
 

PEER-REVIEWED REVIEW ARTICLE   bioresources.cnr.ncsu.edu 

 

 

Nkene Mezui et al. (2024). “Tree growth vs. traits,” BioResources 19(4), 9946-9963.  9946 

 

Light Tolerance-related Tree Growth Strategies and their 
Impacts on Key Functional Tree Traits: A Review 
 

Estelle Nkene Mezui,a,b,c Loic Brancheriau,b,* Samuel Ikogou,c,d and  

Rostand Moutou Pitti a,c 

 
Light is essential for tree growth and development, yet some species are 
able, or prefer, to tolerate shady conditions without adversely affecting 
their development. This ecological preference prompts different strategies 
in these species, often involving a trade-off between performance and 
safety in terms of mechanical support, conductivity, and pest and disease 
protection. Studies on the ecological strategies of trees and their 
associated functional traits are essential to gain further insight into 
biodiversity and the processes that shape wood quality from the standpoint 
of technological properties useful to humans. This literature review 
showcases current links between ecological preferences and the main 
functional traits of tree species, with particular emphasis on wood 
properties. 
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INTRODUCTION 
 

 Trees growing in forest stands compete with neighbouring trees for light, water, 

and nutrients. This competition affects their growth and the overall functioning of forest 

ecosystems in terms of biodiversity, carbon sequestration, water regulation through 

transpiration and oxygen production (Keleş 2019; Imbert et al. 2021). Forests are vital for 

the biosphere, but also for the diverse range of human applications of wood. During their 

growth, trees adopt various strategies necessary for their survival at each developmental 

stage (González-Melo 2022), depending on the species and its surrounding environment. 

The fundamental biological lifecycle processes (establishment, development, and 

reproduction) require the uptake of vital resources (energy and elements transfer) and 

adaptation to prevailing environmental conditions and variations (droughts and storms for 

instance). Variability in the morphological and physiological characteristics, or so-called 

functional traits, reflects the diversity in the ways trees perform in carrying out these 

biological processes. The main functional traits include wood density, specific leaf area 

(ratio between the surface area and unit dry mass of a leaf), maximum height, 

photosynthetic capacity, water potential and sap flow (raw and elaborated sap) (Wright et 

al. 2004; Kunstler et al. 2016; Cachinero-Vivar et al. 2024). Wood density is a functional 

trait linked to fiber characteristics in hardwoods and tracheids in softwoods. It is used as a 

determinant of wood quality and varies greatly between species due to their different 
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porosities. Higher values produce stronger woods, while lower density woods are more 

suitable for pulp manufacture. Furthermore, hardwoods generally have a higher density 

than softwoods (Saranpää 2003; Trouy 2015). Specific leaf area reflects leaf thickness. It 

is a parameter positively linked to the plant’s photosynthetic capacity. It can be used to 

estimate a plant’s reproductive strategy based on light and humidity levels, among other 

factors (Wright et al. 2004; Milla et. 2008). Photosynthetic capacity is the bioenergetic 

process that enables plants to synthesize organic matter using light energy, water and 

carbon dioxide (Wright et al. 2004). Water potential corresponds to the energetic state of 

water in a cell or leaf, for example. It represents the resultant energy of osmotic, turgor and 

capillary forces, among others (Cachinero-Vivar et al. 2024). These performances are 

assessed in terms of the values of the functional traits related to each function (Violle et al. 

2007) to ensure the tree’s survival, which involves conductivity, support, and pest and 

disease protection (fungi, insects). 

 There may be trade-offs between functional traits depending on environmental 

conditions and ecological preferences (or ecological groups) of the species (Poorter and 

Kitajima 2007). The ecological strategy of a species is defined by the trade-offs and values 

of the diverse functional traits. These strategies must be studied to enhance the overall 

understanding of biodiversity and related ontogenetic mechanisms, and to gain insight into 

the variability in the properties of the wood produced (wood quality) for various human 

uses (construction, furniture, packaging, paper, and energy). These strategies have been 

extensively studied in temperate species (Zimmermann and Brown 1971; Loehle 1988; 

Kolb et al. 1990; Del Tredici 2001; Brym et al. 2011; Adler et al. 2014; Bianchi et al. 

2021; Cheng et al. 2022; Han et al. 2022). Conversely, little is known on the trends in 

tropical species (Lehnebach 2015; Levionnois 2019; Zue Ondo et al. 2021; González-Melo 

2022; Han et al. 2022; Schmitt et al. 2022; Browne et al. 2023; Conti et al. 2023; Liu et al. 

2023; Werden et al. 2023; Grady et al. 2024; Huanca-Nunez et al. 2024; Zhang et al. 2024), 

despite the high species diversity hosted in these areas. The aim of this literature review is 

to highlight current links between ecological preferences and the main functional traits of 

tree species, while focusing particularly on wood properties. The article is divided into four 

parts, with the concept of ecological groups described in the first part. Secondly, the links 

between functional characteristics and ecological groups are examined in terms of 

mechanical support in the next part, then in terms of hydraulic conductivity in the third part 

and to end up, in terms of protection against pathogens in the fourth and final part. 

 

 
LIGHT DEPENDENCY AND ECOLOGICAL GROUPS 
 

 Trees are living organisms that require energy for their growth and survival (Rüger 

et al. 2011). Light in forests is highly stratified vertically while being horizontally 

heterogeneous, largely due to the forest gap dynamics. Light penetrates the forest and 

disperses from the top to the bottom of the canopy along different gradients (Niinemets 

and Valladares 2004; Demmig-Adams et al. 2017). Trees then use this light for 

photosynthesis (Fig. 1). Some tree species are able to survive even when there is very little 

available light available to them, whereas others may tolerate a certain extent of shade at 

some point during their lifespans without it impairing their development. These so-called 

understory tree species use a lower light gradient to carry out what is known as minimal 

photosynthesis (Demmig-Adams et al. 2017). Several authors have suggested 

characterising individuals of tree species based on their average light environment (King 
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1991; Clark and Clark 1992; Bongers and Sterck 1998; Sterck and Bongers 1998). The 

need for light is believed to be a key factor in determining species’ habitat specialization 

(Mąderek et al. 2017; Schmitt et al. 2022). Tree species may therefore be classified into 

different ecological groups according to their light dependence. 

 A seed and seedling ecology hypothesis was put forward by Swaine and Whitmore 

(1988) and supported by authors such as Canham (1989) and Hubbell et al. (1999). Under 

this hypothesis, these authors claim that: “A species cannot be classified in a group without 

knowing the ecology of its seeds and seedlings,” and they suggest classifying species in 

two groups, i.e., pioneer and non-pioneer (or climax) species. Pioneers are species whose 

seeds and seedlings require full sunlight to become established and grow and their plants 

cannot survive under forest shade at any growth stage (Table 1) (Swaine and Whitmore, 

1988; Whitmore 1989). Consequently, they are light-demanding plants. Otherwise, non-

pioneer or climax species are those whose seeds and seedlings can become established and 

grow under forest shade throughout part or all of their lifespans. Their seedlings are thus 

commonly found underneath a forest canopy (Swaine and Whitmore 1988). Seeds of these 

non-pioneer species are larger, thereby offering the seedlings more abundant reserves 

necessary for their growth (Davies and Ashton 1999; Kitajima 2002; Poorter and Rose 

2005). 

 
 

Fig. 1. Comparison of photosynthesis between heliophilous and shade-tolerant species. 
Photosynthetic light-response (Anet) measurements for shade-tolerant and shade-intolerant 
species grown in ambient or elevated CO2 (+300 μmol CO2 mol–1). (adapted and redrawn from 
Sefcik et al. 2006) 

 

 The classification into pioneer and non-pioneer groups has since evolved, and most 

authors propose more nuanced categories of ecological groups. In the study by Blanc et al. 

(2003), the authors classify species in three groups: heliophilous (light-demanding), 

sciaphilous (shade-tolerant), and hemi-heliophilous (semi-shade-tolerant). The 

heliophilous trait is easier to distinguish than the sciaphilous trait (Blanc et al. 2003). 

Heliophilous plants require a substantial amount of light to grow. Species that can only 

grow in the shade are referred to as sciaphilous (Schmitt et al. 2022). There is also an 

intermediate group of so-called hemi-tolerant species. Plants of these species are able to 

start their life cycle in the undergrowth, but they will only be able to thrive if there is an 

opening in the forest canopy (Blanc et al. 2003). Other authors (Souza et al. 2014; Blundo 

et al. 2015; Shen and Cao 2017; Han et al. 2022; Wen et al. 2023; Jiang et al. 2024; Peng 
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et al. 2024) have proposed various classifications based on morphological traits, growth 

rates, leaf characteristics, and wood density, among others. These suggest divisions into 

two, three, or even seven ecological groups. 

 

Table 1. Character of Pioneer Tree Species in Tropical Rainforests 

i Seeds germinate only in canopy spaces that are open to the sky and receive full sunlight. 

ii Plants cannot survive in the shade - young plants are never found under a closed forest 
canopy. 

iii Seeds are small and produced abundantly and more or less continuously. 

iv Seeds are produced early in life. 

v Seeds are dispersed by animals or the wind. 

vi Dormant seeds are generally abundant in forest soils (especially species with fleshy 
fruits); orthodox seeds (not known recalcitrant species). 

vii High rate of carbon fixation by seedlings; high compensation point 

viii Rapid growth in height 

ix Indeterminate growth without resting buds 

x Relatively few branches 

xi Short-lived leaves 

xii Shallow rooting 

xiii Generally pale, low density, non-siliceous wood 

xiv Leaves are susceptible to herbivory, sometimes with little chemical defence. 

xv Wide ecological range; phenotypically plastic 

xvi Often ephemeral 

Not all pioneers have all the characters iii to xvi (adapted from Swaine and Whitmore 1988) 

 

 Heliophilous species grow faster and reach higher maximum heights (King 1991; 

Coomes and Grubb 1998; Veneklaas and Poorter 1998; Morel et al. 2018; Schmitt et al. 

2022). These so-called canopy species allocate more resources to trunk rather than branch 

growth, which enables them to rapidly grow in height and compete for light (Poorter et al. 

2012). Light competition is therefore beneficial for height growth (Montgomery and 

Chazdon 2002; Koch et al. 2004; Rüger et al. 2011, 2012). The high growth rate of these 

species in forest gaps is also favoured by their less developed, short-lived, and 

physiologically active leaves (Poorter and Bongers 2006; Adler et al. 2014). The findings 

of Tenius Ribeiro et al. (2019) show that pioneer (i.e., heliophilous) species tend to 

dominate in nutrient-enriched soils. Soil fertility therefore has an impact on the abundance 

of this ecological tree group (Xing et al. 2022; Ye et al. 2022).  

 For sciaphilous (shade-tolerant) species, survival rather than height growth for light 

is a crucial issue (Montgomery and Chazdon 2002). These species are characterised by 

their slow height growth (Schmitt et al. 2022) and high radial growth (broader trunk 

diameter) (Janse-Ten Klooster et al. 2007; Poorter et al. 2012). The high survival rate of 

these species in the forest understorey is facilitated by the formation of long-lived leaves 

and larger crowns (Poorter and Bongers 2006; Janse-Ten Klooster et al. 2007; Adler et al. 

2014). Broader crowns improve light capture, which contributes to the trees’ shade 

tolerance (Valladares and Niinemets 2008; Niinemets 2010; Poorter et al. 2012). 
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MECHANICAL SUPPORT FUNCTION 
 

 Mechanical support refers to all the mechanisms that enable a tree to support its 

own mass, maintain its vertical stance through its motricity (Martone et al. 2010; Trouy, 

2015), while preventing damage from factors such as wind (Fournier et al. 2013; Trouy, 

2015). The relationship between the tree diameter growth and the formed wood density 

depends on the species and whether it is a softwood or a hardwood (González-Melo 2022). 

Density variation within a growth ring is very important in softwoods. This is linked to 

seasonal changes and the formation of the final wood (Saranpää 2003). 

 Wood density is a crucial biomechanical feature because it is generally linked to all 

the other wood mechanical properties (Niklas and Spatz 2010; De Borst et al. 2012). 

Shade-tolerant species are denser (Lawton 1984; Thomas 1996; Muller-Landau 2004; 

Osunkoya et al. 2007; Adler et al. 2014) and hence more rigid than light-demanding 

species. These shade-tolerant species have optimal mechanical properties that provide 

more effective mechanical support (Table 2). Because of this higher density, shade-tolerant 

species have a higher survival rate than light-demanding species (Román-Dañobeytia et al. 

2021). Wood density variations are often regarded as a trade-off for rapid competitive 

growth at the expense of wood quality, thereby reducing the trees’ safety. However, the 

biomechanical safety features (bending stiffness, buckling resistance, breakage, or 

uprooting resistance) involve both tree shape factors and the intrinsic wood properties. 

 The secondary walls of normal wood consist of the S1, S2, and S3 layers. The S1 

layer is made up of several lamellae, within which the cellulose microfibrils are oriented 

in alternating S- and Z-shaped helical structures (Salmén 2018). The S2 layer is the thickest 

and richest in cellulose (Salmén 2018). The cellulose fibrils within the S2 layer are almost 

vertical and all parallel (Salmén 2018). The angle of the microfibrils in this layer is another 

key parameter that impacts the performance of the mechanical support (Fournier et al. 

2013). The S3 layer is also made up of lamellae, like S1. However, the helical texture of 

the microfibrils is still S-shaped. This layer is mainly made up of lignin and hemicelluloses. 

An increase in the microfibril angle in the S2 layer reduces the stiffness of the wood and 

its longitudinal stress resistance (De Borst et al. 2012; Trouy 2015; Maaß et al. 2020; Phan 

et al. 2024; Wang et al. 2024). This parameter varies according to the tree growth stage. 

Juvenile wood has a larger microfibril angle and is therefore less stiff than mature wood 

(Trouy 2015). Other parameters, such as the vessels and lignin content, affect the stiffness 

of the wood and thereby its mechanical support. A reduction in lignin content would lead 

to a decline in wood stiffness (Voelker et al. 2011; Özparpucu et al. 2019; Serra-Parareda 

et al. 2020; Choi et al. 2023). According to Zhang et al. (2023), lignin plays an important 

role in tree growth. According to the article, lignin deficiency suppresses tree growth 

through xylem collapse and phloem thickening. As a result, upright plants must 

biosynthesize lignin to provide mechanical support for secondary cell walls, enabling them 

to reach great heights. Yadav and Chattopadhyay (2023) support this assertion and add that 

lignification is an important process that provides the mechanical strength plants need to 

stand upright (Balk et al. 2023). Otherwise, regarding the vessels, it has been shown that 

their content, arrangement, and shape may impact the macroscopic wood stiffness (De 

Borst et al. 2012). There is a clear link between the hydraulic efficiency and mechanical 

support in relation to the wood physical, chemical, and anatomical properties. 
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Table 2. Mechanical and Physical Properties of Shade-tolerant (n = 20) and 
Pioneer (n = 10) Rain Forest Tree Species*  

Properties Shade-tolerant Pioneer p 

Dry density, vertical stems (kg.m-3) 450.0 (80.0) 270.0 (130.0) *** 

Compression strength (N.mm-2) 21.1 (4.5) 13.3 (8.3) * 

Modulus of rupture (N.mm-2) 57.3 (13.5) 35.8 (24.1) ** 

Modulus of elasticity (N.mm-2) 5220.0 (1431.0) 4420.0 (1082.0) ns 

*(Adapted from Van Gelder et al. 2006); Mean values (± standard deviation) and significance 
levels (p) of t test; ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001 
 
 
CONDUCTIVITY FUNCTION 
 

 The vessel size and frequency are linked to the hydraulic conductivity, with larger 

vessels conducting water more efficiently than narrower ones (Olson and Rosell 2013). 

However, larger vessels cavitate before narrower vessels (Mauseth and Stevenson 2004). 

Moreover, the tree height is associated with the vessel size and frequency (Preston et al. 

2006; Martínez-Cabrera et al. 2011). McCulloh et al. (2010) found that hydraulic 

conductivity also varies with the trunk diameter. Although negative correlations have been 

found between growth-related hydraulic characteristics and wood density (Santiago et al. 

2004; Hoeber et al. 2014), according to Fan et al. (2012), anatomical features associated 

with conductivity are much better descriptors of tree growth rate. Koch et al. (2004) and 

Anfodillo et al. (2006) highlighted a link between tree height growth and hydraulic 

conductivity, with tall trees requiring greater conductivity and therefore larger vessels 

(Olson et al. 2014). Light-demanding species thus have larger vessels than shade-tolerant 

species (Chave et al. 2009; González-Melo 2022). The conduction function is optimal in 

light-demanding species. The link between vessel size and frequency has been reported by 

Fan et al. (2012); trees with larger diameter vessels have fewer of them. Shade-tolerant 

species are reported to have narrower and more frequent vessels with a lower hydraulic 

efficiency (Searson et al. 2004; Preston et al. 2006; Hacke et al. 2006; Pratt et al. 2007). 

Rüger et al. (2011) pointed out that little is known about how the growth of species present 

in species-rich tropical forests differs according to their shade tolerance. 

 The effects of climatic conditions on tree growth vary between species, and these 

effects are important for gaining insight into tree stand dynamics (Oboite and Comeau 

2021). The different responses of species to drought and frost could mirror the ecological 

groups to which they belong (Jucker et al. 2014; Nourtier et al. 2014; Latreille et al. 2017). 

Pfautsch et al. (2016) showed that tree height was promoted by the extent of available 

water. This latter availability would therefore be essential for the growth of light-

demanding species. Large air bubbles are more likely to form in large vessels, which means 

that light-demanding species are more susceptible to freeze-thaw embolism (Pittermann 

and Sperry 2006; Charra-Vaskou et al. 2016). Shade-tolerant species are more drought 

resistant (Adler et al. 2014; Jucker et al. 2014), which is facilitated because the vessels are 

smaller and more numerous, according to Baas et al. (2004). Recent studies (Rüger et al. 

2020; Guillemot et al. 2022) have also indicated a natural tendency for slow-growing 

species to better withstand drought (Fig. 2). In such cases, embolism due to drought stress 

depends on the pore size in pit primary walls rather than on the vessel size (Cochard and 

Granier 1999). Levionnois et al. (2021) also revealed the low predictive power of vessel 
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diameter on resistance to embolism due to drought as compared to the cell wall diameter-

thickness ratio. 

 

 
 

Fig. 2. Correlation between drought tolerance vs. size and growth rate of trees (redrawn from 
Guillemot et al. 2022) 

 

 
PROTECTION FUNCTION 
 

 The main properties involved in wood durability are the quantity and composition 

of heartwood extractives (Wink 2010; Martín and López 2023). Extractives are low 

molecular weight secondary organic compounds (Fig. 3). Secondary metabolites that give 

the wood its external stress resistance properties are synthesised during the heartwood 

extractive formation process (Hillis 1971). Such formation and distribution to the 

heartwood enables it to withstand attacks by fungi and wood-eating insects. This protection 

enables the heartwood to maintain its strength over time, thus preserving the integrity of 

the tree. The wood density is also related to its durability (Chave et al. 2006; Nock et al. 

2009). High wood density is associated with enhanced protection against fungal attack 

(Falster 2006; Larjavaara and Muller-Landau 2010). 

 

 
 

Fig. 3. Defence function of plant secondary metabolites (redrawn from Wink 2010) 
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 Most variability in wood durability (including the proportion of heartwood) is 

genetically controlled (Pâques 2001). Environmental, silvicultural management, and stand 

site factors have a more limited impact (Harju et al. 2001; Taylor et al. 2002). The 

extractive content generally increases from the pith to the outer heartwood, peaking in the 

heartwood-sapwood transition zone. The extractive content decreases longitudinally with 

the tree height, whereas it increases as the tree ages (Hillis 1987). The heartwood of species 

with a long lifespan is more durable (Wheeler et al. 1989). 

 Shade-tolerant species and light-demanding species are both sensitive to external 

stresses at the juvenile wood stage, yet light-demanding species are more sensitive, given 

their growth-defence trade-off at this development stage (González-Melo 2022). Tree 

ageing is linked to tree survival, i.e., a trait of shade-tolerant species. These species will 

presumably always produce more wood (higher extractive content) than light-demanding 

species, as confirmed by the findings of various authors (Dudt and Shure 1994; Coley and 

Barone 1996; Falster 2006; Imaji and Seiwa 2010; Sillett et al. 2010; Mąderek et al. 2017; 

González-Melo 2022). This investment in the protective function of shade-tolerant species 

is reflected, for instance, in their high phenolic compound and tannin contents, as well as 

their low herbivory levels (Dudt and Shure 1994; Imaji and Seiwa 2010; Mąderek et al. 

2017). This latter point should nevertheless be considered with caution because studies on 

heartwood extractive formation products have revealed a range of different strategies 

regarding this process. In a comparative study of the natural durability of highly durable 

species from French Guiana, Amusant et al. (2014) proposed that there are two types of 

strategy: extractive quantity vs. extractive quality. These authors suggested that the natural 

durability of Vouacapoua americana is due to its high quantity of extractives, whereas that 

of Bocoa prouacensis is due to the high quality and/or specificity and toxicity of its 

extractives rather than to their high quantity. 

 

 
CONCLUDING REMARKS 
 

 Trees - as they grow - fulfil the mechanical support, conduction, and protection 

functions necessary for their survival. The functional features of trees reflect the different 

ways in which a specific function can be achieved. A single species cannot be the best 

performer for all functions and under all growth conditions, which leads us to the trade-off 

concept. The functional traits of a species reflect its ecological strategy. Previously 

published studies highlighted the main characteristics of species while sketching a portrait 

of target species according to their degree of shade tolerance. 

 Heliophilous species may grow rapidly to reach great heights, while having a 

slender trunk. These light-demanding species have larger and fewer vessels, which means 

that their conduction function is efficient and optimal. However, they become more 

vulnerable to drought-induced cavitation. Sciaphilous species are slow growing with larger 

trunk diameters (not slender). The crowns are broad and the trees have long-lived leaves, 

contrary to heliophilous species. These shade-tolerant species have denser and stiffer wood 

with better mechanical support, which is compatible with their slenderness. Their hydraulic 

conductivity is, however, less effective given that the vessels are narrower and more 

numerous. Thus, their xylem is more resistant to cavitation. Sciaphilous species have better 

pest and disease protection with higher extractive levels alongside their high wood density. 

Unfortunately, little bibliographical information is available on the protective function. 
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Overall, minimal research has focused on functional traits associated with the ecological 

strategies of tropical tree species, despite their great diversity. 

 The integrative nature of wood density should be highlighted. This technological 

property appears to be the only feature that dovetails with all tree functions. Wood density 

is also linked to many of its physical and mechanical properties. Yet the wood density alone 

cannot explain everything. Rather, trees (and wood) are the result of a complex and 

extremely refined evolutionary process. These properties, which we have classified as 

technological, physical, anatomical, chemical, and mechanical, are interdependent. Few 

studies have jointly focused on all these properties, but gaining greater insight into them 

would enhance our understanding of different growth strategies and the development of 

wood quality. 
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