agronomic traits

The crop conditions and the performance of measured agronomic traits varied notably among
environments. The total rainfall was higher in year 2 than in year 1, and the soil analysis showed
strong differences in phosphorus and organic matter among the different environments, but all
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soils were strongly acidic and had poor content of bases (Table S2). For GY results, means ranged
from over 4000 kg ha–1 for the high fertility and mineral fertilizer (HFM) environment to less than
1000 kg ha–1 for the low fertility and organic fertilizer (LFO) site (Table 2). Broad-sense
heritability (H2) for yield under HFM conditions was the highest (0.70) compared to the other
environments, with the lowest under LFO conditions (0.19). The HFM environment presented the
highest mean values for PH and PL, as well as the lowest mean for days to flowering (i.e. shortest
growing cycle of plants). Heritability values were also highest in the HFM trial for these three
variables.

Grain zinc concentration also varied among environments, with an environmental mean range
from 22.8 (LFO) to 28.7 ppm (HFM) in brown rice. Broad-sense heritability for this trait was
generally high, and highest under LFO conditions (0.90). Striga infestation was only noted for two
environments (LFO and LNO) and the high variability under natural infestation may account for
the low heritabilities for this variable (Table 2).

The variance decomposition at the multi-environment trials shows that, for GY and spikelet
fertility, the variance due to GEI was at least three times larger than the variance due to the
genotypic effect, resulting in a relatively low overall H2 of 0.31 and 0.40 (Table 3). For all other
traits, expect the Striga Index, genetic variance components exceeded those for GEI, with
corresponding H2 values ranging between 0.72 and 0.93.

GEI analysis

For GY, the correlation of single-environment genotype BLUPs indicate moderate but significant
correlations between all environments expect for HFM, which had no significant correlation with
any other environment (Table 4). For grain zinc concentration, on the other hand, correlations are
significant across all environments, with slightly higher correlation coefficients among the low
fertility environments (LFO, LNO, and LFZ).

In the AMMI analysis, 65.8% and 54.0 % of the multiplicative interaction effect for GY and
grain zinc concentration are captured by the PC1, the primary mode of interaction variation
(Figure 1). Both bi-plots expose a similar pattern, where the environmental vector of the HFM is
opposing the other three environments. Figure 1a shows that genotypes with the highest mean GY
closely align with the HFM vector, suggesting their elevated responsiveness to this high yielding
environment. On the other hand, the bi-plot for zinc concentration shows a rather scattered
distribution of genotype points, with less marked specific responsiveness to the environments
(Figure 1b). The genotypes with the highest mean for zinc concentration, such as S12 and
Azucena, are relatively stable as they are centrally aligned in PC1. Moreover, some breeding lines
do exhibit a large positive interaction with HFM, such as S39 and S38, although their mean zinc
concentration are lower than the population mean.

Relative selection efficiency

The RSE for GY in the proposed scenarios ranged from –0.67 to 2.52, indicating strong
implications of indirect selection depending on the choice of the selection environment (Table 5).
An RSE value higher than 1 indicates that selection in the that environment is efficient for the
target. So, selecting on HFM is only efficient if the target environment is LFZ, where heritability is
relatively low. But it is inefficient when aiming for other environments such as LNO and LFO, as
indicated by the low RSE values. The highest RSE for yield is seen when the selection environment
is LNO and the target environment is LFO, due to both their high genetic correlation and the low
H2 at LFO. The year effect might be also very important in this case, as both of these treatments
were conducted on the same year.

As heritabilities and genetic correlations for zinc concentration are relatively high in every
environment (Table 2), RSE values stay below one in all cases. However, the environment that has
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the highest mean of RSE across the spectrum of environments is LFO, as the RSE values are 1.00,
0.76, and 0.91 for LFZ, HFM, and LNO, respectively.

Farmer trait preferences and appreciation of varieties

In group discussions, farmers mentioned the various different factors that they take into account
for variety appreciation, but ultimately identified four main evaluation criteria for breeding lines:
(i) productivity, (ii) earliness, (iii) plant height and (iv) grain appreciation. Even though striga
resistance is also one of farmers’most mentioned criteria, it was not included in their evaluations,
as its occurrence in the trials was too heterogeneous to be used as a discriminative variable.

The discussions held during the evaluation indicated farmers’ priorities and the complex nature
of the four selected criteria. For the participating farmers, productivity is linked to high tillering
capacity and long panicles with short ramifications to enable a high grain density. They also pay
special attention to the quantity of non-filled grains. Panicles that are bending down at maturity
are preferred as they indicate good panicle and grain filling. Earliness is a criterion linked to local
adaptation, ie. varieties adapted to the current rainfall pattern. Very short cycle varieties are also

Table 2. Environmental means and heritabilities (H2) for eight agronomic traits observed in four rice breeding field trials
during 2019/20 and 2020/21

Trait Environment Mean Std. Dev. H2

Grain yield (kg ha–1) LFZ 1700 611 0.48
HFM 4247 1139 0.70
LNO 2746 830 0.49
LFO 668 327 0.19

Grain zinc concentration (ppm) LFZ 27.1 3.3 0.80
HFM 28.7 3.4 0.75
LNO 23.7 3.2 0.83
LFO 22.8 2.6 0.90

Plant height (cm) LFZ 84.9 9.9 0.77
HFM 102.1 9.5 0.89
LNO 92.6 11.3 0.83
LFO 63.2 9.8 0.58

Days to 50% Flowering LFZ 92.7 4.9 0.89
HFM 86.8 6.7 0.95
LNO 87.7 7.8 0.83
LFO 96.1 5.6 0.69

Panicle Length (cm) LFZ 18.3 1.8 0.68
HFM 21.0 1.6 0.74
LNO 18.8 1.6 0.67
LFO 15.2 1.9 0.48

Thousand Grain Weight (g) LFZ 25.0 2.9 0.97
HFM 25.1 3.0 0.95
LNO 25.8 2.7 0.94
LFO 23.7 3.0 0.87

Panicles (Nbr m–2) LFZ 33.2 7.19 0.23
HFM 59.5 12.7 0.41
LNO 41.6 9.2 0.62
LFO 25.0 6.3 0.54

Spikelet fertility (%) LFZ 90.9 5.6 0.74
HFM 80.8 11.2 0.77
LNO 84.6 7.8 0.64
LFO 90.0 7.6 0.48

Striga Index LFZ NA NA NA
HFM NA NA NA
LNO 2.70 1.37 0.00
LFO 3.25 1.04 0.26

NA: Not available.
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appreciated as they reduce the lean period. Plants whose stems and/or leaves stay green during
(early) maturity are in general preferred. These farmers associate taller plants to higher
productivity, but the ideal PH is a compromise between shorter plants to prevent plant lodging
and longer stems to ease labour during harvest and threshing; in general, a PH of 90–100 cm is
preferred. Also, grains that are semi-long, of mainly white pericarp colour with pale or golden
hulls, are preferred.

ANOVA results for farmers’ scores of the four selection criteria show a significant and strong
genotype effect (Table S3). The analysis also revealed no gender effect and a small effect of the group
for earliness, grain appreciation, and PH. The percentages of accepted breeding lines per group
varied between 53% and 87% (Table 6). This percentage increased on average by 11% under the
assumption that the varieties had a high zinc concentration, however this rate varied markedly
among the different groups from 1.8%, all the way to 32.1% (Table 6). Finally, the results from the
logistic regression (Table S4) indicate that the grain appreciation (p< 0.001) was by far the most
important criteria in defining the acceptance or rejection of any given variety. Earliness (p= 0.002)

Table 3. Percentage of the total variance (%VAR) and broad sense heritability (H2) for eight agronomic traits observed in all
the field trials through the two growing seasons (2019/20 and 2021/22)

Trait
Variance
component

%
VAR H2 Trait

Variance
component

%
VAR H2

Grain yield Genotype 5.8 0.31 Grain zinc concentration Genotype 37.2** 0.83
G× E 28.6** G× E 14.9**

Repetition 2.6** Repetition 4.5**

Residual 62.8 Residual 43.4
Plant height Genotype 37.4** 0.83 1000-grain weight Genotype 66.9** 0.93

G× E 14.6** G× E 14.0**

Repetition 1.8* Repetition 1.1*

Residual 46.2 Residual 18.0
Days to Flowering Genotype 57.4** 0.92 Percentage of spikelet

fertility
Genotype 9.0* 0.40

G× E 8.1** G× E 31.0**

Repetition 0.5 Repetition 0.5
Residual 34.0 Residual 59.4

Panicle Length Genotype 22.6** 0.72 Striga Index Genotype 2.0 0.14
G× E 13.4** G× E 0.0
Repetition 1.1 Repetition 26.2**

Residual 62.9 Residual 71.8
Number of Panicles

per m2
Genotype 16.5** 0.67
G× E 7.1
Repetition 5.1**

Residual 71.3

*Significant at p> 0.05.
**Significant at p> 0.01.

Table 4. Correlation coefficients of single-environment BLUP values for grain yield and grain zinc concentration of 56 rice
breeding lines across four trial environments

Environment

Grain Yield Grain Zinc concentration

LFO LNO LFZ LFO LNO LFZ

LNO 0.42** – – 0.65** – –
LFZ 0.42** 0.31* – 0.69** 0.78** –
HFM 0.12 0.19 0.19 0.43** 0.41** 0.50**

*Significant at p< 0.05.
**Significant at p< 0.01.
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and productivity (p= 0.011) have also a significant influence, whereas PH (p= 0.279) was not as
important.

Correlations among measured agronomic traits and farmers’ criteria

Correlation analysis between agronomic traits indicate that no single correlation between two
traits is significant at all the four environments (Figure 2). Significant positive correlations
between PH and GY, as well as between PH and PL, were however detected in all three
environments without mineral fertilizer use. As expected, in all four environments, GY and grain
zinc concentration were negatively correlated, although this was only significant for HFM and
LNO. Additionally, at LFO, grain zinc concentration showed a significant negative correlation
with PL. In the HFM environment, there was a significant positive correlation between grain zinc
and days to flowering.

Three measured agronomic traits stand out as having the highest correlations with most of
farmer evaluations: GY, PH, and Striga Index (Figure 3). While GY and PH are positively
correlated with farmers’ evaluation criteria, Striga Index has a negative relationship. PL is
moderately correlated with PH appreciation and grain appreciation, whereas the zinc
concentration is negatively correlated with PH appreciation and grain appreciation. Another
strong (and expected) correlation between farmers’ criteria and measured traits was found
between days to flowering and the appreciation of earliness by farmers, with an R2 of –0.47.

Selection index

The traits to build a SI were selected by the breeder in charge of the program and consisted in three
most discriminating farmers’ evaluation criteria (earliness, productivity and grain appreciation) as
well as two measured agronomic traits (yield and zinc concentration). For the measured traits, the
BLUP values from the multi-environmental model were used, but the data from the HFM trial
environment were excluded due to the low correlations between environments previously
mentioned. Different weight assignments were tested, but assigning the same weight (1) to the five
variables gave the best adjustment between actual farmers/breeder’s visual selection and the
selection based on the index (data not shown). A visual representation of this index is shown in
Figure 4. By setting a selection pressure of 70% on this index, a threshold value is defined in order

Figure 1. AMMI-1 Bi-Plots for grain yield (kg ha–1) and grain zinc concentration (ppm) across the four trial environments in a
panel of rice breeding lines.
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to select the best overall performing lines, for subsequent testing according to the breeding
pipeline. Nonetheless, this exercise was conducted after the actual selection process, as it was as a
joint reflection exercise. This allowed the opportunity to compare the results of using this index
with those obtained by the breeders using their usual methodology.

Discussion
This paper addresses the challenges faced by breeding programs that operate in marginal
environments characterised by complex GEI. Breeders in contexts like these often face the
longstanding and well documented dilemma of making a compromise between selecting under
high input, high yielding, and high heritability environments, or opting for low yielding
environments that better resemble farmers’ conditions, but which could be more heterogenous
and thus offer less heritability (Ceccarelli, 1989; Atlin et al., 2001; Dawson et al., 2008). In order to
address this dilemma in the framework of a small national breeding program, the present study
exploited the use of various on-station selection environments designed to represent a spectrum of
fertility conditions.

Our results confirm important cross-over interactions for GY and low genetic correlations
between the high fertility environment (HFM) and the moderate to low fertility environments, as
has been seen before in various other contexts (Stagnari et al., 2013; Le Campion et al., 2014;
Petitti et al., 2022). The low RSE values observed in most cases when selecting for yield under high
fertility conditions affirm the choice of a breeding strategy that prioritises environments that
closely resemble farmers’ fields. The only exception for this trend was the case of the relatively
high RSE values between the HFM and the LFZ environments, which result from a moderate
correlation between environments (both were conducted on the same year) and a very low
heritability in the second site. For future trials, special attention must be given to phosphorus;
although our treatments primarily modulated nitrogen levels, the site with the lowest yields and
heritabilities (LFO) also had extremely low phosphorus levels, which manure inputs did not
sufficiently compensate for.

Table 5. Relative selection efficiency for yield and grain zinc concentration between every pair of environments for yield
and grain zinc concentration within a panel of rice breeding lines

Target environment

Grain yield Grain zinc concentration

LFZ HFM LNO LFO LFZ HFM LNO LFO

Selection
Environment

LFZ – 0.63 0.42 0.56 – 0.62 0.90 0.79
HFM 1.34 – 0.05 –0.67 0.55 – 0.40 0.53
LNO 0.43 0.03 – 2.52 0.97 0.49 – 0.78
LFO 0.09 –0.05 0.38 – 1.00 0.76 0.91 –

Table 6. Percentage of accepted genotypes (n= 56) of rice by farmer group, without (%AG) and with (%AGZ) the
assumption that they had high zinc content, divided by farmers group and gender

Farmer-group Gender % AG % AGZ % Increase in acceptance

I Men 87.5 89.3 1.8
II Men 53.5 58.9 5.3
III Men 58.9 91.1 32.1
IV Women 58.9 73.2 14.3
V Women 64.3 67.9 3.6

Mean 64.6 76.1 11.4
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For the case of zinc, preceding research in rice biofortification has identified different situations
of GEI for grain zinc concentration, from very small to large interactions (Inabangan-Asilo et al.,
2019; Naik et al., 2020; Rakotondramanana et al., 2024; Wissuwa et al., 2008). Our results show
that heritability was relatively high for most environments, that GEI was modest and no cross-over
effects were found. This is in line with observations of Wissuwa et al. (2008), who observed that
genotype rankings were consistent across a range of soils with varying fertility conditions. Overall,
based on the GEI and RSE results, selection for grain zinc concentration in any single environment
is feasible. When adaptation to farmers’ fields with low fertility is a priority, a simultaneous
selection for zinc concentration and GY is more effective in moderate fertility environments like
LFZ and LNO, rather than in the extremely high or low yielding environments, such as HFM or
LFO, respectively.

Figure 2. Environment-wise phenotypic correlations for BLUPs of the main agronomic traits measured on 41 SCRID rice
breeding lines. GY= Grain Yield, ZN= Grain Zinc Concentration, DTF= Days to Flowering, PH= Plant Height,
TGW= Thousand Grains Weight, PL= Panicle Length, NPA= Number of Panicles per m2, FERT= Percentage of Spikelet
Fertility. The symbols ***, **, and * indicate significance at p< 0.001, p< 0.01, and p< 0.05, respectively.
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Regarding farmers’ evaluations, they effectively distinguished between genotypes, regardless of
participants’ gender or group composition. The most influential factor in their decision-making
process was grain appreciation, followed by earliness and productivity. Autfray et al. (2022)
analysed farmer preferences of upland rice in the same region, and identified GY, and striga
tolerance, as the most important traits for farmers. The importance given to this last trait in a
given evaluation can be highly dependent on the varietal diversity presented to the farmers and the
spatial distribution of striga infection, especially under natural infection as occurred in the LNO
and LFO field trials. This makes the evaluation and selection for striga tolerance specifically
difficult as also concluded by Haussmann et al. (2000).

On the other hand, grain appreciation is a trait that frequently emerges in PPB evaluations, but
it is often overlooked by breeders in favour of yield (Asfaw et al., 2012). This trait is also
challenging to use as a selection variable because it is hard to quantify and heavily relies on
individual assessments. Small-scale rice farmers prioritise quality due to their use of harvested rice
for personal consumption, or the potential for selling high-quality rice at premium prices (Joshi
et al., 2007; Shiratori et al., 2023). Based on these two scenarios, Autfray et al., (2022) identified
two quality-defining trends for farmers in our target area: when selling, grain weight and size can
be a discriminating factor because of more favourable yields after decortication/dehulling, whereas
for personal consumption, a ‘sweet’ taste is a crucial quality criterion (but hard to determine on
field). So, in our evaluation, farmers primarily appreciated grain based on its large size, heavy
weight, white pericarp, and golden hull colour. Among these traits, there was a strong negative
selection against pericarp colour, with red rice being largely discarded. However, while grain
appreciation was particularly significant in this context, it’s important to note that its relevance
(and that of other traits) may shift depending on the diversity of lines presented to the farmers. For
instance, if grain types were more homogeneous and yield differences more pronounced, the latter
might become the more relevant trait.

Farmers also often tend to give particular importance to earliness, a trend observed in previous
PPB experiences in different countries and crops. However, the definition and perception of this
trait can be influenced by various factors during evaluation, such as the timing within the season,
specific environmental conditions like drought, or by individual plant type preferences (vom
Brocke et al., 2010; Trouche et al., 2012; Petitti et al., 2022). Our results confirm other studies on
participatory variety evaluation, showing that farmers’ evaluation of traits does not align precisely
with the conventional definition of a singular specific agronomic trait such as yield or earliness.

Figure 3. Correlation between farmer’s criteria and agronomic traits measured on 41 SCRID breeding lines. GY= Grain
Yield, ZN= Grain Zinc Concentration. DTF= Days to Flowering, PH= Plant Height, TGW= Thousand Grains Weight,
PL= Panicle Length, NPA= Number of Panicles per m2, FERT= Percentage of Spikelet Fertility, STR= Striga Index. The
symbols ***, **, and * indicate significance at p< 0.001, p< 0.01, and p< 0.05, respectively.
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Instead, farmers tend to evaluate multiple traits simultaneously depending on agro-ecological
context and household needs. For instance, when they assess an early genotype, they not only
consider the number of days to maturity but also place significance on the yield and the quality of
grains achieved within that time frame (vom Brocke et al., 2010; Weltzien and Christinck, 2009).
Consequently, there are limited correlations between farmer evaluations and objectively measured
traits, as demonstrated by the weak -but significant- correlation between earliness (as assessed by

Figure 4. Visual representation of the Selection Index used to select among rice breeding lines, through a combination of
both measured traits and farmer evaluation criteria. The black dots mark the Index value for each genotype and the
coloured bars indicate the contribution of each trait to this index value. The dashed line represents the top 30% threshold.
The numbers on the right represent the number of farmer groups who accepted the breeding line as a cultivable variety.
The red stars mark the lines selected by the breeder.
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farmers) and days to flowering in our dataset (Figure 3). This explains why PPB programs may not
produce varieties with exceptionally extreme phenotypes, but they often achieve a favourable
compromise between yield and earliness (Witcombe et al., 2006; Trouche et al., 2012).

Additionally, a limitation of our evaluations is the fact that farmers only evaluated one
environment and one repetition per genotype, confounding thus genotype, repetition and
environment effects. Nonetheless, when the sample size is large (56 lines in this case) it is rather
complicated and time-consuming to evaluate several repetitions with farmers. This raises the
question of the specific trial conditions and whether the results would have been the same if
evaluations were conducted directly at actual farmers’ fields instead of a low fertility research
station. This not only prompts the question of specific trial conditions but also suggests potential
solutions. For instance, a comprehensive understanding of farmer field conditions and meticulous
selection of the most representative repetition could enhance result reliability. Similarly,
increasing farmers’ awareness of objectives, coupled with detailed explanations of field conditions,
as we have done, may contribute to improved evaluations.

Our study also explored the possibility of incorporating biofortification as a desirable trait and
its potential influence on farmers’ variety preferences. This is especially important, as
biofortification may involve significant trade-offs. Our observations reveal that grain zinc
concentration was negatively correlated with earliness and productivity, as reported in previous
studies (Gao et al., 2012; Inabangan-Asilo et al., 2019). These negative relationships between traits
highlight the importance of developing suitable methods to minimise compromises, using a well-
designed SI and potentially selecting outliers from the correlation (i.e., early, high yielding, and
high zinc genotypes).

In our study, we asked farmers whether they would select or not a given variety if it had a higher
nutrient content, and there was a greater willingness to accept certain varieties if they were to be
BF (Table 6). However, recognising the methodological limitation in our approach, additional
research is required to comprehend the compromises that farmers are willing to make,
considering yield, earliness, or other criteria, in their pursuit of obtaining and producing zinc BF
varieties. It is crucial to consider gender as a significant variable in this process, as previous
experiences in biofortification, such as those at CIAT in Colombia, have shown that women tend
to prioritise high nutritional value over high yield, while men often do the opposite (Arora and
García, 2009). In their program, consumer sensory studies were done in order to demonstrate that
BF rice could match the sensory qualities of the varieties already consumed locally (Woods et al.,
2020); eventually, this should also eventually be tested in our context. Furthermore, research has
demonstrated that involving farmers in the process is crucial for increasing the adoption of BF
crop varieties (Samuel et al., 2024). Altogether, this novel aspect warrants further investigation to
better understand the implications and impact of biofortification in PPB programs, as well as for
the diet and health of farmers and local populations (Bechoff et al., 2023).

Based on our findings, we propose using a SI as a simple and transparent way to combine
farmers’ evaluations with conventional agronomic traits and grain nutritional quality. This basic
SI can easily be adapted in function of the trial conditions, the breeding panel and the traits
involved in the selection process. This makes it a flexible and useful tool for selection decision,
especially in early stages when the number of lines tested is large and preliminary screening must
be done (Sharma and Duveiller, 2006). When comparing the varieties selected by the index to
those previously selected by the breeders, we observe that the top 7 varieties identified by the index
were also chosen by the breeder. However, beyond this, the breeder’s selection does not align
closely with the index, which can be attributed to several factors. Most importantly, conventional
selection may be influenced by extreme values (in terms of yield, zinc content, or other traits),
whereas the index suggests genotypes with a more balanced profile.

Of course, the decisions regarding the construction of the index might also heavily impact its
alignment with the breeder’s usual selection. Here, we assigned equal weights to all variables for
simplicity, but different weights could be assigned according to farmers preferences or economic
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criteria, or to properly address correlations between traits (Ceron-Rojas et al., 2015). Issues might
occur regarding the environmental sensitivity of the index, as the input data should be carefully
chosen to represent the target environment. In our case, we used farmers’ evaluation from only
one repetition at the LNO site and multi-environment BLUPS for GY and zinc, excluding the
HFM. We sustain that integrating these two data types allows us to give more weight to
environments that closely resemble farmers’ fields, such as the one used for farmers’ evaluations.
Previous studies on PPB have shown that farmers’ evaluations show relatively low susceptibility to
GEI, as they are somehow capable of seeing the potential and stability of the genotype beyond the
given evaluation environment (Annicchiarico et al., 2019).

Conclusions
This research addresses the interactions between genotypes, environments, and human
preferences in the context of a participatory breeding program focusing on zinc biofortification.
By examining the outcomes of selecting across a range of environments, we effectively
demonstrated that neither the highest (HFM) nor the lowest (LFO) yielding environments were
suitable for selecting biofortified upland rice lines that adapt to the conditions of farmers in the
Highlands of Madagascar. This was particularly evident in the assessment of yield, where
significant crossover interactions were observed between the high input environment and all the
low-input fields. Environments with moderate yields, where mineral fertilizer was not used in
order to mimic farmers’ conditions, revealed the best results in terms of RSE. This relation was not
as important when evaluating grain zinc content, a trait characterised by higher heritability and
stability.

By incorporating participatory evaluations, we integrated farmers’ perspectives, enabling the
development of varieties that perform well and align with local contexts and consumer
preferences. Including a cryptic trait like nutritional value in a participatory breeding program
presents challenges, such as the potential impact on genetic gain for productivity. To address this,
we devised a SI that integrates biofortification, agronomic performance, and farmer preferences,
allowing us to choose from 56 breeding lines. To our knowledge, this is the first published work to
apply such a comprehensive SI.

By carefully selecting breeding environments, incorporating farmer preferences, and
addressing nutrient deficiencies, small-scale breeding programs in marginal conditions can
significantly contribute to the overall well-being of local communities and foster a more resilient
agricultural and food sector.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/
S0014479724000218
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