
Vol.:(0123456789)

SN Computer Science (2025) 6:115
https://doi.org/10.1007/s42979-024-03629-z

SN Computer Science

ORIGINAL RESEARCH

(Semi‑)automatic Extraction of Urban Planning Rules in French
for Better Management of Land Artificialization

Maksim Koptelov1,2,3  · Margaux Holveck4 · Bruno Cremilleux1 · Justine Reynaud1 · Mathieu Roche3,5 ·
Maguelonne Teisseire2,3

Received: 16 February 2024 / Accepted: 15 December 2024
© The Author(s) 2025

Abstract
Land artificialization is a significant modern concern, as it is irreversible, diminishes agriculturally suitable land and causes
environmental problems. Our project, Hérelles, aims to address this challenge by developing a framework for land artifi-
cialization management. In this framework, we associate urban planning rules in text form with clusters extracted from
time series of satellite images. To achieve this, it is crucial to understand the planning rules with two key objectives: (1) to
verify if the constraints derived from the rules are verifiable on satellite images and (2) to use these constraints to guide the
labelling (or semantization) of clusters. The first step in this process involves the automatic extraction of rules from urban
planning documents written in the French language. To solve this problem, we propose a method based on the multilabel
classification of textual segments and their subsequent summarization. This method includes a special format for represent-
ing segments, in which each segment has a title and a subtitle. We then propose a cascade approach to address the hierarchy
of class labels. Additionally, we develop several text augmentation techniques for French texts that can improve prediction
results. Finally, we reformulate classified segments into concise text portions containing necessary elements for expert rule
construction. We adapt an approach based on Abstract Meaning Representation (AMR) graphs to generate these portions in
the French language and conduct a comparative analysis with ChatGPT. We experimentally demonstrate that the resulting
framework correctly classifies each type of segment with more than 90% accuracy. Furthermore, our results indicate that
ChatGPT outperforms the AMR-based approach, leading to a discussion of the advantages and limitations of both methods.

Keywords  Natural language processing · Supervised learning · Data augmentation · Knowledge extraction

Abbreviations
3M	� Montpellier Méditerranée Metropolis
AIR-FUD+	� Automatic Identification of Rules in French

Urban Documents extended
AMR	� Abstract meaning representation

CV	� Cross validation
FN	� False negative
FP	� False positive
LLM	� Large language model
ML	� Machine learning
MRR	� Mean reciprocal rank
NLP	� Natural language processing
NN	� Neural network
PDF	� Portable document format
PLU	� Plan Local d’Urbanisme (local land plan)
POS	� Part-of-speech
PPRI	� Plan de Prévention des Risques naturels

d’Inondation (Natural flood risk prevention
plan)

SGD	� Stochastic gradient descent
SVM	� Support vector machines
TF	� Term frequency
TF-IDF	� TF-inverse document frequency
TP	� True positive

 *	 Mathieu Roche
	 mathieu.roche@cirad.fr

 *	 Maguelonne Teisseire
	 maguelonne.teisseire@inrae.fr

1	 UNICAEN, ENSICAEN, CNRS-UMR GREYC,
14000 Caen, France

2	 INRAE, 34398 Montpellier, France
3	 UMR TETIS, Univ. Montpellier, AgroParisTech, CIRAD,

CNRS, INRAE, 34090 Montpellier, France
4	 ICube, Université de Strasbourg, 67412 Illkirch, France
5	 French Agricultural Research for Development (CIRAD),

Montpellier, France

http://orcid.org/0000-0001-9065-2827
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-03629-z&domain=pdf

	 SN Computer Science (2025) 6:115 115   Page 2 of 24

SN Computer Science

Introduction

Land artificialization is a serious problem in modern soci-
ety. It is considered one of the principal factors contribut-
ing to biodiversity loss and climate change on our planet
[9]. Additionally, land artificialization results in a net loss
of forested and natural areas [11]. For example, any trans-
formation of a natural area can lead to the disappearance
of plants or animals from that area [33]. Moreover, artifi-
cial soil no longer absorbs CO2 , which contributes to the
increase in global warming [9]. Moreover, land artificializa-
tion increases the risk of natural disasters such as floods and
wildfires, which are very costly to society [25]. By defini-
tion, sealed ground does not absorb rainwater, so in the case
of heavy rains, the risk of flooding is amplified [10]. Finally,
land artificialization is irreversible. Once land is sealed, it is
lost permanently, and the process cannot be reversed. As a
consequence, the amount of land suitable for agriculture is
decreasing over time.

Nevertheless, land artificialization meets the needs of
human society by fulfilling demands for housing, industrial,
and service infrastructures. These human activities tend to
be concentrated in towns, which continue to expand [15,
86]. Further artificialization could be avoided through den-
sification of already developed areas. Therefore, to reduce
the impacts of artificialization, control over this process is
necessary. Studies on land artificialization and natural risk
management aim to address this problem, and our project,
Hérelles1, is a step forward in improving it.

In our project, we develop a methodology and software
to enhance the management of land artificialization. Our
approach associates constraints derived from urban planning
documents with clusters obtained from time series of satel-
lite images. These documents, written in French, include
regulations such as authorizations, obligations, and prohi-
bitions related to land use and development. The process
begins by verifying whether these constraints, derived from
the regulations, are verifiable via satellite images. We then
label the clusters to assess the constraints. The initial phase
involves extracting rules from urban planning documents
related to our research sites. A rule in this context is defined
as a formal regulation that can be translated into a constraint.
For instance, the sentence “If a piece of land can be built
on then there must be a road that connects to it” represents
an ideal rule, as it can be translated into a straightforward
“if... then...” constraint. Applying these rules involves cer-
tain considerations, and our clustering framework allows the
user to reformulate the rules into constraints.

However, before constraints can be formulated, they must
be identified in the documents. A common approach for
automatic rule extraction from texts consists of employing
a machine learning classifier [5, 31, 45]. The main challenge
in this modelling is data representation. Segmentation can
be performed on the level of words [45], sentences [89],
or segments (text parts containing multiple sentences) [73].
Segment representation better suits our needs because the
rules of interest can be longer than one sentence. However,
in this form, the segments cannot be directly added to the
clustering process and must undergo further processing. This
is why we explore the possibility of a two-step approach:
first, to classify the segments and then to process them so
that they can be used in our clustering approach.

Therefore, we develop a pipeline based on machine learn-
ing to automate the extraction of the rules. The first part of
our pipeline provides a solution for detecting parts of the
document containing constraints and identifying their types
(e.g., verifiable and non-verifiable by satellite images) in an
automatic or semiautomatic manner. We refer to this part
of the pipeline as rule identification. We then continue the
process by the reformulation of those parts of documents,
referred to as segments, into concise portions of text contain-
ing all necessary elements for formulating the constraints.
This process, which represents the second part of our pipe-
line, is termed rule formulation. The resulting text portions
are intended for input into our clustering framework by an
expert user who will validate and incorporate them as con-
straints into the clustering process.

Most of the state-of-the-art rule identification meth-
ods exploit supervised learning setting. However, data in
French are less available, especially annotated data, and
in the domain of our study in particular. The latter is not
available at all, at least in an open access form. To address
this, we constructed our own corpus by manually annotat-
ing the rules and defining a format for their representation
[47]. Our data are labelled using four different classes (Veri-
fiable and Non-verifiable by satellite images, Informative
and Not pertinent) with a hierarchical structure. To perform
their classification, we develop a specific framework that is
based on multiple classifiers. To address the small size of
our dataset, we perform data augmentation [48]. Finally, to
validate our framework, we perform a set of experiments
using both traditional natural language processing (NLP)
methods and a state-of-the-art deep learning model. The
results demonstrate that our framework can identify rules
of different categories in French urban planning documents
with high accuracy.

With respect to rule formulation, this task typically
requires an ontology or a set of examples, both of which
are unavailable. Moreover, our objective is to explore the
possibility of semiautomatically formulating constraints
for an expert. Therefore, we explore abstractive text 1  https://​herel​les-​anr-​proje​ct.​cnrs.​fr.

https://herelles-anr-project.cnrs.fr

SN Computer Science (2025) 6:115 	 Page 3 of 24  115

SN Computer Science

summarization, utilizing it to generate text portions for
expert rule construction from segments classified as per-
tinent in the previous step. Classical unsupervised abstrac-
tive summarization involves the use of Abstract Meaning
Representation (AMR) graphs, which are labelled graphs
abstracting from grammatical structures and are suitable
for various tasks. Recent advances include large language
models (LLMs), particularly ChatGPT, which are trained
on vast multilingual corpora. These models offer broader
task-solving capabilities but provide less control and inter-
pretability than AMR graphs. In this work, we explore both
approaches.

A particular challenge related to AMR graphs is the lack
of a model accessible for French texts. To overcome this,
we employ an automatic translation system, enabling us to
work with AMR graphs designed for English texts. Evaluat-
ing generated text portions without reference examples pre-
sents a separate challenge. We first conduct an automatic
evaluation via a state-of-the-art approach that is based on the
contextual similarity between the generated portions and the
original segments. This provides an initial approximation of
the resulting quality. Considering that our interest lies not
only in summaries but also in their potential application to
our project, we subsequently perform a manual evaluation
with a group of nine annotators.

To sum up, in this work, we study the possibility of
extracting constraints from French urban planning docu-
ments via both classical and modern state-of-the-art meth-
ods. There are five main contributions of this article:

1.	 We develop an original pipeline to address a specific
problem of rule identification in the context of urban
planning and natural risk management. To our knowl-
edge, this is the first work of its kind in these domains.

2.	 We propose a cascade approach for the multilabel clas-
sification of hierarchies of classes.

3.	 We design several text augmentation methods for the
French language, which can improve the results of text
classification. This is particularly uncommon for the text
in French, especially on a topic outside of biological or
financial domains.

4.	 We present an innovative pipeline based on AMR graphs
for generating abstracts of textual segments containing
rules in the French language.

5.	 We conduct a comparative analysis between widely used
AMR graphs and ChatGPT, which no one has performed
before to the best of our knowledge.

The rest of the article is organized as follows. “Background”
provides basic definitions and presents the context of the
problem. “Related Work” discusses related work on rule
identification, text augmentation, and rule formulation. “The
AIR-FUD+ Framework” presents our framework for rule
identification and rule formulation. “Experimental Evalu-
ation” describes the data used for the experiments and the
experimental setup and presents the results. Finally, “Con-
clusion” concludes and highlights future perspectives.

Background

The main research topics of the Hérelles project are the
effects of urbanization and natural risk management. The
principal research site of the project concerns Montpellier
Méditerranée Metropolis (3M) in France, a rapidly evolving
area exposed to natural risks.

The final goal of Hérelles is to develop software for col-
laborative clustering [21] with a focus on analysing time
series data from satellite images. We define a cluster as a
group of elements sharing common attributes, in our case,
derived from images and consisting of pixels within an
image. In practice, these clusters represent geographical

Fig. 1   Schematic representation
of the framework for col-
laborative clustering. Possible
labels of the clusters following
semantization: water (Cluster
4), forestry and wooded areas
(Cluster 3), port and industrial
area (Cluster 5), urban housing
(Cluster 6)

	 SN Computer Science (2025) 6:115 115   Page 4 of 24

SN Computer Science

objects, with exact labels assigned by the user of the sys-
tem (Fig. 1). One of the objectives of the project is to find
new methods to facilitate the labelling, or semantization,
of clusters obtained from these images. To address this,
one proposed solution involves associating textual ele-
ments of interest (corresponding to the study themes and
the spatiotemporal perimeter of the time series) with the
extracted clusters. For example, on the basis of textual ele-
ments containing urban planning rules, we can infer that the
label cannot be “a road”, or alternatively, there must be a
road-labelled cluster, as every building in this area requires
access roads.

In the project workflow, we permit a user to add con-
straints into the clustering process to improve the results of
the latter and to speed up the process [26]. We help the user
formulate the constraints, for which we use text resources to
extract the constraints, and we formulate them in the form of
rules. For example, the sentence “Pour être constructible,
un terrain, doit avoir un accès à une voie publique ou privée
ouverte au public”2 contains an obligation with regards to
land use, and it can be converted to the following constraint:
“S’il n’y a pas de route adjacente à la zone constructible →
erreur”3. In fact, we intend to use formulated constraints
twice: to improve the clustering process itself and to facili-
tate the labelling of the extracted clusters.

To enable the implementation of the automatic extrac-
tion of constraints, the first identification of potential rules
was manually performed by the expert within the documents
of interest. These documents originate from the thematic
expert corpus [41] and have been chosen for their richness in
potential rules: they are the written regulations of the local
land plans (PLU—Plan Local d’Urbanisme) and the natu-
ral flood risk prevention plans (PPRI—Plan de Prévention
des Risques naturels d’Inondation) of the areas studied (see
Fig. 2 for an example).

Not all the textual segments of a selected document can
be taken into account. Moreover, some rules have an inform-
ative value, whereas others represent a strict constraint.
Finally, the application of these rules is not always observ-
able in satellite data. Therefore, the following classification
of textual segments has been defined (Fig. 3).

A text segment is called pertinent if it can provide infor-
mation within the scope of the project, corresponds to our
research topics, and contains information in the context of
selected research territories. The adequacy of research top-
ics is verified by the presence of words from a nomenclature
in the segment. A nomenclature is a collection of thematic
words describing the research topics, for example, “chemin
de fer” (railroad in English) and “stationnement” (parking).
In total, the Hérelles nomenclature4 contains 67 thematic
concepts. In remote sensing, a key application area of our
land artificialization management system, the utilization of
nomenclature and/or ontologies is essential for the labelling
process [4, 57]. We thus use them as a source of labels for

Fig. 2   An extract from the PLU ZONE-5AU document (on the left), its translation to English (on the right) and the segments constructed from it
(on the bottom). The title is highlighted in red, subtitles are in green and pertinent rules are in yellow

2  In English: “To be authorized for development, land must have
access to a public road or a private road open to the public”.
3  In English: “If there is no road adjacent to the buildable area →
error”. 4  https://​doi.​org/​10.​57745/​OXACT8.

https://doi.org/10.57745/OXACT8

SN Computer Science (2025) 6:115 	 Page 5 of 24  115

SN Computer Science

our clusters. Specifically, we employ nomenclature from two
perspectives: first, for the annotation of textual data, and
second, as a basis for labelling satellite images.

All other texts that have not been classified as pertinent
are considered to be not pertinent. These segments may be
reminders of the law or definitions, elements that do not
belong to the scope of our study. This includes layout ele-
ments, bibliography, headers, footers, and so on.

A strict rule concerns instructions that have legal force
and are therefore enforceable by law. There is no ambiguity
in its application (a strict rule clearly states what must be
done, what is forbidden, what is allowed).

An informative rule refers to segments that provide
detailed information about the study topic and the territory.
This information is intended to help understand the results
of the proposed solutions. The informative rules also include
the segments presented as recommendations.

Some of the strict rules might be difficult to verify, for
example, with satellite images. We therefore distinguish
them by verifiable and non-verifiable. This distinction is
important for the next steps in the project for selecting the
constraints.

For more details on the context and concrete examples
of the rules, please refer to the description of our corpus
in [37].

Related Work

Rule Identification

Constraint (or rule) extraction or identification can be per-
formed in multiple ways. The majority of approaches in the
literature use traditional methods based on bag-of-words and
classical NLP preprocessing. Kiziltan et al. [45] developed a
system that automatically detects parts of text that describe
constraints. They construct a dataset in which words in the
sentences are labelled as belonging to constraints or not. To

represent words, the authors exploit the stemmed representa-
tion of the words, part-of-speech (POS) tagging, and bag-of-
words. A machine learning classifier based on support vector
machines (SVMs) is then employed to solve the problem.
Winter and Rinderle-Ma [89] focused not only on the extrac-
tion of constraints but also on grouping them and detecting
and displaying relations between constraints. The authors
use term frequencies and k-means clustering to achieve their
tasks. In the preprocessing step, each document is chunked
into sentences and POS tagged. Some constraints are not
directly included in sentences. To overcome this problem,
lemmatized representations of words are used. Anwar et al.
[8] automatically extracted verification constraints from
technical documents. The proposed framework is based on
3 core NLP concepts: sentence splitting, tokenization, and
POS tagging.

In addition to traditional NLP, word embedding [6] can
be used to extract information. Ba et al. [12] used word
embedding vectors to derive spatiotemporal characteristics
and special indicators from text documents describing food
security problems. The method is then used for analysing
the food crisis in West Africa. The problem can also be rep-
resented by combining word and image embeddings. Rad-
ford et al. [72] demonstrated that both images and text can
be mapped into a common artificial space and that similar
vectors can be used to match a caption with an image. Nep-
tune and Mothe [64] solves a similar problem to ours. The
authors do not extract constraints explicitly. In contrast, they
map both images and text to a common space. The proposed
framework can automatically annotate the change images
with labels extracted from scientific documents related to the
study area. The main disadvantage of this type of modelling
is a certain lack of control over the process. In this type of
approach, it is not possible to intervene in the vector repre-
sentation or add other constraints.

The most efficient approach for information extraction
is to use an encoder-decoder neural network (NN) [63,
93]. This network is pretrained on many texts to obtain

Fig. 3   Hierarchical representa-
tion of segments containing
rules (Pertinent class) and not
(Not pertinent)

	 SN Computer Science (2025) 6:115 115   Page 6 of 24

SN Computer Science

their semantics in the form of high-dimensional vectors
[44]. Then, using additional training, the NN can learn a
specific task based on that representation. This additional
training requires a smaller corpus than pretraining because
the semantic information has already been acquired dur-
ing pretraining [75]. The advantage of this approach is the
abstraction from the grammar through the use of lexical
embeddings. Its main limitation is that most available NNs
are trained or pretrained only on English-language corpora,
making them impossible to directly apply to other languages,
and existing multilingual models are not sufficiently effec-
tive [68].

One of the most common encoder-decoder NNs is the
BERT model [44]. In [75], the authors use an encoder-
decoder model of type BERT pretrained on a large number
of texts, which allows lexical embeddings to be obtained to
represent semantics as high-dimensional vectors. Another
model is then used for learning particular tasks on a smaller
corpus. The problem is represented as a multilabel classifi-
cation of sentences including constraints or not. To improve
the applicability of the extracted information, ontologies can
be used on top of the model. Wu et al. [91] propose a hybrid
approach that uses an NN model to extract constraints and
predefined rules to properly extract their relationships. This
approach is limited by the availability of predefined rules
and known relationships.

In this work, we experiment with both types of
approaches: traditional NLP and a state-of-the-art encoder-
decoder model. We represent the problem as a text clas-
sification task. The classifier that we develop can detect
constraints in text segments constructed from documents of
interest. Since our documents are in the French language,
we are obliged to use one of the BERT extensions for that
language. The most common among them are CamemBERT
[58] and FlauBERT [51]. The first is a more general model,
while the latter is better suited for downstream tasks [35].
In addition, CamemBERT outperforms FlauBERT [35,
43]. We thus use the former as the state-of-the-art approach
implementation.

Text Augmentation

Data augmentation is usually used for mitigating a lack
of data [48, 75] or for improving data imbalance [2]. Text
augmentation can be performed in numerous ways, from
straightforward implementations to the use of an LLM.

The straightforward approach can include shuffling words
and deleting or replacing random words in the original sen-
tences [24]. These types of methods introduce slight vari-
ation in the data but produce grammatical and syntactical
errors. We test this type of approach in our experiments
because of the ease of implementation.

A more advanced approach includes replacing selected
words by their synonyms derived from specialized dictionar-
ies or by a model of type BERT [44]. New sentences gener-
ated via this method introduce small variation to the original
data and contain most of the linguistic features included in
the original sentences. We implement these types of methods
in our work.

The LLMs can generate semantically similar text with-
out overlap at the level of words with original phrases. The
resulting phrases might be too different from the original
data; e.g., they may not contain important linguistic features.
Additionally, there is not much control over the process;
therefore, we do not use this type of model in our work.

Finally, existing solutions for automatic text augmenta-
tion [24] are available for texts in English only. In the case
of multilanguage models, there are numerous limitations: in
particular, the length of the input [74]. Few existing works
that use the augmentation of French texts [48] have no pub-
licly available code. We thus have no alternative to imple-
menting our augmentation methods by ourselves.5

Rule Formulation

The task of rule formulation, often referred to as argument
mining [50], typically requires an ontology or a set of exam-
ples. As constructing an ontology and gathering a set of
examples is a resource-intensive process, at this stage of our
project, we aim to explore the possibility of semiautomati-
cally formulating constraints with an expert, who serves as
the user of our clustering framework. To achieve this objec-
tive, we intend to explore text summarization as a method
to generate concise text portions that contain essential ele-
ments, facilitating the expert in defining the constraints.

Given the large volume of work on text summarization
[30, 88], a detailed review is beyond the scope of this article.
In general, there are two principal types of text summariza-
tion: extractive and abstractive [32]. Extractive summaries
consist of the original text’s vocabulary and include only the
most salient text units, whereas abstractive summaries are
not constrained to the input vocabulary and have the ability
to paraphrase and generalize. Abstractive summarization,
known for providing shorter and more comprehensive results
[30], aligns well with the requirements of our task.

Abstractive summarization can be carried out in a
supervised or unsupervised manner. In a supervised set-
ting, a model, typically an NN, is fine-tuned on a corpus
of textual fragments and reference summaries [70]. In
contrast, an unsupervised setting eliminates the need to
train or fine-tune a model on text and reference summaries.

5  The code of our implementations can be found in our framework
repository: https://​github.​com/​kopte​lovmax/​AIR-​FUD.

https://github.com/koptelovmax/AIR-FUD

SN Computer Science (2025) 6:115 	 Page 7 of 24  115

SN Computer Science

Instead, in this setting, summaries can be obtained directly
by querying the model. Given that we lack reference sum-
maries for the rules in our project and that obtaining them
would be costly, an unsupervised approach is better suited
for our needs.

A classical unsupervised approach for abstractive summa-
rization involves the use of AMR graphs, which are directed,
labelled graphs containing a semantic representation of a
given text [13]. AMR graphs abstract away from grammati-
cal structure and ignore stop words, making them suitable
for applications such as question answering, machine trans-
lation, and text summarization [54]. The AMR formalism
aims to provide a consistent representation for sentences
with the same underlying meaning. For example, all the fol-
lowing phrases are represented by the same AMR graph:
“He loves dogs,” “Dogs are loved by him,” and “He will
love a dog” [96].

The authors of [56] initially proposed the use of AMR
graphs to generate a summary of a text. They merge sev-
eral graphs representing sentences in the text into a single
AMR structure. They subsequently extract a subgraph that
represents a summary via statistical learning. For this pur-
pose, they employ a supervised learning setting and benefit
from the use of an existing dataset with gold-standard AMR
annotations. Dohare and Karnick [27] proposed an unsu-
pervised learning setting. They present a hybrid approach:
first, a few of the most important sentences are extracted;
then, an AMR graph is constructed via the extracted sen-
tences. Later, Dohare et al. [28] proposed an unsupervised
approach for extracting a story graph—an AMR graph con-
taining the summary of the input text—using co-reference
resolution, the task of finding all expressions that refer to
the same entity in a text. They identify the most important
nodes via the inverse version of the term frequency [79] and
then extract the story graph on that basis. Liao et al. [54]
extends this idea to multiple document summarization. They
select similar sentences and then construct an AMR graph
representing them. In our approach, we utilize a combination
of these ideas: extracting several subgraphs from the main
graph representing the input segment and then merging them
to obtain the summary graph.

A particular challenge related to AMR graphs is the
lack of a model accessible for French texts. AMR graphs
were originally designed for English texts [92]. Existing
language-specific models are not adapted to French [7, 59,
92] or are not available in open access [84]. Uhrig et al.
[83] recently demonstrated that it is indeed possible to use
translated texts to exploit English-based AMR models. We,
therefore, employ an automatic translation system, enabling
us to work with AMR graphs in English with input texts in
French.

Finally, unsupervised text summarization can be per-
formed via LLMs [67, 70]. The development of ChatGPT
[65], one of the most widely used LLMs, significantly
changed all the downstream NLP tasks, including summa-
rization [46]. According to Pu et al. [70], human evaluators
prefer LLM summaries over other summaries generated by
NNs. ChatGPT-based approaches for summarizing textual
documents have numerous applications, particularly in the
biomedical domain [39, 80, 94]. These approaches can even
be used for summary evaluation without reference summa-
ries produced by humans [81]. In this work, we test both
a classical approach based on AMR graphs and an LLM
model, more precisely ChatGPT, to solve our task of gen-
erating text portions with rule summaries for expert rule
construction.

The AIR‑FUD+ Framework

To automate extraction of the rules from thematic docu-
ments, we developed a framework that we refer to as AIR-
FUD+ (Automatic Identification of Rules in French Urban
Documents extended). The AIR-FUD+ workflow has three
main parts: segment preparation, segment classification, and
rule formulation (Fig. 4). To train a classifier, we use a data-
set that was already constructed in [37]. To construct that
dataset, 1934 textual segments were manually annotated by
the expert as belonging to one of the 4 classes: Verifiable,
Non-verifiable, Informative, and Not pertinent. The details
of the dataset are presented in “Experimental Evaluation”.
In the following, we detail how segments are constructed

Fig. 4   The AIR-FUD+ workflow presenting different steps in generation of portions of text containing elements for expert rule construction in
new documents

	 SN Computer Science (2025) 6:115 115   Page 8 of 24

SN Computer Science

from new documents and which methods are used to perform
their classification. In addition, we present text augmentation
techniques that we develop for improving the quality of the
results. Finally, we detail the rule formulation module, which
we use to generate portions of text containing necessary ele-
ments for expert rule construction.

Segment Preparation

Segment preparation consists of three steps: text extraction,
manual intervention, and segment construction (Fig. 4).

Text Extraction

Both document types in our thematic corpus, the PLU and
PPRI, are originally in the portable document format (PDF).
Therefore, we first extract text from the PDF files of these
documents in the preprocessing step. The output of this step
is the set of text fragments in the form of a plain text file.
We define a fragment as one or several sentences separated
by empty lines.

Manual Intervention

In this step, we manually correct the extracted text. This
includes cleaning of the text, in which we remove unneces-
sary fragments such as the tables of the contents and figure
descriptions. In addition, we perform title labelling. For that,
we label all the fragments that are titles and subtitles via sets
of special characters, as described in [37]. Note that this
step is optional since our implementation has a fully auto-
matic mode, in which titles and subtitles are extracted auto-
matically from new unseen documents. However, accord-
ing to our experiments, manual intervention significantly
improves the quality of the results; thus, manual intervention
is strongly recommended.

Segment Construction

In postprocessing, we perform automatic construction of text
segments from labelled fragments. A segment in our repre-
sentation must have a title, subtitle, and a rule, whereas the
presence of a subsubtitle is not mandatory (Fig. 2). Subsub-
titles are detected automatically by our segment construction
module via a set of predefined patterns. In these patterns,
the decision is made on the basis of the presence of certain
characters in the fragment. A rule in our representation is a
fragment that is not a title, subtitle, or subsubtitle. The data-
set that we constructed contains detailed examples of seg-
ments constructed from different numbers of fragments [37].

Segment Classification

Once the segments are constructed, the next step is to per-
form their classification. To address this, we propose a
cascade approach, developed with a logical sequence and
structured steps. Initially, we focus on identifying relevant
rules and filtering out irrelevant. Next, we examine whether
these rules are visible in satellite data. Finally, we determine
whether they can be verified via satellite images. This cas-
cade classification aligns closely with our practical needs,
where sometimes only Verifiable rules are needed, and
sometimes broader rules of the Pertinent class are sufficient.

Specifically, we develop our cascade approach as follows.
We split the task into three binary classifications applied one
by one (Fig. 5). In the 1st classification, we classify seg-
ments by Pertinent (containing the rules) and Not pertinent
(all other text). For that, we treat the Verifiable, Non-veri-
fiable, and Informative classes all together as Pertinent. In
the 2nd classification, we classify segments by Strict (con-
taining strict rules) and Informative (containing not strict
rules), for which we treat the Verifiable and Non-verifiable
classes as a whole. Finally, we classify the Verifiable and
Non-verifiable classes in the 3rd classification.

Fig. 5   The cascade classifica-
tion of hierarchy of classes

SN Computer Science (2025) 6:115 	 Page 9 of 24  115

SN Computer Science

For each classification, we select a binary classifica-
tion model that performs best. To make this selection, we
develop and test several baseline methods (trigger words,
vector similarity, and machine learning using frequency vec-
tors) and a state-of-the-art approach based on deep learning
(CamemBERT). We define these methods in “Classifica-
tion Methods”. In addition, we develop text augmentation
techniques, which we use to enrich the annotated corpus and
improve the prediction results. We define these techniques
in “Text Augmentation”.

Classification Methods

Trigger Words
In this method, we exploit a list of trigger words extracted

from the expert corpus to facilitate the automatic extrac-
tion of rules. A trigger word indicates the presence of a
rule in the fragment or its neighbourhood. We have 43 such
words in total, which were manually chosen by a geographi-
cal expert, for example, “être interdit” (“is prohibited” in
French) or “admettre” (“admit”). The full list can be found in
our code (see footnote 5). In this method, we first find their
stemmed representation. For given examples, it respectively
corresponds to “être interd” and “admettr”. Next, we analyse
their appearance in segments. By default, all the segments
are assigned to the negative class. We check whether a trig-
ger is present in a neighbourhood of segments of size n, the
exact value of which is determined experimentally (“Model
Parameters”). If yes, all of these segments are considered to
be in the positive class.

Vector Similarity Model
For preprocessing, we perform tokenization of segments,

remove stop words, and obtain a stemmed representation of
the remaining words. We use the result to compute the term
frequency (TF) [79]:

where freq(t, d) is the frequency of term t in segment d, m
is the total number of terms, and the TF-inverse document
frequency (TF-IDF) [16, 53] is:

where N is the total number of segments and where df(t) is
the number of segments containing t. We use both frequen-
cies to construct the frequency vectors. To achieve this, we
represent each segment d by a vector of term frequencies,
F(d), with a size of m. Each element t of the segment in
this vector corresponds to TF(t, d) or TF-IDF(t, d) . We then
use the resulting vectors for solving the binary classification
task, which is modelled as follows. When a new segment

TF(t, d) =
freq(t, d)

∑
m freq(t, d)

,

TF-IDF(t, d) = TF(t, d) ⋅ log
N

df (t)
,

dnew arrives, we compute the mean of its similarity with all
segments of the positive class and then with all segments of
the negative class:

where dclass—segments are label led class . I f
simpos(dnew) > simpos(dnew) , dnew receives the positive class
and is negative otherwise.

Machine Learning (ML) Using Frequency Vectors
In this method, we use the same vectors F(d) to represent

segments as in the previous method. The difference is that
this time, we employ a machine learning model to learn a
binary classifier. When a new segment dnew arrives, we clas-
sify it with the trained model.

CamemBERT
Following our discussion in “Related Work”, we employ

CamemBERT as the state-of-the-art approach for text clas-
sification. In this approach, we fine-tune the original Cam-
emBERT model for binary classification tasks via labelled
segments from our dataset. We then use the fine-tuned model
to classify each unseen segment.

Text Augmentation

To improve the results of the CamemBERT model, we aug-
ment the training data, which are then used for fine-tuning
the model. We use each segment k times to generate k new
segments. Using this method, we increment the number of
examples of an underrepresented class, which improves the
imbalance of our data. In the following, we detail different
strategies that we use to generate new text. They are based
on grammatical information, semantic information, etc.

POS-Driven Method
In this method, we replace certain words [48] in each

segment with semantically meaningful phrases derived by
CamemBERT. To achieve that, we mask certain parts of
speech in the segment and then ask CamemBERT to solve
the masked word prediction task, a main principle of lan-
guage models of type BERT [44]. In this task, the model
tries to predict the original vocabulary of the masked content
on the basis of only its context. For the selection of parts
of speech, we mask all adjectives and adverbs as in [48]
because they are usually not thematic key phrases. The aim
of this method is to introduce a variety of newly generated
segments without changing the main content. In practice,
newly generated sentences are grammatically correct but do
not always have the same meaning (Fig. 6). We also experi-
ment with masking all verbs and all nouns in the segments
to generate more diverse examples.

simclass(dnew) = mean
(∑

i∈{dclass}

F(dnew) × F(i)
)
,

	 SN Computer Science (2025) 6:115 115   Page 10 of 24

SN Computer Science

Semantic-Driven Method
This method is based on the hypothesis that an ideal clas-

sifier would classify segments by the presence of words from
the nomenclature. In this hypothesis, we assume that not all
nomenclature words included in the test data are present in
the training data. Therefore, we can attempt to artificially
include them in the training data (Fig. 7). To achieve this, we
replace a random word in the segment with a random con-
cept from an enriched nomenclature. Since we do not have
the full list of nomenclature concepts, but only 67 thematic
words, we use a special dictionary [19, 60, 61] to enrich our
thematic words with synonyms. We select s synonyms at
most for the dictionary (the exact value is detailed in “Model
Parameters”). A new segment generated by this method is
not always grammatically correct, but it is guaranteed to
include at least one nomenclature concept from an enriched
vocabulary.

Fig. 6   An example of a text
augmentation using Cam-
emBERT and masked word
prediction

Fig. 7   Euler diagram represent-
ing distribution of nomenclature
concepts in training and test
data. The set of nomenclature
concepts included in train data
is shown in green color and the
set of nomenclature concepts
presented in test data is shown
in blue. The set of nomenclature
concepts which are included
in test data but not included in
train data are shown using black
stripes

Table 1   Number of concepts in the nomenclature, expert nomencla-
ture and their extended versions

Type of nomenclature Number
of con-
cepts

Nomenclature 67
Enriched nomenclature (WordNet, s = 5) 134
Enriched nomenclature (Agrovoc, s = 5) 120
Enriched nomenclature (DES, s = 5) 153
Expert nomenclature 207
Enriched expert nomenclature (WordNet, s = 5) 406
Enriched expert nomenclature (Agrovoc, s = 5) 429
Enriched expert nomenclature (DES, s = 5) 487

SN Computer Science (2025) 6:115 	 Page 11 of 24  115

SN Computer Science

Combined Approach
This method is based on two previous ideas. First, we

check the presence of the words from an extended expert
nomenclature6 in the segment (Table 1). If at least one of
these words is present in the segment, we use the latter to
generate a new segment with POS-Driven Method.

After identifying relevant segments, we move to the last
part of our framework: rule formulation. In that part, we
generate the necessary elements for expert rule construction
by creating summaries of the relevant segments. In the fol-
lowing, we define the methods used for this process.

Rule Formulation

In this section, we detail two different approaches used for
summarizing the relevant rules determined in the previous
parts of our framework: an approach based on classical
AMR graphs and the state-of-the-art LLM-based approach.
The first approach is developed by us, while the latter is
used out of the box. In the following, we provide a detailed
explanation of both of these approaches.

Approach Based on AMR Graphs

The overall workflow of the approach based on AMR graphs
consists of several principal modules: automatic translation,
AMR parsing, keyword extraction, summary graph extrac-
tion, and AMR-to-text (Fig. 8). In the following paragraphs,
we elaborate on each of these modules. Except for keyword
extraction and summary graph extraction, we use existing
implementations available in open access. For the excep-
tions, we develop these modules ourselves.

Automatic translation
To utilize AMR graphs, which were originally designed

for English texts [92], we employ an automatic translation
system, which we detail later in “Implementation Details”.
The purpose of this system is to first automatically translate
our input segments from French to English (Fr → En) and
then automatically translate the resulting summaries from
English to French (En → Fr).

AMR Parsing and AMR-to-Text
There are two main procedures associated with AMR

graphs: AMR parsing and AMR-to-text. AMR parsing is
a process of constructing an AMR graph from a given text
(Fig. 9), and AMR-to-text is the generation of text from a
given AMR graph.

AMR parsing and AMR-to-text can be performed in
several ways. The implementation we use for both tasks is
based on a neural network, which was trained on a corpus of

Fig. 8   The workflow presenting different steps of the AMR-based approach. Modules in red are developed by ourselves and modules in blue are
existing implementations

Fig. 9   An example of AMR parsing for the sentence “If a piece of land can be built on then there must be a road” in the graph format (on the
left) and corresponding to its description in the Penman format (on the right)

6  A nomenclature, manually extended by an expert (included in our
code).

	 SN Computer Science (2025) 6:115 115   Page 12 of 24

SN Computer Science

annotated examples with reference summaries. After pars-
ing, the graph is stored in the Penman format [42], a seri-
alization format originally designed for encoding semantic
dependencies represented by directed, rooted graphs (Fig. 9).
Penman is widely used in AMR applications, and we employ
this format to extract the summary graph in the dedicated
module. The same format is used as an input for the AMR-
to-text module.

Keyword Extraction
Our AMR-based approach requires the identification of

the most important words, which we refer to as keywords,
and we exploit an existing implementation of a keyword
extractor to find them. By a keyword, we understand a
nomenclature concept, a trigger word, or a named entity. We
already used the notions of trigger words and nomenclature
in the previous section dedicated to segment construction.

A named entity is a real-world object such as a person,
location, organization, product, etc. that can be identified by
a proper name [62]. The implementation that we use auto-
matically searches for geopolitical entities (such as countries
and cities) and locations (geographical objects) on the basis

of an open-source library. All the keywords are detected
automatically in this implementation via their stemmed rep-
resentation (Fig. 10). For example, for trigger words “être
interdit” and “admettre”, this representation corresponds
to “être interd” and “admettr”, respectively. More details
on the implementation are provided in “Implementation
Details”. Once the keywords are found, we pass them to the
summary graph extraction module (Fig. 8).

Summary Graph Extraction AMR allows for the
rephrasing of input text into a more compact fragment,
avoiding some details. However, it does not permit signifi-
cant compression of an input fragment without additional
manipulations with the graph. One way to achieve that
is to extract a subgraph called the summary graph [56],
which contains the most essential information related to
the task. To extract such a graph, we use keywords, which
we find automatically with the keyword extraction mod-
ule described above. For each keyword, we search for a
corresponding node called the target node in the graph.
Once this node is found, we extract the subtree associated
with it. In addition to the subtree, we extract the full path

Fig. 10   An example of a textual segment with highlighted keywords (at the top) and its translation to English (at the bottom). “Trig_PLU” cor-
responds to trigger words and “Nomc_Hn” to nomenclature concepts with n indicating the level of hierarchy [36]

Fig. 11   En example of a subgraph (shown in different colors) extracted with the keyword “position”. The target node is highlighted in red, the
subtree is in beige and the path from the root to the target node is in violet

SN Computer Science (2025) 6:115 	 Page 13 of 24  115

SN Computer Science

from the root node to the target node, which includes all
the nodes and edges directly connected to the target node
(Fig. 11).

Once the subgraphs corresponding to different keywords
are extracted, we sum them by merging the same nodes and
edges. This is realized by the standard functionality of the
AMR libraries that we use (see “Implementation Details”
for details). The resulting “fusionned” graph is then used to
generate the final summary (Fig. 12).

We perform subgraph extraction for all segments that are
“large enough”. We use a heuristic to make this decision: if
a segment contains fewer than k keywords, we use the full
AMR graph to generate a summary; otherwise, we extract
subgraphs using keywords. In our implementation, we set
k = 3 , which is guided by intuition: a segment with too few
keywords (i.e., fewer than 3) is semantically poor; thus, the
full segment must be used for summarization without the
need to extract a summary graph.

Fig. 12   An example of con-
structing a summary graph
using keywords. The AMR
graph corresponding to the seg-
ment from Fig. 10 is at the top,
the final summary graph is at
the bottom, and the subgraphs
extracted using different key-
words are in the middle

	 SN Computer Science (2025) 6:115 115   Page 14 of 24

SN Computer Science

The last problem we faced in summary graph extraction
is how to find French keywords in the English versions of
segments. This process is called text alignment [18], and we
benefit from using an existing implementation [78].

Approach Based on LLM

As discussed in “Rule Formulation”, the application of an
LLM in computer science systems is not a novel concept
[67, 80]. The main limitation of this approach is the proba-
bilistic nature of LLMs, resulting in nondeterministic out-
puts. However, their ease of use and statistically favourable
results, particularly in text summarization tasks [70], are
notable advantages.

To generate portions of text containing elements for
expert rule construction, we automatically query ChatGPT,
an instance of an LLM. In this process, we use the following
query in the French language: “résumé abstrait à 20 mots
maximum:”,7 which is followed by a textual segment for
which a text portion needs to be obtained. This query was
selected experimentally, and a limit of 20 words was added
to avoid long outputs or multiple sentences. Without this
restriction, the system might produce a sentence as long as
the original segment or output multiple sentences. Given that
our AMR-based summaries contain 20 words on average, we
use the same number of words in the query for ChatGPT.
Importantly, ChatGPT does not consider this a strong con-
straint. As a result, it occasionally generates phrases longer
than the specified limit.

Experimental Evaluation

Data

Our dataset [37], which we use for the experiments, contains
1934 labelled segments extracted from 9 PLU and PPRI doc-
uments. In the data, the segments are labelled as belonging
to one of 4 classes: Verifiable, Non-verifiable, Informative,
and Not pertinent. We combine the classes Verifiable and
Non-verifiable to derive the class Strict, and we combine the
classes Strict and Informative to derive the class Pertinent
(Fig. 3). The detailed statistics for each type of segment and
each document are presented in Table 2.

To evaluate the rule formulation, we selected 64 segments
of the class Verifiable, 32 segments from Informative, and
32 from Non-verifiable [37]. By fixing the number of seg-
ments in this way, we ensured diverse selection encompass-
ing all types within the Pertinent class (Fig. 3). We prioritize
the class Verifiable because of its greater importance for
the continuation of our project. Verifiable segments were
selected by removing all duplicate or similar segments that
did not pass the threshold of 30 by the Levenshtein distance
[52]. Informative and Non-verifiable segments were selected
uniformly at random. The same procedure was applied (the
Levenshtein distance with a threshold of 30) to verify that
there are no duplicate or similar segments of the Informative
and Non-verifiable classes.

Experimental Settings

Model Parameters

We evaluate our methods via the following parameters. In
turn, we fix n ∈ [1..10] . In the vector similarity model, we

Table 2   Number of segments corresponding to each class and each document

Document Number of segments

1st classification 2nd classification 3rd classification

Pertinent Not pertinent Total Strict Informative Total Verifiable Non-verifiable Total

PLU Montpellier ZONE-A 29 42 71 27 2 29 8 19 27
PLU Montpellier ZONE-N 48 78 126 39 9 48 12 27 39
PLU Montpellier ZONE-AU0 31 58 89 28 3 31 6 22 28
PLU Montpellier ZONE-14AU 23 59 82 21 2 23 8 13 21
PLU Montpellier ZONE-5AU 30 64 94 27 3 30 4 23 27
PLU Montpellier ZONE-4AU1 65 101 166 55 10 65 7 48 55
PPRI Montpellier 88 37 125 83 5 88 22 61 83
PPRI Grabels 54 45 99 47 7 54 33 14 47
PLU Grabels 306 776 1082 261 45 306 47 214 261
Total 674 1260 1934 588 86 674 147 441 588

35% 65% 100% 87% 13% 100% 25% 75% 100%

7  In English: “abstractive summary in 20 words maximum”.

SN Computer Science (2025) 6:115 	 Page 15 of 24  115

SN Computer Science

use two types of term frequencies: TF and TF-IDF. In the
ML method, we use two types of vectors: those based on
TF and those based on TF-IDF. In addition, we experiment
with 4 classifiers: decision trees [71], random forests [17],
SVM [22], and stochastic gradient descent (SGD) [77]. We
report only the best parameter settings with respect to each
baseline method.

In the CamemBERT implementation, we use the param-
eters recommended in [44]: the learning rate 2 × 10−5 and
� = 10 × 10−8 . We also fix the number of epochs to 10 and
the batch size to 16. We repeat each experiment 10 times to
address the model instability problem [95] and report the
best and average results, which we compute via the mean
function.

For data augmentation, we test each of the methods pre-
sented in “Text Augmentation” with k ∈ [1..5] . As before,
we report only the results corresponding to the best per-
forming values of k. To implement Semantic-Driven Method
and Combined Approach, we test 3 different dictionaries as
sources of synonyms: WordNet [60], Agrovoc [19], and DES
[61]. For each of the dictionaries, we fix s = 5 on the basis
of our preliminary experiments (Table 1).

Finally, in the AMR-based approach, we use the value
k = 3 to determine if a segment is large enough, which was
selected experimentally. To evaluate each segment in our
selection described in “Data”, we generate 1 summary via
the approach that is based on AMR graphs and 3 summaries
via LLM. We use ChatGPT of version 3.5-turbo-0301 as an
instance of an LLM. Compared with ChatGPT, the AMR
approach is deterministic; for this reason, we generate only
1 summary using AMR graphs and several with ChatGPT.

Evaluation Protocol

Segment Classification
We do not require any specific validation framework

for trigger words since there is no training phase in the
method. To evaluate the vector-similarity model, we use
leave-one-out cross validation (CV) implemented as fol-
lows: each of the segments is used for testing, while all the
others are used for training. For the ML method, which is
based on frequency vectors, we use a more common vali-
dation framework. To evaluate this method, we implement
10-fold CV, with each fold containing 10% of all segments.
The model is trained on 9 folds, while the last fold is used
for validation. The process is repeated 10 times until each
fold is used as a test set. Finally, to evaluate CamemBERT,
we use stratified sampling implemented as follows. The
data are split into 2 parts: 80% of the segments are used
for learning, whereas the other 20% are used for validation.
The split is performed such that the proportion of posi-
tive and negative examples for each type of classification
remains the same (Table 2).

Rule formulation
We evaluate text portions for expert rule construction in

two ways: automatically and manually. For automatic evalu-
ation, we compute the semantic textual similarity between
each segment and each text portion via BERT [44]. We
employ the cosine similarity as the similarity measure and
use BERT to compute embedding vectors of the text por-
tions and the original segments. Since ground truth text
portions are very costly to obtain, we do not use standard
metrics such as ROUGE [55]. Instead, we developed our
own metric. We then rank all the portions of each segment
via the following algorithm. If a similarity score is less than
0.5, the portion receives a rank of 0; otherwise, it receives
a rank starting from 1, where 1 corresponds to the most
similar. For example, if 4 portions receive similarity scores
0.49, 0.65, 0.48, 0.72, they will be ranked as 0, 2, 0, 1 for
1st, 2nd, 3rd, and 4th, respectively.

In the manual evaluation, we ask a group of volunteers
to rank the generated portions in 2 steps, following a simi-
lar procedure to that of the automatic evaluation. In the 1st
step, we ask them to assign a score of 0 to all portions that
do not contain elements for expert rule construction or are
not pertinent. In the 2nd step, we ask them to rank all the
portions that did not receive a score of 0 in the previous step
by assigning a rank starting from 1, where 1 corresponds to
the best-quality portion. Similar to the automatic evaluation,
there cannot be 2 portions with the same rank. For example,
if two portions passed the 1st step, one of them must receive
a rank of 1, and the other 2. In this way, we evaluate each
segment by 2 different people to minimize the risk of error.
In total, we asked 9 people to participate in this experiment,
each of whom annotated approximately 30 segments (2 peo-
ple annotated 33 each, 5 annotated 30 each, and 2 annotated
20 each). To assess the degree of agreement between differ-
ent annotators, we computed the kappa coefficient [20]. We
obtained 0.41 as the average value, which corresponds to
fair agreement [49].

Quality Measures

Segment Classification In the 1st classification, we use the
precision, recall, and F 1 score to assess the quality of our
prediction:

Prec =
TP

TP + FP
,

Rec =
TP

TP + FN
,

F1 = 2 ⋅
Prec ⋅ Rec

Prec + Rec
,

	 SN Computer Science (2025) 6:115 115   Page 16 of 24

SN Computer Science

where TP represents true positive examples, FP represents
false positive, and FN represents false negative. In the 2nd
and 3rd classifications, we compute each of those values
for both classes. To determine which of the results are the
best, we use weighted accuracy. For that, we assign a clas-
sification cost of 1 to examples of an overrepresented class
(Strict and Non-verifiable) and cost new_cost to examples
of an underrepresented class (Informative and Verifiable),
derived by:

where |D| is the number of examples of both classes for the
classification task and |N| is the number of examples of an
underrepresented class. We then perform an evaluation on
the basis of the costs defined: the FNs and TNs receive a
score of new_cost for every example of an underrepresented
class w.r.t. its real class, whereas the FPs and TPs receive
a score of 1 for positives. We benefit from using weighted
accuracy twice: to determine the best performing epoch in
each experiment and to select the best result among 10 runs.

Rule Formulation
To assess the quality of the text portions generated by dif-

ferent approaches, we use the mean reciprocal rank (MRR)
[85], precision at k (P@k), and recall at k (R@k) with
k ∈ [1, 4] . The MRR calculates the average of the recipro-
cal ranks at which the first relevant text portion is retrieved
via a given approach. We define MRR as:

where Q refers to the set of segments used for evaluation and
where ranki represents the rank position of the first relevant
portion of the text generated by a given approach for the i-th
segment. If the approach does not produce a relevant portion
for the i-th segment, 1

ranki
 is set to 0 [85]. For example, if an

approach is evaluated on 4 segments and for segment 1, it is
ranked 1st, for segment 2, it is ranked 2nd, for segment 3, it
is ranked 4th, and for segment 4, there is no relevant result,
then the MRR of this approach is 1

4
(1 +

1

2
+

1

4
+ 0) = 0.4375 .

We compute the MMR for each approach and each user and
report an average between users. We define P@k and R@k
as:

new_cost =
|D|

2 ⋅ |N|
,

MRR =
1

|Q|

|Q|∑

i=1

1

ranki
,

P@k =
|{relevant@k} ∩ {generated}|

|{generated}|
,

R@k =
|{relevant@k} ∩ {generated}|

|{relevant}|
,

where relevant corresponds to the portions of text that are
relevant to a given approach, generated corresponds to the
portions generated by a given approach, and k corresponds
to the lower bound of rank k. P@k shows the fraction of
generated text portions that are relevant with respect to a
given approach and rank k. In this way, P@4 is identical to
the percentage of text portions that passed the 1st step of
the evaluation. R@k gives a measure of how many of the
relevant text portions passed the lower bound of rank k out
of all the relevant items. If there is at least one portion gener-
ated by the approach, its R@4 is always 100%, and we thus
do not output this measure. Similar to MRR, we compute
P@k and R@k for each approach and user and then find an
average between users. We use MRR, P@k, and R@k for
both the automatic and manual evaluation.

Implementation Details

To perform segment classification, we implemented base-
line methods and state-of-the-art and text augmentation
approaches in Python (see footnote 5). We used the NLTK
library [14] to implement tokenization, remove stop words,
and find stemmed representations of segments for the base-
line methods. In addition, we used the Stanford POS-Tagger
[82] for the French language to determine part-of-speech
in POS-Driven Method and Combined Approach for data
augmentation. We used the scikit-learn library [66] to imple-
ment the decision trees, random forests, SVM, and SGD
classifiers. We also used this library to implement precision,
recall, F 1 score, and weighted versions of accuracy. Finally,
we used the CamembertForSequenceClassification model
from the HuggingFace library [90] as the CamemBERT
implementation.

For rule formulation, we used [40] as an implementa-
tion of the keyword extraction module, which is based on
[38]. In addition, we used amrlib [1] for the AMR parsing
and AMR-to-text modules and [78] for text alignment. We
also used [34] to manipulate AMR graphs in the Penman
format. For the automatic translation system, we employed
[29] to convert input segments from French to English and
then generated portions from English back to French. Our
approach is not constrained to a specific translation system,

Table 3   Evaluation results with different methods on 1st classifica-
tion task

Method Results

Precision Recall F
1

Trigger words (n = 10) 0.35 0.98 0.51
Vector similarity (TF-IDF) 0.66 0.96 0.78
ML approach (TF, SVM) 0.87 0.81 0.83
CamemBERT 0.86 0.96 0.91

SN Computer Science (2025) 6:115 	 Page 17 of 24  115

SN Computer Science

and we selected this translator, as it is widely used in the
literature and has demonstrated good results [3, 23, 69, 87].
Finally, we use [66] to compute the kappa coefficient, and we
implement (see footnote 5) MRR, P@k, and R@k ourselves.

Results

Segment Classification

1st Classification The summary of results8 is presented in
Table 3. Trigger words can discover almost all pertinent
segments (recall 98%). However, the low precision of this
method results in an average performance equal to that of
random guessing (F1 score 51%). Compared with trigger

words, the vector similarity method results in identical recall
but improves precision by twofold. The ML approach fur-
ther improves precision, but its recall decreases compared
with that of the previous method. Nevertheless, it slightly
outperforms the latter. Finally, CamemBERT smooths out
this difference by providing precision similar to that of
the ML approach and recall identical to that of the vector
similarity method. The overall result of CamemBERT (F1
score 91%) demonstrates the very good performance of the
method. We thus use the classifier trained by this method in
our framework.

To verify the quality of the resulting classifier, we per-
form a detailed study of the segments classified by Cam-
emBERT. For each example in the test data classified as TP
(128 segments out of 135 positive examples in the test data),
we collect all the features that led to this result via Lime [76]
(Fig. 13). As a result, 35.06% of all positive features are
expert nomenclature concepts. This is a very good result,
showing that CamemBERT can capture thematic concepts

Fig. 13   An example of a segment analysis using Lime, from left to
right: the classification results with probability scores, the features
which led to these results, original segment with negative and posi-

tive features highlighted in blue and orange consequently (with some
of the features coming from the expert nomenclature concepts: ter-
rain, zone and accès)

Table 4   Evaluation results
with different methods on 2nd
classification task

*corresponds to the weighted version

Method Results

Class Strict Class informative Accuracy*

Precision Recall F
1

Precision Recall F
1

Trigger words (n = 1) 0.92 0.56 0.70 0.18 0.67 0.29 0.60
Vector similarity (TF-IDF) 0.99 0.92 0.95 0.62 0.92 0.74 0.92
ML approach (TF-IDF, SGD) 0.97 0.99 0.98 0.93 0.81 0.85 0.93
CamemBERT 0.99 1.00 1.00 1.00 0.94 0.97 0.98

8  For more detailed results w.r.t. each method and each parameter,
please refer to our annex provided with our code: https://​github.​com/​
kopte​lovmax/​AIR-​FUD/​blob/​main/​class​ifica​tion_​resul​ts.​ods.

https://github.com/koptelovmax/AIR-FUD/blob/main/classification_results.ods
https://github.com/koptelovmax/AIR-FUD/blob/main/classification_results.ods

	 SN Computer Science (2025) 6:115 115   Page 18 of 24

SN Computer Science

and use them as indicators of positive examples. Another
result of this analysis is that 10.0% of all the top 1 distinct
features are trigger words. Despite the relatively low per-
centage, this is also a good result given that the features
should not only consist of nomenclature concepts.

2nd Classification A summary of the results (see footnote
8) is shown in Table 4. Trigger words provide satisfactory
performance for the class Strict (F1 score 70%) and quite a
low result for the Informative class. This can be explained
by the fact that trigger words are included in both classes,
which makes this method ineffective. The vector similarity
method improves the results for both classes; however, the
class Strict outperforms the Informative class due to high
imbalance of classes (Table 2). The ML approach com-
pensates for this shortcoming by improving the results of
the underrepresented class. The overall performance of the
resulting classifier (weighted accuracy 93%) is sufficient for
its choice for the framework. The results of CamemBERT,
with a 100% F 1 score on class Strict and 100% precision
on class Informative, may indicate that the model does not
generalize well. To avoid potential overfitting, we have
decided not to employ CamemBERT in the final version of
the framework for this task.

3rd Classification
A summary of the results (see footnote 8) is presented

in Table 5. The trigger words perform similarly to the
2nd classification task, with the only difference being that
the class Verifiable has worse results than does the class
Non-verifiable. The two next methods, vector similarity
and the ML approach, improve the results of the trigger
words, maintaining the trend of better performance of the

Non-verifiable class. The latter can be explained by the fact
that the Non-verifiable class is better represented in the data
than the Verifiable class is (Table 2). CamemBERT slightly
improves the situation by minimizing this difference to 13%
(F1 class Verifiable 82% vs. F 1 class Non-verifiable 94%).
We attempt to minimize this difference further by perform-
ing data augmentation of the underrepresented class (“Text
Augmentation”). To achieve that, we continue applying our
methods defined in “Text Augmentation”.

Text Augmentation
Most of the best results for data augmentation (see foot-

note 8) correspond to the settings with the positive class
(i.e., the class Verifiable in our case) augmented to 50% or
more (Table 10). This correlation can be observed mostly
in POS-Driven Method and Semantic-Driven Method (class
Verifiable max F 1 score 86–87%). Nevertheless, Combined
Approach allows the data to be kept unbalanced and offers
the same performance (or even better, taking into account
weighted accuracy). Surprisingly, Semantic-Driven Method
and Combined Approach can improve the results. Accord-
ing to our initial hypothesis, all pertinent segments should
include nomenclature concepts. Following the results on
augmented data, we can conclude that the class Verifiable
contains more nomenclature concepts than does the class
Non-verifiable. Ultimately, the best result in our experi-
ments (see footnote 8) corresponds to Combined Approach
with the DES dictionary as a source of synonyms (Table 5).
Compared with the setting with nouns, the setting in which
adjectives and adverbs are replaced requires fewer cycles
of data augmentation ( k = 1 ), which requires repeating the
augmentation process twice ( k = 2 ). Using this method, we

Table 5   Evaluation results
with different methods on 3rd
classification task

*corresponds to the weighted version

Method Results

Class verifiable Class non-verifiable Accuracy∗

Precision Recall F
1

Precision Recall F
1

Trigger words (n = 1) 0.31 0.70 0.43 0.83 0.49 0.62 0.57
Vector similarity (TF-IDF) 0.53 0.97 0.68 0.98 0.71 0.83 0.81
ML approach (TF, Decision Trees) 0.66 0.78 0.71 0.94 0.89 0.91 0.85
CamemBERT 0.78 0.86 0.82 0.95 0.92 0.94 0.90
CamemBERT+data augmentation 0.82 0.93 0.87 0.98 0.93 0.95 0.93

Table 6   Automatic evaluation
of the AMR-based approach and
several runs of ChatGPT

Approach Quality measures

MRR P@1 P@2 P@3 P@4 R@1 R@2 R@3

AMR-based 0.43 0.23 0.38 0.51 0.82 0.29 0.47 0.62
ChatGPT (run 1) 0.54 0.30 0.54 0.80 0.94 0.32 0.58 0.86
ChatGPT (run 2) 0.50 0.21 0.52 0.84 0.97 0.22 0.54 0.86
ChatGPT (run 3) 0.52 0.26 0.55 0.81 0.95 0.27 0.58 0.86

SN Computer Science (2025) 6:115 	 Page 19 of 24  115

SN Computer Science

can improve the performance of CamemBERT for the Verifi-
able class by 6% (max F 1 score from 82% to 87%). We thus
use the resulting method in the AIR-FUD+ framework for
processing new documents.

Rule formulation The results of the automatic evaluation
are presented in Table 6.

As seen from the results, ChatGPT generally performs
better than the approach based on AMR graphs, except for a
few cases where the AMR-based approach outperforms its
competitor. These exceptions include P@1 of ChatGPT (run
2) and R@1 of ChatGPT (runs 2, 3). This indicates that the
automatic evaluator favours text portions generated by the
AMR-based approach over its competitors and ranks them in
the first place. Overall, this is a positive result, demonstrat-
ing that an approach based on AMR graphs remains compet-
itive with the state-of-the-art methods. Next, the results of
ChatGPT vary across runs. This is not surprising given the
probabilistic nature of LLMs. The text portions generated by
ChatGPT exhibit variability across different runs, even if the
query remains the same. Unfortunately, this behaviour is not
stable: MRR, P@1, and R@1 show the best performance in
the first run; P@3 and P@4 in the second; and P@2, R@2,
and R@3 in the last run. The results do not show a consistent
trend of improvement or deterioration across different runs.
Our experiments did not detect such a trend.

To verify whether there is a variance in performance
across different segment types, we recomputed the quality

measures with respect to different classes (Table 7). Com-
pared with all classes, the performance gap between the
AMR-based approach and ChatGPT is lower for the Verifi-
able and Non-verifiable classes and greater for the Informa-
tive class. Moreover, the AMR approach provides a better
R@1 than ChatGPT does for the Informative and Non-ver-
ifiable classes. This is not the only difference we noticed.
Interestingly, compared with the all-class setting, the AMR-
based approach performs better for the Verifiable (MRR,
P@2, P@3, P@4, R@2, R@3) and Non-verifiable classes
(P@1, P@2, P@3, R@1, R@2, R@3), whereas the perfor-
mance of ChatGPT for these classes decreases (MRR, P@2,
P@3, P@4, R@2, R@3). Additionally, the Informative class
demonstrates the opposite behaviour: the performance of the
AMR approach decreases, but ChatGPT improves in per-
formance compared with the all-class setting (MRR, P@2,
P@3, P@4, R@2, R@3). This can be explained by the fact
that segments of the Informative class are usually longer
and contain fewer important keywords, making it more dif-
ficult for the AMR approach to capture semantics, whereas
ChatGPT usually performs better on general texts than on
specific tasks [46]. Segments of the Verifiable and Non-
verifiable classes are more concise, making our approach
easier and more challenging for ChatGPT.

An automatic evaluation demonstrated that ChatGPT
performs globally better than the AMR-based approach
does. This study also demonstrated the potential of the

Table 7   Automatic evaluation
of the AMR-based approach and
ChatGPT (averaged among 3
runs) based on different classes
of segments

Approach Quality measures

MRR P@1 P@2 P@3 P@4 R@1 R@2 R@3

All classes
AMR-based 0.43 0.23 0.38 0.51 0.82 0.29 0.47 0.62
ChatGPT (mean) 0.52 0.26 0.54 0.82 0.95 0.27 0.56 0.86

Verifiable
AMR-based 0.45 0.23 0.44 0.58 0.86 0.27 0.51 0.67
ChatGPT (mean) 0.51 0.26 0.52 0.79 0.93 0.27 0.55 0.85

Informative
AMR-based 0.38 0.22 0.25 0.34 0.78 0.28 0.32 0.44
ChatGPT (mean) 0.54 0.26 0.58 0.86 0.97 0.27 0.60 0.89

Non-verifiable
AMR-based 0.43 0.25 0.41 0.53 0.78 0.32 0.52 0.68
ChatGPT (mean) 0.52 0.25 0.53 0.82 0.97 0.26 0.55 0.85

Table 8   Manual evaluation of
the AMR-based approach and
several runs of ChatGPT

Approach Quality measures

MRR P@1 P@2 P@3 P@4 R@1 R@2 R@3

AMR-based 0.10 0.06 0.11 0.13 0.17 0.34 0.66 0.77
ChatGPT (run 1) 0.50 0.30 0.60 0.75 0.76 0.40 0.79 0.99
ChatGPT (run 2) 0.52 0.34 0.57 0.77 0.77 0.44 0.74 0.99
ChatGPT (run 3) 0.47 0.25 0.54 0.75 0.76 0.33 0.71 0.98

	 SN Computer Science (2025) 6:115 115   Page 20 of 24

SN Computer Science

AMR-based approach and highlighted some of the limita-
tions of ChatGPT. However, our generated portions of text
are intended for use in expert rule construction; thus, manual
verification should be performed. We continue to evaluate
the generated portions manually to confirm or disprove our
findings. The results of this manual evaluation are presented
in Table 8.

According to the new results, only R@1, R@2, and
R@3 demonstrate a similar performance of the AMR-based
approach to ChatGPT. Other measures show a greater per-
formance gap between the two approaches than before. The
number of times the AMR-based approach did not pass the
first step is much lower than that in the automatic evaluation,
as indicated by the P@4 measure (only 17% of text por-
tions passed the first human evaluation, compared with 82%

in the automatic evaluation). This could occur if a major-
ity of the generated portions are not pertinent (e.g., due to
errors in automatic translation) or incomplete (e.g., lacking
important information from the original segment). The lat-
ter is less likely considering that the automatic evaluation
did not detect it. In contrast, the former is quite possible
since a small change in vocabulary may not be effectively
detected by computing semantic similarity with the origi-
nal segment, but it is much easier for humans to recognize.
Such a low result in the first step directly impacts the over-
all performance of the approach. The new values of R@1,
R@2, and R@3 indicate that humans still prefer portions of
text generated by ChatGPT rather than by the AMR-based
approach. Finally, the results of ChatGPT still vary from run
to run, but a common trend is now visible. The best result

Table 9   Manual evaluation of
the AMR-based approach and
ChatGPT (averaged among 3
runs) based on different classes
of segments

Approach Quality measures

MRR P@1 P@2 P@3 P@4 R@1 R@2 R@3

All classes
AMR-based 0.10 0.06 0.11 0.13 0.17 0.34 0.66 0.77
ChatGPT (mean) 0.50 0.30 0.57 0.76 0.76 0.39 0.75 0.99

Verifiable
AMR-based 0.06 0.02 0.05 0.09 0.14 0.18 0.39 0.71
ChatGPT (mean) 0.54 0.32 0.61 0.82 0.83 0.38 0.73 0.99

Informative
AMR-based 0.13 0.08 0.17 0.17 0.20 0.42 0.89 0.89
ChatGPT (mean) 0.50 0.30 0.58 0.74 0.76 0.40 0.76 0.99

Non-verifiable
AMR-based 0.15 0.11 0.17 0.17 0.20 0.51 0.80 0.80
ChatGPT (mean) 0.42 0.27 0.47 0.61 0.62 0.43 0.76 0.98

Table 10   Results of text augmentation for 3rd classification and their comparison with performance on original data

*corresponds to the weighted version

Method Size of training data Results on test data

Class Verifiable Class Non-veri-
fiable

Accuracy*

Number of segments % positive F
1
 score F

1
 score

Total Positive avg max avg max

Original data 470 118 25 0.80 0.82 0.93 0.94 0.90
POS-Driven Method (adj+adv, k = 1) 573 221 39 0.82 0.86 0.94 0.96 0.92
POS-Driven Method (nouns, k = 2) 706 354 50 0.81 0.84 0.94 0.95 0.91
POS-Driven Method (verbs, k = 3) 818 466 57 0.83 0.86 0.94 0.95 0.92
Semantic-Driven Method (WordNet, k = 1) 588 236 40 0.82 0.85 0.93 0.95 0.92
Semantic-Driven Method (DES, k = 2) 706 354 50 0.82 0.87 0.94 0.95 0.93
Semantic-Driven Method (Agrovoc, k = 3) 824 472 57 0.82 0.86 0.94 0.95 0.92
Combined Approach (DES, adj+adv, k = 1) 540 188 35 0.82 0.87 0.94 0.95 0.93
Combined Approach (DES, nouns, k = 2) 628 276 44 0.82 0.87 0.94 0.96 0.93
Combined Approach (DES, verbs, k = 4) 786 434 55 0.83 0.85 0.94 0.95 0.92

SN Computer Science (2025) 6:115 	 Page 21 of 24  115

SN Computer Science

corresponds to the second run according to most quality
measures (MRR, P@1, P@3, P@4, R@1), and the last run
is the worst according to all measures. This phenomenon
can be explained by the fact that querying ChatGPT is per-
formed during one session, and the system can improve the
quality of the output based on previous iterations up to a cer-
tain level. It was surprising that we were not able to detect
this phenomenon with automatic evaluation. Evaluation by
humans is more accurate for such tasks, and it demonstrated
almost perfect agreement.

With respect to the results of different classes, the com-
mon trend slightly changed: the Informative class was
replaced by Verifiable, which has the highest performance
gap in the manual evaluation (Table 9).

Detailed analysis shows that the results of the AMR
approach improve for the Informative and Non-verifiable
classes even though they become worse for the Verifiable
class.

ChatGPT behaves the opposite way: it improves on
Verifiable (except for R@1, R@2), performs identically on
Informative and drops on Non-verifiable (except for R@1,
R@2). This is an interesting outcome demonstrating that
manual evaluation can present results from another angle.
In summary, there is a significant gap in the results between
AMR and ChatGPT, with the latter leading. For some meas-
ures, this gap can reach 10 fold. This is because AMR can-
not successfully pass the first step of human evaluation. On
the other hand, R@1 and R@2 of the Non-verifiable class
indicate that among the portions that passed the first step,
humans prefer those generated by the AMR. This makes the
AMR-based approach not useless and relegates it to some
specific cases.

Conclusion

In this work, we presented the AIR-FUD+ framework for
(semi)automatic identification and formulation of rules in
urban planning documents in the French language. The
framework is used within the scope of the Hérelles project,
which aims to improve the management of land artificiali-
zation. The first step in the framework involves extracting
constraints from urban planning documents by identifying
segments that contain rules and determining their types. The
next step is to reformulate these segments into concise text
portions that include all the necessary elements for formulat-
ing the constraints.

We showed experimentally via a manually annotated cor-
pus that AIR-FUD+ can correctly identify the rules within
the hierarchy of classes. We proposed a cascade approach for
this purpose, and we demonstrated a good performance. In
addition, we developed several text augmentation methods
based on text mining and a language model that can solve

the data imbalance problem and improve the overall results
for the latest classification task.

We demonstrated that it is indeed possible to use iden-
tified segments to generate portions of text containing all
necessary elements for expert rule construction. We propose
two solutions: a classical approach based on AMR graphs
and a state-of-the-art solution using an LLM (ChatGPT).
The results demonstrated a performance gap between the
two approaches, with the LLM approach leading. In our
project, we will continue using the LLM, as it better meets
our performance requirements. However, in some sensi-
tive applications where reproducibility and interpretabil-
ity are more important, we suggest exploring AMR-based
approaches. Our findings indicate that, in specific cases, the
AMR-based approach has the potential to be competitive
with the LLM.

To date, we have only conducted evaluations on both
parts—segment classification and rule formulation—using
the corpus that we constructed. It would be interesting to
apply our framework to new unseen documents. Depending
on the results obtained, adjustments to the choice of classi-
fiers and the data augmentation method could be made for
each classification task. Finally, it would be interesting to
continue the work on enhancing the reproducibility of an
LLM and improving the results of the AMR-based approach.
A promising direction would be to explore the combination
of these two approaches to increase the reproducibility of the
ChatGPT results. This could also improve its effectiveness,
especially in cases where it may not perform optimally.

Acknowledgements  We thank Rodrique Kafando and Rémy Decoupes
for providing valuable consultations on the methodological part. We
also thank Baptiste Lafabrègue, Nadia Guiffant, Mariya Borovikova,
Bahdja Boudoua, Sarah Valentin, Léa Tardieu and Emmanuel Capliez
for their assistance.

Funding  Open access funding provided by CIRAD. This work is
partially funded by the French National Research Agency (ANR)—
HERELLES project (Contract No. ANR-20-CE23-0022).

Data availability  The data used in this article for the experiments are
publicly available: https://​doi.​org/​10.​57745/​DWYGMB.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will

https://doi.org/10.57745/DWYGMB

	 SN Computer Science (2025) 6:115 115   Page 22 of 24

SN Computer Science

need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 A python library that makes AMR parsing, generation and visu-
alization simple. 2022. https://​amrlib.​readt​hedocs.​io.

	 2.	 Afzal S, Maqsood M, Nazir F, et al. A data augmentation-based
framework to handle class imbalance problem for Alzheimer’s
stage detection. IEEE Access. 2019;7:115528–39.

	 3.	 Akbari M, Karimi AH, Saeedi T, et al. A Persian benchmark
for joint intent detection and slot filling. 2023. arXiv preprint
arXiv:​2303.​00408

	 4.	 Alirezaie M, Kiselev A, Längkvist M, et al. An ontology-based
reasoning framework for querying satellite images for disaster
monitoring. Sensors. 2017;17(11):2545.

	 5.	 Allahyari M, Pouriyeh S, Assefi M, et al. A brief survey of
text mining: classification, clustering and extraction techniques.
2017. arXiv preprint arXiv:​1707.​02919

	 6.	 Almeida F, Xexéo G. Word embeddings: a survey. 2019. arXiv
preprint arXiv:​1901.​09069

	 7.	 Anchiêta RT, Pardo TA.S A rule-based AMR parser for Portu-
guese. In: Advances in artificial intelligence-IBERAMIA 2018:
16th Ibero-American Conference on AI, Trujillo, Peru, 2018;
November 13–16, 2018, proceedings 16. Springer. pp 341–353

	 8.	 Anwar MW, Ahsan I, Azam F, et al. A natural language process-
ing (NLP) framework for embedded systems to automatically
extract verification aspects from textual design requirements.
In: Proceedings of the 2020 12th international conference on
computer and automation engineering. 2020. pp. 7–12.

	 9.	 Argüeso D, Evans JP, Fita L, et al. Temperature response
to future urbanization and climate change. Clim Dyn.
2014;42:2183–99.

	10.	 Artificialisation des sols. 2022. https://​www.​ecolo​gie.​gouv.​fr/​artif​
icial​isati​on-​des-​sols. Accessed 13 Mar 2023

	11.	 Artificialised land and artificialisation processes: determinants,
impacts and levers for action. 2017. https://​www.​inrae.​fr/​en/​news/​
artif​icial​ised-​land-​and-​artif​icial​isati​on-​proce​sses. Accessed 13
March 2023

	12.	 Ba CT, Choquet C, Interdonato R, et al. Explaining food security
warning signals with YouTube transcriptions and local news arti-
cles. In: Proceedings of the 2022 ACM conference on information
technology for social good. 2022. pp. 315–322.

	13.	 Banarescu L, Bonial C, Cai S, et al. Abstract meaning representa-
tion for sembanking. In: Proceedings of the 7th linguistic anno-
tation workshop and interoperability with discourse. 2013. pp.
178–186.

	14.	 Bird S, Klein E, Loper E. Natural language processing with
Python: analyzing text with the natural language toolkit. Sebas-
topol: O’Reilly Media Inc; 2009.

	15.	 Boori MS, Netzband M, Voženílek V, et al. Urban growth in last
three decades in Kuala Lumpur, Malaysia. In: 2015 Joint urban
remote sensing event (JURSE). IEEE;2015. pp. 1–4.

	16.	 Bougouin A, Barreaux S, Romary L, et al: TermiTH-Eval: a
French standard-based resource for keyphrase extraction evalu-
ation. In: LREC-language resources and evaluation conference.
2016.

	17.	 Breiman L. Random forests. Mach Learn. 2001;45:5–32.
	18.	 Brown PF, Cocke J, Della Pietra SA, et al. A statistical approach

to machine translation. Comput Linguist. 1990;16(2):79–85.
	19.	 Caracciolo C, Stellato A, Morshed A, et al. The AGROVOC

linked dataset. Semant Web. 2013;4(3):341–8.

	20.	 Cohen J. A coefficient of agreement for nominal scales. Educ
Psychol Meas. 1960;20(1):37–46.

	21.	 Cornuéjols A, Wemmert C, Gançarski P, et al. Collaborative clus-
tering: why, when, what and how. Inf Fusion. 2018;39:81–95.

	22.	 Cortes C, Vapnik V. Support-vector networks. Mach Learn.
1995;20:273–97.

	23.	 Costa-jussà M, Basta C, Domingo O, et al. OccGen: selection of
real-world multilingual parallel data balanced in gender within
occupations. Adv Neural Inf Process Syst. 2022;35:1445–57.

	24.	 Damodaran P. Parrot: paraphrase generation for NLU. 2021.
https://​github.​com/​Prith​ivira​jDamo​daran/​Parrot_​Parap​hraser.

	25.	 Daniell J, Wenzel F, Schaefer A. The economic costs of natu-
ral disasters globally from 1900-2015: historical and normalised
floods, storms, earthquakes, volcanoes, bushfires, drought and
other disasters. In: EGU general assembly conference abstracts.
2016. pp. EPSC2016–1899

	26.	 Davidson I, Ravi S: Agglomerative hierarchical clustering with
constraints: theoretical and empirical results. In: Knowledge
discovery in databases: PKDD 2005: 9th European conference
on principles and practice of knowledge discovery in databases,
Porto, Portugal, October 3–7, 2005. Proceedings 9. Springer;2005.
pp. 59–70.

	27.	 Dohare S, Karnick H: Text summarization using abstract meaning
representation. https://​api.​seman​ticsc​holar.​org/​Corpu​sID:​26049​
8172.

	28.	 Dohare S, Gupta V, Karnick H. Unsupervised semantic abstractive
summarization. In: Proceedings of ACL 2018, student research
workshop. 2018. pp. 74–83.

	29.	 EasyNMT—Easy to use, state-of-the-art neural machine transla-
tion. 2021. https://​github.​com/​UKPLab/​EasyN​MT.

	30.	 El-Kassas WS, Salama CR, Rafea AA, et al. Automatic text sum-
marization: a comprehensive survey. Expert Syst Appl. 2021;165:
113679.

	31.	 Eskenazi S, Gomez-Krämer P, Ogier JM. A comprehensive survey
of mostly textual document segmentation algorithms since 2008.
Pattern Recognit. 2017;64:1–14.

	32.	 Espejel JL. Automatic abstractive summarization of long medical
texts with multi-encoders transformer and general-domain sum-
mary evaluation with wikiSERA. PhD thesis, Université Paris-
Nord-Paris XIII 2021.

	33.	 Espigares T, Moreno-de las Heras M, Nicolau JM. Performance
of vegetation in reclaimed slopes affected by soil erosion. Restor
Ecol. 2011;19(1):35–44.

	34.	 Goodman MW: Penman: an open-source library and tool for AMR
graphs. In: Proceedings of the 58th annual meeting of the associa-
tion for computational linguistics: system demonstrations. 2020.
pp. 312–319.

	35.	 Guo Y, Rennard V, Xypolopoulos C, et al. BERTweetFR: domain
adaptation of pre-trained language models for French tweets. In:
Proceedings of the seventh workshop on noisy user-generated text
(W-NUT 2021). 2021. pp. 445–450.

	36.	 Holveck M. Nomenclature HÃrelles. 2023. https://​doi.​org/​10.​
57745/​OXACT8.

	37.	 Holveck M, Koptelov M, Roche M, et al. 2023. Segments textuels
Hérelles. https://​doi.​org/​10.​57745/​DWYGMB.

	38.	 Honnibal M, Montani I. spaCy 2: natural language understand-
ing with Bloom embeddings, convolutional neural networks and
incremental parsing. 2017. https://​github.​com/​explo​sion/​spaCy.

	39.	 Jeblick K, Schachtner B, Dexl J, et al. ChatGPT makes medicine
easy to swallow: an exploratory case study on simplified radiology
reports. Eur Radiol. 2023;34:2817–25.

	40.	 Kafando R. Hérelles rules visualization. 2023. https://​rdius-​herel​
les-​ner-​app-​smoynm.​strea​mlit.​app.

	41.	 Kafando R, Decoupes R, Teisseire M, et al. Constitution de corpus
thématique: Pour un meilleur suivi du territoire de la métropole
de montpellier méditerranée. In: SAGEO’21 16ème Conférence

http://creativecommons.org/licenses/by/4.0/
https://amrlib.readthedocs.io
http://arxiv.org/abs/2303.00408
http://arxiv.org/abs/1707.02919
http://arxiv.org/abs/1901.09069
https://www.ecologie.gouv.fr/artificialisation-des-sols
https://www.ecologie.gouv.fr/artificialisation-des-sols
https://www.inrae.fr/en/news/artificialised-land-and-artificialisation-processes
https://www.inrae.fr/en/news/artificialised-land-and-artificialisation-processes
https://github.com/PrithivirajDamodaran/Parrot_Paraphraser
https://api.semanticscholar.org/CorpusID:260498172
https://api.semanticscholar.org/CorpusID:260498172
https://github.com/UKPLab/EasyNMT
https://doi.org/10.57745/OXACT8
https://doi.org/10.57745/OXACT8
https://doi.org/10.57745/DWYGMB
https://github.com/explosion/spaCy
https://rdius-herelles-ner-app-smoynm.streamlit.app
https://rdius-herelles-ner-app-smoynm.streamlit.app

SN Computer Science (2025) 6:115 	 Page 23 of 24  115

SN Computer Science

Internationale de la Géomatique, de l’Analyse Spatiale et des Sci-
ences de l’Information Géographique. 2021.

	42.	 Kasper RT A flexible interface for linking applications to pen-
man’s sentence generator. In: Speech and natural language: pro-
ceedings of a workshop held at Philadelphia, Pennsylvania, Febru-
ary 21–23, 1989. 1989.

	43.	 Kelodjoue E, Goulian J, Schwab D. Performance of two French
BERT models for French language on verbatim transcripts and
online posts. In: Proceedings of the 5th international conference
on natural language and speech processing (ICNLSP 2022). 2022.
pp. 88–94.

	44.	 Kenton JDMWC, Toutanova LK. BERT: pre-training of deep
bidirectional transformers for language understanding. In:
Proceedings of 2019 annual conference of the North Ameri-
can chapter of the Association for Computational Linguistics:
human language technologies. 2019. pp. 4171–4186.

	45.	 Kiziltan Z, Lippi M, Torroni P, et al. Constraint detection in
natural language problem descriptions. In: IJCAI, international
joint conferences on artificial intelligence. 2016. pp. 744–750.

	46.	 Kocoń J, Cichecki I, Kaszyca O, et al. ChatGPT: jack of all
trades, master of none. Inf Fusion. 2023;99: 101861.

	47.	 Koptelov M, Holveck M, Cremilleux B, et al. A manually anno-
tated corpus in French for the study of urbanization and the
natural risk prevention. Sci Data. 2023;10(1):818.

	48.	 Laifa A, Gautier L, Cruz C. Impact of textual data augmenta-
tion on linguistic pattern extraction to improve the idiomaticity
of extractive summaries. In: Big data analytics and knowledge
discovery: 23rd international conference, DaWaK 2021, Virtual
Event, September 27–30, 2021, proceedings 23. Springer;2021.
pp. 143–151.

	49.	 Landis JR, Koch GG. The measurement of observer agreement
for categorical data. Biometrics. 1977;33:159–74.

	50.	 Lawrence J, Reed C. Argument mining: a survey. Comput Lin-
guist. 2020;45(4):765–818.

	51.	 Le H, Vial L, Frej J. FlauBERT: unsupervised language model
pre-training for French. In: Proceedings of the 12th language
resources and evaluation conference. 2020. pp. 2479–2490.

	52.	 Levenshtein VI, et al. Binary codes capable of correcting dele-
tions, insertions, and reversals. In: Soviet Physics Doklady,
Soviet Union. 1966. pp. 707–710.

	53.	 Liang M, Niu T. Research on text classification techniques based
on improved TF-IDF algorithm and LSTM inputs. Procedia
Comput Sci. 2022;208:460–70.

	54.	 Liao K, Lebanoff L, Liu F. Abstract meaning representation
for multi-document summarization. In: Proceedings of the 27th
international conference on computational linguistics. 2018. pp.
1178–1190.

	55.	 Lin CY. Rouge: a package for automatic evaluation of summa-
ries. In: Text summarization branches out. 2004. pp. 74–81.

	56.	 Liu F, Flanigan J, Thomson S, et al. Toward abstractive summa-
rization using semantic representations. In: Proceedings of the
2015 conference of the North American chapter of the Associa-
tion for Computational Linguistics. Association for Computa-
tional Linguistics;2015. pp. 1077–1086.

	57.	 Luo H, Li L, Zhu H, et al. Land cover extraction from high
resolution ZY-3 satellite imagery using ontology-based method.
ISPRS Int J Geo-Inf. 2016;5(3):31.

	58.	 Martin L, Muller B, Suárez PJO, et al. CamemBERT: a tasty
French language model. 2019. arXiv preprint arXiv:​1911.​
03894.

	59.	 Migueles-Abraira N, Agerri R, de Ilarraza AD. Annotating
abstract meaning representations for Spanish. In: Proceedings of
the eleventh international conference on language resources and
evaluation (LREC 2018). 2018.

	60.	 Miller GA. WordNet: an electronic lexical database. Cambridge:
MIT Press; 1998.

	61.	 Morel M, François J. Le Dictionnaire Electronique des Synon-
ymes du CRISCO: un outil de plus en plus interactif. Revue fran-
çaise de linguistique appliquée. 2015;20(1):9–28.

	62.	 Nadeau D, Sekine S. A survey of named entity recognition and
classification. Lingvisticae Investigationes. 2007;30(1):3–26.

	63.	 Nayak T, Ng HT. Effective modeling of encoder–decoder architec-
ture for joint entity and relation extraction. In: Proceedings of the
AAAI conference on artificial intelligence. 2020. pp. 8528–8535.

	64.	 Neptune N, Mothe J. Automatic annotation of change detection
images. Sensors. 2021;21(4):1110.

	65.	 OpenAI GPT-4 Technical Report. 2023. https://​doi.​org/​10.​48550/​
arXiv.​2303.​08774.

	66.	 Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:
machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

	67.	 Pilault J, Li R, Subramanian S, et al. On extractive and abstractive
neural document summarization with transformer language mod-
els. In: Proceedings of the 2020 conference on empirical methods
in natural language processing (EMNLP). 2020. pp. 9308–9319.

	68.	 Pires T, Schlinger E, Garrette D. How multilingual is multilingual
BERT? In: Proceedings of the 57th annual meeting of the Asso-
ciation for Computational Linguistics. 2019. pp. 4996–5001.

	69.	 Pretkalnins IJ, Sprogis A, Barzdins G. CLIP augmentation for
image search. In: COMPLEXIS. 2022. pp. 71–78.

	70.	 Pu X, Gao M, Wan X. Summarization is (almost) dead. 2023
arXiv preprint arXiv:​2309.​09558.

	71.	 Quinlan JR. Induction of decision trees. Mach Learn.
1986;1:81–106.

	72.	 Radford A, Kim JW, Hallacy C, et al. Learning transferable visual
models from natural language supervision. In: International con-
ference on machine learning. PMLR;2021. pp. 8748–8763.

	73.	 Ramakrishnan C, Patnia A, Hovy E, et al. Layout-aware text
extraction from full-text PDF of scientific articles. Source Code
Biol Med. 2012;7:1–10.

	74.	 RASA Paraphraser. 2021. https://​github.​com/​RasaHQ/​parap​
hraser.

	75.	 Remaud A. Extraction de contraintes dans des spécifications de
validation de données. Extraction et Gestion des Connaissances.
2022. EGC’2022 38.

	76.	 Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”
Explaining the predictions of any classifier. In: Proceedings of
the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 2016. pp. 1135–1144.

	77.	 Robbins H, Monro S. A stochastic approximation method. Ann
Math Stat. 1951;22:400–7.

	78.	 Sabet MJ, Dufter P, Yvon F, et al. SimAlign: high quality word
alignments without parallel training data using static and contex-
tualized embeddings. EMNLP. 2020;2020:1627–43.

	79.	 Salton G, Buckley C. Term-weighting approaches in automatic
text retrieval. Inf Process Manag. 1988;24(5):513–23.

	80.	 Shaib C, Li ML, Joseph S. Summarizing, simplifying, and syn-
thesizing medical evidence using GPT-3 (with varying success).
In: Proceedings of the 61st annual meeting of the Association for
Computational Linguistics (volume 2: short papers). Association
for Computational Linguistics;2023. pp. 1387–1407.

	81.	 Shen C, Cheng L, Nguyen XP, et al. Large language models are
not yet human-level evaluators for abstractive summarization.
Find Assoc Comput Linguist EMNLP. 2023;2023:4215–33.

	82.	 Toutanova K, Klein D, Manning CD. Feature-rich part-of-speech
tagging with a cyclic dependency network. In: Proceedings of
the 2003 human language technology conference of the North
American chapter of the Association for Computational Linguis-
tics. 2003. pp. 252–259.

	83.	 Uhrig S, Garcia Y, Opitz J, et al. Translate, then parse! A strong
baseline for cross-lingual AMR parsing. In: Proceedings of the
17th international conference on parsing technologies and the

http://arxiv.org/abs/1911.03894
http://arxiv.org/abs/1911.03894
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
http://arxiv.org/abs/2309.09558
https://github.com/RasaHQ/paraphraser
https://github.com/RasaHQ/paraphraser

	 SN Computer Science (2025) 6:115 115   Page 24 of 24

SN Computer Science

IWPT 2021 shared task on parsing into enhanced universal
dependencies (IWPT 2021). 2021. pp. 58–64.

	84.	 Vanderwende L, Menezes A, Quirk C. An AMR parser for Eng-
lish, French, German, Spanish and Japanese and a new AMR-
annotated corpus. In: Proceedings of the 2015 conference of the
North American chapter of the Association for Computational
Linguistics: demonstrations. 2015. pp. 26–30.

	85.	 Voorhees EM, et al. The Trec-8 question answering track report.
In: Trec. 1999. pp. 77–82.

	86.	 Weber C, Hirsch J. Processus de croissance et limites urbaines.
Cybergeo Eur. J. Geogr. 2000.

	87.	 Wein S, Schneider N. Accounting for language effect in the evalu-
ation of cross-lingual AMR parsers. In: Proceedings of the 29th
international conference on computational linguistics. 2022. pp.
3824–3834.

	88.	 Widyassari AP, Rustad S, Shidik GF, et al. Review of automatic
text summarization techniques & methods. J King Saud Univ
Comput Inf Sci. 2022;34(4):1029–46.

	89.	 Winter K, Rinderle-Ma S. Detecting constraints and their rela-
tions from regulatory documents using NLP techniques. In: On
the move to meaningful internet systems. OTM 2018 conferences:
confederated international conferences: CoopIS, C &TC, and
ODBASE 2018, Valletta, Malta, October 22–26, 2018, proceed-
ings, part I. Springer;2018. pp. 261–278.

	90.	 Wolf T, Debut L, Sanh V, et al. Transformers: state-of-the-art
natural language processing. In: Proceedings of the 2020 confer-
ence on empirical methods in natural language processing: system

demonstrations. Association for Computational Linguistics;2020.
pp. 38–45.

	91.	 Wu C, Wu P, Wang J, et al. Developing a hybrid approach to
extract constraints related information for constraint management.
Autom Constr. 2021;124: 103563.

	92.	 Xue N, Bojar O, Hajic J, et al. Not an interlingua, but close: com-
parison of English AMRs to Chinese and Czech. In: LREC, Rey-
kjavik, Iceland. 2014. pp. 1765–72.

	93.	 Yang J, Han SC, Poon J. A survey on extraction of causal relations
from natural language text. Knowl Inf Syst. 2022;64(5):1161–86.

	94.	 Yang X, Li Y, Zhang X, et al. Exploring the limits of ChatGPT for
query or aspect-based text summarization. In: Proceedings of the
61st annual meeting of the association for computational linguis-
tics—student research workshop. Association for Computational
Linguistics. 2023. pp. 1–18.

	95.	 Zhang T, Wu F, Katiyar A, et al. Revisiting few-sample BERT
fine-tuning. In: Proceedings of the ninth international conference
on learning representations (ICLR). 2020.

	96.	 Zhijiang G. Learning with graphs in natural language process-
ing. PhD thesis, Singapore University of Technology and Design.
2021.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	(Semi-)automatic Extraction of Urban Planning Rules in French for Better Management of Land Artificialization
	Abstract
	Introduction
	Background
	Related Work
	Rule Identification
	Text Augmentation
	Rule Formulation

	The AIR-FUD+ Framework
	Segment Preparation
	Text Extraction
	Manual Intervention
	Segment Construction

	Segment Classification
	Classification Methods
	Text Augmentation

	Rule Formulation
	Approach Based on AMR Graphs
	Approach Based on LLM

	Experimental Evaluation
	Data
	Experimental Settings
	Model Parameters
	Evaluation Protocol
	Quality Measures
	Implementation Details

	Results
	Segment Classification

	Conclusion
	Acknowledgements
	References

