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SUMMARY

Rice feeds half of the world’s population but faces the pressures of yield demand under increasing environ-
mental and climate pressures. Diversified cropping systems such as legume-based rotationsmay be a viable
solution, but rice yield responses and environmental implications have not been synthesized globally. Here,
based on 1,483 data pairs covering 17 major rice production countries worldwide, we revealed that legume
inclusion increased subsequent rice yields by an average of 15.7% globally. Yield gains were more pro-
nounced under conservation tillage (+58.4%) than conventional tillage (+13.9%). These benefits decline
with nitrogen fertilizer inputs, initial crop diversity, and current rice yield levels. When considering trade-
offs, integrating legumes in rice rotations results in win-win benefits for rice yields and an increased soil
organic carbon content in 65.8% of all cases. These findings highlight the potential of legume inclusion to
not only enhance rice yields but also foster soil carbon sequestration, thereby paving the way for sustainable
rice production with the added potential to mitigate climate change.

SCIENCE FOR SOCIETY Rice, sustaining over half of the global population, has been cultivated in diversified
systems for millennia. As international policies increasingly embrace agroecology to ensure food security
while mitigating environmental impacts, insights have emerged regarding the pivotal role of legumes in diver-
sified cropping systems (e.g., rotations, intercropping, cover cropping, etc.). Legumes improve subsequent
crop yields by enriching soil fertility and promoting beneficial interspecific interactions in upland systems.
However, differences in water management, soil conditions, and nutrient cycling dynamics between paddy
and upland pose challenges in directly extending the advantages of legume rotation benefits from upland
systems to paddy systems. Furthermore, achieving multifunctional landscapes requires balancing produc-
tion with climate resilience. The potential synergies between rice yields and soil carbon sequestration in
legume rotations remain ambiguous. Our study demonstrates that legume rotations increased global rice
yields by 15.7%, promoting both food production and carbon sequestration. Aswe transition toward sustain-
able development practices, optimizing these crop rotations may be key to balancing production and envi-
ronmental health.

One Earth 8, 101170, February 21, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
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INTRODUCTION

Rice serves as a staple food for over half the global population.1,2

However, over the past decade, rice yield levels have pla-

teaued,3 facing enormous pressures from high requirements of

water and fertilizers, along with escalating environmental co-

sts.4–6 Ensuring sustainable rice production while minimizing

environmental costs is crucial for global food security and

advancing environmentally friendly agriculture.7

Diversified cropping, especially with legume inclusion, sup-

ports agricultural sustainability by enhancing food production

with lower external input and less environmental impacts.8–10

Globally, crop and pasture legumes contribute 21.5 Mt (million

tonnes) of biological nitrogen (N) fixation for agriculture annu-

ally,11,12 enhancing subsequent crop yields by 20% in rotation

systems.13 Although the yield effects of legume-based rotations

have been widely studied in crops like maize, wheat, and

canola,14,15 there is a notable gap in understanding these im-

pacts on rice. Given the heterogeneity of paddy and upland pro-

duction systems,16 such positive effects may not necessarily

translate to rice. Moreover, building multifunctional agricultural

landscapes requires the joint consideration of multiple objec-

tives, including agricultural production and climate change miti-

gation. Although evidence of the synergies between soil organic

carbon (SOC) and crop yields is accumulating,17,18 broad trade-

offs between rice yield and SOC outcomes from legume pre-

crops are poorly understood and largely unquantified. Thus, un-

derstanding the yield and SOC relationship in paddies is critical

to maximizing win-win outcomes for agriculture and climate.

The yield and SOC benefit in legume-rice rotation is driven by

various factors, including regional conditions (i.e., climate and

soil properties) and agronomic practices (by farmers). For

instance, mean annual precipitation (MAP) and initial SOC con-

tent are crucial in enhancing N uptake and turnover.19–22 Tillage

disrupts soil aggregates and accelerates the microbial decom-

position of exposed residues, potentially resulting in rapid N

mineralization and release.14 Meanwhile, excessive N fertiliza-

tion may mask the yield and SOC benefits provided by the N leg-

acy of legume pre-crops.23 In addition, the purpose of legume

cultivation (i.e., grain, forage, and green manure) and their resi-

due management (i.e., return or remove) determine the quality

and quantity of crop residues,13,24 further affecting the potential

benefits for rice yields and soil C sequestration. Thus, gaining a

comprehensive understanding of these factors is essential for

optimizing legume-rice rotations and developing site-specific

sustainable strategies that enhance productivity and environ-

mental resilience.

We conducted a meta-analysis of the effects of legume pre-

crops on (1) rice yield and its main drivers at a global scale and

(2) the trade-offs between yield and SOC benefits. Our database

contains 1,483 pairwise comparisons from 96 publications

across 17 countries (Figure S1).

RESULTS AND DISCUSSION

Our systematic review revealed that legume inclusion had pre-

dominantly positive effects on rice yields (80.1% of the data

showed positive effects, 0.9% neutral, and 19.0% negative),

with half of the datasets showing a yield benefit greater than

9% (Figure 1A). On average, legumes enhanced rice yields by

15.7% (median effect, 8.8%; 95% confidence interval [CI],

10.3%–21.3%; Figure 1A). Additionally, we found that the N fer-

tilizer rate, tillage types, and crop diversity in initial cropping

systems were the most dominant factors moderating the yield

effects of legume pre-crops on rice (Figure 1B).

Greater legume pre-crop benefit under low N fertilizer
input and conservation tillage
The benefit of legume inclusion is closely associated with biolog-

ical N fixation and the quality of residue from legumes.13,25Within

this study, the N input of rice was the primary predictor of the

legume pre-crop effects (Figure 2A), indicating that optimal N

fertilization is essential to maximize the benefits observed in

crop rotations. A negative correlation was observed between

the legume pre-crop effect and N fertilizer input, with yield ef-

fects ranging from +25.7% (95% CI: 19.2%–33.4%) at 0 kg N

ha�1 to a negative impact when N input exceeded 241 kg N

ha�1 (Figure 2A). Within the standard global N application range

of 60–150 kg ha�1,26 legume pre-crops boost rice yields signifi-

cantly, with an average increase of 9.9% (95%CI: 2.9%–17.4%;

Figure S3). Likewise, previous studies found a negative correla-

tion between the yield increase of rice following a cover crop and

the amount of N fertilizer applied.10,27 We offer two possible ex-

planations to account for our findings. First, external N input pro-

videsmost of the crop’s N demand, reducing the dependence on

plant-available soil N. This weakens the N supply effect of the

legume pre-crops28 and narrows the gap in subsequent rice

yields between legumes and non-legumes. This was confirmed

by the significant enhancement of rice yields with N fertilizer in-

puts in the initial cropping system (Figure S2A). Second, sus-

tained N application results in the accumulation of mineral N in

the soil, leading to suppressed biological N fixation and, hence,

reduced benefits provided by legume pre-crops and decreased

residual effects from excessive mineral N.25,29 Collectively, our

findings indicate that the yield benefits of legume pre-crops on

rice are mainly due to N benefits, and a reasonable N application

strategy should account for the pre-crop N effect.

Additionally, a greater increase in rice yields caused by legume

pre-crops was found under conservation tillage applied to rice

(+58.4%; 95% CI: 35.5%–85.3%) compared with conventional

tillage (+13.9%; 95%CI: 9.2%–18.8%) (Figure 2B). This substan-

tial difference may be due to the initially lower yields associated

with conservation tillage (Figure S4A). Meanwhile, we found that

the legume pre-crop benefits were relatively high under conser-

vation tillage compared to conventional tillage at low-yield levels

(Figure S4B). A linear mixed-effects model confirmed that tillage

type is the primary factor affecting the benefits of legume pre-

crops (Figure S4C), suggesting that conservation tillage, espe-

cially in low-yield scenarios, could optimize rice production in

legume-rice rotations. The probable reason for this is that con-

servation tillage promotes greater soil aggregate formation,30

which enhances the soil’s physical protection of the residual N

from the legume pre-crops. Moreover, soil disturbance is lower

with conservation tillage, which impacts N turnover and thus

gaseous and leaching N losses, potentially strengthening the N

benefit from legumes.31–33 This results in slower decomposition

of legume residues,34 which increases the efficiency of the N uti-

lization from legume pre-crops by rice under conservation
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tillage.35 The key factor is that this system enhances N supply to

rice, matching legume residue mineralization with the crop’s

developmental N needs for a consistent N supply.36 Given the

above, adopting conservation tillage practices in paddies pro-

vides an effective way to strengthen the legume pre-crop bene-

fits on rice yields, especially in low-yield paddy fields.

Notably, a significant interactionwas observed between tillage

types and N fertilizer rate (Figure S5D). The contribution of le-

gumes to rice yields was strong (+81.3%; 95% CI: 23.3%–

161.7%) without N (0 kg N ha�1) and decreased sharply with

increased fertilization (–10.3% for each 30 kg N ha�1) under con-

servation tillage (Figure 2C). Contrarily, the average benefit of le-

gumes was lower without N input (+21.9%; 95% CI: 16.3%–

27.9%), and the decline in this effect was less pronounced

with increased fertilization (–2.8% for each 30 kg N ha�1) under

conventional tillage. This suggests that the rice yield benefits

derived from legume pre-crops under conservation tillage are

more responsive to N fertilizer application. However, wide CIs

indicate that high uncertainty may occur for conservation

tillage. In other words, conservation tillage retains more N from

legume pre-crops than conventional tillage, thereby reducing

the amount of external N input required for the optimal growth

of the subsequent rice.37 The effect of legume inclusion was

no longer positive when N fertilization exceeded 240 kg N ha�1

(Figure 2C), regardless of tillage type. Taken together, these find-

ings indicate that legumes play a greater role under conservation

tillage with reduced fertilization.

High crop diversity and yield levels narrow legume pre-
crop effects
A greater legume pre-crop effect on rice yields was observed at

low initial crop diversity (defined as the total number of crop

species 3 the total number of crop functional groups 3 the

average number of crop species per year).13 Specifically,

increasing crop diversity in the initial cropping system boosts

rice yields (Figure S2B), while the yield benefits from legume

pre-crops narrowed with increasing crop diversity and became

negative with crop diversity higher than 15 (Figure 2D). Each

1-unit increase in crop diversity resulted in a 1.1% reduction in

the yield benefit from legume pre-crops for rice (Figure 2D).

This indicates that the rice yield benefits of diversified cropping

systems via the inherent capacity of the break-crop (non-N) ef-

fect might mask the N fixation benefits with legume inclusion.38

The break-crop effect, also known as niche complementarity,

strengthens the resilience of cropping systems to biotic and

abiotic stressors by improving soil physicochemical and bio-

logical properties.39 This indicates that crop diversification

through the inclusion of other crops instead of legumes benefits

rice yields when legumes are agronomically or economically

unfeasible.7,40

Notably, a stronger effect of legume pre-crops was observed

in low-yield rice systems (Figure 3A). Similarly, this positive effect

was insignificant when SOC content exceeded 20 g kg�1 (Fig-

ure S3). The potential reason is that high-fertility soils sustained

rice yields via an adequate nutrient supply, thus partially narrow-

ing the yield gap when utilizing legume pre-crops. Interestingly,

the yield advantage of integrating legumes decreased signifi-

cantly as the initial rice yields increased. The higher marginal

benefit of legume pre-crops in scenarios of low rice yields could

be partly linked to alleviating stress conditions (e.g., N defi-

ciency).41 The yield benefit derived from legume pre-crops is

very limited when the rice yield is above 7.0 t ha�1 (Figure 3A),

which is near the global mean yield (6.8 t ha�1)42 and lower

than the highest average farmer yield recorded (7.5 t ha�1, ac-

cording to FAO data) in Asia,3 where 90% of global rice produc-

tion occurs. Moreover, our results revealed that 98% of the

observed yield increments >20% were found in cases where

the initial rice yields were lower than the global mean yield of

6.8 t ha�1. Similarly, the yield benefit of legume pre-crops in

Benin (West Africa) significantly exceeds that of major rice-pro-

ducing countries in Southeast Asia, which was mainly attributed

to lower N fertilization and crop productivity levels (Figure S6).

Overall, our study suggests that including legumes in rice-based

rotations notably boosts rice yields, especially in rice systems

characterized by low yields and poor soil fertility.

Synergies and trade-offs between rice yields and SOC
with legume inclusion
SOC sequestration offers a range of environmental and health

advantages, emerging as a highly eco-friendly approach to

climate change adaptation and mitigation.43 Beyond the rice

yield benefit of legume pre-crops, we evaluated the trade-offs

and synergies between yields and SOC sequestration (an impor-

tant indicator of soil fertility) to assess the sustainability of

legume inclusion in paddies. We examined concurrent rice yield

and SOC responses to legume inclusion based on 177 pairs of

Figure 1. Overall effect and variable impor-

tance for the effects of legume pre-crops on

rice yields

(A) Frequency distribution of natural log response

ratio (lnRRs).

(B) Importance of the factors on rice yield

response to legume pre-crops.

The dashed line in (A) was drawn at lnRR = 0. The

red vertical line and shading area indicate the

mean lnRR and 95% confidence intervals, resp-

ectively. The relative importance in (B) is quantified

based on a meta-forest model. MAT, mean annual

temperature; MAP, mean annual precipitation;

SOC, soil organic carbon; STN, total nitrogen

content in topsoil, respectively.
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effect sizes (Figure 3B). The results indicated that legume pre-

crops mainly promoted a win-win scenario sustaining rice yields

and enhancing SOC content (65.8%probability), thus benefitting

both farmers and climate impact mitigation. Trade-offs, in which

either the rice yield or SOC increased while the other decreased,

accounted for 28.7% of the cases. In 5.5% of cases, legume in-

clusion reduced the rice yield and SOC. Notably, green manure

cultivation (probability: 76%) and residue incorporation (proba-

bility: 69%) in legume-rice rotation promoted a higher win-win

scenario for the rice yield and SOC (Figure S7). Likewise, the

introduction of legumes into farmland with low crop diversity

and low initial SOC demonstrated a greater contribution to the

win-win scenario. Furthermore, legumes exhibited notable effi-

cacy in enhancing soil organic matter (SOM) pools, particularly

mineral-associated SOM, that benefit soil C sequestration and

rice yields with an N supply.44–46 As demonstrated, soil C seq-

uestration is consistently improved by legume inclusion,23,47

which ensures the long-term sustainability of the rice yield in-

crease. Maintaining and enhancing SOC stocks is critical for

ensuring soil health, fertility, and agricultural production and

reducing net greenhouse gas (GHG) emissions. Overall, intro-

ducing legumes into rice rotation has the potential for soil C

sequestration to mitigate climate change, although potential im-

pacts on nitrous oxide (N2O) and methane (CH4) emissions from

Figure 2. Moderators of legume pre-crop

effect on rice yield benefit

(A) Nitrogen (N) fertilizer rate (kg ha�1) for rice.

(B) Conventional tillage (CT) and conservation

tillage (CST).

(C) The interaction between rice tillage types and

N fertilizer rate.

(D) Crop diversity in initial cropping systems.

Colored lines in (A), (C), and (D) represent the

average N fertilizer rate and crop diversity specific

responses, respectively, with their 95% confi-

dence intervals (CIs) indicated by shading. The

size of each dot represents the relative weights of

corresponding observations. Values are mean

effect sizes and error bars show the 95%CIs in (B).

The numbers of observations for each category

are shown along the x axis. Asterisks denote

significant effects: ***p < 0.001, **p < 0.01,

and *p < 0.05.

the legume residues should also be

considered.48 Future research should

focus on optimizing the introduction and

management strategies of legumes, aim-

ing to maximize both the productive

and ecological dual benefits within rice

systems.

Toward sustainable rice production
with legume inclusion
Our study focused on one of the world’s

major staple foods and provides an evi-

dence-based synthesis of legume inclu-

sion as a general strategy to increase

sustainable rice production globally. The

yield increase (+15.7%) and benefits for yields and soil C

sequestration (65.8% of all cases) in paddies with legume pre-

crops indicate a transformative shift toward integrating

legume-rice rotations. First, there is potential for a global recon-

figuration of cropping system, where legume inclusion becomes

widespread in paddies. This would enhance yields, improve soil

health, and mitigate climate change, aligning with sustainable

agricultural goals.7,23,49,50 The observed benefits under conser-

vation tillage and low fertilization conditions suggest that regions

with resource constraints will have larger potential in this

transformative shift for sustainable rice production. Second,

optimization strategies must be tailored for different regions,

considering local climatic, soil, and ecosystem variables51 (Fig-

ure S3). For instance, areaswith lower initial SOC or rice yield po-

tentials might prioritize legume rotations differently from regions

with higher initial levels. Furthermore, the integration of legume

rotations in paddies should be accompanied by research and

development efforts focusing on crop diversity and appropriate

legume species selection (Figure S8). Therefore, globally, adopt-

ing legume pre-crops in paddies is promising to increase rice

yields and contribute toward more sustainable and resilient agri-

cultural systems.

However, short-term financial gains are the key driving factor

for farmers when adopting new practices. This study shows
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that legume-rice rotations can boost net economic benefits by

51.0% (95% CI: 15.2%–98.1%; Figure S9), with 78.7% of the

data showing positive effects and 21.3% negative. However, in

high-yield systems, these rotations may not be as profitable.

While long-term benefits like soil fertility improvement are clear,

the transition to legume-rice systems can be challenging due to

the learning curve and risks of short-term economic losses.52

Future research should assess the economic viability of these ro-

tations under different conditions and explore market oppo-

rtunities for legumes to encourage their adoption. Supportive

policies, including subsidies and training, are crucial for suc-

cessful implementation. Collaboration among researchers, poli-

cymakers, and farmers is key to scaling out these practices for

sustainable agriculture. In conclusion, our study offers insights

for further exploration into the strategic design and implementa-

tion of diversification practices in paddies, but this needs to be

explored and implemented locally.

METHODS

Study selection
We searched English and Chinese literature sources through the

Web of Science core database (http://apps.webofknowledge.

com/) and the China National Knowledge Infrastructure (CNKI;

http://www.cnki.net/) until December 2023. These search strings

(Table S1) yielded 1,856 studies published between 1980

and 2023.

Studies from the retrieved publications were screened and

meet the following selection criteria: (1) the study was based

on field experiments, and treatments were randomized with

replications; (2) the preceding crop in the treatment group

must be a legume and in the control group must be a non-

legume; (3) the mean rice yields must be reported directly as

numerical or graphical data or can be calculated from the re-

ported data; and (4) the site location of the field experiment

was reported. Additionally, we regarded them as distinct obser-

vations, typically conducted in different locations, as distinct

studies in cases where multiple experiments were reported

within a single publication. However, if multiple publications

were derived from the same experiment, particularly a long-

term experiment, then we classified them as the same study.

If a publication documented different ‘‘rotation cycles’’ of a

crop rotation, then we treated each cycle as an independent in-

clusion. Our final dataset encompassed 17 countries and

comprised data from 88 unique experiments collected from

96 sources (92 peer-reviewed journal articles, 1 doctoral thesis,

and 4 master’s theses). A list of data sources used in this study

is provided in the supplemental information.

Data extraction
For a given study, treatment (legume pre-crop) values were

matched to control (non-legume pre-crop) values only if the

two groups did not differ in anything other than legume intro-

ductions (e.g., same tillage system, same N fertilizer applica-

tion, etc.) and the treatments were sampled at the same time.

We aimed to be able to manage confounding effects that might

obscure direct comparisons of raw data across studies on

environmental conditions, agronomic practices, or soil factors.

For each observation, we extracted the values, the number of

replications, and the standard deviation of the effect sizes

(i.e., rice yield, SOC content after crop rotation, and net eco-

nomic benefit of system). Data presented in the figures were

extracted using the GetData Graph Digitizer software (http://

getdata-graph-digitizer.com/). We also extracted location,

climate, soil characteristics, and agronomic practices, which

we used to explain the variation in natural log response ratio

(lnRR) (Table S2).

For each site, latitude and longitude were extracted or esti-

mated based on the location of the nearest city or experimental

station where the study took place. Mean annual temperature

(MAT) and precipitation (MAP) were extracted from study reports

or obtained from the WorldClim database53 using geographic

location (i.e., latitude and longitude). The soil’s initial pH, SOC,

and total N (STN) content were collected from the materials

and methods section of studies or extracted from the HWSD

database54 using latitude and longitude coordinates. Soil texture

was further categorized into fine, medium, and coarse in terms of

the USDA soil classification.55 In terms of agronomic practices,

we documented residue management (returned/removed),

tillage types for rice (conservation/conventional tillage),

irrigation practices (yes/no), control types (fallow/continuous

monoculture/rotation), rice types (single rice/early rice of double

Figure 3. The benefits of legume pre-crops

on rice yields decreased with increasing

initial yield levels and promoted a win-win

scenario for rice yields and SOC

(A) Legume pre-crop effect on yield benefit

decreased with increasing rice yield level.

(B) Legume pre-crops promoted a win-win sce-

nario for both rice yield and soil organic carbon

(SOC).

The red line in (A) represents the rice-yield-level-

specific responses, with its 95% confidence in-

tervals shaded. Scattered dots in (A) represent the

yield benefit of rice from each observation, with

dot size proportional to the relative weight of each

observation in the meta-regressions. Data in

(B) containing rice yield and SOC responses to

legume-rice rotation were used for visualization

(177 pairs of effect sizes). The position of the circles in (B) displays the effect on rice yields and SOC for each observation, with the dot size proportional to the

relative weight of each observation. The probability of each scenario is calculated based on the number of points and their weights.
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rice/late rice of double rice), legume pre-crop purposes (grain/

green manure/forage), and legume species as binary variables.

N fertilizer rate, rotation cycles, and initial crop diversity were re-

corded as continuous variables. We first tested the difference

between fallow and no-fallow control and found that no differ-

ences were observed (Figure S10). Consequently, we consid-

ered all these differences in control as a crop diversity index.

Crop diversity within the control (initial) cropping systems was

determined using the formula13 crop diversity = Nspecies 3

Ngroup 3 Nyear. This calculation integrates the total number of

cultivated crop species (Nspecies) and functional groups

(Ngroup), along with the average annual crop species count

(Nyear). The concept of crop functional groups helps recognize

species diversity with similar environmental responses and com-

parable effects on ecosystem functioning.56 For example, rice

and canola belong to different functional groups, while rice and

wheat belong to the same functional group. The count of crop

species annually is a differentiating factor for cropping intensity

(e.g., two harvests per year versus one).

Data analysis
We used the lnRR to calculate the effect of legume pre-crops on

rice yield compared to non-legume pre-crops.57 The lnRR was

calculated as follows:

lnRR = lnðxt=xcÞ = lnðxtÞ � lnðxcÞ; (Equation 1)

where xt and xc are the observed values of the rice yields with

(treatment) and without (control) legume pre-crops, respectively.

In our database, standard deviations were missing in most

studies, but the sample sizes were available. Weights for lnRR

were therefore calculated using the number of replications by

the following formula58:

wi = ðnt 3 ncÞ=ðnt + ncÞ; (Equation 2)

where wi is the weight associated with each lnRR observation

and nt and nc are the numbers of replications of the treatment

and control groups, respectively.

We calculated weighted overall effects in a mixed-effects

model using the rma.mv function in the R package metafor59 in

R 4.3.2.60 Then, we analyzed the rice yield lnRR for different fac-

tors (F) through the following mixed-effects model:

lnRR = b0 + b1 � F+pstudy + ε; (Equation 3)

where b, pstudy, and e are the coefficients of fixed effects, the

random-effect factor of ‘‘study,’’ and sampling error, respec-

tively. The potential non-independence of studies was included

in ‘‘study’’ as a random factor due to most studies contributing

to more than one lnRR. The ‘‘study’’ was directly numbered

according to latitude and longitude (field-experiment loca-

tions). For consistency, we analyzed all binary variables with

Equation 3.

Weighted vote counting was used to show whether there was

a win-win, trade-off, or lose-lose effect of legume inclusion on

rice yields and SOC. The formula is as follows:

Pi =
X

wj

.X
wij; (Equation 4)

where pi, wij, and wj represent the probability of the i-th scenario

among the four scenarios, the weight assigned to each observa-

tion across all scenarios, and the weight assigned to each obser-

vation specifically in the i-th scenario, respectively. When the

yield and SOCweights of each pair of observed values are incon-

sistent, we choose the smaller weight to obtain amore conserva-

tive result.

The lnRR was transformed back to the percentage change as

(elnRR – 1) 3 100% for ease of interpretation. The legume pre-

crop effects on rice yields were considered significant if the

95% CIs of lnRR did not include zero.

Varying importance and publication bias
We coded 16 potential moderators (Figure S5A) to identify the

potentially relevant factors in predicting the rice yield benefits

of legume pre-crops using the R package metaforest.61 The

approach is based on the machine-learning ‘‘random forest’’ al-

gorithm, which is robust to overfitting non-linear correlations be-

tween moderators and the response variables. In this study, our

algorithm commenced with a preselection phase involving

10,000 iterations and a replicated 100-fold feature selection pro-

cess. Moderators exhibiting consistent negative effects on vari-

able significance were eliminated using the preselect_vars func-

tion. Those contributing positively to the model’s predictive

capacity were advanced for further refinement. Finally, we opti-

mized the parameters of the meta-forest model using the train

function from the caret package62 based on 10-fold cross-vali-

dation. This method effectively handles multiple predictors and

their interactions, recognizing non-linear relationships. In addi-

tion, we fitted different numbers of moderators using a meta-for-

est model to screen for major factors that were both important

and stable (Figure S5). Subsequently, we used the metafor59

and glmulti63 packages to automatically fit all possible models

containing the three most important predictors and their interac-

tions (at level 2).64 Model selection was based on the Akaike in-

formation criterion corrected for small samples (AICc). The rela-

tive importance value for the corresponding factors is equal to

the sum of the Akaike weights for the models that contain the

influential predictor. Therefore, predictors included in models

with substantial Akaike weights will be assigned higher impor-

tance values. These values can be interpreted as overall solid ev-

idence supporting the relevance of each variable in all models.

Generally, if its threshold value is greater than 0.8, then this indi-

cates that this factor is relatively essential.

Publication bias was tested by funnel plots and Egger’s test

(Figure S11). Although we initially observed an outlier in the fun-

nel plot, its removal did not significantly impact our results. Thus,

we decided to retain it in our analysis. Egger’s test65 quantifies

the extent of funnel plot asymmetry by evaluating the intercept

obtained from regressing standard normal deviates against pre-

cision (Z =�1.10, p = 0.27). Rosenberg’s fail-safe number66 was

36,859 (n = 1,483, p < 0.0001). Collectively, publication bias was

unlikely to have affected our results. Crucially, we employed the

trim-and-fill method67 to estimate the average impact of missing

studies. All revisions involved a systematic increase in the effect

size. Given that the 95% CIs from the main analysis and trim-

and-fill analysis still overlapped (i.e., 95% CIs: 0.10–0.19 and

0.11–0.31), we have chosen to report the more conservative re-

sults of the main analysis. All analyses were conducted in R
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4.3.2. The R packages ggplot268 and ggsankeyfier69 were used

for data visualization. Themap was generated using QGIS v.3.32

(Open Source Geospatial Foundation Project, http://qgis.

osgeo.org).
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