
Neurocomputing 612 (2025) 128712

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

MARA: A deep learning based framework for multilayer graph simplification
Cheick Tidiane Ba a,e,∗, Roberto Interdonato b,d, Dino Ienco c,d, Sabrina Gaito a

a Department of Computer Science, University of Milan, Milan, Italy
b CIRAD, UMR TETIS, Montpellier, France
c INRAE, UMR TETIS, Univ. Montpellier, Montpellier, France
d INRIA, Montpellier, France
e Queen Mary University of London, London, United Kingdom

A R T I C L E I N F O

Communicated by C. Gao

Keywords:
Graph neural network
Graph simplification
Multilayer graph

A B S T R A C T

In many scientific fields, complex systems are characterized by a multitude of heterogeneous interac-
tions/relationships that are challenging to model. Multilayer graphs constitute valuable tools that can
represent such complex systems, thus making possible their analysis for downstream decision-making processes.
Nevertheless, modeling such complex information still remains challenging in real-world scenarios. On the
one hand, holistically including all relationships may lead to noisy or computationally intensive graphs.
On the other hand, limiting the amount of information to model through the selection of a portion of the
available relationships can introduce boundary specification biases. However, the current research studies are
demonstrating that it is more beneficial to retain as much information as possible and at a later stage perform
graph simplification i.e., removing uninformative or redundant parts of the graph to facilitate the final analysis.
While simplification strategies, based on deep learning methods, have been already extensively explored in the
context of single-layer graphs, only a limited amount of efforts have been devoted to simplification strategies
for multilayer graphs. In this work, we propose the MultilAyer gRaph simplificAtion (MARA) framework, a
GNN-based approach designed to simplify multilayer graphs based on the downstream task. MARA generates
node embeddings for a specific task by training jointly two main components: (i) an edge simplification module
and (ii) a (multilayer) graph neural network. We tested MARA on different real-world multilayer graphs for
node classification tasks. Experimental results show the effectiveness of the proposed approach: MARA reduces
the dimension of the input graph while keeping and even improving the performance of node classification
tasks in different domains and across graphs characterized by different structures. Moreover, deep learning-
based simplification allows MARA to preserve and enhance important graph properties for the downstream
task. To our knowledge, MARA represents the first simplification framework especially tailored for multilayer
graphs analysis.
1. Introduction

The graph analysis and mining research field has raised in popular-
ity in the last two decades, thanks to the ability of graphs to model a
wide range of real-life phenomena from physical [1] to biological [2]
and social systems [3], from scientific [4] to financial data [5,6], trans-
portation routes [7], and many others [8]. In this regard, the multilayer
graph model [9] is widely used as a powerful tool to represent the orga-
nization and relationships of complex systems covering many different
domains. Graphs serve as models for the relationships among inter-
connected entities, usually depicted as nodes (or vertices) linked by
edges (or links) symbolizing interactions or dependencies. Multilayer
graphs extend the graph model, allowing the definition of layers, each
representing distinct aspects of relationships or attributes. For example,

∗ Corresponding author at: Queen Mary University of London, London, United Kingdom.
E-mail address: cheick.ba@unimi.it (C.T. Ba).

layers could represent the different transportation options [10,11]. As
depicted in Fig. 1, certain locations may be connected through trains
or buses or by flight, with cross-layer connections representing the
exchange options in stations and airports. For the analysis of social
media platforms, the layers could be used to represent different social
network platforms [12], where the same users may show different
relations (e.g., friendships) on different platforms, and where cross-
platform interactions can occur when content produced on a given
platform is shared on a different one. In biology, it is useful to separate
inhibition or catalyst interactions with different layers, but we need to
track the same proteins across many different interaction types [13,14].
When analyzing financial purchase behaviors, multilayer networks can
https://doi.org/10.1016/j.neucom.2024.128712
Received 6 November 2023; Received in revised form 8 July 2024; Accepted 2 Oct
vailable online 15 October 2024
925-2312/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
ober 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:cheick.ba@unimi.it
https://doi.org/10.1016/j.neucom.2024.128712
https://doi.org/10.1016/j.neucom.2024.128712
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.128712&domain=pdf
http://creativecommons.org/licenses/by/4.0/

C.T. Ba et al. Neurocomputing 612 (2025) 128712
Fig. 1. Example: a multilayer graph that models a transport system. Layers represent
different transportation modes, from the bus on the bottom layer (orange) to the trains
in the middle layer (green) and flight connections in the top layer (blue). In each layer,
intra-layer connections represent the connections among airports or stations. Stations
and airports usually allow exchanges among different transportation modes. Pillar links
(dashed) represent stations and airports located together, a common occurrence with
central stations and airport stations. Cross-layer links (dashed and bold) allow us to
represent direct connections among airports or stations. In this example, two direct
connections between the most remote bus stations to the airports are available.

be used, for example, to differentiate transactions made through dif-
ferent payment methods [15]. Indeed, the multilayer graph model has
been used in different domains and applications, illustrating its large
versatility. Multilayer graphs are designed to provide a more complete
representation of the different and heterogeneous relationships that
may characterize an entity in the graph-structured system, using the
rich data available from complex systems [16] thus, providing an
informative model for the underlying downstream task.

However, collecting a wide set of different relationships among
a large set of entities can easily result in a significant amount of
noise (e.g., incomplete, imprecise, or redundant information) caused by
the choice regarding which entities and relations should be included
in the data. Single-layer graphs are already affected by this phe-
nomenon, known as the boundary specification problem [17,18], which
is exacerbated in multilayer graphs [19]. For the case of multilayer
graphs, the problem not only requires choosing which entities should
be included in the graph (horizontal boundary) but there is also the
problem of selecting which types of relations have to be included in
the network, i.e., the number of layers and their semantics (vertical
boundary specification problem [20]). While the increasing amount of
information opens new research avenues [21], it can also include irrele-
vant knowledge related to the task at hand [16]. Therefore, it becomes
crucial to conduct effective graph simplification [16], i.e., removing
uninformative or redundant parts of the graph, such as entities, edges,
or even layers to facilitate the final analysis.

While several machine learning techniques for the simplification of
single-layer graphs have already been proposed in the literature [22,
23], for the multilayer graphs scenario only a few preprocessing heuris-
tics, mainly unsupervised, exist [16], while cutting-edge techniques
2
such as graph neural networks have not yet been exploited. Further-
more, work on multilayer graph neural networks [24,25] demonstrated
how crucial is to design approaches specially tailored for these complex
structures, i.e., to obtain representations (embeddings) that convey
the rich information present in the input graph. As a matter of fact,
the straightforward application of single-layer approaches to multilayer
graphs is not trivial: while a single-layer approach could be applied on
each layer separately, the important interplay among the various layers
would be lost. The same holds for the simplification task at the heart
of this work: a framework able to thoroughly leverage the multilayer
structure is of paramount importance to obtain a simplified multilayer
graph properly optimized for the related downstream task.

In this work, we propose the MultilAyer gRaph simplificAtion
(MARA) framework, a GNN-based framework designed to simplify
multilayer graphs based on the downstream task. MARA generates
node embeddings for a specific task by training end-to-end two main
components: (i) an edge simplification module and (ii) a (multilayer)
graph neural network. We tested MARA under node classification
on real-world multilayer graphs from different domains. Experimen-
tal results show the effectiveness of the proposed approach: MARA
dramatically reduces the dimension of the input graph not only main-
taining the initial classification performances but even improving them.
With MARA, we do not only enable simplification approaches that
leverage single-layer simplification techniques on multilayer graphs but
we also extend existing methods to work directly on multilayer graphs.
Thus, with MARA, we can select the most appropriate simplification
approach depending on the downstream task. Moreover, we observe
that MARA can influence and enhance important graph properties,
such as label assortativity. Indeed, as the selection of task-irrelevant
edges is refined during the training, MARA is guided in the selection
of the most important properties to preserve or enhance.

Due to the wide range of data that can be modeled as a multilayer
graph, the proposed framework can have a large room of applications
covering different fields like biology, physics, and health/medical anal-
ysis, where increased robustness is needed to address noise from data
acquisition. Furthermore, data quality, computational performances
and information visualization are also crucial aspects of any process
dealing with massive amounts of graph-structured data, such as so-
cial media, communication, biological, transportation and financial
systems.

2. Background

In this section, we provide background knowledge regarding the
formal definition of the multilayer graph model adopted in this paper,
the use of graph neural networks for the analysis of multilayer graphs,
and graph simplification approaches based on deep learning. All the
notations used in this paper are summarized in Table 1.

2.1. Multilayer graph model

In this subsection, we will define the main concepts for the mul-
tilayer graph model, with the definition and notations we need to
formally define the framework. Since in this work, we will use ML-
GCN (Multilayer Graph Convolutional Neural Network) to instantiate
MARA, for ease of reference we adopt similar definitions of multilayer
graph as in the work where it was originally proposed [25]:

Definition 2.1 (Multilayer Graph). Given a set  of entities, and a set
of layers  = {𝐿1,… , 𝐿𝑙} with || = 𝐿 ≥ 2, a multilayer graph is
 = (, , ,), where  ⊆  × is the set of entity-layer pairings
or nodes (i.e., to denote which entities are present in which layers), and
 =  ×  is the set of directed edges between nodes.

C.T. Ba et al.

t
c
l
e
𝛤

S

𝐴

t
(

t

C
o
t
I
l
e
e
d
s
o
a
c
a
t
i

g

t
t
r

Neurocomputing 612 (2025) 128712
The presence of layers implies that edges can connect nodes within
he same layer or across layers. We define as within-layer edges the links
onnecting nodes in the same graph layer. Formally a link is a within-
ayer link when ((𝑖, 𝑙), (𝑗 .𝑚)) ∣ (𝑖, 𝑙), (𝑗 .𝑚) ∈ , 𝑙 = 𝑚. The within-layer
dges involving a node (𝑖, 𝑙) determine the within-layer neighborhood
(𝑖, 𝑙):

Definition 2.2 (Within-layer Neighborhood).
𝛤 (𝑖, 𝑙) = {(𝑗 , 𝑙) ∈ |((𝑗 , 𝑙), (𝑖, 𝑙)) ∈ } (1)

Within-layer edges are usually described by a set of adjacency
matrices 𝐴 = {𝐴1,… , 𝐴𝓁}, where each matrix 𝐴𝓁 describes the links
in the corresponding layer 𝓁. These adjacency matrices describe layer-
by-layer connections. However, one of the most interesting features of
the multilayer graph model, is the presence of links connecting nodes
in different layers, the cross-layer edges/links. More formally, an edge
((𝑖, 𝑙), (𝑗 .𝑚)) is a cross-layer edge when ((𝑖, 𝑙), (𝑗 .𝑚)) ∣ (𝑖, 𝑙), (𝑗 .𝑚) ∈ , 𝑙 ≠
𝑚. In this case, when the focus is on the cross-layer links involving
(𝑖, 𝑙), we consider the outside-layer neighborhood. 𝛹 (𝑖, 𝑙) that includes
all nodes reachable with cross-layer links from (𝑖, 𝑙). The outside-layer
neighborhood 𝛹 (𝑖, 𝑙) can be formally defined as:

Definition 2.3 (Outside-layer Neighborhood).
𝛹 (𝑖, 𝑙) = {(𝑗 , 𝑚) ∈ |((𝑗 , 𝑚), (𝑖, 𝑙)) ∈ , 𝑚 ≠ 𝑙} (2)

To represent both within and cross-layer edges, we can define a
upra adjacency matrix:

Definition 2.4 (Supra Adjacency Matrix). The supra adjacency matrix
𝑠𝑢𝑝 is:

𝐴𝑠𝑢𝑝 =

{

𝐴𝑙 if diagonal block
𝐴𝑙 ,𝑚 otherwise (i.e., off the diagonal block).

(3)

where 𝐴𝑙 ,𝑚 is an adjacency matrix built upon the cross-layer connec-
ions between layer 𝑙 and layer 𝑚 (i.e., 1 if there exists an edge between
𝑖, 𝑙) and (𝑢, 𝑚) with 𝑙 = 𝑚, and 0 otherwise).

2.2. Graph neural networks

In the field of deep learning for graph-structured data, graph neural
networks (GNNs) have emerged as the state-of-the-art approach in
many different tasks, such as node classification [26], link predic-
tion [27], community detection [28] and graph classification [29].
GNNs redefine basic deep learning operations, such as convolution,
for graph-structured data. Thanks to their ability to make predictions
leveraging the graph structure jointly with node and edge-level fea-
ures, they benefit several fields such as recommender systems [30],

social networks analysis [31], and network medicine [32]. In the Graph
onvolutional Network (GCN) model proposed by [33], the operation
f convolution on graphs is performed through an aggregation of
he values of each node’s features along with its neighbors’ features.
n general, deep learning models use operations like convolution to
earn low dimensional latent representations for each node or edge or
ven entire graphs, the so-called node/edge/graph embeddings. If these
mbeddings are 𝑑 dimensional, then we can expect them to be low
imensional i.e. 𝑑 ≪ |𝑉 |, and that similar nodes in terms of network
tructure will be characterized by a similar embedding. Given 𝑉 a set
f vertexes, 𝑋 the node feature matrix, and 𝐴 the adjacency matrix,
 graph can be represented as 𝐺 = (𝑉 , 𝐴, 𝑋). A GCN model wants to
ompute the best possible embedding ℎ of a node 𝑖. We do so through
n aggregation process over a series of graph convolution layers, where
he embeddings in each layer 𝑘, are used to compute the embeddings
n the following layer 𝑘 + 1. The aggregation in GCN involves the
3
Table 1
Summary of notations used in the paper and their description.

Notations Description

 Multilayer graph
 Set of N entities (e.g., users)
,𝓁, 𝐿𝑙 Set of layers, number of layers, 𝑙th layer
 Set of nodes in 
 Set of edges 
𝐴, 𝐴𝓁 Adjacency matrix in G, Adjacency matrix of the 𝑙th layer

of 
𝐴𝑠𝑢𝑝 Supra-adjacency matrix
𝐴,𝐴𝑠𝑢𝑝 Adjacency matrix and supra-adjacency matrix with self

loops
𝑣𝑖 , 𝑖 Index 𝑖 of a node 𝑉𝑖 ∈ 
𝛤 (𝑖) Neighborhood of node 𝑉𝑖
𝛤 (𝑖, 𝑙) Within-layer neighborhood of node 𝑉𝑖
𝛹 (𝑖, 𝑙) Outside-layer neighborhood of node 𝑉𝑖
𝑋 , 𝑋𝑙 Attribute (input feature) matrix, resp. in the 𝑙th layer of


𝑥, 𝑥(𝑖,𝑙) Attribute (input feature) vector for node 𝑣𝑖, resp. node 𝑣𝑖

in the 𝑙th layer of 
𝑓 Number of attributes (input features)
𝐸 Edge attribute matrix
𝑓𝐸 Number of edge attributes
(, ,) Attributed multilayer graph
𝑑 Size of the embedding
𝑍 , 𝑍𝑙 Embedding (output feature) matrix, resp. in the 𝑙th layer

of 
𝑧𝑖 , 𝑧(𝑖,𝑙) Embedding (output feature) vector for node 𝑣𝑖, resp. node

𝑣𝑖 in the 𝑙th layer of 
𝑊 , 𝑊 𝑘 Weight matrix of a generic, resp. weights of 𝑙th GNN

layers
𝑓𝑊 , 𝑓 (𝑘)

𝑊 GNN module, GNN at the 𝑘th GNN layers
𝐾 , 𝑘 Number of GNN layers, index of a layer of the GNN
𝐻 (𝑘+1) = 𝑓 (𝑘)

𝑊 (𝐻 (𝑘) , 𝐴) A GNN layer computation
𝑓𝜃𝑆 , 𝑓 𝑘

𝜃𝑆
simplification neural network and its parameters, resp.
simplification neural network for a certain GNN layer

ℎ𝑖 Hidden layer vector for node 𝑣𝑖
ℎ(𝑘)
(𝑖,𝑙) Hidden layer vector at the 𝑘th layer of the GNN for

entity 𝑣𝑖 in layer 𝐿𝑙 of 
𝑌 , 𝑌 Ground truth, predictions

embeddings of the nodes 𝑖 neighborhood 𝑁(𝑖), to perform the following
computation:

ℎ(𝑘+1)𝑖 = 𝜎

⎛

⎜

⎜

⎜

⎝

∑

𝑗∈𝑁(𝑖)

1
√

𝐷̃𝑖𝑖𝐷̃𝑗 𝑗
ℎ(𝑘)𝑗 𝑊 (𝑘+1)

⎞

⎟

⎟

⎟

⎠

(4)

where 𝐷̃𝑖𝑖 =
∑

𝑗 𝐴𝑖𝑗 corresponds to the degree of 𝑖, computed on 𝐴𝑖𝑗 the
adjacency matrix with self-loops added; 𝑊 are the aggregation weights
of the GCN module. The aggregation that generates the embedding
ℎ(𝑘+1)𝑖 is order-invariant, like the average function in Eq. (4).

Starting from this model, we have seen the surge of many architec-
tures, to cover different tasks and types of graph data such as signed
raphs, temporal graphs, and more recently multilayer graphs.

2.3. Graph neural networks for multilayer graphs

Similarly to single layer graphs, the multilayer network embedding
problem consists of learning low dimensional latent representations for
each node (identified by an entity-layer pair), such that nodes that are
similar in  have embeddings close to each other [25]. Deep learning
asks are more challenging to apply on multilayer graphs because of
he presence of intra-layer and cross-layer (also found as inter-layer)
elations, different layer characteristics, as well as node features [25].

There have been some attempts to design methods and frameworks
for deep learning for multilayer graphs. MANE [34], integrates cross-
layer edges for embedded representation learning, and formulates node
embedding computation as an optimization problem, incorporating
both intra-layer and cross-layer connections. However, it does not
account for node attributes in the process. In contrast, MGCN [35]

C.T. Ba et al.

f
c
g
r
c
l

o

d
i

b
l
s
h
o
o
e

t
r
t
p

t

s

a
u

a

w

g
m

v
f
l

s
t
s
t
f

Neurocomputing 612 (2025) 128712
extends the GCN model to multilayer networks by constructing a GCN
or each layer, using links only between nodes of the same layer and
ombining them in a subsequent step. The ML-GCN method [25] distin-
uishes itself by integrating cross-layer edges into the GCN propagation
ules, enabling a more effective consideration of interlayer connections
ompared to MGCN. Additionally, this approach has the ability to
everage node features that are not captured by MANE . The ML-GCN

framework reformulates the propagation rule of the GNN component
(i.e. GCN) to aggregate topological neighborhood information from
different layers. While in GCN, aggregation involves a node’s features
and its neighbors’ features, in the ML-GCN the aggregation is performed
with both its neighbors in that layer (the within-layer neighborhood)
and on its neighbors located in other layers where the entity occurs (the
utside-layer neighborhood). More formally:

ℎ(𝑘+1)(𝑖,𝑙) = 𝜎

⎛

⎜

⎜

⎜

⎝

∑

(𝑗 ,𝑚)∈𝛤 (𝑖,𝑙)∪𝛹 (𝑖,𝑙)

1
√

𝐷̃𝑖𝑖𝐷̃𝑗 𝑗
ℎ(𝑘)(𝑗 ,𝑚)𝑊 (𝑘+1)

⎞

⎟

⎟

⎟

⎠

(5)

where 𝐷̃𝑖𝑖 =
∑

𝑗 𝐴
𝑠𝑢𝑝
𝑖𝑗 where 𝐴𝑠𝑢𝑝

𝑖𝑗 is the supra-adjacency matrix with
self-loops added.

2.4. Deep learning for graph simplification

Graph simplification consists of removing uninformative or redun-
ant parts of the graph while keeping almost all information of the
nput graph [36]. While there are many works on simplification [37],

only a few are focused on simplification for deep learning on graphs.
DropEdge [36] simplifies the graph for a GNN model (e.g. GCN) by
randomly removing a fraction of the edges from the input graph during
the training phase. The method influences only the training phase,
while during validation and testing the removal is not performed. The
evaluation of DropEdge shows that even a random removal can lead
to similar or improved performance across different tasks, such as
node classification and link prediction. As noted in [36], even when
performance gain is not significant, the advantage of simplification lies
in the fact that the randomness and the diversity of the input graph
are increased, thus reducing the risk of overfitting (i.e., when the gap
etween the training error and test error is too large because the model
earns properties of the training set that are not present in the test
et [38]). Moreover, removing edges makes links more sparse, which
elps to reduce the impact of over-smoothing, i.e., the phenomena that
ccurs when the node-specific information is lost after several iterations
f GNN message passing [39], leading to very similar embeddings for
very node.

However, this approach has a key limitation: only the graph neural
network component is trained, while the simplification module cannot
improve during training. Therefore, some approaches were introduced,
hat rely on a deep learning based simplification module whose pa-
ameters can be tuned during training. In this case, the approaches
rain both components end to end: this is the case of NeuralSparse,
resented in [22]. In NeuralSparse [22], the simplification process is

done through the deep neural network: during the training phase,
he deep neural network learns a simplification strategy that favors

downstream tasks. In the testing phase, the neural network is used to
select the edges to remove from the input graph, based on the learned
strategy. The neural network model, i.e., the multilayer perception
(MLP), is given in input an edge’s features and the features of the
nodes it connects and uses them to compute a score, that will be
higher when the method thinks it is worth it to keep a certain edge
in the graph. During training, the selection process revolves around a
ampling procedure, revolving around k-neighbor subgraphs. In practice,

according to a hyperparameter 𝑘, the method will select for each
node only a subset 𝑘 of its neighbors. The selection is done for each
node, leading to a new simplified graph, that is used for convolution
by the GNN. The key advantage is that, in this case, the simplifi-
cation module has parameters that can be adjusted during training.
4
However this is not straightforward, since the sampling process is
stochastic and thus essentially non-differentiable. In NeuralSparse, the
solution consists of performing the sampling process with a function
that can approximate the sampling from a categorical distribution, in
our case the selection among edges, but can be made differentiable
through some mathematical reformulations. They selected the Gumbel-
Softmax [40,41], a method that can approximate the sampling from
 categorical distribution and most importantly, it is differentiable
sing a reparameterization trick [41]. The reparameterization trick

rewrites the stochastic sampling process as a linear combination of
two components, one deterministic and the other stochastic [42]. The
deterministic part can be adjusted through backpropagation, while the
stochastic part can be ignored. Therefore, the simplification module is
now trained during the process. Instead, during validation and testing,
the graph can be simplified relying on the neural network component,
without the reliance on sampling. When features are informative for
the task, the selection process should be more accurate, thus leading
to a more precise selection process and potentially to improvements in
terms of performance.

Other works rely on similar principles. In AdaptiveGCN [43] simpli-
fication process is led by a deep neural network like in NeuralSparse,
but a simplification step is performed before each graph convolution
step. In PTDnet [44] additional constraints on the simplification process
re introduced, encouraging the removal of more edges or prioritizing

the simplification of edges connecting different node clusters. Other
orks such as [23,45] have designed frameworks for simplification

with reinforcement learning. Note that while there are several works
on single-layer graph simplification, there is a lack of work relying on
deep learning for the simplification of multilayer graphs.

3. Research questions

From the literature, it becomes clear that graph simplification has
many advantages, such as the limitation of overfitting, that can lead
to better generalization performances and it also limits the effects of
over-smoothing, thus allowing for deeper models [36]. But while there
are several works on single-layer graph simplification, there is a lack
of works relying on deep learning for the simplification of multilayer
raphs, mainly because the applications of single-layer methods in the
ultilayer case are not straightforward. Given the benefits of graph

simplification and the usefulness of the multilayer graph model, it is
ery important to fill this research gap. Therefore, in this work, we
ace the problem of understanding how we can apply the current deep
earning based approaches designed for single-layer graphs to multi-

layer graphs. Among various aspects, we would like to see how graph
implification methods influence prediction performances, compared
o single-layer cases. Moreover, we would like to deepen our under-
tanding of the simplification process, especially when the methods can
une their selection strategy. These aspects can be summarized in the
ollowing research questions:

Research question RQ1: What is the impact of graph simplification
performed on multilayer graphs?

Research question RQ2: How does graph simplification influence the
structure of multilayer graphs?

Research question RQ3: How is prediction performance affected by
the graph simplification hyperparameters?

4. The MARA framework

In order to address our research questions, in this work, we in-
troduce a framework for the simplification of multilayer graphs and
evaluate the impact of a simplification approach on a machine learning
task. We evaluate the impact of graph simplification approaches on
a typical learning task, i.e., node classification. In this section, we
formally present the problem and the framework.

C.T. Ba et al. Neurocomputing 612 (2025) 128712
Fig. 2. Proposed multilayer graph simplification framework. Overview of the proposed framework. A simplification module 𝑓𝜃 and multilayer graph neural network 𝑓𝑊 , are used
to generate node embeddings for a downstream task. If the simplification module is trainable e.g. a neural network, it is possible to train the two components jointly: through
gradient descent, we update the parameters 𝜃 , 𝑊 backpropagating from the loss function 𝓁. In this case, the simplification module can learn to detect noisy links specifically for
the downstream task.
4.1. Problem definition

The graph simplification problem on single-layer graphs can be
defined as follows: given a graph 𝐺(𝑉 , 𝐸 , 𝑋𝐸 , 𝑋𝑉), where 𝑉 is a set of 𝑛
nodes, 𝐸 ⊂ 𝑉 ×𝑉 is the set of edges; 𝑋𝑉 is a set of node attributes, 𝑋𝐸
is a set of edge attributes. Simplification tries to obtain a subgraph of 𝐺,
that would be 𝐺′ = 𝐺(𝑉 ′, 𝐸′, 𝑋𝐸 , 𝑋𝑉), where 𝑉 ′ ⊂ 𝑉 ∨ 𝐸′ ⊂ 𝐸 i.e the
number of nodes and/or edges is reduced. Similarly, on a multilayer
graph, simplification can be defined as the problem of obtaining a
graph 𝑓𝜃𝑆 () = ′ = ( ′

, 
′
,

′,′) so that the number of nodes
and/or edges is reduced. Formally, we are looking for a simplified
multilayer graph ′. such that the following disjunction of conditions
holds: || < | ′

|∨|| < |′
|∨|| < | ′

|∨|| < | ′
|. In the following,

we present the framework to compute the simplified multilayer graph.

4.2. The simplification framework

We propose the MultilAyer gRaph simplification (MARA) frame-
work, a GNN-based approach designed to simplify multilayer graphs
based on the downstream task. An overview of the framework is
presented in Fig. 2.

MARA generates node embeddings for a specific task by training
jointly two main components: (i) an edge simplification module and
(ii) a (multilayer) graph neural network. Based on this framework, we
propose two approaches to perform graph simplification on a multi-
layer graph: (i) Layer by layer graph simplification and (ii) Multilayer
graph simplification. We now present the two concepts behind them.

Layer by layer graph simplification. To perform graph simplification
on a multilayer graph by exploiting methods for single-layer graphs, we
can use a layer-by-layer approach. In the layer-by-layer simplification,
methods are applied to each layer before recomposing the supra-
adjacency matrix: cross-layer links are not involved. We can define a
layer graph as 𝐺[𝓁] where every edge connects nodes in the same layer
𝓁. Therefore, at each layer 𝓁 a simplification neural network 𝑓𝜃𝓁𝑆

detects
noisy links over the layer-graph 𝐺[𝓁], generating a new version of the
graph that we can define as 𝐺[𝓁]′. The simplified graphs are used to
update 𝐴′𝑠𝑢𝑝, which will be used to train the graph neural network.

It is important to note that simplification can be applied at a
different stages of the process: we can simplify once or before each graph
convolutional layer. In the first case, a simplification module detects
noisy elements while a graph neural network model is used to generate
node embeddings for a downstream task. Here, simplification occurs
only once, so that the graph is the same at each GNN layer. In the other
case, at each GNN layer, a simplification module detects noisy elements
while a graph neural network model generates node embeddings for
a downstream task. The simplification is performed multiple times so
that before each GNN layer, we are considering different versions of the
graph.
5
MARA allows training with both simplification stages. The train-
ing phase for layer-by-layer graph simplification is summarized in
Algorithm 1.

Algorithm 1 Training step for layer-by-layer simplification with ML
GNN
1: Input: training multilayer graph , graph neural network 𝑓𝑊 ,

simplification neural network 𝑓𝜃𝑆 , simplification stage 𝑠𝑡𝑎𝑔 𝑒.
2: Output: Embeddings for downstream task
3: function: LayerByLayerSimplificationTrainingStep(,𝑓𝑊 ,

𝑓𝜃𝑆 ,𝑠𝑡𝑎𝑔 𝑒)
4: 𝐴𝑠𝑢𝑝 ← .getSupraAdjacencyMatrix()
5: 𝐻0 ← .𝑋𝑣 ⊳ number of GNN hidden layers
6:  ← .𝑋𝑣 ⊳ number of graph layers
7: 𝐾 = 𝑓𝑊 .𝐾 ⊳ number of layers in the graph
8: if 𝑠𝑡𝑎𝑔 𝑒 = ‘‘once’’ then ⊳ Simplify graph just once
9: 𝑡𝑒𝑚𝑝 = array()

10: for layer 𝓁 ∈ 1... do
11: 𝐺 ← .getLayerSubgraph(𝑙)
12: 𝐴𝓁 ← 𝐺.getAdjacencyMatrix()
13: 𝐴′

𝓁 ← 𝑓𝜃𝓁𝑆
(𝐴𝓁 , 𝐺 .𝑋𝑉 , 𝐺 .𝑋𝐸) ⊳ simplify layer subgraph 𝐺

14: 𝑡𝑒𝑚𝑝.append(𝐴′
𝓁)

15: end for
16: 𝐴′𝑠𝑢𝑝 ← Merge 𝑡𝑒𝑚𝑝 into a supra adjacency matrix
17: end if
18: for 𝑘 = 1...𝐾 do ⊳ GNN layers activation
19: if 𝑠𝑡𝑎𝑔 𝑒 = ‘‘each’’ then ⊳ Different graph every time
20: 𝑡𝑒𝑚𝑝 = array()
21: for layer 𝓁 ∈ 1... do
22: 𝐺 ← .getLayerSubgraph(𝑙)
23: 𝐴𝓁 ← 𝐺.getAdjacencyMatrix()
24: 𝐴′

𝓁 ← 𝑓𝜃𝓁𝑆
(𝐴𝓁 , 𝐺 .𝑋𝑉 , 𝐺 .𝑋𝐸) ⊳ simplify layer subgraph 𝐺

25: 𝑡𝑒𝑚𝑝.append(𝐴′
𝓁)

26: end for
27: 𝐴′𝑠𝑢𝑝 ← Merge 𝑡𝑒𝑚𝑝 into a supra adjacency matrix
28: end if
29: 𝐻𝑘 ← 𝑓 (𝑘−1)

𝑊 (𝐻 (𝑘−1), 𝐴′𝑠𝑢𝑝) ⊳ hidden representations update
30: end for
31: Backpropagation to update 𝑓𝜃𝑆 , 𝑓𝜃𝑊
32: return trained 𝑓𝜃𝑆 , trained 𝑓𝜃𝑊

Multilayer graph simplification. To define a simplification method-
ology conceived explicitly for a multilayer graph, able to properly take
into account the complex structure of such a model, we propose to use
a simplification neural network 𝑓𝜃 that detects noisy edges and a graph
neural network 𝑓 to generate node embeddings for a downstream task
𝑊

C.T. Ba et al. Neurocomputing 612 (2025) 128712
Fig. 3. Overview of the proposed approaches for multilayer graph simplification: (a) layer-by-layer and (b) multilayer. Note that the difference between the two approaches lies in
the simplification process, while the use of the GNN is the same.
(cf. Fig. 3(b)). The key difference with respect to the single-layer coun-
terpart is that the simplification module is unique, and acts directly
on the supra-adjacency matrix 𝐴𝑠𝑢𝑝 to generate the simplified 𝐴′𝑠𝑢𝑝.
Acting directly on the supra-adjacency matrix also has an additional
advantage: the simplification module can remove noisy or redundant
cross-layer links as well. Even in the multilayer simplification case,
simplification can be applied at different stages: we can simplify once
(i.e., the graph is the same at each GNN layer) or before each graph
convolutional layer (i.e., the simplification is performed multiple times,
so that each GNN layer works on a different version of the graph).
The training phase for multilayer graph simplification is summarized
in Algorithm 2.

5. Experimental evaluation

In this section, we present the dataset we collected or generated and
the experimental setting we used to perform the framework evaluation.

5.1. Data

For the experimental evaluation, we selected datasets from dif-
ferent domains showing different structural characteristics. Dataset
characteristics are summarized in Table 2.

All the selected multilayer graph datasets are associated with real-
word node features, a characteristic that can be leveraged by a simpli-
fication module to guide the underlying decision process. The um-econ
and um-socioeco [12] multilayer graphs describe user interactions in a
decentralized social media platform (Steemit) [47,48]. In these graphs
nodes are users, and layers are interactions of different types. Users can
engage in various actions that form connections between them, either
explicitly or implicitly. Key operations include social activities typical
of traditional social networks, such as posting, rating, voting, sharing,
6
Algorithm 2 Training step for multilayer simplification with ML GNN
1: Input: training multilayer graph , graph neural network 𝑓𝑊 ,

simplification neural network 𝑓𝜃𝑆 , simplification stage 𝑠𝑡𝑎𝑔 𝑒.
2: Output: Embeddings for downstream task
3: function: MultilayerSimplificationTrainingStep(,𝑓𝑊 , 𝑓𝜃𝑆 ,𝑠𝑡𝑎𝑔 𝑒)
4: 𝐴𝑠𝑢𝑝 = .getSupraAdjacencyMatrix()
5: 𝐻0 = .𝑋𝑣 ⊳ Initial embeddings are node features
6: 𝐾 = 𝑓𝑊 .𝐾 ⊳ number of GNN hidden layers
7: if 𝑠𝑡𝑎𝑔 𝑒= "once" then ⊳ Simplify graph just once
8: 𝐴′𝑠𝑢𝑝 ← 𝑓𝜃𝑆 (𝐴

𝑠𝑢𝑝,.𝑋𝑉 ,.𝑋𝐸) ⊳ Simplify
9: end if

10: for 𝑘 = 1...𝐾 do ⊳ GNN layers activation
11: if 𝑠𝑡𝑎𝑔 𝑒 = ‘‘each’’ then ⊳ Different graph every time
12: 𝐴′𝑠𝑢𝑝 ← 𝑓𝜃𝑆 (𝐴

𝑠𝑢𝑝,.𝑋𝑉 ,.𝑋𝐸) ⊳ Simplify
13: end if
14: 𝐻𝑘 ← 𝑓 (𝑘−1)

𝑊 (𝐻 (𝑘−1), 𝐴′𝑠𝑢𝑝) ⊳ hidden representations update
15: end for
16: Backpropagation to update 𝑓𝜃𝑆 , 𝑓𝜃𝑊
17: return trained 𝑓𝜃𝑆 , trained 𝑓𝜃𝑊

Table 2
Summary of structural characteristics of the graph datasets: type of the graph, number
of layers (L), number of nodes (|𝑉 |), number of edges (|𝐸|), density (mean/SD) over
the layers (d), and number of classes (C).

Dataset L |𝑉 | |𝐸| d C

imdb-mlh 2 5614 23 208 0.0007 ± 0.0000 3
um-econ 2 15 414 224 855 0.0018 ± 0.0012 4
um-socioeco 4 18 212 1 199 863 0.0138 ± 0.0118 4
Koumbia 2 2 4492 18 783 0.0010 ± 0.0001 2
Koumbia 5 5 11 230 91 938 0.0010 ± 0.0002 2

C.T. Ba et al.

a
o
p
f
t
d
l
c
s
s
s
o
g

f
a
g
c

a
t
o
a
s
e
t
a
d
o
K
f

a

Neurocomputing 612 (2025) 128712
Table 3
AUC (mean and standard deviation over 3 random seeds [46]) obtained by the baseline and MARA.

Model Simp Data stage um-econ um-socioeco imdb-mlh Koumbia 2 Koumbia 5
GNN – – 0.7420 ± 0.0022 0.6939 ± 0.0234 0.8035 ± 0.0218 0.9056 ± 0.0049 0.9237 ± 0.0033

MARA Multi Once 0.7451 ± 0.0128 0.6936 ± 0.0279 0.8135 ± 0.0351 0.9068 ± 0.0007 0.9228 ± 0.0041
(DE) Each 0.7487 ± 0.0150 0.6905 ± 0.0233 0.8122 ± 0.0324 0.9042 ± 0.0075 0.9246 ± 0.0069

l-b-l Once 0.7407 ± 0.0083 0.6939 ± 0.0234 0.8005 ± 0.0253 0.9059 ± 0.0059 0.9252 ± 0.0063
Each 0.7418 ± 0.0102 0.6988 ± 0.0130 0.8079 ± 0.0280 0.9022 ± 0.0045 0.9238 ± 0.0051

MARA Multi Once 0.7522 ± 0.0084 0.6924 ± 0.0208 0.8011 ± 0.0299 0.9023 ± 0.0042 0.9223 ± 0.0138
(NS) Each 0.7458 ± 0.0107 0.6817 ± 0.0347 0.7987 ± 0.0257 0.9080 ± 0.0023 0.9244 ± 0.0093

l-b-l Once 0.7438 ± 0.0113 0.7199 ± 0.0099 0.8077 ± 0.0260 0.9087 ± 0.0045 0.9205 ± 0.0022
Each 0.7457 ± 0.0008 0.7076 ± 0.0423 0.8046 ± 0.0249 0.9103 ± 0.0052 0.9281 ± 0.0067
n
s

e
t
o
m

t

A

and following. For instance, ‘‘following’’ is an explicit action connecting
two users, while voting for a post or comment by another user forms
n implicit relationship. Additionally, users can participate in monetary
perations involving the trading of cryptocurrency tokens, which the
latform distributes to incentivize participation (a detailed recap can be
ound here [47]). In our framework, different layers separate various
ypes of interactions, with each intra-layer connection representing a
ifferent relationship type. For example, the ‘‘following’’ relationship
ayer is distinct from the trading relationship layer. Cross-layer links
onnect the same user across these layers. Although the platform
upports numerous interactions, our focus is on the most common and
ignificant ones. User labels describe their migration to a different
ocial media platform, called Hive (4 cases: inactive, stay, leave, active
n both as defined in previous works [49,50]). User migration has
ained increasing relevance [51–54], particularly with the emergence

of new-generation platforms [12,50,55–57]. Although the Steemit plat-
orm supports numerous interactions, our focus is on the most common
nd significant ones, as in previous works. The um-econ dataset is a sub-
raph composed of 2 layers of economic interactions, while um-socioeco
onsiders interaction on 4 layers, 2 social and 2 economic.In addition,

to graph structure, we also have user features derived from graph-based
metrics, such as PageRank [58]. IMDb-mlh [59] is a multilayer graph
derived from the IMDb movie database. IMDb is a ... and it has been
used as a data source for many machine learning tasks and network
nalysis tasks [60–63]. Different multilayer graphs can be derived from
his data source, depending on the selected task, in this work, we rely
n the version used in [59], where nodes are movies and two movies
re connected if they share either an actor or a director. The layers
eparate the type of connection, so the intra-layer layer can represent
ither a shared actor or a shared director. Cross-layer links, similar
o the previous case, maintain the identity, linking the same movies
cross the layers. Movie labels describe the movie type (action, comedy,
rama). In addition, node features are generated from a text summary
f the plot, to be leveraged by the machine learning models. Finally
oumbia 2 and Koumbia 5 [25,64] are multilayer graphs extracted

rom a time series of Sentinel-21 optical satellite images, covering
the agricultural landscape of Koumbia in Burkina Faso. The graphs
are generated via the geo2net framework,2 which allows [to derive]
multilayer graphs from satellite images with an arbitrary number of
layers, for a customizable detailed representation of the dataset. In the
derived graphs, the nodes represent segments of the satellite image,
nd labels correspond to either crop (cultivated areas) or no-crop

(uncultivated areas, such as forests) segments. Layers correspond to
functional classes (e.g., temporal radiometric profiles). More precisely,
the framework infers both nodes and edges from Satellite Image Time
Series, and similarly layer memberships and edge weights are also
derived this way, for both intra-layer links and cross-layer links. A key
difference from other datasets is that cross-layer links can link both

1 https://sentinel.esa.int/web/sentinel/missions/sentinel-2.
2 https://gitlab.irstea.fr/raffaele.gaetano/geo2net.
 r

7
the same nodes across layers but can also link different nodes across
different layers, with different weights determined by the geo2net
framework. The network also includes real-world attributes for each
ode, corresponding to a time series of radiometric statistics for each
egment.

5.2. Experimental setting

In this work, we focus on node classification tasks, i.e., we learn the
mbeddings required to predict the label associated with each node in
he graph. As GNN for MARA we select the GCN, but note that any
ther GNN model can be leveraged. As a baseline, we consider the
ultilayer GNN [25] (GNN). As previously discussed, MARA can be

equipped with different simplification strategies as well. In this work,
we selected (i) DropEdge [36] (MARA(DE)), the single-layer graph
simplification method that randomly removes edges with probability 𝑝,
and (ii) NeuralSparse [22] (MARA(NS)), which is able to leverage node
features to select a subset of edges to keep (a subgraph-based selection
process is performed where for each node only 𝑘 of its neighbors are
kept as well as their connecting edges). Note that both approaches were
originally designed for single-layer simplification, hence for this work,
we extended them to perform multilayer (multi) and layer-by-layer (l-
b-l) simplification (cf. Section 4). Moreover, each implementation can
be applied at different stages: we can simplify once or before each graph
convolution layer (cf. Section 4). For MARA(DE), we consider different
drop rate probabilities 𝑝 = {0.1, 0.3, 0.5, 0.7}, while for MARA(NS),
we assess different 𝑘 = {5, 10.15}, with 𝜏 varying during training as
in [22]. We perform all the experiments with a transductive learning
setting like in [25]. In a transductive setting, all node attributes and
topological information can be used for training, while only a subset
of labels is visible to the GNN model. All models were trained using
he Adam optimization algorithm [65] with full batch training [33],

L2 weight regularization set to 0.0005. For each graph and method,
the average accuracy was computed over 3 independent runs, where
each run corresponded to a different train-validation-test split, with
25% of training entities as previously done in [25] and the rest split
in validation (25%) and test entities (50%). The combination of hyper-
parameters with the best average validation metric is selected, and we
report the final test metric. Due to the huge number of combinations,
we rely on early stopping, training for 250 epochs with 10 epochs of
patience (reloading the best model). As an evaluation metric, we select

UC (Area under the ROC Curve) as done in [22], since it is well
suited for datasets showing unbalanced label distribution, such as Imdb,
um-econ and um-socioeco.

6. Results

In this Section, we report the experimental results and the related
discussion with the aim of providing answers to the aforementioned
esearch questions (Section 3).

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://gitlab.irstea.fr/raffaele.gaetano/geo2net

C.T. Ba et al.

o
s
a
p
o
i
b
t
a

Neurocomputing 612 (2025) 128712
Table 4
Statistics for each graph layer before and after the simplification on um-econ dataset.

𝓁 Intra-layer
edges

Label
assortativity

Transitivity Indegree
mean

Indegree
max

Outdegree
mean

Outdegree
max

MARA
(NS)

L0 174381.00
6207.00
(−96.44%)

0.08
0.35
(+320.57%)

0.01
0.02
(+86.70%)

23.63
1.17
(−95.06%)

3610.00
328.00
(−90.91%)

23.63
1.02
(−95.69%)

6021.00
3.00
(−99.95%)

L1 35060.00
5038.00
(−85.63%)

0.27
0.62
(+127.57%)

0.00
0.02
(+2947.23%)

5.55
0.87
(−84.39%)

937.00
145.00
(−84.53%)

5.55
1.02
(−81.71%)

4769.00
3.00
(−99.94%)

MARA
(DE)

L0 174381.00
121999.00
(−30.04%)

0.08
0.08
(+2.17%)

0.01
0.01
(−31.27%)

23.63
16.53
(−30.03%)

3610.00
2552.00
(−29.31%)

23.63
16.53
(−30.03%)

6021.00
4230.00
(−29.75%)

L1 35060.00
24578.00
(−29.90%)

0.27
0.27
(−1.44%)

0.00
0.00
(−31.29%)

5.55
3.89
(−29.87%)

937.00
642.00
(−31.48%)

5.55
3.89
(−29.89%)

4769.00
3349.00
(−29.78%)
Table 5
Statistics for each graph layer before and after the simplification on imdb-mlh dataset.

𝓁 Intra-layer
edges

Label
assortativity

Transitivity Indegree
mean

Indegree
max

Outdegree
mean

Outdegree
max

MARA
(NS)

L0 6121.00
2818.00
(−53.96%)

0.70
0.87
(+23.27%)

0.40
0.29
(−28.36%)

4.27
3.09
(−27.55%)

79.00
42.00
(−46.84%)

4.27
3.09
(−27.55%)

79.00
40.00
(−49.37%)

L1 5355.00
2816.00
(−47.41%)

0.72
0.90
(+24.60%)

0.38
0.00
(−100.00%)

4.00
3.09
(−22.63%)

69.00
42.00
(−39.13%)

4.00
3.09
(−22.63%)

69.00
38.00
(−44.93%)

MARA
(DE)

L0 6121.00
4277.00
(−30.13%)

0.70
0.71
(+1.44%)

0.40
0.26
(−34.14%)

4.27
3.00
(−29.80%)

79.00
55.00
(−30.38%)

4.27
2.98
(−30.27%)

79.00
53.00
(−32.91%)

L1 5355.00
3749.00
(−29.99%)

0.72
0.73
(+0.47%)

0.38
0.26
(−29.83%)

4.00
2.79
(−30.22%)

69.00
46.00
(−33.33%)

4.00
2.81
(−29.71%)

69.00
49.00
(−28.99%)
Table 6
Statistics for each graph layer before and after the simplification on Koumbia 2 dataset.

𝓁 Intra-layer
edges

Label
assortativity

Transitivity Indeg
mean

Indegree
max

Outdegree
mean

Outdegree
max

MARA
(NS)

L0 5724.00
2254.00
(−60.62%)

0.72
0.90
(+24.26%)

0.16
0.00
(−100.00%)

4.39
2.85
(−35.18%)

20.00
11.00
(−45.00%)

4.39
2.85
(−35.18%)

24.00
11.00
(−54.17%)

L1 4779.00
2253.00
(−52.86%)

0.79
0.91
(+15.07%)

0.20
0.00
(−100.00%)

3.97
2.85
(−28.32%)

25.00
22.00
(−12.00%)

3.97
2.85
(−28.32%)

27.00
20.00
(−25.93%)

MARA
(DE)

L0 5724.00
2909.00
(−49.18%)

0.72
0.72
(−0.67%)

0.16
0.08
(−52.59%)

4.39
2.21
(−49.64%)

20.00
13.00
(−35.00%)

4.39
2.22
(−49.55%)

24.00
15.00
(−37.50%)

L1 4779.00
2356.00
(−50.70%)

0.79
0.79
(+0.24%)

0.20
0.09
(−53.31%)

3.97
1.97
(−50.41%)

25.00
13.00
(−48.00%)

3.97
1.97
(−50.50%)

27.00
17.00
(−37.04%)
l
N
o
t
I
s

6.1. Framework evaluation

We first focus on the research question RQ1 by targeting the perfor-
mance achieved by the simplification methods.

Table 3 reports the average AUC scores on the test set. We can
bserve how MARA generally improves upon the GNN baseline, and
ystematically achieves the best performances. Note that MARA(NS)
lmost consistently outperforms MARA(DE), demonstrating the im-
ortance of exploiting node features for the simplification task. The
nly exception is represented by imdb-mlh, where features information
mproves the performance, but the MARA(DE) variant obtains even
etter performance. Additional insights can be obtained by comparing
he multilayer (multi) vs layer-by-layer (l-b-l) and the once vs each

pproaches. Regarding MARA(DE), we note that multi tends to be more u

8
effective on 2-layer graphs (i.e., um-econ, um-socioeco and Koumbia-
2) while l-b-l seems to be more effective in presence of a greater
number of layers. Note also that, with the (DE) variant, simplifying once
tends to be the winning choice. This is consistent with the stochastic
nature of this approach, i.e., repeating a random process at each
layer may negatively impact the result. As concerns MARA(NS), l-b-

tends to be the best choice in most cases: it may be because the
euralSparse simplification strategy is based on a single-layer notion
f a node’s neighborhood. Devising an advanced strategy to properly
ake into account the multilayer neighborhood is left as future work.
n terms of when to simplify (stage), for the (NS) variant, we can
ee that simplifying once brings better results for datasets showing an
nbalanced distribution of the labels (i.e., um-econ, um-socioeco and

C.T. Ba et al.

w

a
s
r
u
c

Neurocomputing 612 (2025) 128712
Fig. 4. Sensitivity analysis based on AUC, for the 2-layer graphs. We compare the AUC for the baseline (in red), with the AUC (average, standard deviation) for the best
simplification method (in blue).
o
a
f
o
t
i
l

imdb-mlh), while simplifying before each convolution layer seems the
best approach for the more balanced Koumbia graphs.

Overall, MARA leads to significant performance improvements,
hile the variety of proposed approaches allows MARA to find

the most suitable simplification approach for tasks of different
domains.

6.2. Analysis of simplified graphs

In this section, we discuss how the simplification process impacts
the structural characteristics of the multilayer graphs, providing an
nswer to research question RQ2. For each dataset, we compare graph
tructure before and after the simplification with MARA. We show
esults for each prediction sub-task, i.e., user migration prediction on
m-econ (Table 4), movie classification on imdb-mlh (Table 5) and
ropland mapping on Koumbia-2 (Table 6) while the other results can
9
be consulted in Appendix. For the analysis, we first focus on the um-
econ case (Table 4). It can be noted how the impact of MARA(NS)
can be different on each layer of a specific graph, while the action
f MARA(DE) seems to be more uniform over a given graph. Once
gain, this is consistent with the fact that one approach leverages node
eatures while the other is a random approach. The clearest impact is
bserved on the number of intra-edges, MARA drastically reduces
he number of edges while still improving the performance: this
s extremely important as the computation cost of graph convolution is
inear in the number of graph edges [33], making a reduced number of

edges an ideal property. In addition, some interesting observations can
be drawn about label assortativity, i.e., the similarity of connections in
the graph with respect to node labels (high label assortativity means
that a node is more likely to connect with a node with the same label).
We can see how MARA(NS) tends to increase label assortativity
across layers: this makes sense as MARA(NS) can leverage node
features, so it would be able to preserve the connections between

C.T. Ba et al.

g
a
o
u

n
i
u
c
w
r
p

e
m
p
I

s
a
w
p
t
t

t

a

m

d
y
i
v
I
S
i
V
F

W
i

Neurocomputing 612 (2025) 128712
similar nodes. Such behavior cannot be replicated by the random
procedure behind MARA(DE). Similarly, as regards transitivity (i.e., the
fraction of all possible triangles present in a graph), we can observe a
eneral decrease, since the number of triangles is necessarily reduced
s we remove edges. However, on layers with lower transitivity (<0.1),
nly MARA(NS) increases transitivity values: this can be observed in
m-econ and um-socioeco.

The relevance of training jointly simplification and graph neural
etwork is, therefore, the most important observation: during the train-
ng, MARA(NS) improves its capacity to recognize edges that are
nrelated to the task at hand, allowing it to determine which graph
haracteristics are most crucial to maintain or enhance. Additionally,
ith both variants, MARA demonstrates the capability of significantly

educing the number of edges while improving or at least keeping
erformance.

6.3. Hyperparameters sensitivity analysis

As a last analysis step, we address RQ3, which requires us to
valuate the impact of the hyperparameters on the graph simplification
ethods. To this end, we study the impact of varying the main hyper-
arameters, i.e., the drop rate 𝑝 for MARA(DE) and 𝑘 for MARA(NS).
n Fig. 4 we report a sensitivity analysis for 𝑝 and 𝑘, where the other

hyperparameters are set to the best performing combination. We can
ee that for um-econ, low 𝑘 values lead to lower performance. Similarly,
 high drop rate of 𝑝 seems to lead to worse performance. For imdb-mlh,
e can draw similar observations for 𝑝 (i.e., a high drop worsens the
erformance), while variations of 𝑘 seem to have a minor impact on
he process. Similarly, the impact of 𝑘 is minor also for Koumbia-2. In
his case, the impact of 𝑝 seems to be reduced too.

Overall, the takeaway is that both MARA(NS) and MARA(DE)
are robust to variations of their respective main hyperparame-
ters 𝑘 and 𝑝. This makes them solid and easy to deploy, by making
hyperparameter tuning relatively unimportant.

7. Conclusions

The findings presented in this work show the significance of the
proposed framework: MARA leads to significant performance improve-
ments, by selecting the best available simplification strategies. These
advances in performance are even more noteworthy when we take
into account that MARA achieves them while drastically reducing the
number of edges. Most importantly, MARA shows the importance of
jointly training the simplification of the multilayer graphs and the
node classification tasks. As the ability to identify task-irrelevant edges
increases, MARA is guided to discover the most important graph
properties to preserve or enhance.

These findings hold practical significance with direct applications.
Providing a methodology to easily perform multilayer graph simplifica-
ion can help scholars and practitioners from multiple fields to improve

both scalability and prediction performances in their everyday tasks.
Considering interdisciplinary research environments, a simplification
method can also favor the interplay between domain experts and data
scientists. Domain experts would be allowed to collect and model a
large number of relations, regardless of the fact that some of these
data may be considered noisy or negligible for a specific task, since
data scientists could, in turn, enhance the quality of a given model
for a downstream task through graph simplification. In this regard,
studying the graph simplification model also provides an opportunity
for improved model understanding. As the model learns to select the
most important graph parts, we obtain not only a simpler graph but
lso an opportunity to understand what entities, relations and layers

are central for the outcomes of the selected model to be reliable. This
ethod can be useful in any setting with complex and rich multilayer

network structures, like the one covered by the considered datasets.
10
Future research will focus on analyzing how multilayer simplifi-
cation can be beneficial for a variety of tasks, including link predic-
tion (removing unimportant or ‘‘spam’’ links to improve prediction
performance), clustering (removing redundant links should improve
boundaries between clusters, thus improving cluster quality), and graph
classification (removing noisy links should help in the identification
of similar graphs). Finally, additional future works will focus on the
interaction between graph properties and downstream tasks to support
multilayer simplification. A better understanding of graph properties
can be beneficial in the development of simplification algorithms and
overall it could lead to a better understanding of complex systems
spanning different domains.

CRediT authorship contribution statement

Cheick Tidiane Ba: Writing – review & editing, Writing – original
raft, Visualization, Validation, Software, Methodology, Formal anal-
sis, Data curation, Conceptualization. Roberto Interdonato: Writ-
ng – review & editing, Writing – original draft, Validation, Super-
ision, Project administration, Methodology, Formal analysis. Dino
enco: Writing – review & editing, Writing – original draft, Validation,
oftware, Methodology, Investigation, Formal analysis, Conceptual-
zation. Sabrina Gaito: Writing – review & editing, Visualization,
alidation, Software, Resources, Project administration, Methodology,
unding acquisition, Formal analysis, Conceptualization.

CRediT authorship contribution statement

Cheick Tidiane Ba: Conceptualization, Methodology, Software,
Validation, Formal analysis, Data curation, Writing – original draft,

riting – review & editing, Visualization. Roberto Interdonato: Writ-
ng – original draft, Writing – review & editing, Validation, Methodol-

ogy, Supervision, Project administration, Formal analysis. Dino Ienco:
Conceptualization, Methodology, Software, Validation, Formal analy-
sis, Investigation, Writing – original draft, Writing – review & editing,
Visualization. Sabrina Gaito: Conceptualization, Methodology, Re-
sources, Writing – review & editing, Visualization, Supervision, Project
administration, Funding acquisition.

Declaration of competing interest

None of the authors of this paper has a financial or personal relation-
ship with people or organizations that may inappropriately influence or
bias the content of the paper.

It is to specifically state that ‘‘No Competing interests are at stake
and there is No Conflict of Interest’’ with other people or organizations
that could inappropriately influence or bias the content of the paper.

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work has been partially funded by the Italian Ministry of
University and Research (MUR) and the European Union – NextGenera-
tionEU in the framework of the PRIN 2022 project ‘‘AWESOME: Analy-
sis framework for WEb3 SOcial MEdia’’ – CUP: I53D23003680006. This
work was supported in part by project SERICS (PE00000014) under the
NRRP MUR program funded by the EU - NGEU.

Appendix

A.1. Analysis of simplified graphs - datasets not included in the paper

See Tables A.7 and A.8.

C.T. Ba et al. Neurocomputing 612 (2025) 128712
Table A.7
Statistics for each graph layer before and after the simplification on um-socioeco dataset.

Intra-layer
edges

Label
Assortativity

Transitivity Indegree
mean

Indegree
max

Outdegree
mean

Outdegree
max

MARA
(NS)

L0 579352.00
4624.00
(−99.20%)

0.06
0.14
(+146.19%)

0.20
0.00
(−100.00%)

130.25
4.02
(−96.92%)

1875.00
31.00
(−98.35%)

130.25
4.02
(−96.92%)

2990.00
5.00
(−99.83%)

L1 476439.00
4652.00
(−99.02%)

0.05
0.15
(+181.36%)

0.11
0.01
(−95.09%)

107.64
4.02
(−96.26%)

1759.00
34.00
(−98.07%)

107.64
4.02
(−96.26%)

4262.00
6.00
(−99.86%)

L2 74580.00
4603.00
(−93.83%)

0.12
0.44
(+277.44%)

0.01
0.03
(+287.20%)

19.38
4.01
(−79.30%)

2543.00
331.00
(−86.98%)

19.38
4.01
(−79.30%)

3753.00
5.00
(−99.87%)

L3 14856.00
4586.00
(−69.13%)

0.39
0.73
(+85.09%)

0.01
0.00
(−100.00%)

6.26
4.01
(−36.02%)

276.00
66.00
(−76.09%)

6.26
4.01
(−36.02%)

701.00
5.00
(−99.29%)

MARA
(DE)

L0 579352.00
492450.00
(−15.00%)

0.06
0.06
(+0.84%)

0.20
0.17
(−15.26%)

130.25
111.16
(−14.65%)

1875.00
1601.00
(−14.61%)

130.25
111.16
(−14.65%)

2990.00
2543.00
(−14.95%)

L1 476439.00
404974.00
(−15.00%)

0.05
0.05
(+0.57%)

0.11
0.09
(−15.12%)

107.64
91.95
(−14.58%)

1759.00
1493.00
(−15.12%)

107.64
91.95
(−14.58%)

4262.00
3623.00
(−14.99%)

L2 74580.00
63393.00
(−15.00%)

0.12
0.12
(−0.89%)

0.01
0.01
(−14.71%)

19.38
16.92
(−12.68%)

2543.00
2173.00
(−14.55%)

19.38
16.92
(−12.68%)

3753.00
3201.00
(−14.71%)

L3 14856.00
12628.00
(−15.00%)

0.39
0.39
(+0.24%)

0.01
0.01
(−14.64%)

6.26
5.77
(−7.81%)

276.00
229.00
(−17.03%)

6.26
5.77
(−7.81%)

701.00
604.00
(−13.84%)
Table A.8
Statistics for each graph layer before and after the simplification on Koumbia 5 dataset.

Intra-layer
edges

Label
Assortativity

Transitivity Indegree
mean

Indegree
max

Outdegree
mean

Outdegree
max

MARA
(NS)

L0 4157.00
2252.00
(−45.83%)

0.84
0.95
(+12.85%)

0.25
0.00
(−100.00%)

7.15
6.30
(−11.87%)

33.00
28.00
(−15.15%)

7.15
6.30
(−11.87%)

38.00
28.00
(−26.32%)

L1 5752.00
2249.00
(−60.90%)

0.70
0.90
(+28.24%)

0.22
0.00
(−100.00%)

9.03
7.47
(−17.27%)

39.00
27.00
(−30.77%)

9.03
7.47
(−17.27%)

36.00
25.00
(−30.56%)

L2 4951.00
2252.00
(−54.51%)

0.70
0.88
(+25.94%)

0.22
0.00
(−100.00%)

8.64
7.44
(−13.91%)

47.00
41.00
(−12.77%)

8.64
7.44
(−13.91%)

53.00
41.00
(−22.64%)

L3 3635.00
2252.00
(−38.05%)

0.98
1.00
(+1.36%)

0.24
0.00
(−100.00%)

6.82
6.21
(−9.02%)

39.00
37.00
(−5.13%)

6.82
6.21
(−9.02%)

42.00
36.00
(−14.29%)

L4 5605.00
2266.00
(−59.57%)

0.68
0.87
(+28.12%)

0.20
0.04
(−79.11%)

9.29
7.80
(−16.00%)

48.00
41.00
(−14.58%)

9.29
7.80
(−16.00%)

50.00
41.00
(−18.00%)

MARA
(DE)

L0 4157.00
3534.00
(−14.99%)

0.84
0.85
(+0.65%)

0.25
0.20
(−18.32%)

7.15
6.87
(−3.88%)

33.00
33.00
(–)

7.15
6.87
(−3.88%)

38.00
37.00
(−2.63%)

L1 5752.00
4890.00
(−14.99%)

0.70
0.70
(+0.28%)

0.22
0.19
(−16.06%)

9.03
8.65
(−4.25%)

39.00
36.00
(−7.69%)

9.03
8.65
(−4.25%)

36.00
35.00
(−2.78%)

L2 4951.00
4209.00
(−14.99%)

0.70
0.69
(−1.12%)

0.22
0.19
(−13.45%)

8.64
8.31
(−3.82%)

47.00
46.00
(−2.13%)

8.64
8.31
(−3.82%)

53.00
52.00
(−1.89%)

L3 3635.00
3090.00
(−14.99%)

0.98
0.98
(+0.18%)

0.24
0.20
(−14.39%)

6.82
6.58
(−3.56%)

39.00
39.00
(–)

6.82
6.58
(−3.56%)

42.00
40.00
(−4.76%)

L4 5605.00
4765.00
(−14.99%)

0.68
0.68
(−0.38%)

0.20
0.17
(−14.34%)

9.29
8.92
(−4.03%)

48.00
47.00
(−2.08%)

9.29
8.92
(−4.03%)

50.00
48.00
(−4.00%)
11

C.T. Ba et al. Neurocomputing 612 (2025) 128712
A.2. Hyperparameter tuning - parameter space

{'datasets': [('um-econ', 'features'),
('um-socioeco', 'features'),
('imdb-mlh', 'features'),
('Koumbia_2', 'features'),
('Koumbia_5', 'features')],

'architecture': ['multi'],
'architecture_simp': ['multi', 'single'],
'model': ['gcn', 'gcn-de', 'gcn-ns'],
'gnn_level': [True, False],
'drop_rate_p': [0.1, 0.3, 0.5, 0.7],
'k': [5, 10, 15],
'tau': [0.001],
'standardize': [True],
'feat-variability': ['fixed'],
'split': ['25 50 25'],
'plots': [True],
'early-stop': [True],
'fastmode': [True],
'gpu': [1],
'run': [1],
'debugging': [False],
'dropout': [0.3],
'hidden': [16, 32],
'lr': [0.002],
'num-layers': [2],
'ns_num_hidden': [32],
'epochs': [250],
'patience': [10]}

Data availability

Data will be made available on request.

References

[1] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in
complex networks, Phys. Rep. 469 (3) (2008) 93–153.

[2] W. Thompson, P. Brantefors, P. Fransson, From static to temporal network
theory: Applications to functional brain connectivity, Netw. Neurosci. 1 (2017)
1–56, http://dx.doi.org/10.1162/NETN_a_00011.

[3] M. Nekovee, Y. Moreno, G. Bianconi, M. Marsili, Theory of rumour spreading in
complex social networks, Phys. A 374 (1) (2007) 457–470.

[4] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic
processes in complex networks, Rev. Modern Phys. 87 (2015) 925–979, http://
dx.doi.org/10.1103/RevModPhys.87.925, URL https://link.aps.org/doi/10.1103/
RevModPhys.87.925.

[5] L. Zhao, G.-J. Wang, M. Wang, W. Bao, W. Li, H.E. Stanley, Stock market as
temporal network, Phys. A 506 (2018) 1104–1112, http://dx.doi.org/10.1016/j.
physa.2018.05.039.

[6] S. Battiston, G. Caldarelli, M. D’Errico, The financial system as a nexus
of interconnected networks, in: Interconnected Networks, Springer, 2016, pp.
195–229.

[7] J.L. Curzel, R. Lüders, K.V.O. Fonseca, M. Rosa, Temporal performance analysis
of bus transportation using link streams, Math. Probl. Eng. (2019).

[8] L.D.F. Costa, O. Oliveira Jr., G. Travieso, F.A. Rodrigues, P. Villas Boas, L.
Antiqueira, M.P. Viana, L. Correa Rocha, Analyzing and modeling real-world
phenomena with complex networks: a survey of applications, Adv. Phys. 60 (3)
(2011) 329–412.

[9] M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter,
Multilayer networks, J. Complex Netw. 2 (3) (2014) 203–271.

[10] R. Gallotti, M. Barthelemy, The multilayer temporal network of public transport
in Great Britain, Sci. Data 2 (1) (2015) 1–8.

[11] A. Aleta, S. Meloni, Y. Moreno, A multilayer perspective for the analysis of urban
transportation systems, Sci. Rep. 7 (1) (2017) 44359.

[12] C.T. Ba, A. Michienzi, B. Guidi, M. Zignani, L. Ricci, S. Gaito, Fork-based
user migration in blockchain online social media, in: 14th ACM Web Science
Conference 2022, 2022, pp. 174–184.
12
[13] B. Lee, S. Zhang, A. Poleksic, L. Xie, Heterogeneous multi-layered network model
for omics data integration and analysis, Front. Genet. 10 (2020) 1381.

[14] P. Perlasca, M. Frasca, C.T. Ba, J. Gliozzo, M. Notaro, M. Pennacchioni, G.
Valentini, M. Mesiti, Multi-resolution visualization and analysis of biomolecular
networks through hierarchical community detection and web-based graphical
tools, PLoS One 15 (12) (2020) e0244241.

[15] A. Galdeman, C. Ba, M. Zignani, S. Gaito, A multilayer network perspective
on customer segmentation through cashless payment data, in: 2021 IEEE 8th
International Conference on Data Science and Advanced Analytics, DSAA, IEEE,
2021, pp. 1–10.

[16] R. Interdonato, M. Magnani, D. Perna, A. Tagarelli, D. Vega, Multilayer network
simplification: approaches, models and methods, Comput. Sci. Rev. 36 (2020)
100246.

[17] E.O. Laumann, P.V. Marsden, D. Prensky, The boundary specification problem
in network analysis, Res. Methods Soc. Netw. Anal. 61 (8) (1989).

[18] G. Kossinets, Effects of missing data in social networks, Soc. Netw. 28 (3) (2006)
247–268.

[19] R. Sharma, M. Magnani, D. Montesi, Investigating the types and effects of missing
data in multilayer networks, in: Proceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2015, 2015,
pp. 392–399.

[20] M.E. Dickison, M. Magnani, L. Rossi, Multilayer Social Networks, Cambridge
University Press, 2016.

[21] G.L. Robins, Doing social network research: Network-based research design for
social scientists, in: Doing Social Network Research, SAGE publications Ltd, 2015,
pp. 1–280.

[22] C. Zheng, B. Zong, W. Cheng, D. Song, J. Ni, W. Yu, H. Chen, W. Wang, Robust
graph representation learning via neural sparsification, in: ICML, 2020.

[23] R. Wickman, X. Zhang, W. Li, SparRL: Graph sparsification via deep
reinforcement learning, 2021, arXiv abs/2112.01565.

[24] U.S. Shanthamallu, J.J. Thiagarajan, H. Song, A. Spanias, GrAMME: Semisuper-
vised learning using multilayered graph attention models, IEEE Trans. Neural
Netw. Learn. Syst. 31 (10) (2020) 3977–3988, http://dx.doi.org/10.1109/TNNLS.
2019.2948797.

[25] L. Zangari, R. Interdonato, A. Calió, A. Tagarelli, Graph convolutional and
attention models for entity classification in multilayer networks, Appl. Netw.
Sci. 6 (1) (2021) 1–36.

[26] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large
graphs, Adv. Neural Inf. Process. Syst. 30 (2017).

[27] M. Zhang, Y. Chen, Link prediction based on graph neural networks, Adv. Neural
Inf. Process. Syst. 31 (2018).

[28] J. You, R. Ying, J. Leskovec, Position-aware graph neural networks, in:
International Conference on Machine Learning, PMLR, 2019, pp. 7134–7143.

[29] Z. Zhang, J. Bu, M. Ester, J. Zhang, C. Yao, Z. Yu, C. Wang, Hierarchical graph
pooling with structure learning, 2019, arXiv preprint arXiv:1911.05954.

[30] S. Wu, F. Sun, W. Zhang, X. Xie, B. Cui, Graph neural networks in recommender
systems: A survey, ACM Comput. Surv. 55 (5) (2022) http://dx.doi.org/10.1145/
3535101.

[31] M. Dileo, M. Zignani, S. Gaito, Temporal graph learning for dynamic link
prediction with text in online social networks, Mach. Learn. (2023) http://dx.
doi.org/10.1007/s10994-023-06475-x.

[32] M. Zitnik, M. Agrawal, J. Leskovec, Modeling polypharmacy side effects with
graph convolutional networks, Bioinformatics 34 (13) (2018) 457–466.

[33] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, 2016, arXiv preprint arXiv:1609.02907.

[34] J. Li, C. Chen, H. Tong, H. Liu, Multi-layered network embedding, in: Proceedings
of the 2018 SIAM International Conference on Data Mining, SIAM, 2018, pp.
684–692.

[35] M. Ghorbani, M.S. Baghshah, H.R. Rabiee, MGCN: semi-supervised classification
in multi-layer graphs with graph convolutional networks, in: Proceedings of
the 2019 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, 2019, pp. 208–211.

[36] Y. Rong, W. Huang, T. Xu, J. Huang, DropEdge: Towards deep graph
convolutional networks on node classification, in: ICLR, 2020.

[37] Y. Liu, T. Safavi, A. Dighe, D. Koutra, Graph summarization methods and
applications: A survey, ACM Comput. Surv. (CSUR) 51 (3) (2018) 1–34.

[38] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016, http:
//www.deeplearningbook.org.

[39] W.L. Hamilton, Graph Representation Learning, Morgan & Claypool Publishers,
2020.

[40] E. Jang, S.S. Gu, B. Poole, Categorical reparameterization with gumbel-softmax,
2017, arXiv abs/1611.01144.

[41] C.J. Maddison, A. Mnih, Y.W. Teh, The concrete distribution: A continuous
relaxation of discrete random variables, 2017, arXiv abs/1611.00712.

[42] E. Benjaminson, The Gumbel-softmax distribution. URL https://sassafras13.
github.io/GumbelSoftmax/.

[43] D. Li, T. Yang, L. Du, Z. He, L. Jiang, AdaptiveGCN: Efficient GCN through
adaptively sparsifying graphs, in: Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, 2021.

http://refhub.elsevier.com/S0925-2312(24)01483-8/sb1
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb1
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb1
http://dx.doi.org/10.1162/NETN_a_00011
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb3
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb3
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb3
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/RevModPhys.87.925
https://link.aps.org/doi/10.1103/RevModPhys.87.925
https://link.aps.org/doi/10.1103/RevModPhys.87.925
https://link.aps.org/doi/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1016/j.physa.2018.05.039
http://dx.doi.org/10.1016/j.physa.2018.05.039
http://dx.doi.org/10.1016/j.physa.2018.05.039
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb6
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb6
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb6
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb6
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb6
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb7
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb7
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb7
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb8
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb8
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb8
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb8
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb8
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb8
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb8
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb9
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb9
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb9
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb10
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb10
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb10
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb11
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb11
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb11
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb12
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb12
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb12
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb12
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb12
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb13
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb13
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb13
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb14
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb14
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb14
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb14
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb14
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb14
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb14
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb15
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb15
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb15
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb15
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb15
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb15
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb15
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb16
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb16
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb16
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb16
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb16
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb17
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb17
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb17
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb18
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb18
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb18
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb19
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb19
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb19
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb19
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb19
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb19
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb19
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb20
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb20
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb20
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb21
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb21
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb21
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb21
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb21
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb22
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb22
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb22
http://arxiv.org/abs/2112.01565
http://dx.doi.org/10.1109/TNNLS.2019.2948797
http://dx.doi.org/10.1109/TNNLS.2019.2948797
http://dx.doi.org/10.1109/TNNLS.2019.2948797
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb25
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb25
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb25
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb25
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb25
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb26
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb26
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb26
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb27
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb27
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb27
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb28
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb28
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb28
http://arxiv.org/abs/1911.05954
http://dx.doi.org/10.1145/3535101
http://dx.doi.org/10.1145/3535101
http://dx.doi.org/10.1145/3535101
http://dx.doi.org/10.1007/s10994-023-06475-x
http://dx.doi.org/10.1007/s10994-023-06475-x
http://dx.doi.org/10.1007/s10994-023-06475-x
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb32
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb32
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb32
http://arxiv.org/abs/1609.02907
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb34
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb34
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb34
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb34
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb34
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb35
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb35
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb35
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb35
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb35
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb35
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb35
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb36
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb36
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb36
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb37
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb37
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb37
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb39
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb39
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb39
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1611.00712
https://sassafras13.github.io/GumbelSoftmax/
https://sassafras13.github.io/GumbelSoftmax/
https://sassafras13.github.io/GumbelSoftmax/
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb43
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb43
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb43
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb43
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb43

C.T. Ba et al.

o
p
w

w

i
c
b
H
f
i
n
s
n
a
a
j
i

a

o

Neurocomputing 612 (2025) 128712
[44] D. Luo, W. Cheng, W. Yu, B. Zong, J. Ni, H. Chen, X. Zhang, Learning to drop:
Robust graph neural network via topological denoising, in: Proceedings of the
14th ACM International Conference on Web Search and Data Mining, 2021, pp.
779–787.

[45] L. Wang, W. Yu, W. Wang, W. Cheng, W. Zhang, H. Zha, X. feng He, H. Chen,
Learning robust representations with graph denoising policy network, in: 2019
IEEE International Conference on Data Mining, ICDM, 2019, pp. 1378–1383.

[46] J. You, T. Du, J. Leskovec, ROLAND: graph learning framework for dynamic
graphs, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 2358–2366.

[47] C.T. Ba, M. Zignani, S. Gaito, The role of cryptocurrency in the dynamics of
blockchain-based social networks: The case of steemit, PLoS One 17 (6) (2022)
e0267612.

[48] C.T. Ba, M. Zignani, S. Gaito, G.P. Rossi, The effect of cryptocurrency price on
a blockchain-based social network, in: Complex Networks & their Applications
IX, Springer International Publishing, Cham, 2021, pp. 581–592.

[49] C.T. Ba, M. Zignani, S. Gaito, The role of groups in a user migration across
blockchain-based online social media, in: 2022 IEEE International Conference
on Pervasive Computing and Communications Workshops and Other Affiliated
Events, PerCom Workshops, IEEE, 2022, pp. 291–296.

[50] C.T. Ba, A. Galdeman, M. Dileo, M. Zignani, S. Gaito, User migration prediction
in blockchain socioeconomic networks using graph neural networks, in: Proceed-
ings of the 2023 ACM Conference on Information Technology for Social Good,
GoodIT ’23, Association for Computing Machinery, New York, NY, USA, 2023,
pp. 333–341, http://dx.doi.org/10.1145/3582515.3609552.

[51] S. Kumar, R. Zafarani, H. Liu, Understanding user migration patterns in social
media, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
25, 2011, pp. 1204–1209.

[52] E. Newell, D. Jurgens, H. Saleem, H. Vala, J. Sassine, C. Armstrong, D. Ruths,
User migration in online social networks: A case study on reddit during a period
of community unrest, in: Proceedings of the International AAAI Conference on
Web and Social Media, Vol. 10, 2016, pp. 279–288.

[53] M. Senaweera, R. Dissanayake, N. Chamindi, A. Shyamalal, C. Elvitigala, S.
Horawalavithana, P. Wijesekara, K. Gunawardana, M. Wickramasinghe, C. Keppi-
tiyagama, A weighted network analysis of user migrations in a social network, in:
2018 18th International Conference on Advances in ICT for Emerging Regions,
ICTer, IEEE, 2018, pp. 357–362.

[54] C. Davies, J. Ashford, L. Espinosa-Anke, A. Preece, L. Turner, R. Whitaker, M.
Srivatsa, D. Felmlee, Multi-Scale User Migration on Reddit, AAAI, 2021.

[55] H.B. Zia, J. He, A. Raman, I. Castro, N. Sastry, G. Tyson, Flocking to mastodon:
Tracking the great twitter migration, 2023, arXiv preprint arXiv:2302.14294.

[56] L.L. Cava, L.M. Aiello, A. Tagarelli, Get out of the nest! drivers of social influence
in the #TwitterMigration to mastodon, 2023, arXiv:2305.19056.

[57] A. Galdeman, M. Zignani, S. Gaito, User migration across web3 online social
networks: behaviors and influence of hubs, in: ICC 2023 - IEEE International
Conference on Communications, 2023, pp. 5595–5601, http://dx.doi.org/10.
1109/ICC45041.2023.10278763.

[58] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank Citation Ranking:
Bringing Order to the Web, Tech. Rep., Stanford infolab, 1999.

[59] L. Martirano, L. Zangari, A. Tagarelli, Co-MLHAN: contrastive learning for
multilayer heterogeneous attributed networks, Appl. Netw. Sci. 7 (1) (2022)
1–44.

[60] A. Breitfuss, K. Errou, A. Kurteva, A. Fensel, Representing emotions with
knowledge graphs for movie recommendations, Future Gener. Comput. Syst. 125
(2021) 715–725.

[61] T. Ma, H. Wang, L. Zhang, Y. Tian, N. Al-Nabhan, Graph classification based
on structural features of significant nodes and spatial convolutional neural
networks, Neurocomputing 423 (2021) 639–650, http://dx.doi.org/10.1016/
j.neucom.2020.10.060, URL https://www.sciencedirect.com/science/article/pii/
S0925231220316374.
13
[62] F. Bianchi, C. Gallicchio, A. Micheli, Pyramidal reservoir graph neural
network, Neurocomputing 470 (2022) 389–404, http://dx.doi.org/10.1016/
j.neucom.2021.04.131, URL https://www.sciencedirect.com/science/article/pii/
S0925231221011152.

[63] L. Martirano, D. Ienco, R. Interdonato, A. Tagarelli, DyHANE: dynamic hetero-
geneous attributed network embedding through experience node replay, Appl.
Netw. Sci. 9 (1) (2024) 1–28.

[64] R. Interdonato, R. Gaetano, D.L. Seen, M. Roche, G. Scarpa, Extracting multilayer
networks from sentinel-2 satellite image time series, Netw. Sci. 8 (S1) (2020)
S26–S42.

[65] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

Cheick Tidiane Ba is a Research Assistant at Queen Mary University London, with
research focused on network science. He received a Ph.D. in Computer Science
at Università degli Studi di Milano Statale after working at the Connets Lab in
the Department of Computer Science. His research activity takes place within data
and network science, focusing on data mining and machine learning applications
n different networked systems, from blockchain to online social networks. He has
ublished works on network analysis and modeling, machine learning on networks, as
ell as networks for bioinformatics.

Roberto Interdonato received a Ph.D. degree in computer engineering from the
University of Calabria, Arcavacata, Italy, in 2015. His Ph.D. dissertation was titled
‘‘novel ranking problems in information networks’’. He is currently a Research Scientist

ith CIRAD, UMR TETIS, Montpellier, France. He was previously a Postdoctoral
Researcher with the University of La Rochelle, La Rochelle, France, Uppsala University,
Uppsala, Sweden, and the University of Calabria, Arcavacata, Italy, His research
nterests include the design of data science techniques applied to the analysis of
omplex networks (e.g., social media networks, trust networks, semantic networks,
ibliographic networks) and the extraction of information from remote sensing data.
is most recent contributions concern the implementation of deep learning methods

or land use classification based on the analysis of time series of multisensor satellite
mages (optical, radar, high/very high spatial resolution), the application of complex
etwork analysis techniques for the extraction of spatialized indicators (landscape,
ocio-economic) from multisource data (remote sensing, survey data, statistics, social
etworks, etc.). His thematic interests mainly concern the characterization of tropical
gricultural landscapes, the production of spatial information for food security and the
nalysis of the transnational land trade market. On these topics, he has co-authored
ournal articles and conference papers, organized workshops, presented tutorials at
nternational conferences and developed practical software tools.

Dino Ienco received the M.Sc. and Ph.D. degrees in computer science both from the
University of Torino, Torino, Italy, in 2006 and 2010, respectively. He joined the
TETIS Laboratory, IRSTEA, Montpellier, France, in 2011 as a Junior Researcher. His
main research interests include machine learning, data science, social media analysis,
information retrieval and spatio-temporal data analysis with a particular emphasis on
remote sensing data and Earth Observation data fusion. Dr. Ienco served on the program
committee of many international conferences on data mining, machine learning, and
databases including IEEE ICDM, ECML PKDD, ACML, and IJCAI as well as served as
a Reviewer for many international journals in the general field of data science and
remote sensing.

Sabrina Gaito is the director of the Connets Lab in the Department of Computer Science
t the University of Milan, where she teaches social network analysis and machine

learning. Her research activity takes place within data and network science, focusing
n social networking and human mobility.

http://refhub.elsevier.com/S0925-2312(24)01483-8/sb44
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb44
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb44
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb44
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb44
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb44
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb44
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb45
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb45
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb45
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb45
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb45
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb46
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb46
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb46
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb46
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb46
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb47
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb47
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb47
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb47
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb47
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb48
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb48
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb48
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb48
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb48
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb49
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb49
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb49
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb49
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb49
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb49
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb49
http://dx.doi.org/10.1145/3582515.3609552
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb51
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb51
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb51
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb51
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb51
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb52
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb52
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb52
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb52
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb52
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb52
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb52
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb53
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb53
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb53
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb53
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb53
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb53
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb53
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb53
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb53
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb54
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb54
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb54
http://arxiv.org/abs/2302.14294
http://arxiv.org/abs/2305.19056
http://dx.doi.org/10.1109/ICC45041.2023.10278763
http://dx.doi.org/10.1109/ICC45041.2023.10278763
http://dx.doi.org/10.1109/ICC45041.2023.10278763
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb58
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb58
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb58
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb59
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb59
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb59
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb59
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb59
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb60
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb60
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb60
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb60
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb60
http://dx.doi.org/10.1016/j.neucom.2020.10.060
http://dx.doi.org/10.1016/j.neucom.2020.10.060
http://dx.doi.org/10.1016/j.neucom.2020.10.060
https://www.sciencedirect.com/science/article/pii/S0925231220316374
https://www.sciencedirect.com/science/article/pii/S0925231220316374
https://www.sciencedirect.com/science/article/pii/S0925231220316374
http://dx.doi.org/10.1016/j.neucom.2021.04.131
http://dx.doi.org/10.1016/j.neucom.2021.04.131
http://dx.doi.org/10.1016/j.neucom.2021.04.131
https://www.sciencedirect.com/science/article/pii/S0925231221011152
https://www.sciencedirect.com/science/article/pii/S0925231221011152
https://www.sciencedirect.com/science/article/pii/S0925231221011152
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb63
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb63
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb63
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb63
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb63
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb64
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb64
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb64
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb64
http://refhub.elsevier.com/S0925-2312(24)01483-8/sb64
http://arxiv.org/abs/1412.6980

	MARA: A deep learning based framework for multilayer graph simplification
	Introduction
	Background
	Multilayer graph model
	Graph neural networks
	Graph neural networks for multilayer graphs
	Deep learning for graph simplification

	Research questions
	The MARA framework
	Problem definition
	The simplification framework

	Experimental evaluation
	Data
	Experimental setting

	Results
	Framework evaluation
	Analysis of simplified graphs
	Hyperparameters sensitivity analysis

	Conclusions
	CRediT authorship contribution statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	
	Appendix
	Analysis of simplified graphs - datasets not included in the paper
	Hyperparameter tuning - parameter space

	Data availability
	Appendix . Data availability
	References

