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Background: West Nile virus (WNV) has an enzootic 
cycle between birds and mosquitoes, humans being 
incidental dead-end hosts. Circulation of WNV is an 
increasing public health threat in Europe. While detec-
tion of WNV is notifiable in humans and animals in the 
European Union, surveillance based on human case 
numbers presents some limitations, including report-
ing delays. Aim: We aimed to perform risk mapping of 
WNV circulation leading to human infections in Europe 
by integrating two types of surveillance systems: indi-
cator-based and event-based surveillance. Methods: 
For indicator-based surveillance, we used data on 
human case numbers reported to the European Centre 
for Disease Prevention and Control (ECDC), and for 
event-based data, we retrieved information from news 
articles collected through an automated biosurveil-
lance platform. In addition to these data sources, we 
also used environmental data to train ecological niche 
models to map the risk of local WNV circulation lead-
ing to human infections. Results: The ecological niche 
models based on both types of surveillance data high-
lighted new areas potentially at risk of WNV infection 
in humans, particularly in Spain, Italy, France and 
Greece. Conclusion: Although event-based surveil-
lance data do not constitute confirmed occurrence 
records, integrating both indicator-based and event-
based surveillance data proved useful. These results 
underscore the potential for a more proactive and com-
prehensive strategy in managing the threat of WNV in 
Europe by combining indicator- and event-based and 
environmental data for effective surveillance and pub-
lic health response.

Introduction
Emerging and re-emerging vector-borne diseases 
(VBD) are currently among prime public health con-
cerns in Europe [1]. Over the past years, Europe has 
seen an increase in the frequency and geographic 
expansion of VBD, including infections with West Nile 
virus (WNV), a virus transmitted by mosquitoes of 
the  Culex  species complex, as well as dengue virus 
(DENV) and chikungunya virus (CHIKV), transmitted 
by  Aedes albopictus  and  A. aegypti  mosquitoes [2-4]. 
The Flavivirus causing WNV infection is maintained 
in an enzootic bird-mosquito transmission cycle [5,6]. 
Mosquitoes acquire the infection by feeding on an 
infected bird and subsequently transmit the virus to 
mammals, such as humans and horses that only act as 
dead-end hosts [7,8]. Since the first findings of WNV in 
Europe in 1959 [9,10], WNV infection has been notified 
in humans in several European countries, particularly 
in central and Mediterranean Europe [11].

Climate and land-use changes, increased mobility of 
people and animals, biodiversity loss and the introduc-
tion of non-endemic pathogens and their vectors into 
new environments have been identified as drivers of 
spread of vector-borne pathogens [12-14]. Assessing 
the risk of local circulation of vector-borne pathogens 
is a critical public health priority. Identifying areas at 
risk can help health authorities include appropriate 
epidemiological and entomological investigations, 
active case finding and vector control activities in their 
national surveillance plans.
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Epidemic intelligence is a framework that encom-
passes activities related to the early identification, ver-
ification, analysis and assessment of potential health 
threats and investigation to recommend control meas-
ures. Epidemic intelligence integrates both indicator-
based surveillance (IBS) and event-based surveillance 
(EBS) components [15]. Indicator-based surveillance 
(IBS) relies on structured, verified indicators such as 
reported case numbers collected from routine surveil-
lance systems [16]. In event-based surveillance (EBS), 
on the other hand, information is collected from vari-
ous data sources which have not been officially vali-
dated by health institutions. Epidemic intelligence was 
introduced in 2006 as a paramount to more effective 
disease surveillance, risk assessment and collabora-
tion among European public health institutes [15], and 
today, a combination of IBS and EBS data are the most 
common data sources in Europe [16]. Although IBS is 
the epidemic intelligence keystone, it has limitations, 
such as potential delays between symptom obser-
vation, laboratory confirmation and reporting to the 
competent authorities, as seen with some European 
VBD outbreaks [17]. Event-based surveillance has 
been developed to reinforce traditional surveillance 
and contribute to early detection of outbreaks and 
risk assessment of potential health threats, notably 
by broadening the range of data sources, including 
informal sources such as news articles and social 
media reports or information from expert networks 
such as HealthMap (https://www.healthmap.org/
en/), ProMED-mail (https://promedmail.org/) and 
Platform for Automated extraction of animal Disease 
Information from the web (PADI-web;  https://padi-
web.cirad.fr/en/) [18-20].

The French Epidemic Intelligence System (FEIS, also 
known in French as Veille Sanitaire Internationale) 
created PADI-web [18], an automated biosurveillance 
system, designed to gather, process and extract epi-
demiological information from online news sources 
[21]. This platform collects news articles using custom 
Really Simple Syndication (RSS) feeds. These feeds 
search for articles by linking terms related to the dis-
ease or syndrome of interest, filtering out extrane-
ous elements like ads, images and comments [18,21]. 
Furthermore, machine-learning techniques are imple-
mented in PADI-web to identify the pertinent epidemio-
logical features in the text (e.g. disease, affected host, 
clinical signs, outbreak location coordinates, publica-
tion date). Currently, PADI-web collects disease infor-
mation from Google News due to its global coverage 
and support for multiple languages.

Many studies on risk mapping of VBD in Europe rely on 
data collected through an IBS approach. For instance, 
Salami and colleagues used machine learning and 
model-agnostic methods to predict the importation risk 
of DENV into Europe using monthly data on imported 
cases of dengue from the European Centre for Disease 
Prevention and Control (ECDC) [22]. Watts and col-
leagues used data on human cases of WNV infection 
reported to ECDC and climate, land-use and economic-
data to identify risk factors associated with WNV infec-
tion in southern and south-eastern Europe [23]. Farooq 
and colleagues applied a supervised machine learn-
ing approach to map the WNV outbreak risk in Europe 
using an ensemble climate model with ECDC human 
case data [24].

In this study, we assessed how EBS data could com-
plement traditional IBS disease data to enhance risk 

What did you want to address in this study and why?
West Nile virus is transmitted via mosquitoes to humans and other animals. Infections of West Nile virus are 
increasing in Europe, and the disease has a considerable impact on human and animal health. We aimed at 
mapping areas at risk of local circulation of West Nile virus by combining environmental data with notified 
human cases of West Nile virus infection and data retrieved from news articles.

What have we learnt from this study?
By using environmental data and two types of surveillance data, we identified new areas in southern Europe 
potentially suitable for local circulation of West Nile virus leading to human cases.

What are the implications of your findings for public health?
The new areas identified at risk could be used to identify regions requiring targeted enhanced surveillance 
and preventive measures by public health authorities. Overall, our findings underscore the usefulness of a 
multifaceted surveillance approach in disease risk mapping.

KEY PUBLIC HEALTH MESSAGE
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mapping of VBDs in Europe, using WNV as a case 
study. While ECDC also uses EBS to monitor global 
public health threats in Europe [25], its use of EBS dif-
fers from our approach, as we focus on applying EBS 
specifically for risk mapping. In our study, we used 
both EBS and IBS data to train ecological niche mod-
els using a boosted regression trees (BRT) approach to 
estimate the ecological suitability of WNV given local 
environmental conditions. These analyses allowed us 
to investigate the added value of using the integrated 
IBS and EBS datasets for risk mapping of local WNV cir-
culation leading to human infection.

Methods

Data on West Nile virus infection in humans
The IBS data used in our study were retrieved from 
the European Surveillance System (TESSy) of the ECDC 
which provided us aggregated data on confirmed 
human cases of WNV infection from August 2006 to 
November 2021 at the NUTS (nomenclature of territo-
rial units for statistics) level 3 (NUTS3) [26]. We curated 

the dataset to include only autochthonous cases, 
defined as infections of local origin, i.e. not associ-
ated with a recent travel-history. We retrieved the EBS 
data on WNV infections in humans from January 2006 
to December 2021 from the PADI-web platform. In April 
2022, we collected news reports identifying outbreak 
signals of WNV infections up to December 2021.

We defined an outbreak as a location associated with at 
least one autochthonous case. We set feeds using the 
keyword ‘West Nile virus’ and translated the keyword 
by AGROVOC Multilingual Thesaurus (https://www.
fao.org/agrovoc/) to 16 languages spoken in European 
countries (Austria, Bulgaria, Croatia, Czechia, France, 
Germany, Greece, Hungary, Italy, the Netherlands, 
Portugal, Romania, Serbia, Slovakia, Slovenia and 
Spain) where WNV cases had been previously docu-
mented in the WNV epidemiological update of ECDC 
[27]. We then systematically verified all the news arti-
cles identified by PADI-web and only retained those 
reporting at least one autochthonous human case of 
WNV infection in Europe. We manually verified that 

Figure 1
Confirmed autochthonous human cases of West Nile virus infection, Europe, 2006–2021

A. Presence of West Nile virus
    (original NUTS3)

B. Presence of West Nile virus
    (optimised NUTS3) 

Indicator-based

Event-based

Overlap between indicator-
and event-based

Surveillance:

NUTS3: nomenclature of territorial units for statistics, level 3; WNV: West Nile virus.

Panel A. Original NUTS3 areas are displayed.

Panel B. Optimised NUTS3 used in the ecological niche modelling analyses are displayed.

Areas with at least one confirmed autochthonous case of WNV infection in humans in the indicator-based surveillance are shown in light blue; 
areas with at least one autochthonous case of WNV infection in humans detected in the event-based surveillance are shown in light green; 
areas with autochthonous cases of WNV infection in humans detected in both indicator and event-based surveillance are shown in dark 
blue. Darker grey areas correspond to Switzerland and Bosnia and Herzegovina, countries that are not included in the European Centre for 
Disease Prevention and Control surveillance of West Nile virus infection.
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the outbreak event coordinates identified by PADI-web 
corresponded to outbreak sites mentioned in the news 
article. We excluded the following entries: duplicated 
locations (i.e. previously identified outbreak location), 
country-level locations, locations not associated with 
an outbreak, locations associated with other disease 
cases and words mistakenly identified as outbreak 
locations by the system pipeline. Furthermore, any 
missing outbreak locations not automatically identified 
by the system pipeline were added by finding the coor-
dinates through Google Earth. The resulting dataset 
was considered a moderator-verified dataset of WNV 
occurrence records. These locations were not cross-
checked with public health authorities or scientific 
literature to confirm whether they corresponded to con-
firmed cases. To ensure consistency in the geographical 
granularity of the IBS records, we used the R package 
(R Foundation, Vienna, Austria) ‘gisco’ version 0.3.5 
(https://zenodo.org/doi/10.5281/zenodo.4317946) [28] 
to match each EBS case or outbreak coordinates to the 
associated NUTS3 level (Figure 1). 

At the end, we compiled two datasets: one with IBS 
data and another with IBS and EBS data, EBS data 
verified by moderators. Based on these datasets, we 
subsequently categorised NUTS3 areas as presence or 
absence sites for WNV infections in humans. Presence 
was categorised as areas with at least one confirmed 
or verified autochthonous human case of WNV infec-
tion and absences as areas where no autochthonous 
human cases of WNV infection were observed (Figure 
1).

Environmental data
We used 14 environmental factors documented to influ-
ence the risk of circulation of WNV in Europe. These 
environmental factors were selected from a literature 
review by Giesen and colleagues [29]: human popula-
tion density, air temperature (by season), precipita-
tion (by season), relative humidity (by season), soil 
moisture, leaf index (plant canopies), urban areas, 
wet crops, pastures, agroforestry areas, forest areas, 
arable lands, arid shrublands, wetlands and open 
water areas. Summer covered June–August, autumn 
September–November, winter December–February 
and spring March–May. These environmental vari-
ables were retrieved from three databases, listed 
in Supplementary Table S1: (i) the Inter-Sectoral Impact 
Model Intercomparison Project (ISIMIP), which focuses 
on quantifying climate-related risks under various cli-
mate change and socioeconomic conditions, (ii) ERA5, 
the fifth generation of the European Centre for Medium-
range Weather Forecasts (ECMWF) reanalysis, offering 
comprehensive global climate and weather informa-
tion and (iii) Corine Land Cover, a programme led by 
the European Commission that provides pan-European 
land cover data classified into 44 categories.

Optimisation of the map of administrative 
areas
The European Union (EU) has developed NUTS, the 
regional classification which mirrors the territorial 
administrative divisions of European countries [26]. 
The NUTS divides each EU country into three levels, 
based on population size in the region. At the third 
administrative level, the sizes of the NUTS (NUTS3) 
areas can considerably vary across European coun-
tries. For instance, NUTS3 areas in Germany are rela-
tively small and comparable in size to NUTS level 4 
areas in some other countries. In our ecological mod-
elling analyses, we created an optimised NUTS map, 
i.e. a map where the NUTS areas were as uniform in 
polygon size as possible. This optimised GIS shapefile 
was specifically crafted for the European network for 
medical and veterinary entomology (VectorNet) [30], 
a project co-led by the ECDC and the European Food 
Safety Authority (EFSA).

Ecological niche modelling
To map the ecological suitability of Europe for WNV 
circulation leading to human cases, we implemented 
a BRT approach [31]. This machine learning algorithm 
generates a collection of sequentially fitted regres-
sion trees that optimise the predictive probability of 
occurrence given local environmental conditions. In 
this study, such a predictive probability can be seen as 
an indication of how suitable an environment is, rang-
ing from 0 to 1, with higher values indicating a greater 
degree of ecological suitability for local WNV circula-
tion. The BRT approach is able to estimate nonlinear 
relationships between the response and predictive 
variables, even in the presence of multicollinearity [31]. 
However, the algorithm can be computationally expen-
sive and prone to overfitting if not properly regularised 
[32]. We used the BRT algorithm implemented in the R 
package ‘dismo’ version 1.3.9 (https://cran.r-project.
org/web/packages/dismo/index.html).

To investigate the usefulness in integrating EBS data 
for modelling the risk of local WNV circulation, we 
trained two ecological niche models: one based on IBS 
data and the other on IBS and EBS data. Specifically, 
we implemented a Bernoulli BRT approach on the 
presence and absence data, running 100 independ-
ent replicate BRT analyses of both datasets to ensure 
robustness and accuracy. The 100 resulting maps of 
ecological suitability were eventually averaged for 
visualisation purposes. The optimised NUTS3 areas 
with at least one confirmed autochthonous case were 
considered presence locations, the others as potential 
pseudo-absence locations. We chose to analyse pres-
ence and pseudo-absence data rather than incidence 
data to avoid treating the absolute number of cases as 
a reliable proxy for prevalence of WNV infection [33].

To investigate the robustness and sensitivity of our 
results to the sampling intensity of pseudo-absences 
across the study area, we further trained ecological 
niche models based on alternative subsets of potential 
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pseudo-absences. While the main analyses were 
based on pseudo-absences sampled across 50% of the 
administrative areas where no WNV presence had been 
confirmed, we also considered alternative datasets of 
pseudo-absences sampled from 25%, 75% and 100% 
of the administrative areas not associated with a pres-
ence record. In each case, we re-trained 100 ecological 
niche models. Based on these newly generated mod-
els, we then re-evaluated the difference in ecological 
suitability between models incorporating both IBS and 
EBS data and those considering only IBS data.

To address spatial autocorrelation and prevent model 
overfitting, we opted for a spatial instead of the stand-
ard cross-validation procedure because the standard 
one often overestimates the predictive ability of the 
model when occurrence data exhibit spatial auto-
correlation [34]. Specifically, we applied the spatial 
cross-validation procedure based on block generation 
introduced by Valavi and colleagues, implemented in 
the R package ‘blockCV’ version 3.0.0 [35]: our pres-
ences/pseudo-absences dataset was split into five 
spatial folds determined by this block generation 
method. We trained the BRT models using the follow-
ing parameter values: a tree complexity of 5, a learning 
rate of 0.005 and a step size of 10.

The predictive performance of each BRT model was cal-
culated by computing the area under the receiver oper-
ating characteristic curve (AUC). Values of AUC close 
to 1 indicate high model predictive performance, while 
AUC values close to or below 0.5 indicate poor predic-
tive performance, presented in  Supplementary Table 
S2. Because the AUC metric has been criticised in 
previous studies due to its dependence on prevalence 
[36-39], we also estimated the predictive performance 
of the model by calculating the prevalence-pseudoab-
sence-calibrated Sørensen’s index (SIppc) [40,41], which 
has a minimum value of 0 and a maximum value of 1 
representing the highest predictive performance, data 
presented in  Supplementary Table S2. While our eco-
logical suitability estimates ranged between 0 and 1, 
the computation of this index requires binary pres-
ence-absence estimates. For the SIppc computations, we 
thus conducted an optimisation process that involved 
varying threshold values from 0 to 1 in increments 
of 0.01 to select the threshold value maximising the 
SIppc [39,42].

To determine the contribution of each environmental 
variable, we calculated their relative influence (RI) in 
the BRT models, as presented in Supplementary Table 
S3. For a specific environmental factor, the RI value 
is computed as the number of times this factor is 
selected for splitting a tree, weighted by the squared 

Figure 2
Comparison of West Nile virus risk maps obtained when analysing indicator-based surveillance data and indicator-based 
and event-based surveillance data, Europe, 2006–2021

EBS: event-based surveillance; ENM: ecological niche modelling; IBS: indicator-based surveillance; NUTS: nomenclature of territorial units for 
statistics.

Panel A. The map shows the ecological suitability of optimised NUTS level 3 areas for local circulation of West Nile virus, as estimated by ENM 
analyses based on IBS data.

Panel B. The map shows the ecological suitability of optimised NUTS level 3 areas for local circulation of West Nile virus, as estimated by ENM 
analyses based on a combination of IBS and EBS data. These maps display the averaged ecological suitability values estimated by 100 
replicates of the boosted regression tree analysis.

Panel C. The map highlights the difference in ecological suitability values. Areas coloured in red indicate areas with higher ecological 
suitability estimates when the model is trained on the combination of IBS and EBS data, while light blue areas represent areas with higher 
ecological suitability estimates when the models are only trained on IBS data.
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improvement to the model resulting from each split 
and averaged over all trees [31]. Additionally, partial 
dependence plots or response curves were plotted to 
show how ecological suitability varies with one spe-
cific predictor variable while all others are kept at a 
constant mean, presented in Supplementary Figure S1. 
This visualisation technique enhances our understand-
ing of the model behaviour and aids in interpreting the 
relationships between the different predictors and the 
response variable [31].

Finally, we evaluated the changes in ecological suit-
ability between the two averaged ecological suitability 
maps obtained when solely analysing the IBS data and 
when analysing both IBS and EBS data. This involved 
subtracting the estimated ecological suitability values 
of each optimised NUTS3 area with the model trained 
on both IBS and EBS data from those estimated for 
the same area with the model only trained on IBS data 
(Figure 2C). Additionally, we calculated the correspond-
ing area at risk by determining the area of each NUTS3 
area associated with an ecological suitability value 
that increased by 5%, 10% and 20%, respectively. 

Results
From 2006 to 2021, autochthonous human cases of 
WNV infection with known places of infection were 
reported to ECDC in 182 NUTS3 administrative areas 
from 16 countries [43]. In addition, PADI-web detected 
706 articles, of which 250 met our inclusion criteria. 
From these, the algorithm automatically identified 
2,356 locations associated with outbreaks of WNV 
infections in humans. After manual verification, 766 
locations were confirmed as unique outbreak sites. We 
excluded 600 country-level locations, 650 duplicates, 
270 unrelated to outbreaks of WNV infection and 70 
associated with other VBD. Additionally, we manu-
ally added 192 locations missed by the algorithm. In 
total, 958 locations were included, corresponding to 92 
NUTS3 areas identified by PADI-web, of which 22 were 
not associated with any IBS record (Figure 1).

All our trained ecological niche models showed 
good predictive performance as measured by the 
AUC and SIppc  metrics, displaying values  > 0.8, as 
presented in  Supplementary Table S2. In our study, 
climatic factors, namely seasonal temperature, rela-
tive humidity and precipitation, exhibited the high-
est RI (> 5%) in both kinds of models, i.e. either 
trained on IBS or IBS and EBS data, as presented 
in  Supplementary Table S3  and  Supplementary 
Figure S1. Specifically, summer air temperature (RI 
IBS = 14.99%; RI IBS + EBS = 17.93%), summer precipita-
tion (RI IBS = 8.73%; RI IBS + EBS = 8.64%), spring rela-
tive humidity (RI IBS = 13.87%; RI IBS + EBS = 5.42%) 
and autumn relative humidity (RI IBS = 6.64%; RI 
IBS + EBS = 6.55%) contributed significantly to both 
kinds of models. Winter precipitation (RI IBS = 6.02%; 
RI IBS + EBS = 7.59%) and winter relative humidity (RI 
IBS = 15.34%; RI IBS + EBS = 20.25%) also displayed 
notable RI values. Furthermore, our response curves 

show that temperatures ranging from 15 to 28°C, 
precipitation from 0.2 to 0.5 cm and relative humid-
ity levels from 70 to 85% had a positive influence 
on the probability of the occurrence of human cases 
of WNV infection, as presented in  Supplementary 
Figure S1. As demonstrated in the response curves 
in Supplementary Figure S1, both kinds of models also 
showed clear positive associations between ecological 
suitability for local WNV circulation and human popula-
tion density, urban areas, open water areas, wet crops 
and wetlands, as well as the level of soil moisture. 
The relative influence of these variables was gener-
ally similar between both models, with a difference 
of  < 1%, except for open water areas (1.4% difference). 
Specifically, the BRT models trained on integrated IBS 
and EBS data assigned a higher RI to open water, mak-
ing it the top variable among the land-use variables, as 
shown in Supplementary Table S3. Regarding the other 
land-use variables, arable land, leaf index and forest 
areas were negatively associated with the ecologi-
cal suitability for local WNV circulation, as presented 
in Supplementary Figure S1.

As shown in Figure 2, we compared the ecological suit-
ability estimated for each NUTS3 area when using IBS 
data (Figure 2A) or a combination of IBS and EBS data 
(Figure 2B). Both kinds of models identified highly 
suitable regions for local WNV circulation leading to 
human cases throughout southern Europe, particularly 
in southern Iberian Peninsula, southern France, Italy, 
the Balkan Peninsula and countries in the Danube 
River Basin. The models trained on both IBS and EBS 
data identified additional areas potentially at risk of 
local WNV circulation, specifically in central and south-
ern Italy, southern Spain, southern France and Greece 
(Figures 2B,C). As detailed in  Supplementary Figure 
S2, these inferred trends remained consistent with the 
results obtained when training the ecological niche 
models considering all or alternative subsets of poten-
tial pseudo-absences.

To further quantify these predictive differences 
between the models trained on IBS or IBS and EBS 
data, we computed the total area of the NUTS3 asso-
ciated with an ecological suitability value that had 
increased by 5%, 10% and 20% when considering 
both IBS and EBS data. Among the NUTS3 areas with 
greater ecological suitability (red areas in  Figure 2C), 
151 demonstrated an increase of  ≥ 5% (corresponding 
to a total area of 587,766 km2), 78 an increase of  ≥ 10% 
(corresponding to a total area of 307,200 km2) and 31 
an increase of  ≥ 20% (corresponding to a total area 
of 114,010 km2). Additionally, we identified 47 NUTS3 
areas exhibiting higher ecological suitability when 
solely training the models on IBS data (light blue areas 
in Figure 2C). Among the 151 NUTS3 areas with a differ-
ence of  ≥ 5% or more in ecological suitability, 41 corre-
sponded to WNV presences identified by both IBS and 
EBS data, while 21 solely corresponded to EBS data, 
totalling 62 NUTS3 areas with WNV occurrence records.
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Discussion
The spatial distribution, number and size of outbreaks 
of WNV infection in humans vary across the European 
continent, underlying the complexity of WNV ecology 
and its increasing significance for public and animal 
health. Implementing effective disease surveillance 
and control strategies are of high importance. Our 
study showcases the use of a non-traditional surveil-
lance tool to enhance disease risk mapping.

In integrating EBS data from PADI-web into an IBS 
dataset, we assessed the added value of incorporating 
news sources to detect additional areas at potential 
risk of WNV circulation. All our ecological niche models 
identified ecologically suitable areas in the southern 
European countries, corroborating previous studies 
[2,11,27,44,45]. The models integrating EBS data high-
lighted additional potentially ecologically suitable 
areas for local WNV circulation, specifically in south-
ern Spain, southern France, central/southern Italy and 
Greece, which aligns with findings by García-Carrasco 
and colleagues [46].

Our analyses confirmed that several key environmental 
factors favour local WNV circulation, particularly cli-
mate variables, which contributed most to our ecologi-
cal niche models. Consistent with prior research, we 
found that temperatures between 15 and 28°C seem 
to be important in determining the risk of local WNV 
circulation. This aligns with studies indicating that tem-
peratures varying in the range of 15 and 28°C favour 
mosquito development, survival and extrinsic viral rep-
lication [47,48]. Additionally, precipitation and relative 
humidity are also important in the mosquito life cycle 
and thus in WNV transmission. Increased precipitation 
can lead to the formation of mosquito larval habitats 
[49], while high humidity has been linked to increased 
egg production and hatching, thereby increasing mos-
quito abundance [49]. Furthermore, winter rainfall is 
positively correlated with mosquito abundance in the 
temperate Mediterranean regions [50]. Regarding land-
use variables, we identified wetlands, wet crops and 
open water areas as important contributors to our 
models. In fact, these are known to act as bird nest-
ing grounds, creating optimal conditions for establish-
ing WNV enzootic cycles [50]. Conversely, urban areas, 
along with higher human population density, elevate 
WNV transmission risk by facilitating increased encoun-
ters between hosts and infected vectors. Human activi-
ties, such as storm water sewage systems in these 
areas contribute to increased mosquito abundance by 
creating breeding sites [51].

Our modelling process does present certain limita-
tions. Firstly, it does not incorporate biotic factors 
like bird diversity, abundance or migratory pathways 
which could offer insights into the ecological suitabil-
ity of WNV. Additionally, we chose not to include ani-
mal cases, as the differences in surveillance of WNV 
in animals may vary more than surveillance of WNV 
infection in humans between European countries. To 

prevent circulatory issues, we also did not consider 
available  Culex  mosquito species distribution models 
trained on similar sets of environmental variables.

In addition, we acknowledge a series of limitations 
inherent to collecting and curating EBS data. We 
noticed that PADI-web algorithm prioritises the most 
recent news articles, especially in cases where top-
ics, such as WNV outbreaks, receive considerable 
media attention. Therefore, as our study queries were 
implemented in 2021, the algorithm exhibited a pref-
erence for identifying recent WNV outbreaks (i.e. WNV 
outbreaks occurring during the last 5 years from our 
PADI-web search). This may explain why we retrieved 
few articles for the period 2006–2016. Moreover, vari-
ations in news coverage on VBD between countries 
constitute another potential limitation. Lastly, while 
EBS epidemiological data were automatically retrieved 
from EBS platforms, they required moderator screen-
ing and verification due to the current limitations of 
machine learning algorithms compared with human 
expertise. The verification step, therefore, requires a 
considerable amount of time, which can vary depend-
ing on the volume of records and the number of 
human moderators. This is a recognised limitation 
among epidemic intelligence users across surveil-
lance levels, from global entities such as the World 
Organisation for Animal Health (WOAH) and the World 
Health Organization (WHO) to regional bodies like the 
ECDC, to national platforms such as the Plateforme 
Nationale d’Épidémiosurveillance en Santé Animale 
in France. Nonetheless, there is a growing recognition 
of the need for machine support, particularly in auto-
matically extracting epidemiological information. To 
address this, we are enhancing the existing PADI-web 
algorithm for spatial information extraction to improve 
the precision of automatically retrieved epidemiologi-
cal information, such as geographical coordinates cor-
responding to outbreak locations. This enhancement 
aims to expedite the verification step, thereby reducing 
the time required for curation. Despite the time invest-
ment, using EBS data was valuable for detection of 22 
at-risk locations of WNV not captured by IBS alone at 
a NUTS3 area of precision. It is crucial for countries to 
prioritise the precise reporting of cases to public health 
authorities, as this significantly impacts the accuracy 
of model results. While challenges persist, EBS pre-
sents an avenue for enhancing occurrence datasets 
and improving disease surveillance efforts. Of note, as 
EBS data undergo moderator verification and are con-
sidered unofficial data, they must not be misconstrued 
as validated occurrence data.

Along with the recent work of Fanelli and colleagues 
exploiting EBS data for mapping the risk of Crimean-
Congo haemorrhagic fever [52], our study is one of 
the latest explorations of integrating EBS data in risk 
mapping of a VBD. While they do not constitute offi-
cial or confirmed infection cases, such complemen-
tary EBS data may provide valuable information in 
areas that might already have local circulation not yet 
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detected by the official surveillance systems. The EBS 
data could enrich IBS datasets by revealing additional 
locations with cases, enhancing geographic granular-
ity and potentially bridging potential surveillance gaps 
[53]. Areas associated with an increased estimated risk 
when both EBS and IBS data were included to train 
ecological niche models could constitute new areas for 
closer monitoring of local virus circulation and where 
preventive measures could be implemented by public 
health authorities. Overall, incorporating EBS data in 
disease risk mapping assessment has the potential of 
improving surveillance and subsequent design of con-
trol measures.

Conclusion
By highlighting new areas potentially at risk of local cir-
culation of WNV, our study illustrated the benefits of 
integrating EBS data along with IBS data. Event-based 
data could be an important tool for automatic and tai-
lored health data collection, offering a dynamic and 
complementary approach for monitoring health threats. 
Finally, EBS could prove particularly advantageous in 
regions where the target pathogen is not yet known to 
circulate. In these areas, existing surveillance systems 
may be less established, and integrating EBS data can 
help address surveillance bias issues until adequate 
surveillance systems are implemented.
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