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Abstract

Soil health and One Health are global concerns, necessitating the development of refined

indicators for effective monitoring. In response, we present the Anaconda R Package, a

novel tool designed to enhance the analysis of eDNA data for biomonitoring purposes.

Employing a combination of different approaches, this package allows for a comprehensive

investigation of species abundance and community composition under diverse conditions.

This study applied the Anaconda package to examine the impact of two types of duration

fire-fallow cropping systems, using natural forests as a reference, on soil fungal and bacte-

rial communities in Maré Island (New Caledonia). Condition-specific taxa were identified,

particularly pathogenic fungi and bacteria, demonstrating the importance of long-term fal-

lowing efforts. Notably, this package also revealed the potential contributions of beneficial

soil microbes, including saprophytes and plant-endophyte fungi, in suppressing soil-borne

pathogens. Over-represented microbial ASVs associated with both plant and animal patho-

gens, including those of potential concern for human health, were identified. This under-

scores the importance of maintaining intrinsic balance for effective disease suppression.

Importantly, the advanced analytical and statistical methods offered by this package should

be harnessed to comprehensively investigate the effects of agricultural practice changes on

soil health within the One Health framework. Looking ahead, the application of this method

extends beyond the realm of One Health, offering valuable insights into various ecological

scenarios. Its versatility holds promise for elucidating complex interactions and dynamics

within ecosystems. By leveraging this tool, researchers can explore the broader implications

of agricultural practice modifications, facilitating informed decisions and sustainable envi-

ronmental management.
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Introduction

The One Health concept highlights the close connections and the interdependency between

humans, animals, plants and the surrounding environment [1]. Soil health constitutes a key-

stone element of One Health. Indeed, soils are vital living ecosystems that support ecosystem

services and subsequently sustain plants and animals’ health, including humans [2, 3]. Human

well-being is intrinsically tied to the soil’s capacity to provide food in quantity and quality [4].

To illustrate this point, it has been estimated that about 95% of our food comes from soils [5].

In addition to supplying nutrients to humans, soils are a reservoir of beneficial and detrimental

microorganisms [6–10]. The latter include fungi, bacteria, nematodes and viruses that spend

their entire life cycle or part of it in soils; incidental presence can also occur due, for instance,

to anthropogenic activities [7]. Though these soil-borne pathogens represent a small fraction

of living organisms in soils, they can potentially cause serious human and plant infectious dis-

eases and outbreaks [7, 11–13]. Agricultural practices (e.g., organic amendment, tillage, con-

servation tillage, crop rotations, fallow period, and use of agrochemical products) can affect

soil microbial communities and can either promote or suppress soil pathogens [2, 7, 14, 15].

Thus, as stated by [16] healthy soil should display, by definition, a low pathogens and related

diseases level. [2] in their recent review (in accordance with the European Commission’s rec-

ommendations [3]), pointed out the lack of biological indicators in soil health assessments and

proposed the inclusion of soil biodiversity and pathogens as indicators. The evaluation of path-

ogens risk is challenging and requires the use of appropriate analytical and statistical methods

for the establishment of sensitive, informative and feasible ‘biological indicators’ (also called

‘bioindicators’) [2, 7, 17]. To address this ambitious task, it necessitates the conjunction of

diverse disciplines (e.g., agronomy, ecology, bioinformatics, biostatistics, and social science),

and a close appropriation of the new emerging technologies for accessing this hidden

biodiversity.

Ecosystem monitoring powered by environmental ‘omics’ represents a revolutionary

toolbox that is increasingly being used [18]. Among this ‘ecogenomic toolbox’ [19], the taxon-

omy-based implementation methods rely on environmental DNA (eDNA). The term ‘eDNA’

generally means DNA extracted from an environmental sample without isolating the target

organism [20]. The eDNA approach has been applied to diverse environments, from terrestrial

to deep-sea habitats, and a large array of organisms, from microscopic to macroscopic forms

(e.g., fungi, bacteria, insects, plants and fishes) [21–23]. High-throughput eDNA amplicon

sequencing–metabarcoding of eDNA–has been recently used for estimating environmental

quality from the diversity, composition, structure and functioning of biological communities

[24–26]. As an example, in the context of ecological restoration of degraded lands, soil micro-

bial phyla and functional groups were newly investigated in different regions and proposed as

potential indicators of ecosystem recovery [25, 27, 28]. In addition to this, some community

analyses take into consideration the significant variations in relative abundances of taxa at the

species level in terms of Operational Taxonomic Units (OTUs) or Amplified Sequence Vari-

ants (ASVs)) [27, 29, 30].

To find a relative abundance of species correlated to a condition, a current consensus seems

to have been found by the scientific community with the use of the DESeq2 tool [31]—a tool

normally used for gene expression (transcriptomics) [29, 30, 32] and not for eDNA metabar-

coding studies. However, some limitations appear as there are disparities between studies in

the way this tool is used in metabarcoding research. There are many standardisation (normali-

sation) methods, and they are sometimes used at different stages of analysis. Such as examples,

the method of normalisation that is sometimes independent of the rarefaction or not (e.g., [33]

vs. [34]); the use of rarefied data or not (independently of the normalisation, like in [35] vs.
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[36]); the use of DESeq2 normalisation instead of rarefaction (e.g., [37]). Also, the notion of

enrichment does not seem to be the same depending on the study (e.g., [30] vs. [38]). And

lastly, the use of taxonomic rank is not similar between studies (e.g., [32] vs. [39]). All this

makes it difficult to compare studies. These differences stem from the absence of standardised

guidelines or manuals for the use of this kind of tool for metabarcoding studies, which pre-

vents researchers from following a reproducible and validated methodology. In transcrip-

tomics, to compare the relative changes between different conditions in the expression levels

of a gene or a protein, the ‘Log-fold change’ measurement is used [31, 40, 41]. It is calculated

as the logarithm of the ratio of the values. A significant positive log-fold change indicates an

enrichment (a greater relative abundance), whereas a negative log-fold change indicates a

depletion (a lower relative abundance). Since these statistics are originally used for genomics/

transcriptomics, a genetic enrichment stricto sensu corresponds to a group of genes that have a

similar biological function and are expressed in the same way and there is therefore genetic

enrichment for a given function [42]. In the case of taxonomy (by parallelism with genomics),

literally, this would correspond more to enrichment by several ASVs or OTUs (and not just

one from relative abundance values) that share a higher taxonomic rank (e.g., Kingdom, Class,

Order, Family, or Genus–like in [38]), or a similar biological/ecological function (e.g., plant

pathogen for example as in FUNGuild [43]).

Here, the Anaconda R package [44] was developed with the ideas of homogenising and

reframing the metabarcoding analyses using the DESeq2 tool (named ‘targeted’ analysis)—to

address the points on the use of statistics discussed above (LogFoldFC, DESeq2, etc.), and to

go further in the analysis of taxonomic enrichment (named ‘global’ analysis). Taxonomic

enrichment here, stricto sensu, allows highlighting a particular taxonomic rank that is carried

by several phylogenetically related species. In the field of identifying bioindicators, working at

higher taxonomic ranks than the species can be particularly relevant [25, 45, 46]. Taxonomic

enrichment analysis methods can therefore find taxonomic ranks that are condition-specific

over- or under-represented. This ‘global’ analysis approach follows [41] methods for gene

expression, which used a hierarchical clustering tree of significant Gene Ontology (GO) cate-

gories based on shared genes (e.g., Rank-based Gene Ontology Analysis with Adaptive Cluster-

ing—RBGOA). This method was adapted in the Anaconda R package to the taxonomy, to

obtain an enrichment based on taxonomic ranks (i.e., Kingdom, Class, Order, Family, Genus,

and Species). This shift between GO and a taxonomy ontology was possible due to the work of

[47] who adapted the GO system to the NCBI Taxon terms. We believe that such a combina-

tion of ‘targeted’ and ‘global’ approaches could, in the near future, boost the use of DNA meta-

barcoding in biomonitoring and could even represent the next breakthrough in the

assessment of soil health and One Health.

Analyses were performed on soil fungal and bacterial communities from Maré Island, an

island which is part of the Loyalty Island and the French archipelago of New Caledonia (Fig 1).

In the Loyalty Islands, indigenous people have traditionally practised fire-fallow agriculture

[48]. In Maré, yam cultivation, which displays a high symbolic value, is carried out after low

burning (ecoburial) in forests and can be followed, before a fallow period, by vegetable or fruit

plantations in the two succeeding years. Societal transformations have led to changes in the

traditional agricultural practices on the island [49]. Indeed, fallow periods that last for one to

two decades, are more and more frequently limited to a few years ([50]; Drouin, pers. com.).

There is worldwide very limited information on how fallow practices affect soil properties,

particularly concerning soil microorganisms [15, 51–55]. The few studies undertaken showed

that the effects of the fallow period on microbial diversity are inconsistent, with findings rang-

ing from increases to decreases, or no clear changes [15, 51, 54]. In terms of composition, fal-

low treatment seems overall to induce changes in fungal and bacterial assemblies [15, 51–54].
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More in depth [15], revealed that fallow management in a crop cultivation in China decreased

the relative abundance of fungal plant pathogens in soil. However, as stated by the authors,

due to the absence of replicated plots (i.e., only one field plot considered per condition), these

results are preliminary. For developing sustainable agricultural practices, it is thus crucial to

determine in which extent fallow management influence soil microbial communities, and sub-

sequently soil health.

In this context, our main objective was to determine how changes in traditional agricultural

practices in Maré Island impact the soil microbial communities, with both ‘classical’ commu-

nity analyses and our newly developed methodology implemented in the Anaconda R package.

We hypothesised that the reduction in the fallowing period would lead to a possible emergence

of fungal and bacterial pathogens in soils. To test this hypothesis, plots were established in cul-

tivations differing in their fallowing length, i.e., short fallow (SF) versus long fallow (LF), and

compared to ‘natural’ forests (F) that were used as reference ecosystems. Soil bacterial and fun-

gal communities were assessed using high-throughput amplicon sequencing of environmental

DNA (eDNA). In addition, we also looked at other indicators of soil health [3], such as soil

organic carbon, soil nutrients content, pH, vegetation cover, and another biological group that

corresponds to the nematodes (characterised using a morphological approach). We subse-

quently determined whether these parameters were related or not to the soil microbial com-

munities, since they are known to be involved in the accumulation or suppression of

pathogens.

Materials and methods

Experimental design

Study sites. The archipelago of New Caledonia is located in the southwestern Pacific, just

above the Capricorn tropic, about 1500 km east of Australia and 2000 km north of New

Fig 1. Situation of New Caledonia in the world, and of Maré Island within this archipelago. Location of the different sampling sites in Maré Island. SF is for

Short Fallow (brown disk); LF is for Long Fallow (lightgreen disk) and F is for Forest (forest green disk). Map realised with the R package marmap.

https://doi.org/10.1371/journal.pone.0311986.g001
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Zealand (Fig 1). The New Caledonian archipelago encompass the Loyalty Islands, which

includes Maré Island (Fig 1 –map realised with the R package marmap V. 1.0.10 [56]). The

Maré Island (Fig 1). comprise four main types of soils [57]. Among them, the Gibbsic Ferralsol

are known for their extraordinary content of organic matter (humic soils) and gibbsite [49]

and used for yam (Dioscorea sp.) cultivation. All sampling in this study took place on this type

of soil.

Conditions and soil sampling. Three condition types were studied: (1) fields that were

recently (two to three years ago) cultivated and harvested, then let in fallow, representing the

short fallow condition (SF), (2) fields that were last cultivated and harvested ten to twenty

years ago and which will be planted in the year of the study, called the long fallow condition

(LF), and (3) lands that have never been cultivated and are used as a reference, called the forest

condition (F). Five plots of 20 x 20 m were established per condition, totalling 15 plots (Fig 1

and S1 Fig). In each 20 x 20 m plot, four 5 x 5 m sub-plots were placed in the corners and one

in the centre. Five soil samples were collected from each sub-plot at a depth of 0–15 cm using a

5 cm diameter auger. The samples from each plot were combined to form a composite soil

sample, resulting in 15 composite samples. These samples were sieved on site using 5 mm and

2 mm sieves, placed in a cooler, and stored at 4˚C overnight before being flown to Grande

Terre (Fig 1). The soil samples were then divided for analysis: one part for DNA extraction

(stored at -20˚C) at the Plateforme du Vivant in Nouméa, and the other part sent to France

within five days for soil organo-physical-chemical analysis and nematode characterisation.

Soil organo-physico-chemical analyses

All organic-physical-chemical analyses were carried out by an independent laboratory for

analysis, study and advice on soil biology (Celesta lab, https://celesta-lab.fr); see methods S1

for more information.

Plant community inventory

Plots of 20 x 20m were inventoried for plant species with DBH> 5cm. In each plot, four 5 x

5m sub-plots (same as above) were established, where plant species over 1m in height were

recorded and measured. Additionally, smaller plant species (less than 1m in height) were

counted within these sub-plots.

Nematodes survey

On the same soil samples used for previous analyses, a survey of nematodes was realised by the

independent engineering office Elisol environnement (https://www.elisol.fr). The taxonomic

distinction was made up to the families. The abundance per site was also recorded (number of

individuals per 100g of dry soil).

Molecular method

Environmental DNA extraction, libraries generation and sequencing. Environmental

DNA extraction, libraries generation and sequencing we realized as previously described in

[25]. The Regional Genotyping Platform (GPTR Génotypage, https://www.gptr-lr-genotypage.

com/) of the UMR AGAP (CIRAD—INRAE—Montpellier SupAgro) performed the libraries

generation and sequencing. Approximately 13 million paired reads of 250 bp length were

obtained for both ITS2 (Fungi) and V4 (Bacteria) in independent sequencing runs.
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Bioinformatics

Working environment. The pipeline was run on the Nouméa Institut de Recherche pour

le Développement (IRD) cluster under CentOS Linux release 8.3.2011. Downstream analysis

has proceeded on macOS Mojave 10.14.6 (x86_64-apple-darwin17.0 (64-bit)). All scripts cre-

ated and used for this pipeline can be found at https://github.com/PLStenger/Diversity_in_

Mare_yam_crop.

Qiime2 framework. Microbiome analysis was performed using the QIIME 2 framework

V. 2021.4.0 [58]. Dereplicated and trimmed sequences were imported into the framework as

paired-end (Phred33V2) sequences and denoised using the DADA2 plugin, based on the

DADA2 V. 1.8 R library [59], which removed singletons, chimaeras, and sequencing errors

and processed the sequences into a table of exact amplicon sequence variants (ASVs) [60].

Negative control library sequences were used as in [61]. ASVs that were present in only a single

sample were filtered, based on the idea that these may not represent real biological diversity

but rather PCR or sequencing errors. Finally, all samples were rarefied to the sample with the

lowest number of reads, to keep at the higher number of samples (S2 and S3 Figs).

Statistical analyses

Soil microbial diversity, composition and structure. Statistical analyses were performed

using the R software environment V. 4.2.1 [62]. For diversity, the observed number of ASVs

[63], Chao1 [64], Simpson evenness [65] Pielou evenness [66], Shannon entropy [67], and

Faith PD [68] were performed using Kruskal-Wallis test after checking the normal law by Sha-

piro test. Bray-Curtis dissimilarity [69] and Jaccard similarity index [70] matrices were calcu-

lated with the q2-diversity tool. These statistics and their significance post hoc test were

obtained with the agricolae R package V. 1.3–5 [71]. Boxplots were realised with ggplot2 R

package V. 3.3.5 [72] (S4 and S5 Figs). For fungal functional assignments, we follow the

method implemented in [25]. For bacterial functional traits assignment, the database from

[73] was used.

As Archaea becoming a growing kingdom that is studied with the V4 markers in soil analy-

sis [74–76] and as there is a unique founded Phyla (Crenarchaeota) and a unique Class (Nitro-

sosphaeria) in our dataset, we included them in our bacteria analysis in the composition bar

plots. For all Phyla (ITS2 and V4), Kruskal-Wallis tests were performed on the proportion of

the relative abundances between conditions (e.g., SF vs. LF vs. F).

Regarding soil microbial community structure analyses, distance matrices based on the

Bray-Curtis measurement were visualised using non-metric multidimensional scaling

(NMDS) with vegan R package V. 2.5–7 [77] and ggplot2 R package V. 3.3.5 [72]. Differences

between microbial communities were tested using PERMANOVA, with 9999 permutations

with vegan R package V. 2.5–7 [77] and the post hoc test was realised with the pairwiseAdonis
R package V. 0.4 [78].

Relationships between soil chemical properties, plants and nematodes on microbial

communities. All organic-physical-chemical, plants and nematodes differences between

conditions (e.g., F vs. LF; F vs. SF; LF vs. SF) were checked previously using Kruskal-Wallis

tests. A soil texture triangle (S6 Fig) was realised with the ggplot2 R package V. 3.3.5 [72]. We

examined relationships between soil fungal and bacterial communities, soil chemical proper-

ties, plant and nematode communities using PERMANOVA (nPerm = 9999) like in [25]. We

identified significant differences in community structure and then performed post-hoc tests to

determine the specific environmental and biological variables driving these differences. After

identifying significant environmental variables, we used db-RDA to examine relationships

between soil microbial communities and other parameters (soil properties, plant and
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nematode communities) for each variable following the [79] methods using the R packages

ggord V.1.0.0 [80], pmultcomp V. 1.4–16 [81], factoextra V. 1.0.7 [82] and vegan V. 2.5–7 [77].

‘Targeted’ and ‘Global’ analysis by Anaconda R package for high-throughput eDNA

sequencing data. The R functions created for ‘tArgeted differeNtial and globAl enriChment

analysis of taxOnomic raNk by shareD Asvs’ (ANACONDA) were bottled into an R package

and submitted and then published to CRAN for code review and better use by third parties

[44] and can be found at https://cran.r-project.org/web/packages/Anaconda/index.html and

https://github.com/PLStenger/Anaconda. This package has been created based on the data

presented in this paper and was built for high-throughput eDNA sequencing analysis, but can

be used for more classical ecological studies (see below with plants and nematodes data). This

work package encompasses two steps: (I) the ‘targeted’ differential analysis from QIIME2 data

by the DeSeq2 algorithm, and (II) the ‘global’ analysis by Taxon Mann-Whitney U test analysis

from ‘targeted’ analysis. This also integrates the FunGuild [43] and Bactotraits [73] databases

(for using FunGuild, Python V.> 2.7 is required).

For the first step (I), the Anaconda R package estimates variance-mean dependence in

count/abundance ASVs data from high-throughput sequencing assays and test for differential

represented ASVs (through the comparison of previously explained conditions (here in our

case, F vs. LF, F vs. SF, and SF vs. LF) based on a model using the negative binomial distribu-

tion as in [31] for transcriptomic data (but instead of having gene expressions, we have an

abundance of species). This step, therefore, focuses on whether there is an over-representation

or an under-representation of specific species in one condition compared to another in a sig-

nificant way. Here is a simplification of the protocol: download the R package on CRAN

(https://cran.r-project.org/web/packages/Anaconda/index.html) or in its GitHub mirror

(https://github.com/PLStenger/Anaconda). i) Use the QIIME2 files ‘ASV.tsv’ which is the list

of ASVs abundance for each of your samples created by the QIIME2 pipeline; ii) ‘taxonomy.

tsv’ which is the file with the listed taxonomy-ASV key for the rarefied dataset created by the

QIIME2 pipeline (will be useful for ‘global’ analysis (II)); iii) ‘taxonomy_RepSeq.tsv’ which is

similar to the previous file, but from the representative sequences QIIME2 step (will be useful

for ‘global’ analysis (II)), and finally a handmade file named iv) ‘SampleSheet_comparison.txt’.
More detailed material and methods can be found at https://github.com/PLStenger/Anaconda

and S7 Fig. On R, the dASVa object (differential ASV abundance object) will be created to be

fit on a Gamma-Poisson Generalised Linear Model (dispersion estimates for Negative Bino-

mial distributed data), and the dispersion plot and the sparsity plot can be checked. The corre-

sponding taxonomy can be added in the ASVs keys in results and put in a text and Excel file in

output. FunGuilds can be added for fungi and Bactotrait for bacteria. MA plots are disponible

in the package to adapt the p-value and the FoldChange cut-off.

For the second step, the ‘global’ analysis (II) by Taxon Mann-Whitney U test analysis will

use the results of the ‘targeted’ analysis. This step does not specifically focus on species that are

over- or under-represented in a given condition (like step I) but on all taxonomic ranks (e.g.,

Phylum, Class, Order, Family, Genus and Species). For this second step, more files are needed

and can be downloaded here https://github.com/PLStenger/Anaconda. The first of these files,

the ‘ncbitaxon_ontology.obo’, is an NCBI organismal classification file adapted for the Ana-
conda R package, originally based on [47]. The other files are a correspondence for fungi and

bacteria QIIME2 code to NCBI Taxon code. Here, the Mann-Whitney U (MWU) test analysis

is realised on the correspondence of the NCBI Taxon among the analogous database (NCBI-

Taxon_MWU). This NCBITaxon_MWU uses a continuous measure of significance (such as

fold-change or -log(p-value)) to identify NCBITaxon that are significantly enriched with either

up- or down-represented ASVs. If the measure is binary (0 or 1) the script will perform a typi-

cal ’NCBITaxon enrichment’ analysis based on Fisher’s exact test: it will show NCBITaxon
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over-represented among the ASVs that have 1 as their measure. On the plot, different fonts are

used to indicate significance, and colour indicates enrichment with either up (red) or down

(blue) regulated ASVs. The tree on the plot is a hierarchical clustering of NCBITaxon based on

shared ASVs. As in [41], categories that do not have any branch length separating them are

included within one another. Also as in [41], the fraction next to the category name indicates

the fraction of ’good’ ASVs in it; ’good’ ASVs are the ones exceeding the arbitrary absValue

cutoff (option in taxon_mwuPlot()). For realised a Fisher’s based test, specify absValue = 0.5.

This value does not affect statistics and is used for plotting only. The original idea was for gene

differential expression analysis from [41] adapted here for taxonomic analysis (except that

instead of having different functional categories of genes, we have different taxonomic ranks).

This step is relevant if there is a consequent amount of data, and to hook a group of species

that are taxonomically similar and present in a significant quantity in a condition.

Anaconda R package for classical ecological data. We applied Anaconda analyses to

non-sequencing data (plants and nematodes) from classical inventories, using the ’targeted’

analysis to examine abundance files formatted to match QIIME2 ASV.tsv files (data on plants

did not constitute an exhaustive database and data on nematodes stopped at family rank for

the ‘global’ analysis).

Results

Soil eDNA pre-processing analysis

For the ITS2 marker (fungi) 2,594,514 raw sequences from 15 samples were obtained and then

270,160 sequences were kept after different cleaning steps (S1 and S2 Tables). Due to a calcu-

lated rarefaction of 12,582 reads, four plots were not kept for further analysis (namely, plots

F2, LF2, LF5 and SF3) (S2 Fig). For the V4 marker (bacteria), 3,064,846 raw sequences from 15

samples were obtained and then 236,235 sequences were kept after the cleaning steps (S3 and

S4 Tables). As a result of a calculated rarefaction of 4,483 reads, two samples were removed for

subsequent analyses (i.e., F2 and LF2) (S3 Fig). Thus, 270,160 quality-filtered fungal sequences

(ITS2) and 102,277 quality-filtered bacterial sequences (V4) from 11 and 13 soil samples

respectively were finally generated and further analysed.

Soil fungal and bacterial diversity

In total, 383 and 94 fungal and bacterial ASVs, respectively, were delineated. For both fungi

and bacteria, no significant differences were observed in diversity indices between the condi-

tions (i.e., SF, LF, and F) (S4 and S5 Figs).

Soil fungal and bacterial composition and functional groups

Fig 2 presents the relative abundances of the fungal phyla (Fig 2A) and functional groups (i.e.,

guilds and trophic modes) (Fig 2B). Ascomycota was observed as the most abundant phylum

in each condition (SF: 55.4% ±18.6%, LF: 63.9% ±6.9%, and F: 61.5% ±8.1%), followed by Basi-

diomycota (SF: 33.5% ±18.5, LF: 23.9% ±7.8%, and F: 28.9% ±11.1%). All other phyla (Rozello-

mycota, Chytridiomycota, Mucoromycota, Calcarisporiellomycota, Glomeromycota, and

Mortierellomycota) showed a relative abundance inferior to 8%. No significant variations in

the proportions of the relative phyla abundances between the three conditions were detected

(Kruskal Wallis test).

Regarding fungal guilds, the undefined saprotroph guild was the most relatively abundant

in short fallow (44.4% ±11.3%) and long fallow (40.4% ±9.4%), and the second most abundant

in the forest (36.2% ±19.1%). In the forest, the animal pathogen guild was the most relatively
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abundant guild with a proportion a relative abundance of 41.0% ±20.2%, whereas it was the

second most abundant guild in short fallow (25.4% ± 13.8%) and long fallow, as well (40.0% ±
21.5%). The plant-pathogen guild was the third most relatively abundant guild for all condi-

tions (SF: 13.6% ±8.3%, LF: 9.0% ±8.9%, F: 9.4% ±6.3%). The guild of ectomycorrhizal fungi

was the fourth most relatively abundant guild in all conditions (SF: 8.9% ± 5.3%, LF: 5.3% ±
3.1%, F: 5.9% ± 3.6%). All other guilds showed a relative abundance inferior to 8%. When

comparing the different conditions, the Kruskal-Wallis test revealed no significant variation in

the relative abundances of these guilds.

The relative abundance of each bacterial phyla (and the only archaeal phyla), and their cor-

responding functional traits (excluding Archaea) are presented respectively in Fig 2C and 2D.

For the phylum composition, in the three conditions studied, two bacterial phyla dominated

the soil communities, namely the Firmicutes (SF: 31.5% ±9.3%; LF: 27.3% ±1.5%; F: 38.9%

±5.4%) and the Verrucomicrobiota (SF: 17.4% ±9.3%; LF: 32.7% ±13.3%; F: 15.3% ±%5.4).

The only detected archaeal phylum that was the Crenarchaeota, was also observed in relatively

high proportions (SF: 25.9% ±12.5%; LF: 16.8% ±8.4%; F: 18.6% ±2.5%) (Fig 2C). All these

phyla did not show any significative differences in their relative abundances between the three

compared treatments. The only phylum that presented significant variations in its proportions

(SF: 4.9% ±0.6%; LF: 1.2% ±1.4%; F: 9.4% ±2.3%) was the Proteobacteria (Kruskal Wallis test

p-value = 0.004723).

Concerning the bacterial functional traits, the organotroph-chemotroph functional group

was dominant in all conditions (SF: 80.4% ±2.7%, LF: 72.0% ±11.2%, and F: 80.9% ±2.1%),

and was followed by the heterotroph group (SF: 11.7% ±2.7%, LF: 21.5% ±12.2%, F: 10.4%

±2.5%). The organotrophs and the composite group represented systematically less than 8%.

The heterotrophs were the only functional group that showed a significant variation between

conditions (Kruskal Wallis test, p-value = 0.0333).

Fig 2. Bar plots of relative abundance (in per cent) of fungi phyla (A), their corresponding guilds (B), and of bacteria phyla (C) and their corresponding traits

(D). Conditions legend: SF is for Short Fallow; LF is for Long Fallow and F is for Forest.

https://doi.org/10.1371/journal.pone.0311986.g002
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Microbial communities’ structure

The NMDS ordination, based on the Bray-Curtis dissimilarity index, suggests that soil fungal

communities were distinct between the studied conditions, particularly between short fallow

and forest (Fig 3A). The PERMANOVA analysis supports this observation (PERMANOVA: p-
value = 0.018, R2 = 0.277 for sites and 0.723 for residual, post-hoc test pairwise adonis F vs. SF

p-value = 0.019; F vs. LF and LF vs. SF were non-significant). Conversely, for bacteria, no com-

munity structure was observed (Fig 3B; PERMANOVA non-significant). Thus, in contrast to

fungi, bacterial communities did not exhibit any significant differences between land-use

conditions.

Influence of physico-chemical parameters

The soil texture (i.e., the proportions of clays, silt, and sand) was homogeneous among plots

and, hence, among the three related conditions investigated (S5 Table, S6 and S8 Figs) and was

classified as silt loam. The organic matter, carbon (C), nitrogen (N), and pH showed signifi-

cant differences (p-values< 0.05), with systematically higher values in the forest (S5 Table and

S8 Fig). In linked organic matter analysis, C/N showed significant differences (p-
value = 0.029), with a higher ratio in long fallow. Regarding the microbial biomass parameters,

significant differences were observed (S5 Table and S8 Fig). Indeed, the carbon, the estimated

total microbial biomass, as well as the estimated related parameters nitrogen, phosphorus,

potassium, calcium, and magnesium stored in microbial biomass showed significant differ-

ences between conditions (p-values < 0.05). Looking at the pairwise comparisons, the soils in

forests presented, for most parameters, higher significant values. In addition to these investi-

gated parameters, significant differences were found in mineralized carbon (microbial activ-

ity), decreasing from forest to short fallow (p-value = 0.015, S5 Table; S8 Fig). Since a structure

of communities according to the studied conditions was only observed for fungi (Fig 3), db-

Fig 3. Non-metric multidimensional scaling (NMDS) for fungi phyla (A) and bacteria phyla (B). SF is for Short Fallow (brown letters); LF is for Long Fallow

(light green letters) and F is for Forest (forest green letters).

https://doi.org/10.1371/journal.pone.0311986.g003
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RDA analysis using soil physico-chemicals parameters as explanatory variables has only been

proceeded on this microbial group. The db-RDA representation showed that fungal phyla

were significantly related to the soil texture and not to other parameters (S9 Fig–with only the

significant parameter, i.e., the soil texture). The PERMANOVA (nPerm = 9999; 20% of the

variance explained, p-value = 0.007) and post-hoc tests (Clays, p-value = 0.031; and Silt, p-
value = 0.009) supported this relationship. More precisely, the Basidiomycota were found to be

related to the silt content, whereas the Ascomycota were inversely related to the clay content

(S9 Fig). However, no relationships were detected regarding the soil fungal fallows and forest

communities. So, the soil texture was homogeneous among plots, but the soil physico-chemi-

cal properties, including organic matter, carbon, nitrogen, and pH, showed significant differ-

ences between the forest and fallow conditions, with the forest having systematically higher

values.

Influence of plants

Kruskal-Wallis tests, followed by Dunn post-hoc tests (S6 Table) revealed significant differ-

ences in plant species composition between the forest and fallow conditions, with several spe-

cies showing significant presence or absence in specific conditions, such as Acacia spirorbis (p-
value = 0.00621) being absent in the forest and Dodonaea viscosa (p-value = 0.00327) being

more present in short fallow.

Influence of nematodes

One nematode family, Aphelenchoididae (Kruskal-Wallis test: p-value = 0.00918), showed sig-

nificant changes between conditions, with differing abundance in long-term and short-term

fallows (S7 Table).

‘Targeted’ analysis for fungi and bacteria with the Anaconda R package

Eleven and 13 samples were used, respectively, for fungi and bacteria/archaea analyses (as a

result of the deletion of samples due to the previous rarefaction step). An estimate of the dis-

persion by shrinkage can be visualised by plotting the dispersion estimates on the average

ASVs presence strength (here ‘ASV abundance’ is used as a ‘count’) (S10 Fig) by adjusting

only an intercept term. First, and following [31], the maximum likelihood estimate of the

ASVs was obtained using only the respective ASVs data (black dots). Then, a curve (red) was

fitted to the maximum likelihood estimate to capture the general trend of the dispersion-mean

dependence. This fit was used as a prior mean for a second round of estimation, which resulted

in the final estimates of the dispersion at the maximum a posteriori. This can be understood as

a narrowing (blue circle) of the noisy estimates by ASVs towards the consensus represented by

the red line. The black points circled in blue were detected as outliers of the dispersion and

were not reconciled with the prior (the reconciliation would follow the dotted line). In our

case, we see that few ASVs were not fitted in the (here, parametric) model (which is normal

according to [31]) and that the results were very similar between the two kingdoms, although

the bacteria showed few ASVs in comparison. The analysis of the inter-sample relationships

after the previous transformation (Fig 4) showed us that the variability observed in the previ-

ous analyses (e.g., sections 3.2 to 3.4) was well preserved. For example, the similarity between

the NMDS (Fig 3) and the PCA presented here was remarkable. Nevertheless, we can observe

nuances in this variability.

For fungi (Fig 4A), the hierarchical clustering on Euclidean distances on logarithm-trans-

formed ASVs abundance with average clustering method showed higher differences in sample

relationships than in the PCA. As an example, the samples from the Forest condition (‘F’)
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were tightly grouped in this PCA whereas they were fitted in three different sub-clusters in the

hierarchical clustering. The 31% (18%+13%) total explained variation in the PCA showed that

a small part of the data explained this convergence. The sample-to-sample heatmap based on

rlog transformation with trim on too low represented ASVs showed a certain homogeneity of

the samples, which could illustrate a variability homogeneously explained by some ASVs (with

a variability not pulled by only some ASVs in a specific way, but also by several ASVs in the

same direction).

For bacteria and archaea (Fig 4B), the hierarchical clustering on Euclidean distances on log-

arithm-transformed ASVs abundance with average clustering method showed similar differ-

ences in sample relationships than in the PCA. As an example, the samples F1, F3, F4, SF1, and

SF2 were at the margin of the other samples in the PCA, which was well highlighted by a simi-

lar sub-cluster in the hierarchical clustering. The 34% (19%+15%) total explained variation in

the PCA showed that a small part of the data explained the presented variation. The sample-

Fig 4. Analysis of the inter-sample relationships for fungi (A) and bacteria (B) with the Anaconda R package. For each, at the left, a hierarchical clustering on

Euclidean distances on logarithm-transformed ASVs abundance with average clustering method, at the right a Principal component analysis (PCA), and at the

bottom, a sample-to-sample heatmap based on rlog transformation with trim on too low represented ASVs. SF is for Short Fallow (brown letters); LF is for

Long Fallow (light green letters) and F is for Forest (forest green letters).

https://doi.org/10.1371/journal.pone.0311986.g004
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to-sample heatmap based on rlog transformation with trims on too low represented ASVs,

showed higher heterogeneity within some of the samples, as for LF5-SF5 for example, this

could display a variability explained by few ASVs in a heterogeny way (with a statistical varia-

tion pulled by few ASVs, and not a lot of ASVs). Such similarities (e.g., between the previous

and the Anaconda analyses) with nuances allowed us to ensure that the variability structure of

the dataset (e.g., few ASVs highly over or under-represented in a condition versus a lot of simi-

lar ASVs slightly over or under-represented in a condition) was maintained while allowing us

to explore the smallest variation so that we can answer our biological/ecological question with

further analysis (see below).

The clustered heatmap of the 75 most abundant ASVs based on Euclidean distance with

average clustering method for fungi (S11 Fig) and bacteria/archaea (S12 Fig) showed that there

is no discernible pattern based on the most prevalent ASVs. This allows for condition-specific

analyses to recover ASVs that are specifically over- or under-represented in the different con-

ditions, which could therefore explain the observed variations.

The DeSeq2 algorithm allowed such comparison, and here with P-adjusted < 0.05 and Log-

FoldChange > |2|, F vs. LF, F vs. SF, and SF vs. LF comparison hooked, respectively, 43, 96,

and 43 significantly under- or over-represented ASVs respectively for fungi (Fig 5A), and 33,

35, and 17 significantly under- or over-represented ASVs for bacteria (Fig 5B).

Venn diagram representations (Fig 5C and 5D) allowed us to recover species (ASVs) that

were i) specific to a comparison, and most importantly that were ii) specific to a condition (the

latter correspond to those with a common denominator, e.g., F vs. SF compare to F vs. LF will

show ASVs specific to F). For fungi (Fig 5C), of the 43 ASVs significantly over- or under-rep-

resented in the F vs. LF pairwise comparison, nine were specific to this comparison. Out of the

96 ASVs significantly over- or under-represented in the F vs. SF comparison, 40 were here spe-

cific to this comparison. For the SF vs. LF comparison, of the 43 ASVs significantly over- or

under-represented, 13 were specific to this pairwise comparison. Thirty ASVs, 4 ASVs, and 26

ASVs significantly over- or under-represented were specific to the forest, the long fallow and

Fig 5. MA plots (A and B) from the mean of normalised count by their respective log fold change, and Venn diagrams from ASVs (C and D) realised for fungi

(A and C) and bacteria (B and D) with the Anaconda R package. SF is for Short Fallow; LF is for Long Fallow and F is for Forest.

https://doi.org/10.1371/journal.pone.0311986.g005
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the short fallow, respectively (condition-specific ASVs). For the bacteria/archaea (Fig 5D), of

the 33 ASVs significantly over- or under-represented in the F vs. LF comparison, two were

only recovered from this comparison. Out of the 35 ASVs significantly over- or under-repre-

sented in the F vs. SF comparison, only one was specific to this pairwise comparison. Of the 17

ASVs significantly over- or under-represented in the SF vs. LF comparison, none were specific.

Twenty-four, 7, and 10 ASVs that were significantly over- or under-represented were, respec-

tively, restricted to the forest, the long fallow and the short fallow (condition-specific ASVs).

Looking at the fungal ASVs (p-value < 0.05; LogFoldChange > |2|) that were condition-

specific (Fig 6A), 15 ASVs were over-represented in short fallows (present only in short fal-

lows), particularly Sarocladium kiliense, Acrocalymma fici and Exophiala aquamarina, and 11

were under-represented in short fallows (present in forests and long fallows, but not in short

fallows), notably Acrocalymma walkeri, Angustimassarina acerina, and Mortierella minutis-
sima. In long fallows condition-specific, three ASVs were found to be over-represented, such

Fig 6. ‘Targeted’ analysis results graph for fungi (A) and bacteria (‘b’) and Archaea (‘a’) (B) with the Anaconda R package. Results are in Log2FC for the

significant ASVs according to the precision of the taxonomic rank: species (‘s’), genus (‘g’), family (‘f’), order (‘o’), class (‘c’), phyla (‘p’), or kingdom (‘k’). SF is

for Short Fallow (brown); LF is for Long Fallow (lightgreen) and F is for Forest (forestgreen).

https://doi.org/10.1371/journal.pone.0311986.g006
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as Trechispora invisitata, and one was under-represented, namely Agaricales sp. 01. In forests

condition-specific, 20 ASVs were over-represented, like Mortierella bisporalis, Lycogalopsis
solmsii and Hygrocybe sp.), and 10 were under-represented, like Spizellomyces punctatus,
Botryosphaeria sp. and Mortierella alpina.

For ASVs (p-value < 0.05; LogFoldChange > |2|) that were condition-specific for bacteria

and archaea (Fig 6B), nine ASVs were over-represented, such as Burkholderiales, Gemmata-

ceae, or Gaiella, and one was under-represented in short fallows, an ASV assigned at the Vici-

namibacteraceae family. In long fallows, four ASVs were over-represented, for instance,

bacteriap25 sp., Entotheonellaceae sp. and Vicinamibacteraceae sp., and three were under-rep-

resented, i.e., Hyphomicrobium sp., Candidatus Udaeobacter and Nitrososphaeria sp.

(archaea). Finally, nine ASVs were over-represented, like Candidatus xiphinematobacter,
Bacillus sp. and Acidibacter sp., and 15 were under-represented in F, such as three archaeal

ASVs belonging to the Nitrososphaeria genus.

So here, hierarchical clustering analysis revealed greater differences in fungal sample rela-

tionships, with distinct sub-clusters in Forest samples, while PCA showed a more compact

grouping. Bacterial and archaeal samples exhibited similar patterns, with some distinct sub-

clusters and others showing higher heterogeneity. Condition-specific ASVs were identified in

fungi and bacteria/archaea, with distinct ASVs over- or under-represented in each condition,

including Sarocladium kiliense, Acrocalymma fici, and Exophiala aquamarina in short fallows,

and Mortierella bisporalis, Lycogalopsis solmsii, and Hygrocybe sp. in forests.

‘Global’ analysis of fungal and bacterial communities with the Anaconda R

package

Concerning the ‘global’ analysis for fungi (Fig 7), 1174 ASVs matched to 653 NCBITaxon dif-

ferent terms, and 639 NCBITaxon were remaining. After the secondary clustering, the MWU

test output 23, 31, and 21 NCBITaxon terms at 10% FDR for the pairwise comparisons F vs.
SF, F vs. LF, and SF vs. LF, respectively. Here, compared to the ‘targeted’ analysis, when an

affiliation is made at a higher rank than species (e.g., family, order, or genus), this corresponds

to several ASVs that share the same taxonomic rank. When a group of ASVs are ascribed at

the species level, it means that several ASVs share this taxonomic affiliation and can corre-

spond to different sub-species, or strains.

In the forest, compared to the short fallow, numerous ASVs assigned to the fungal entomo-

pathogen Metarhizium robertsii were over-represented (p-value < 0.05) (Fig 7). In contrast,

other ASVs were under-represented, hence, over-represented in the short fallow, such as the

ones ascribed to the Curvalaria plant pathogen genus (p-value< 0.05), the potential plant

pathogens that are Spizellomyces punctatus (p-value < 0.01) and Fusarium oxysporum (p-
value < 0.05), and the potential human pathogen that is Exophiala equina (p-value < 0.05)

(Fig 7).

In comparison to the long fallow, Metarhizium robertsii was again found in higher abun-

dance than in the forest. Only Spizellomyces punctatus was significantly observed as over-rep-

resented (p-value < 0.05) in the long fallow, but to a lesser extent than in the short fallow

(Fig 7).

The comparison between the short and the long fallow periods (Fig 7) showed an over-

representation in the former for numerous taxa: Sarocladium, Fusarium oxysporum species

complex, Pyrenochaetopsis leptospora, Curvularia, Pleosporaceae, Alternaria, Chaetomella,

Chytridiomycota, and Spizellomyces punctatus (p-value< 0.01). Leotiomycetes and Talaromyces
sect. Talaromyces were also over-represented in the short fallow (p-value < 0.05). In the long

fallow, Hymenochaete acerosa, Glutinoglossum, Lycogalopsis solmsii, Trechispora invisitata,
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Fig 7. ‘Global’ analysis results graph for fungi with the Anaconda R package for the three comparisons. SF is for Short Fallow; LF is for Long Fallow, and F

is for Forest.

https://doi.org/10.1371/journal.pone.0311986.g007
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Saksenaea trapezispora, Metarhizium robertsii, and Exophiala equina were found in higher

abundances than in the short fallow (p-value < 0.01).

For bacteria and archaea, 486 ASVs matched to 108 NCBITaxon different terms. One hun-

dred NCBITaxon were remaining. After the secondary clustering, the MWU test output zero

NCBITaxon terms at 10% FDR for all comparisons. This result mirrors the ones presented in

Fig 4, which displays a variability explained by a few ASVs in a heterogeny way (with a variabil-

ity pulled by only some ASVs in a specific way, and not by several ASVs in the same direction).

Here it means that some ASVs are very strongly over- or underrepresented in a condition

(which is why the ‘targeted’ analyses worked) but that there are not enough similar ASVs that

are slightly over- or underrepresented in a condition in the same direction (which is why the

‘global’ analyses cannot be realised because it is not significant).

To summarize, the analysis of fungal ASVs in the forest, short fallow, and long fallow condi-

tions revealed significant differences in taxonomic affiliations, with Metarhizium robertsii being

over-represented in the forest and short fallow, and Curvalaria, Spizellomyces punctatus, and

Fusarium oxysporum being under-represented in the forest and over-represented in the short

fallow, whereas Leotiomycetes and Talaromyces sect. Talaromyces were over-represented in the

short fallow. The analysis of bacterial and archaeal ASVs revealed that only 108 taxonomic

groups were significantly represented, with the majority of ASVs remaining unclassified, and

Fig 8. Venn diagram from the ‘targeted’ analysis results graph for plantae for the three comparisons. Values are corresponding fold changes. Conditional

blue values are under-represented ASVs (negative fold change) and conditional red values are over-represented ASVs (positive fold change). SF is for Short

Fallow; LF is for Long Fallow, and F is for Forest.

https://doi.org/10.1371/journal.pone.0311986.g008
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no significant differences were found between the forest, short fallow, and long fallow condi-

tions, indicating that a few ASVs strongly drive the variation in this community composition.

Anaconda package on ecological data

To determine the usefulness of this tool for other types of data, the Anaconda package was

used on plants’ and nematodes’ ecological data. Using the ‘targeted’ analysis, six plant species

were observed as forest-specific (p-value < 0.05; LogFoldChange > |2|), notably Aglaia elaeag-
noidea, Diospyros fasciculosa, and Schefflera gabriellae (Fig 8). Acacia spirorbis, Dodonaea vis-
cosa, and Psidium guajava were only encountered in the two fallowing periods (Fig 8).

Acalypha grandis and Pitpturus argenteus were only observed in the short fallow (p-
value < 0.05; LogFoldChange > |2|), whereas Podonephelium homei and Polyscias bracteata
were only found in the two other conditions. Schinus terebinthifolius was found significant in

the short fallows compared to the forests (p-value < 0.01), which means that this species was

found in larger quantities in short fallows compared to forests. In forests vs. long fallows, Acro-
nychia laevis (p-value =< 0.01) and Glochidion billardieri (p-value =< 0.05) were encountered

in greater quantities in long fallows compared to forests, meaning that these species were

mostly found in long fallows compared to forests. Finally, Diospyros samoensis (p-value =<

0.05) was observed in higher abundance in forests compared to long fallows, indicating that it

was mostly present in the forest and slightly in the long fallow land.

For nematodes, the comparison between the forest and the short fallow showed significant

variation in the abundance of one family, the Tylenchidae, which was more present in the for-

est (p-value = 0.01665, LogFoldChange = 2.28). A significant variation in another family, the

Aphelenchoididae, was also observed when the short and low fallow were compared, with a

higher representation in the former (p-value = 0.00974, LogFoldChange = -2.23).

So here, the application of the ‘targeted’ analysis to plant and nematode ecological data

revealed significant differences in species abundance between the forest and fallow conditions,

with specific plant species showing preferences for either forest or fallow environments, and

nematode families exhibiting altered abundance patterns in response to different land-use

regimes. This clearly demonstrates the usefulness of this package for ‘classic’ ecological data,

and its use can therefore be extended beyond metabarcoding data.

Discussion

‘Classical’ community analysis: No effect of agricultural practice changes in

the first instance

The so-called ‘classical’ community analysis (which refers to the diversity, composition, and

structure investigations that are commonly made in community analyses), revealed no effects

of cultural practice changes on soil microbial communities. Indeed, no differences in microbial

diversity were found between short- and long-term fallowing, and forest, for both fungi and

bacteria/archaea. Variations in phylum composition were only observed for Proteobacteria,

with a higher proportion in the forest, but not between fallow periods. Based on [25], the rela-

tive abundance of Proteobacteria may indicate soil and land degradation, suggesting that both

short- and long-fallow periods (the latter lasting over a decade) could be considered as

degraded systems. As for the diversity and the phyla composition, the functional groups did

not reveal a clear tendency, especially in terms of pathogens and beneficial microbe relative

abundances. Looking at the soil microbial community structure, a significant partitioning was

only observed for fungi, which resulted from differences with the forest, not from any fallow-

ing period effect.
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It’s noteworthy that despite our inability to detect soil microbial changes due to the agricul-

tural practice, some ‘global’ tendencies seem to emerge from those ‘classical’ approaches.

Indeed, for fungi, in all conditions Ascomycota was observed as the most abundant phylum, fol-

lowed by Basidiomycota. In the literature, the dominance of Ascomycota over Basidiomycota

has been recently suggested as an indicator of ecosystem degradation [25]. This may thus sug-

gest that even the forests used as reference ecosystems are in some extent degraded. Regarding

bacteria, the Firmicutes and Verrucomicrobiota phyla dominated the soil communities. The

Firmicutes have been classified as copiotrophic [83] and Verrucomicrobiota as oligotrophs [84].

However, a recent study has conversely shown a positive correlation between Verrucomicro-

biota and soil carbon content [85]. The high soil organic carbon content of Maré’s Gibbsic Fer-

rasols, even in cultivated soils [49], could thus be a probable explanation for the over-

representation of these two bacterial groups. In addition to these bacterial phyla, the Crenarch-

aeota was also well-represented in all conditions and was the only archaeal representative. The

dominance of archaeal communities by Crenarchaeota on Maré island is in accordance with

the observations made by [86] on divers’ soils at a worldwide scale. This group may play central

roles in biochemical cycles in soils [86, 87]. However, deeper investigations are needed to better

understand the roles of microorganisms in Gibbsic Ferralsols on Maré island. Indeed, except

soil texture, environmental variables were not found to influence soil microorganisms.

At this stage, based on “classical” analyses, we cannot conclude that changing agricultural

practices at Maré Island have any effect on soil microbial communities. We cannot rule out a

lack of effect, but we can also acknowledge the need for more in-depth approaches to highlight

potential changes, particularly in the soil health and One Health context.

Revolutionising soil health and One Health through advanced detection of

soil pathogens with the Anaconda package

The two newly developed statistical analyses implemented in the Anaconda package, namely

the ‘targeted’ and ‘global’ analyses, highlighted the over-representation of microbial ASVs, par-

ticularly for fungi, ascribed to plant and animal pathogens, including humans, in the short fal-

low. Indeed, fungal pathogens such as Acrocalymma fici, known as a pathogen of cultivable

trees [88], Chaetomella raphigera, recognised as a fruit rot pathogen [89], and Gibellulopsis
chrysanthemi, identified as a root rot pathogen [90] were detected in significantly higher pro-

portions through the ‘target’ approach in the short-term fallow (Fig 6). Additionally, an unde-

termined species belonging to the Botryosphaeria genus, a taxon known to be associated with

grapevine decline [91], was absent in the forest and present in both fallows, with higher abun-

dance in the short-duration fallow. In congruence with all these results, an increase of plant

fungal pathogens in the short fallow was observed using the ‘global’ statistical investigation.

For instance, taxa such as Fusarium oxysporum, Alternaria and Curvularia, known to be path-

ogenic to many plant species [92–94], were particularly present in the short fallow compared

to both the long fallow and the forest ecosystem.

In addition to these plant-detrimental microbes, a fungal taxon of primary interest for

Human health has also been detected in the short fallow soils, namely Sarocladium kiliense
(formerly Acremonium kiliense). S. kiliense is a soil saprophytic fungus that can cause opportu-

nistic infections in immunocompetent and immunocompromised individuals, with diverse

manifestations, such as dermatophytosis, onychomycosis, mycetoma, pneumonia and funge-

mia [95, 96]. Outbreaks of S. kiliense in immunodepressed patients have been reported in the

literature [97–99]. These clusters were likely linked to infections in clinical settings [98, 99],

but a probable environmental source has also been suggested by [97]. Recently, a fatal dissemi-

nated infection in a diabetic patient with coronavirus disease 2019 (COVID-19) has been
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reported by [100] in Iran. The severity of the diseases that can result from S. kiliense underlines

the necessity of a high level of clinical attention in this area. In New Caledonia, at the public hos-

pital, hitherto two cases involving undefined Sarocladium species have been reported (data on

geographical origin and patient health non-available) (Arnaud Cannet, pers. com.). In light of

the aforementioned fatal case in Iran [100], Sarocladium risk infections have to be in regards to

the substantial diabetic population in New Caledonia (ASSNC, 2022), as well as the high preva-

lence of COVID-19 in the archipelago (WHO Coronavirus (COVID-19) Dashboard, https://

covid19.who.int/). The ‘global’ analysis of this study shows an over-representation of the genus

in the comparison of short versus long fallows, which also confirms the results of the ‘targeted’

analysis. The over-representation of this harmful fungus in a traditional agricultural system

could result in a higher probability of infection and, therefore, support the need to raise aware-

ness about this pathogen among healthcare workers and the local populations.

From the ‘targeted’ analysis (Fig 6), Exophiala aquamarina, an opportunistic fungal patho-

gen causing cutaneous and disseminated infections in cold-blooded vertebrates (so far

restricted to fishes) [101], was also found to be significantly over-represented in the short fal-

low. Based on the ‘global’ approach (Fig 7), another Exophiala species in the same phylogenetic

clade, E. equina, was significantly present in soil samples from both short-term and long-term

fallows, with greater representation in the latter. This suggests that agricultural establishment,

regardless of the fallowing period, increased this pathogen in Maré’s soils. Similar to S. kiliense,
this underscores the need to monitor potential human infections by E. equina, which, although

rare, can cause cutaneous and subcutaneous infections [101, 102]. Supporting the necessity of

paying attention to this genus, two cases of Exophialum infections have been to date reported

for the public hospital in New Caledonia (data not available on the geographical origins of the

patients) (Arnaud Cannet, pers. com.).

Regarding bacteria, the Anaconda results were less clear than for fungi. Despite no findings

from the ‘global’ analysis, likely due to high intra-sample variability, the ‘targeted’ analysis iden-

tified ASVs in the short fallow attributed to taxonomic groups containing or suspected of con-

taining pathogens, such as the Gemmataceae (Planctomycetes) [103] and Burkholderiales [104]

(Fig 6). Indeed, molecular-based detection has revealed the presence of Planctomycetes in the

blood of leukemic of two aplastic patients with neutropenia, rash, diarrhoea and micronodular

pneumonia [105]. The phylogenetic analysis revealed for one of the clinical cases a close rela-

tionship to Gemmata obscuriglobus, a species that belongs to the Gemmataceae. For the second

case, according to [106], when sequences of the 16S rRNA gene were compared, the second hit

with a described taxon was with another Gemmata species, G. massiliana. This bacterium was

originally recovered and characterised from a hospital water distribution system in France

[107], thus in proximity to patients, as pointed out by [103]. Gemmata-related sequences have

also been found in human stool specimens, including individuals with infective endocarditis

[108]. From these constatations and other cellular and molecular findings, Gemmataceae repre-

sentatives which clinical microbiologists have overlooked [106], have been suggested to poten-

tially behave as opportunistic pathogens [103, 106]. Concerning the Burkholderiales (given as a

second example), it encompasses a large variety of organisms, in particular plant and animal

pathogens, including for humans [109]. Certain Burkholderiales bacteria are considered partic-

ularly dangerous for individuals suffering from chronic lung diseases [104].

Uncovering beneficial soil microbes and ecological links with Anaconda’s
statistical approaches

As just seen above, the approach implemented in the Anaconda package revealed an increase

of soil microbial pathogens with a reduction in the fallowing period. In complement to this
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compelling constatation, other soil microorganism types that displayed differences in their

occurrence and deserve great attention were also recovered from Anaconda analyses. Indeed,

several fungal saprophytes, i.e., Glutinoglossum sp, Hymenochaete acerosa, Lycogalopsis solmsii,
Trechispora invisitata and Sakseneae trapezispora, were detected in lower prevalence in the

short fallow’s soils (Figs 6 and 7). It has been shown that saprophytic fungi can be involved in

the regulation of pathogens [92, 110, 111]. Competition for resources [92] and antagonist

interactions, via saprophyte fungi promoting soil antifungal bacteria [110, 111], are underlying

mechanisms leading to soil pathogen suppression. The lowest value of mineralised carbon in

the short fallow, which reflects a lower microbial activity, argues in favour of a diminution of

saprophyte activity. We could, thereby, hypothesise that the specific decrease of these sapro-

phytic fungi has favoured the increase of the detrimental microorganisms observed in the

short fallow plots. Alongside saprophytes, the fungal animal pathogen Metarhizium robertsii
was in a decreasing order well-represented in the forest, then in the long and the short fallow

(Fig 7). This fungus is an entomopathogen infecting a wide range of arthropods, and can con-

sequently be involved in insect pests’ regulation [112]. It can also establish itself as a root endo-

phyte and favour plant growth and defence against plant pathogens [113]. The specific lower

abundance of this entomopathogenic and plant-endophyte fungus in the short fallow may sim-

ilarly favour an increase of detrimental organisms. Thus, in the context of soil suppressiveness

(i.e., the capacity of any given soil to reduce pathogens and disease incidence), specific sup-

pression mechanisms, through individual species or selected groups of antagonist microorgan-

isms [17, 114, 115], seem to regulate soil borne-pathogens in our system, rather than microbial

diversity [7, 115].

Conversely, to the reduction of saprophyte and entomopathogen-plant endophyte fungi, an

over-representation of the chemoorganotroph Gaiella bacterial genus [116] was observed in

the short-term fallow via the ‘targeted’ analysis (Fig 6). In tomato cropping soils, after organic

amendment, a strong relationship was observed between this genus and the inhibition of the

soil pathogen responsible for Fusarium wilt [117]. Therefore, in our short fallow system, cer-

tain beneficial taxon acting against detrimental soil microorganisms may also be present. The

intrinsic balance of soil between its relative abundance of beneficial and detrimental microbes

is a crucial factor in determining its capacity to express or suppress diseases. One of the major

questions consequently arising is when this threshold leading to one situation or the other

would be met (Fig 9).

Other biotic components of the soil environment than fungi and bacteria can contribute to

soil suppressiveness [114]. As earlier seen, the fungal pathogenic Botryosphaeria genus

(Botryosphaeriaceae) was present in both fallows, but particularly in the short one. A Botryo-
sphaeria species has been recovered from Acacia plant species (Fabaceae) in Australia [118].

According to Anaconda results on plant communities, Acacia spirorbis was significantly pres-

ent in both fallows, with higher relative abundances in the short fallow. The larger abundance

of this fungus could thus be related to Acacia’s abundance. Interestingly, another microorgan-

ism type, a nematode of the Aphelenchoididae family has been experimentally demonstrated

to feed on a Botryosphaeriaceae member [119, 120]. Using again the Anaconda package, signif-

icant variations in the abundance of this nematode family were detected, with higher abun-

dances in the short fallow. Preferential grazing of an Aphelenchoididae species on

ectomycorrhizal fungi has also been revealed in the literature [119]. A. spirorbis is recognised

as an ectomycorrhizal shrub [121], which by the way would explain the over-representation of

ectomycorrhizal fungi in the short-term fallowing (i.e., Thelephoraceae and Cortinarius spe-

cies) (Fig 6). Multiple biotic interactions may thus intervene in the regulation of Botryo-
sphaeria in soil. This fungus could, as previously indicated, benefit from the larger abundance

of Acacia, but, at the same time, may be regulated by the predation of nematodes, which are
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also stimulated by the presence of ectomycorrhizal fungi. A. spirorbis is also able to form

another type of mycorrhiza, i.e., endomycorrhiza. This characteristic could explain the over-

representation in the short fallow, underlined by the ‘global’ analysis (Fig 7), of Spizellomyces
punctatus, a chytrid species that has been suggested to attack and colonises dead endomycor-

rhizal spores [122]. S. punctatus could also be an indicator of perturbation. Lozupone and

Klein (2002) [123] showed that Spizellomyces populations increased in response to disturbance

(i.e., after experiencing agricultural cultivation); an observation supporting the aforemen-

tioned facts that short fallow constitutes a degraded system. The statistical approaches imple-

mented in our Anaconda package may, thus, help to disentangle and better understand the

multiple biological interactions occurring in a given ecosystem, particularly those leading to

an over-representation of certain harmful microbes in soil (Fig 9). It can, additionally, partici-

pate in defining ‘targeted’ agricultural management practices to control pathogen populations,

for instance, here, by regulating A. spirorbis occurrence.

Besides biotic factors, abiotic soil properties can also, directly and indirectly (via influencing

other soil organisms), be involved in regulating plant and human pathogens populations in

soil [7, 124]. Soil attributes, such as pH, soil moisture, organic matter content, and nutrient

availability, can have a role in soil pathogen’s establishment, survival and growth [7, 124].

However, in our study, when significant differences occurred (e.g., pH, organic matter content,

carbon content, and C/N ratio), they were mostly between the short fallow and the ecosystem

of reference (not with the long fallow). It seems likely that biotic rather than abiotic factors reg-

ulate plant and human pathogens in our traditional agricultural system.

Fig 9. Synthesis of soil environment components potentially involved in the accumulation of plant and human pathogens with the reduction of the

fallowing period in traditional yams culture in Maré Island. Detected increases and decreases of each component, via the approaches implemented in

Anaconda, are represented by arrows within boxes on the left. Related probable positive and negative effects on soil augmentation of detrimental organisms are

indicated, i.e., that may favour (+) or suppress (-) pathogens. Potential interactions between other parameters than pathogens are also shown (between A.

spirorbis and ectomycorrhizal fungi). The absence of apparent abiotic effects is represented. An important aspect also represented is the potentiality of soil

pathogen populations reaching a threshold that could lead to substantial plant and human infections.

https://doi.org/10.1371/journal.pone.0311986.g009
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Conclusion

Despite some tendencies, notably in terms of global microbial phyla dominance, ‘classical’

community analysis failed to detect significant changes in microbial diversity, composition,

and structure in response to agricultural practices on Maré island. By contrast, our newly

developed statistical approaches for community investigation implemented in the Anaconda
package (i.e., the ‘targeted’ and ‘global’ analyses), clearly revealed differences in the occurrence

of soil organisms among the studied systems, especially for fungi. Indeed, a significant over-

representation of harmful plant and human fungal pathogens was observed in the short fallow

soil. At the same time, an under-representation of beneficial soil microorganisms, such as sap-

rophytic, entomopathogenic and plant-endophyte fungi, was detected. The specific shifts in

fungal and bacterial taxa, in combination with the characterisation of other biotic and biotic

features, allowed us to infer hypothetical links between these diverse soil environmental com-

ponents and assume their potential implication in soil pathogen suppression (Fig 9). Our find-

ings undeniably support the major interest in using next-generation sequencing technologies,

in combination with more classical ecological inventories, and appropriate statistical methods

to establish sensitive, informative and reproducible biological indicators, and subsequently

assess disease potential in soils. They also highlight the significance of picking into the omics

toolbox by using and transferring, here, methodologies initially developed for genomics-tran-

scriptomics in metabarcoding. In addition to the insights gained from the classical community

analysis and the Anaconda package, it is important to note that the cultivation of yams holds

great cultural and symbolic significance for the local people of Maré Island in New Caledonia.

Thus, the impact of changes in agricultural practices on soil health extends beyond the purely

ecological and must also be considered within a cultural context. This new tool that is Ana-
conda could further be used for determining the impact in various crop systems of different

agricultural practices (e.g., organic amendments and cover crops) on soil microorganisms, and

consequently help to find solutions for regulating detrimental microorganisms. Such a combi-

nation of ‘targeted’ and ‘global’ analyses could promote the use of eDNA metabarcoding in

biomonitoring and represent the next breakthrough in soil health and One Health assessment,

as well as in various ecological domains.
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S1 Fig. Sampling plan. Five plots of 20 x 20m were established per condition, providing 15

plots in total. In each of the 20 x 20m, four 5 x 5m sub-plots were positioned in the four cor-

ners and one in the centre. Within each of these sub-plots, five soil samples were collected at

0–15 cm depth using a five cm diameter auger. All soil samples collected in a given plot were

then mixed to form a composite soil sample. Thus, each composite sample corresponds to one

plot. A total of 15 composite samples was finally obtained and corresponded to the 15 plots set

up in the present work. SF is for Short Fallow; LF is for Long Fallow, and F is for Forest.

(PDF)

S2 Fig. Alpha rarefaction plots (observed ASVs, Shannon, and Faith PD) for fungi (ITS2).

The alpha rarefaction plots for fungi typically show three curves: observed ASVs, Shannon

index, and Faith PD. SF is for Short Fallow; LF is for Long Fallow, and F is for Forest.

(PDF)

S3 Fig. Alpha rarefaction plots (observed ASVs, Shannon, and Faith PD) for bacteria

(16S). Same legend as the S2 Fig.

(PDF)
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S4 Fig. Fungi diversity boxplots. The fungi diversity boxplots represent various metrics used

to assess the diversity of fungal communities. These metrics include observed ASVs (Amplicon

Sequence Variants), Chao1, Simpson, Shannon entropy, Faith PD, Simpson evenness, Pielou

evenness, and Fisher alpha. SF is for Short Fallow; LF is for Long Fallow, and F is for Forest.

(PDF)

S5 Fig. Bacteria diversity boxplots. Same legend as the S4 Fig.

(PDF)

S6 Fig. Soil texture triangle. At the corners of the triangle are three main soil components:

sand, silt, and clay. Each dot is a sample that falls within one of the twelve sections.

(PDF)

S7 Fig. Anaconda R package schema to understand the links between different files and

analysis portions. For a better understanding, please refer to the readme document at ‘https://

github.com/PLStenger/Anaconda’.

(PDF)

S8 Fig. Physico-chemical analysis. Granulometric fraction, physical, linked organic matter,

free organic matter, microbial biomass analysis boxplots, microbial biomass, mineralised car-

bon balance (microbial activity), and mineralised nitrogen balance (microbial activity) analysis

boxplot. SF is for Short Fallow; LF is for Long Fallow, and F is for Forest.

(PDF)

S9 Fig. db-RDA (distance-based redundancy analysis) plot of the fungal phyla in relation

to the granulometric fractions (clay, silt, and sand; in per cent) of soil samples collected

from three different land-use types: Short fallow (SF), long fallow (LF), and forest (F). The

plot displays the distribution of the fungal phyla in relation to the granulometric fractions of

the soil samples, with each point representing a sample.

(PDF)

S10 Fig. Dispersion (A and C) and sparsity (B and D) plot for fungi (A and B) and bacteria (C

and D). Dispersion and sparsity plots are used to assess the data quality and the statistical mod-

el’s appropriateness. A dispersion plot shows the relationship between the mean of normalised

counts and their variance (or dispersion) for each ASV. The dispersion estimates are calculated

using a negative binomial model, and the plot is typically shown on a logarithmic scale to visu-

alise the trend. A good dispersion plot shows a relatively constant dispersion across all normal-

ised count levels, which indicates that the negative binomial model is appropriate for the data.

A sparsity plot shows the proportion of ASVs with a given number of counts in the sample. It

is used to assess the overall level of sequencing depth and the quality of the normalisation pro-

cedure. The plot typically shows a decreasing trend, with the majority of ASVs having low

counts and a smaller proportion having higher counts. If the sparsity plot shows a high propor-

tion of ASVs with low counts, it suggests that the sequencing depth is insufficient, or the nor-

malisation procedure is inadequate. In contrast, if the sparsity plot shows a high proportion of

ASVs with very high counts, it may indicate a technical artefact or batch effect that needs to be

addressed.

(PDF)

S11 Fig. Pheatmap log2 norm counts with taxonomy for fungi from the Anaconda R pack-

age. The heatmap displays the relative abundance of the 75 most abundant fungal Amplicon

Sequence Variants (ASVs) across multiple samples. The log2 normalised counts of each ASV

were used to generate the heatmap, which allows for the comparison of relative abundance
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between different ASVs and samples. The heatmap also includes taxonomic information for

each ASV, which allows for the identification of taxonomic groups that are more abundant in

certain samples or conditions. The heatmap is clustered based on the Euclidean distance

between samples and ASVs using the average clustering method, which groups samples and

ASVs with similar abundance patterns together. This allows for the identification of clusters of

samples or ASVs that share similar characteristics or respond similarly to certain conditions.

SF is for Short Fallow; LF is for Long Fallow, and F is for Forest.

(PDF)

S12 Fig. Pheatmap log2 norm counts with taxonomy for bacteria from the Anaconda R

package. Same legend as the S11 Fig.

(PDF)

S1 Table. MultiQC results for fungi. Total number of sequences and their means (and stan-

dard deviation) by condition (SF is for Short Fallow; LF is for Long Fallow, and F is for Forest),

before and after the Trimmomatic step, percentage of kept sequences.

(XLSX)

S2 Table. QIIME2 stats for fungi. Total number of sequences and their means (and standard

deviation) by condition (SF is for Short Fallow; LF is for Long Fallow, and F is for Forest) for

each QIIME2 step (input, filtered, percentage of input passed filter, denoised, merged, percent-

age of input merged, mean, SD, non-chimeric, percentage of input non-chimeric, mean, SD,

Table, ConTable, and Rarefaction).

(XLSX)

S3 Table. MultiQC results for bacteria. Same legend as the S1 Table.

(XLSX)

S4 Table. QIIME2 stats for bacteria. Same legend as the S2 Table.

(XLSX)

S5 Table. Organophysico-chemicals analysis. SF is for Short Fallow; LF is for Long Fallow,

and F is for Forest.

(XLSX)

S6 Table. Plantae statistics results for the 29 found plant species. SF is for Short Fallow; LF

is for Long Fallow, and F is for Forest.

(XLSX)

S7 Table. Nematoda statistics results for the 36 found nematoda families. SF is for Short

Fallow; LF is for Long Fallow, and F is for Forest.

(XLSX)
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