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1. For one aim: estimate leaf area from forest LiDAR data
● Leaf area index (LAI): half the total leaf area per unit horizontal ground surface area

○ a key indicator for assessing plant growth and development, coupling vegetation to the 

climate system.

● Accurately measuring LAI hinges on addressing three key challenges: leaf/wood 
segmentation, leaf angle distribution, and leaf clumping

○ for decades, forest canopy have been treated as a homogeneous, isotropic leaf layer in order 

to apply the Beer-Lambert law (it is still the mainstream method)

○ LiDAR technology now provides detailed 3D forest structure

● First work focused on leaf/wood segmentation using UAV LiDAR
○ SOUL, a deep learning model can process directly raw tropical data, use only point 

coordinates, end-to-end automatic approach, open-access

● Second work focused on improving LAI estimation by minimizing woody contribution
○ a simulation study, using DART model to simulate realistic forest LiDAR scenario

○ quantified the bias introduced by wood, leaf angle distribution and leaf clumping
2



2. Semantic segmentation On ULs (SOUL) model

● SOUL addresses the challenge of semantic 

segmentation on tropical forest ULS point clouds. 

Using only point coordinates as input. 

● Geodesic Voxelization Decomposition (GVD) 

algorithme, regroups points within a regular 3D 

grid structure using a propagation criterion 

based on the geodesic distance

● Rebalanced loss function, a natural solution 

changes the ratio of the data participating in the 

training, addressing the class imbalance issue

Fig.1 Qualitative results of SOUL on ULS test data
SOUL True label
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2.1 SOUL model on other datasets

Figure 2. Qualitative results on various LiDAR data from different sites. 4



3. Improving the estimation of LAI
● A simulation study exposes ideas for improving the estimation of Leaf Area Index.

○ use simulation to study the deviation between the true LAD and estimated LAD

● Multiple modification directly applied to forest mock-up Wytham woods in UK and  
Järvselja Birch Stand in Estonia

○ adjust leaf angles to follow a specific distribution

○ shift leaf positions to eliminate clumping.

● DART used to simulate LiDAR process
○ DART is radiative transfer models, capability to model LiDAR waveforms and point clouds 

generated by Gaussian Decomposition

● SOUL model used to segment leaf/wood
○ Output used as wood mask

● AMAPVox used to calculated LAI in voxel level (LAD)
○ AMAPVox is a ray tracing R package, which calculates light attenuation

● Propose SOUL + AMAPVox as a unique workflow to derive LAI from LiDAR data 
minimizing woody bias 5



3.1 A simulation study

Fig 3.1 mock-up (obj file) Fig 3.2 Point cloud (DART) Fig 3.3 LAD* (AMAPVox) 

* LAD, leaf area density. LAI is the integral of LAD in 3D space divided by surface.
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Fig.4 Modifications applied to mock-up : Tree 403 in Wytham woods

4.1 Tree 403 4.2 Only wood 4.3 Only leaf 4.4 Leaf Rotated

4.5 Leaf Shifted 4.6 Rotated & Shifted 4.7 Shifted & Shrank 4.8 Rot & Shift & Shrank
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3.3DART used to simulate LiDAR process
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Fig.5 Simulated point clouds of Wytham Woods by DART, close view and top view.

Fig 5.1 Wyham woods canopy (Woody ratio) Fig 5.2 Top view
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Fig.6 A cross-section of Wytham canopies, showing true and SOUL-predicted 
labels. The true label represents the woody component ratio provided by DART; 
and SOUL model weights are trained using real-world ULS data in Paracou.

Fig 6.1 SOUL prediction Fig 6.2 Ground truth
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3.5 AMAPVox used to calculated LAI in voxel level (LAD)

Fig 3.2 Point cloud (DART) Fig 3.3 LAD* (AMAPVox) 

* LAD, leaf area density. LAI is the integral of LAD in 3D space divided by surface. 14
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3.6 PAI to Apparent LAI

Fig 7. PAD for LeafWood, WAD for WoodOnly, and LAD for LeafOnly 
of Wytham mock-up are displayed. SOUL and DART masks are 
employed to estimate apparent LAD for the LeafWood modality. 
Corresponding PAI/WAI/LAI are provided in the top right corner.

● Estimate LAI from LeafOnly give us Apparent LAI (LAI with bias 
introduced by leaf angle distribution and leaf clumping)

● Leaves and wood components are expected to exhibit distinct 
orientation distributions and clumping values, leaf/wood 
segmentation should be done before touching the other issues.

● Woody contribution to Apparent LAI exceed 20%, leading to an 
even bigger overestimation of the true leaf area.

● DARTMask, derived from the simulation process, can be 
considered an accurate wood mask; SOULMask achieves 
comparable accuracy to this DART mask.
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Fig.8 Point cloud simulation using DART：Wytham Woods

Fig 8.1 Only Leaf Fig 8.2 Leaf and wood Fig 8.3 Only wood



3.7 Apparent LAI to LAI

Fig 9. Vertical LAD profile for Wytham modalities, TrueLAD provided 
for comparison. In the absence of censoring, the LAI derived from 
the LeafRotShift scene is 2% lower than TrueLAI. Clumping bias 
effect is −25.21%, (LeafOnly - LeafShift)/TrueLAD, and leaf angle 
bias effect is 41.64%, (LeafOnly - LeafRot)/TrueLAD.

● LeafOnly Roted & Shifted scenario eliminates woody contribution, leaf 
angle distribution, and leaf clumping issues; our estimation result is very 
close to true LAI (3.65 ~ 3.57).

● Clumping refers to the non-homogeneous Poissonian distribution of 
leaves within a canopy; leaf angle affects the amount of light intercepted 
by leaves; both significantly influence LiDAR vegetation interaction, 
addressing these two issues independently may not be feasible.

● Forest mock-ups always represent particular cases, results found here 
such as the relative importance of different sources of  bias may be not 
applicable to other situations.
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● Develop local estimators (taking advantage of spatial dependence) of LAD that 
jointly estimate leaf orientation and the light extinction coefficient.

● Rely on the continuous improvement of the performance of drone lidars 
(divergence, penetration, calibrated intensity). The intensity measurements of 
the returns can indeed inform about the average orientation of the leaves.

● SOULv2: an unsupervised deep learning framework to adapt to the training 
needs of different types of forests, coming not soon!
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4. Perspectives for improving LAD estimation by ULS



Thank you!
（Looking for a Postdoc!）
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Figure 2.  LiDAR (Light Detection and Ranging) in a cuboid, 20 m 𝗑 20m 𝗑 50m, 
“More is different” -- P. W. Anderson

(a)  Terrestrial Laser 
Scanning (TLS)

(b)  Unmanned Aerial Vehicle 
(UAV) Laser Scanning (ULS)

(c)  Aerial Laser Scanning 
(ALS)

23

Leaf

Wood

Unidentified



(a) Airborne Riegl LMS-Q780 (b) DART-RC (Ray-Carlo): simulated ALS data

Figure 3. DART simulation

24

DART has 3 major modes, we may use DART-RC which simulates LiDAR signals with a Ray-Carlo (RC) 
approach that combines ray tracking and forward Monte Carlo (MC) methods.



3. DART simulation

Figure 12. RAMI-V scene simulated by DART Figure 13. wytham_woods_3d_model

Using a more realistic mock-up may help us address the problem. 
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Perspectives  d’amélioration de l’estimation du LAD par ULS 

Développer des estimateurs régionalisés (tirer partie de la dépendance spatiale)  du LAD estimant de 
façon conjointe l'orientation foliaire et  le coefficient d’extinction de la lumière

Compter sur l’amélioration continue des performances des lidar sur drone (divergence, penetration,  
intensité calibrée).  Les mesures d’intensité des retours peuvent en effet informer sur l’orientation 
moyenne des feuilles.



Beer-Lambert Law in forest remote sensing

● The Beer-Lambert Law is a foundational principle in remote sensing methodology within  atmospheric 

science (Monteith, 1965). This law posits an exponential relationship between  light attenuation and the 

properties of the absorbing medium (Hu et al., 2014; Pimont et  al., 2018). It asserts that the natural 

logarithm of light transmittance, λ, is proportional  to the product of medium absorption coefficient, μ, 

density of absorbing particles, ρ, and  path length of light travel through the medium (i.e. optical path 

length), l:

λ = exp(−μρl)

● In adapting the Beer-Lambert Law to vegetation, the absorption  coefficient, μ, is replaced by the leaf 

projection coefficient, G, which is no longer independent of light incident angle and, ρ, is substituted by the 

leaf area density, LAD. Both G  and LAD are assumed to be uniform across the scene, and the path length, l, 

depends on  the height of the foliage layer, h, and the zenith angle of incident pulse, θ:

ρ = LAD = LAI/h, l= h /cosθ

λ = exp( −G · LAI /cosθ )
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Figure 6.  TLS and ULS co-registration

(a)  TLS (b)  overlap (c)  ULS
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Figure 7.  TLS and ULS co-registration

(a)  TLS (b)  overlap (c)  ULS apres 
transfer label
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5. Expectation

1. Good at method implementation, need comprehensive perspective on ecology problem
a. I trust the Academic taste

b. Always do Ordinary & sensible things, take some risk,
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LAI Estimation 
Challenges
● LAI is a key indicator of vegetation 

health and productivity.

● Accurate LAI estimation is essential 

for effective forest management and 

conservation.

● Traditional LAI measurement methods 

are time-consuming, labor-intensive, 

and often inaccurate.

● LiDAR technology offers a promising 

solution for efficient and precise LAI 

estimation.
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