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Abstract
Land artificialization is a significant modern concern, as it is irreversible, diminishes agriculturally suitable land and causes 
environmental problems. Our project, Hérelles, aims to address this challenge by developing a framework for land artifi-
cialization management. In this framework, we associate urban planning rules in text form with clusters extracted from 
time series of satellite images. To achieve this, it is crucial to understand the planning rules with two key objectives: (1) to 
verify if the constraints derived from the rules are verifiable on satellite images and (2) to use these constraints to guide the 
labelling (or semantization) of clusters. The first step in this process involves the automatic extraction of rules from urban 
planning documents written in the French language. To solve this problem, we propose a method based on the multilabel 
classification of textual segments and their subsequent summarization. This method includes a special format for represent-
ing segments, in which each segment has a title and a subtitle. We then propose a cascade approach to address the hierarchy 
of class labels. Additionally, we develop several text augmentation techniques for French texts that can improve prediction 
results. Finally, we reformulate classified segments into concise text portions containing necessary elements for expert rule 
construction. We adapt an approach based on Abstract Meaning Representation (AMR) graphs to generate these portions in 
the French language and conduct a comparative analysis with ChatGPT. We experimentally demonstrate that the resulting 
framework correctly classifies each type of segment with more than 90% accuracy. Furthermore, our results indicate that 
ChatGPT outperforms the AMR-based approach, leading to a discussion of the advantages and limitations of both methods.
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Introduction

Land artificialization is a serious problem in modern soci-
ety. It is considered one of the principal factors contribut-
ing to biodiversity loss and climate change on our planet 
[9]. Additionally, land artificialization results in a net loss 
of forested and natural areas [11]. For example, any trans-
formation of a natural area can lead to the disappearance 
of plants or animals from that area [33]. Moreover, artifi-
cial soil no longer absorbs CO2 , which contributes to the 
increase in global warming [9]. Moreover, land artificializa-
tion increases the risk of natural disasters such as floods and 
wildfires, which are very costly to society [25]. By defini-
tion, sealed ground does not absorb rainwater, so in the case 
of heavy rains, the risk of flooding is amplified [10]. Finally, 
land artificialization is irreversible. Once land is sealed, it is 
lost permanently, and the process cannot be reversed. As a 
consequence, the amount of land suitable for agriculture is 
decreasing over time.

Nevertheless, land artificialization meets the needs of 
human society by fulfilling demands for housing, industrial, 
and service infrastructures. These human activities tend to 
be concentrated in towns, which continue to expand [15, 
86]. Further artificialization could be avoided through den-
sification of already developed areas. Therefore, to reduce 
the impacts of artificialization, control over this process is 
necessary. Studies on land artificialization and natural risk 
management aim to address this problem, and our project, 
Hérelles1, is a step forward in improving it.

In our project, we develop a methodology and software 
to enhance the management of land artificialization. Our 
approach associates constraints derived from urban planning 
documents with clusters obtained from time series of satel-
lite images. These documents, written in French, include 
regulations such as authorizations, obligations, and prohi-
bitions related to land use and development. The process 
begins by verifying whether these constraints, derived from 
the regulations, are verifiable via satellite images. We then 
label the clusters to assess the constraints. The initial phase 
involves extracting rules from urban planning documents 
related to our research sites. A rule in this context is defined 
as a formal regulation that can be translated into a constraint. 
For instance, the sentence “If a piece of land can be built 
on then there must be a road that connects to it” represents 
an ideal rule, as it can be translated into a straightforward 
“if... then...” constraint. Applying these rules involves cer-
tain considerations, and our clustering framework allows the 
user to reformulate the rules into constraints.

However, before constraints can be formulated, they must 
be identified in the documents. A common approach for 
automatic rule extraction from texts consists of employing 
a machine learning classifier [5, 31, 45]. The main challenge 
in this modelling is data representation. Segmentation can 
be performed on the level of words [45], sentences [89], 
or segments (text parts containing multiple sentences) [73]. 
Segment representation better suits our needs because the 
rules of interest can be longer than one sentence. However, 
in this form, the segments cannot be directly added to the 
clustering process and must undergo further processing. This 
is why we explore the possibility of a two-step approach: 
first, to classify the segments and then to process them so 
that they can be used in our clustering approach.

Therefore, we develop a pipeline based on machine learn-
ing to automate the extraction of the rules. The first part of 
our pipeline provides a solution for detecting parts of the 
document containing constraints and identifying their types 
(e.g., verifiable and non-verifiable by satellite images) in an 
automatic or semiautomatic manner. We refer to this part 
of the pipeline as rule identification. We then continue the 
process by the reformulation of those parts of documents, 
referred to as segments, into concise portions of text contain-
ing all necessary elements for formulating the constraints. 
This process, which represents the second part of our pipe-
line, is termed rule formulation. The resulting text portions 
are intended for input into our clustering framework by an 
expert user who will validate and incorporate them as con-
straints into the clustering process.

Most of the state-of-the-art rule identification meth-
ods exploit supervised learning setting. However, data in 
French are less available, especially annotated data, and 
in the domain of our study in particular. The latter is not 
available at all, at least in an open access form. To address 
this, we constructed our own corpus by manually annotat-
ing the rules and defining a format for their representation 
[47]. Our data are labelled using four different classes (Veri-
fiable and Non-verifiable by satellite images, Informative 
and Not pertinent) with a hierarchical structure. To perform 
their classification, we develop a specific framework that is 
based on multiple classifiers. To address the small size of 
our dataset, we perform data augmentation [48]. Finally, to 
validate our framework, we perform a set of experiments 
using both traditional natural language processing (NLP) 
methods and a state-of-the-art deep learning model. The 
results demonstrate that our framework can identify rules 
of different categories in French urban planning documents 
with high accuracy.

With respect to rule formulation, this task typically 
requires an ontology or a set of examples, both of which 
are unavailable. Moreover, our objective is to explore the 
possibility of semiautomatically formulating constraints 
for an expert. Therefore, we explore abstractive text 1  https://​herel​les-​anr-​proje​ct.​cnrs.​fr.

https://herelles-anr-project.cnrs.fr
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summarization, utilizing it to generate text portions for 
expert rule construction from segments classified as per-
tinent in the previous step. Classical unsupervised abstrac-
tive summarization involves the use of Abstract Meaning 
Representation (AMR) graphs, which are labelled graphs 
abstracting from grammatical structures and are suitable 
for various tasks. Recent advances include large language 
models (LLMs), particularly ChatGPT, which are trained 
on vast multilingual corpora. These models offer broader 
task-solving capabilities but provide less control and inter-
pretability than AMR graphs. In this work, we explore both 
approaches.

A particular challenge related to AMR graphs is the lack 
of a model accessible for French texts. To overcome this, 
we employ an automatic translation system, enabling us to 
work with AMR graphs designed for English texts. Evaluat-
ing generated text portions without reference examples pre-
sents a separate challenge. We first conduct an automatic 
evaluation via a state-of-the-art approach that is based on the 
contextual similarity between the generated portions and the 
original segments. This provides an initial approximation of 
the resulting quality. Considering that our interest lies not 
only in summaries but also in their potential application to 
our project, we subsequently perform a manual evaluation 
with a group of nine annotators.

To sum up, in this work, we study the possibility of 
extracting constraints from French urban planning docu-
ments via both classical and modern state-of-the-art meth-
ods. There are five main contributions of this article: 

1.	 We develop an original pipeline to address a specific 
problem of rule identification in the context of urban 
planning and natural risk management. To our knowl-
edge, this is the first work of its kind in these domains.

2.	 We propose a cascade approach for the multilabel clas-
sification of hierarchies of classes.

3.	 We design several text augmentation methods for the 
French language, which can improve the results of text 
classification. This is particularly uncommon for the text 
in French, especially on a topic outside of biological or 
financial domains.

4.	 We present an innovative pipeline based on AMR graphs 
for generating abstracts of textual segments containing 
rules in the French language.

5.	 We conduct a comparative analysis between widely used 
AMR graphs and ChatGPT, which no one has performed 
before to the best of our knowledge.

The rest of the article is organized as follows. “Background” 
provides basic definitions and presents the context of the 
problem. “Related Work” discusses related work on rule 
identification, text augmentation, and rule formulation. “The 
AIR-FUD+ Framework” presents our framework for rule 
identification and rule formulation. “Experimental Evalu-
ation” describes the data used for the experiments and the 
experimental setup and presents the results. Finally, “Con-
clusion” concludes and highlights future perspectives.

Background

The main research topics of the Hérelles project are the 
effects of urbanization and natural risk management. The 
principal research site of the project concerns Montpellier 
Méditerranée Metropolis (3M) in France, a rapidly evolving 
area exposed to natural risks.

The final goal of Hérelles is to develop software for col-
laborative clustering [21] with a focus on analysing time 
series data from satellite images. We define a cluster as a 
group of elements sharing common attributes, in our case, 
derived from images and consisting of pixels within an 
image. In practice, these clusters represent geographical 

Fig. 1   Schematic representation 
of the framework for col-
laborative clustering. Possible 
labels of the clusters following 
semantization: water (Cluster 
4), forestry and wooded areas 
(Cluster 3), port and industrial 
area (Cluster 5), urban housing 
(Cluster 6)
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objects, with exact labels assigned by the user of the sys-
tem (Fig. 1). One of the objectives of the project is to find 
new methods to facilitate the labelling, or semantization, 
of clusters obtained from these images. To address this, 
one proposed solution involves associating textual ele-
ments of interest (corresponding to the study themes and 
the spatiotemporal perimeter of the time series) with the 
extracted clusters. For example, on the basis of textual ele-
ments containing urban planning rules, we can infer that the 
label cannot be “a road”, or alternatively, there must be a 
road-labelled cluster, as every building in this area requires 
access roads.

In the project workflow, we permit a user to add con-
straints into the clustering process to improve the results of 
the latter and to speed up the process [26]. We help the user 
formulate the constraints, for which we use text resources to 
extract the constraints, and we formulate them in the form of 
rules. For example, the sentence “Pour être constructible, 
un terrain, doit avoir un accès à une voie publique ou privée 
ouverte au public”2 contains an obligation with regards to 
land use, and it can be converted to the following constraint: 
“S’il n’y a pas de route adjacente à la zone constructible → 
erreur”3. In fact, we intend to use formulated constraints 
twice: to improve the clustering process itself and to facili-
tate the labelling of the extracted clusters.

To enable the implementation of the automatic extrac-
tion of constraints, the first identification of potential rules 
was manually performed by the expert within the documents 
of interest. These documents originate from the thematic 
expert corpus [41] and have been chosen for their richness in 
potential rules: they are the written regulations of the local 
land plans (PLU—Plan Local d’Urbanisme) and the natu-
ral flood risk prevention plans (PPRI—Plan de Prévention 
des Risques naturels d’Inondation) of the areas studied (see 
Fig. 2 for an example).

Not all the textual segments of a selected document can 
be taken into account. Moreover, some rules have an inform-
ative value, whereas others represent a strict constraint. 
Finally, the application of these rules is not always observ-
able in satellite data. Therefore, the following classification 
of textual segments has been defined (Fig. 3).

A text segment is called pertinent if it can provide infor-
mation within the scope of the project, corresponds to our 
research topics, and contains information in the context of 
selected research territories. The adequacy of research top-
ics is verified by the presence of words from a nomenclature 
in the segment. A nomenclature is a collection of thematic 
words describing the research topics, for example, “chemin 
de fer” (railroad in English) and “stationnement” (parking). 
In total, the Hérelles nomenclature4 contains 67 thematic 
concepts. In remote sensing, a key application area of our 
land artificialization management system, the utilization of 
nomenclature and/or ontologies is essential for the labelling 
process [4, 57]. We thus use them as a source of labels for 

Fig. 2   An extract from the PLU ZONE-5AU document (on the left), its translation to English (on the right) and the segments constructed from it 
(on the bottom). The title is highlighted in red, subtitles are in green and pertinent rules are in yellow

2  In English: “To be authorized for development, land must have 
access to a public road or a private road open to the public”.
3  In English: “If there is no road adjacent to the buildable area → 
error”. 4  https://​doi.​org/​10.​57745/​OXACT8.

https://doi.org/10.57745/OXACT8
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our clusters. Specifically, we employ nomenclature from two 
perspectives: first, for the annotation of textual data, and 
second, as a basis for labelling satellite images.

All other texts that have not been classified as pertinent 
are considered to be not pertinent. These segments may be 
reminders of the law or definitions, elements that do not 
belong to the scope of our study. This includes layout ele-
ments, bibliography, headers, footers, and so on.

A strict rule concerns instructions that have legal force 
and are therefore enforceable by law. There is no ambiguity 
in its application (a strict rule clearly states what must be 
done, what is forbidden, what is allowed).

An informative rule refers to segments that provide 
detailed information about the study topic and the territory. 
This information is intended to help understand the results 
of the proposed solutions. The informative rules also include 
the segments presented as recommendations.

Some of the strict rules might be difficult to verify, for 
example, with satellite images. We therefore distinguish 
them by verifiable and non-verifiable. This distinction is 
important for the next steps in the project for selecting the 
constraints.

For more details on the context and concrete examples 
of the rules, please refer to the description of our corpus 
in [37].

Related Work

Rule Identification

Constraint (or rule) extraction or identification can be per-
formed in multiple ways. The majority of approaches in the 
literature use traditional methods based on bag-of-words and 
classical NLP preprocessing. Kiziltan et al. [45] developed a 
system that automatically detects parts of text that describe 
constraints. They construct a dataset in which words in the 
sentences are labelled as belonging to constraints or not. To 

represent words, the authors exploit the stemmed representa-
tion of the words, part-of-speech (POS) tagging, and bag-of-
words. A machine learning classifier based on support vector 
machines (SVMs) is then employed to solve the problem. 
Winter and Rinderle-Ma [89] focused not only on the extrac-
tion of constraints but also on grouping them and detecting 
and displaying relations between constraints. The authors 
use term frequencies and k-means clustering to achieve their 
tasks. In the preprocessing step, each document is chunked 
into sentences and POS tagged. Some constraints are not 
directly included in sentences. To overcome this problem, 
lemmatized representations of words are used. Anwar et al. 
[8] automatically extracted verification constraints from 
technical documents. The proposed framework is based on 
3 core NLP concepts: sentence splitting, tokenization, and 
POS tagging.

In addition to traditional NLP, word embedding [6] can 
be used to extract information. Ba et al. [12] used word 
embedding vectors to derive spatiotemporal characteristics 
and special indicators from text documents describing food 
security problems. The method is then used for analysing 
the food crisis in West Africa. The problem can also be rep-
resented by combining word and image embeddings. Rad-
ford et al. [72] demonstrated that both images and text can 
be mapped into a common artificial space and that similar 
vectors can be used to match a caption with an image. Nep-
tune and Mothe [64] solves a similar problem to ours. The 
authors do not extract constraints explicitly. In contrast, they 
map both images and text to a common space. The proposed 
framework can automatically annotate the change images 
with labels extracted from scientific documents related to the 
study area. The main disadvantage of this type of modelling 
is a certain lack of control over the process. In this type of 
approach, it is not possible to intervene in the vector repre-
sentation or add other constraints.

The most efficient approach for information extraction 
is to use an encoder-decoder neural network (NN) [63, 
93]. This network is pretrained on many texts to obtain 

Fig. 3   Hierarchical representa-
tion of segments containing 
rules (Pertinent class) and not 
(Not pertinent)
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their semantics in the form of high-dimensional vectors 
[44]. Then, using additional training, the NN can learn a 
specific task based on that representation. This additional 
training requires a smaller corpus than pretraining because 
the semantic information has already been acquired dur-
ing pretraining [75]. The advantage of this approach is the 
abstraction from the grammar through the use of lexical 
embeddings. Its main limitation is that most available NNs 
are trained or pretrained only on English-language corpora, 
making them impossible to directly apply to other languages, 
and existing multilingual models are not sufficiently effec-
tive [68].

One of the most common encoder-decoder NNs is the 
BERT model [44]. In [75], the authors use an encoder-
decoder model of type BERT pretrained on a large number 
of texts, which allows lexical embeddings to be obtained to 
represent semantics as high-dimensional vectors. Another 
model is then used for learning particular tasks on a smaller 
corpus. The problem is represented as a multilabel classifi-
cation of sentences including constraints or not. To improve 
the applicability of the extracted information, ontologies can 
be used on top of the model. Wu et al. [91] propose a hybrid 
approach that uses an NN model to extract constraints and 
predefined rules to properly extract their relationships. This 
approach is limited by the availability of predefined rules 
and known relationships.

In this work, we experiment with both types of 
approaches: traditional NLP and a state-of-the-art encoder-
decoder model. We represent the problem as a text clas-
sification task. The classifier that we develop can detect 
constraints in text segments constructed from documents of 
interest. Since our documents are in the French language, 
we are obliged to use one of the BERT extensions for that 
language. The most common among them are CamemBERT 
[58] and FlauBERT [51]. The first is a more general model, 
while the latter is better suited for downstream tasks [35]. 
In addition, CamemBERT outperforms FlauBERT [35, 
43]. We thus use the former as the state-of-the-art approach 
implementation.

Text Augmentation

Data augmentation is usually used for mitigating a lack 
of data [48, 75] or for improving data imbalance [2]. Text 
augmentation can be performed in numerous ways, from 
straightforward implementations to the use of an LLM.

The straightforward approach can include shuffling words 
and deleting or replacing random words in the original sen-
tences [24]. These types of methods introduce slight vari-
ation in the data but produce grammatical and syntactical 
errors. We test this type of approach in our experiments 
because of the ease of implementation.

A more advanced approach includes replacing selected 
words by their synonyms derived from specialized dictionar-
ies or by a model of type BERT [44]. New sentences gener-
ated via this method introduce small variation to the original 
data and contain most of the linguistic features included in 
the original sentences. We implement these types of methods 
in our work.

The LLMs can generate semantically similar text with-
out overlap at the level of words with original phrases. The 
resulting phrases might be too different from the original 
data; e.g., they may not contain important linguistic features. 
Additionally, there is not much control over the process; 
therefore, we do not use this type of model in our work.

Finally, existing solutions for automatic text augmenta-
tion [24] are available for texts in English only. In the case 
of multilanguage models, there are numerous limitations: in 
particular, the length of the input [74]. Few existing works 
that use the augmentation of French texts [48] have no pub-
licly available code. We thus have no alternative to imple-
menting our augmentation methods by ourselves.5

Rule Formulation

The task of rule formulation, often referred to as argument 
mining [50], typically requires an ontology or a set of exam-
ples. As constructing an ontology and gathering a set of 
examples is a resource-intensive process, at this stage of our 
project, we aim to explore the possibility of semiautomati-
cally formulating constraints with an expert, who serves as 
the user of our clustering framework. To achieve this objec-
tive, we intend to explore text summarization as a method 
to generate concise text portions that contain essential ele-
ments, facilitating the expert in defining the constraints.

Given the large volume of work on text summarization 
[30, 88], a detailed review is beyond the scope of this article. 
In general, there are two principal types of text summariza-
tion: extractive and abstractive [32]. Extractive summaries 
consist of the original text’s vocabulary and include only the 
most salient text units, whereas abstractive summaries are 
not constrained to the input vocabulary and have the ability 
to paraphrase and generalize. Abstractive summarization, 
known for providing shorter and more comprehensive results 
[30], aligns well with the requirements of our task.

Abstractive summarization can be carried out in a 
supervised or unsupervised manner. In a supervised set-
ting, a model, typically an NN, is fine-tuned on a corpus 
of textual fragments and reference summaries [70]. In 
contrast, an unsupervised setting eliminates the need to 
train or fine-tune a model on text and reference summaries. 

5  The code of our implementations can be found in our framework 
repository: https://​github.​com/​kopte​lovmax/​AIR-​FUD.

https://github.com/koptelovmax/AIR-FUD
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Instead, in this setting, summaries can be obtained directly 
by querying the model. Given that we lack reference sum-
maries for the rules in our project and that obtaining them 
would be costly, an unsupervised approach is better suited 
for our needs.

A classical unsupervised approach for abstractive summa-
rization involves the use of AMR graphs, which are directed, 
labelled graphs containing a semantic representation of a 
given text [13]. AMR graphs abstract away from grammati-
cal structure and ignore stop words, making them suitable 
for applications such as question answering, machine trans-
lation, and text summarization [54]. The AMR formalism 
aims to provide a consistent representation for sentences 
with the same underlying meaning. For example, all the fol-
lowing phrases are represented by the same AMR graph: 
“He loves dogs,” “Dogs are loved by him,” and “He will 
love a dog” [96].

The authors of [56] initially proposed the use of AMR 
graphs to generate a summary of a text. They merge sev-
eral graphs representing sentences in the text into a single 
AMR structure. They subsequently extract a subgraph that 
represents a summary via statistical learning. For this pur-
pose, they employ a supervised learning setting and benefit 
from the use of an existing dataset with gold-standard AMR 
annotations. Dohare and Karnick [27] proposed an unsu-
pervised learning setting. They present a hybrid approach: 
first, a few of the most important sentences are extracted; 
then, an AMR graph is constructed via the extracted sen-
tences. Later, Dohare et al. [28] proposed an unsupervised 
approach for extracting a story graph—an AMR graph con-
taining the summary of the input text—using co-reference 
resolution, the task of finding all expressions that refer to 
the same entity in a text. They identify the most important 
nodes via the inverse version of the term frequency [79] and 
then extract the story graph on that basis. Liao et al. [54] 
extends this idea to multiple document summarization. They 
select similar sentences and then construct an AMR graph 
representing them. In our approach, we utilize a combination 
of these ideas: extracting several subgraphs from the main 
graph representing the input segment and then merging them 
to obtain the summary graph.

A particular challenge related to AMR graphs is the 
lack of a model accessible for French texts. AMR graphs 
were originally designed for English texts [92]. Existing 
language-specific models are not adapted to French [7, 59, 
92] or are not available in open access [84]. Uhrig et al. 
[83] recently demonstrated that it is indeed possible to use 
translated texts to exploit English-based AMR models. We, 
therefore, employ an automatic translation system, enabling 
us to work with AMR graphs in English with input texts in 
French.

Finally, unsupervised text summarization can be per-
formed via LLMs [67, 70]. The development of ChatGPT 
[65], one of the most widely used LLMs, significantly 
changed all the downstream NLP tasks, including summa-
rization [46]. According to Pu et al. [70], human evaluators 
prefer LLM summaries over other summaries generated by 
NNs. ChatGPT-based approaches for summarizing textual 
documents have numerous applications, particularly in the 
biomedical domain [39, 80, 94]. These approaches can even 
be used for summary evaluation without reference summa-
ries produced by humans [81]. In this work, we test both 
a classical approach based on AMR graphs and an LLM 
model, more precisely ChatGPT, to solve our task of gen-
erating text portions with rule summaries for expert rule 
construction.

The AIR‑FUD+ Framework

To automate extraction of the rules from thematic docu-
ments, we developed a framework that we refer to as AIR-
FUD+ (Automatic Identification of Rules in French Urban 
Documents extended). The AIR-FUD+ workflow has three 
main parts: segment preparation, segment classification, and 
rule formulation (Fig. 4). To train a classifier, we use a data-
set that was already constructed in [37]. To construct that 
dataset, 1934 textual segments were manually annotated by 
the expert as belonging to one of the 4 classes: Verifiable, 
Non-verifiable, Informative, and Not pertinent. The details 
of the dataset are presented in “Experimental Evaluation”. 
In the following, we detail how segments are constructed 

Fig. 4   The AIR-FUD+ workflow presenting different steps in generation of portions of text containing elements for expert rule construction in 
new documents
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from new documents and which methods are used to perform 
their classification. In addition, we present text augmentation 
techniques that we develop for improving the quality of the 
results. Finally, we detail the rule formulation module, which 
we use to generate portions of text containing necessary ele-
ments for expert rule construction.

Segment Preparation

Segment preparation consists of three steps: text extraction, 
manual intervention, and segment construction (Fig. 4).

Text Extraction

Both document types in our thematic corpus, the PLU and 
PPRI, are originally in the portable document format (PDF). 
Therefore, we first extract text from the PDF files of these 
documents in the preprocessing step. The output of this step 
is the set of text fragments in the form of a plain text file. 
We define a fragment as one or several sentences separated 
by empty lines.

Manual Intervention

In this step, we manually correct the extracted text. This 
includes cleaning of the text, in which we remove unneces-
sary fragments such as the tables of the contents and figure 
descriptions. In addition, we perform title labelling. For that, 
we label all the fragments that are titles and subtitles via sets 
of special characters, as described in [37]. Note that this 
step is optional since our implementation has a fully auto-
matic mode, in which titles and subtitles are extracted auto-
matically from new unseen documents. However, accord-
ing to our experiments, manual intervention significantly 
improves the quality of the results; thus, manual intervention 
is strongly recommended.

Segment Construction

In postprocessing, we perform automatic construction of text 
segments from labelled fragments. A segment in our repre-
sentation must have a title, subtitle, and a rule, whereas the 
presence of a subsubtitle is not mandatory (Fig. 2). Subsub-
titles are detected automatically by our segment construction 
module via a set of predefined patterns. In these patterns, 
the decision is made on the basis of the presence of certain 
characters in the fragment. A rule in our representation is a 
fragment that is not a title, subtitle, or subsubtitle. The data-
set that we constructed contains detailed examples of seg-
ments constructed from different numbers of fragments [37].

Segment Classification

Once the segments are constructed, the next step is to per-
form their classification. To address this, we propose a 
cascade approach, developed with a logical sequence and 
structured steps. Initially, we focus on identifying relevant 
rules and filtering out irrelevant. Next, we examine whether 
these rules are visible in satellite data. Finally, we determine 
whether they can be verified via satellite images. This cas-
cade classification aligns closely with our practical needs, 
where sometimes only Verifiable rules are needed, and 
sometimes broader rules of the Pertinent class are sufficient.

Specifically, we develop our cascade approach as follows. 
We split the task into three binary classifications applied one 
by one (Fig. 5). In the 1st classification, we classify seg-
ments by Pertinent (containing the rules) and Not pertinent 
(all other text). For that, we treat the Verifiable, Non-veri-
fiable, and Informative classes all together as Pertinent. In 
the 2nd classification, we classify segments by Strict (con-
taining strict rules) and Informative (containing not strict 
rules), for which we treat the Verifiable and Non-verifiable 
classes as a whole. Finally, we classify the Verifiable and 
Non-verifiable classes in the 3rd classification.

Fig. 5   The cascade classifica-
tion of hierarchy of classes
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For each classification, we select a binary classifica-
tion model that performs best. To make this selection, we 
develop and test several baseline methods (trigger words, 
vector similarity, and machine learning using frequency vec-
tors) and a state-of-the-art approach based on deep learning 
(CamemBERT). We define these methods in “Classifica-
tion Methods”. In addition, we develop text augmentation 
techniques, which we use to enrich the annotated corpus and 
improve the prediction results. We define these techniques 
in “Text Augmentation”.

Classification Methods

Trigger Words
In this method, we exploit a list of trigger words extracted 

from the expert corpus to facilitate the automatic extrac-
tion of rules. A trigger word indicates the presence of a 
rule in the fragment or its neighbourhood. We have 43 such 
words in total, which were manually chosen by a geographi-
cal expert, for example, “être interdit” (“is prohibited” in 
French) or “admettre” (“admit”). The full list can be found in 
our code (see footnote 5). In this method, we first find their 
stemmed representation. For given examples, it respectively 
corresponds to “être interd” and “admettr”. Next, we analyse 
their appearance in segments. By default, all the segments 
are assigned to the negative class. We check whether a trig-
ger is present in a neighbourhood of segments of size n, the 
exact value of which is determined experimentally (“Model 
Parameters”). If yes, all of these segments are considered to 
be in the positive class.

Vector Similarity Model
For preprocessing, we perform tokenization of segments, 

remove stop words, and obtain a stemmed representation of 
the remaining words. We use the result to compute the term 
frequency (TF) [79]:

where freq(t, d) is the frequency of term t in segment d, m 
is the total number of terms, and the TF-inverse document 
frequency (TF-IDF) [16, 53] is:

where N is the total number of segments and where df(t) is 
the number of segments containing t. We use both frequen-
cies to construct the frequency vectors. To achieve this, we 
represent each segment d by a vector of term frequencies, 
F(d), with a size of m. Each element t of the segment in 
this vector corresponds to TF(t, d) or TF-IDF(t, d) . We then 
use the resulting vectors for solving the binary classification 
task, which is modelled as follows. When a new segment 

TF(t, d) =
freq(t, d)

∑
m freq(t, d)

,

TF-IDF(t, d) = TF(t, d) ⋅ log
N

df (t)
,

dnew arrives, we compute the mean of its similarity with all 
segments of the positive class and then with all segments of 
the negative class:

where  dclass—segments  are  label led class .  I f 
simpos(dnew) > simpos(dnew) , dnew receives the positive class 
and is negative otherwise.

Machine Learning (ML) Using Frequency Vectors
In this method, we use the same vectors F(d) to represent 

segments as in the previous method. The difference is that 
this time, we employ a machine learning model to learn a 
binary classifier. When a new segment dnew arrives, we clas-
sify it with the trained model.

CamemBERT
Following our discussion in “Related Work”, we employ 

CamemBERT as the state-of-the-art approach for text clas-
sification. In this approach, we fine-tune the original Cam-
emBERT model for binary classification tasks via labelled 
segments from our dataset. We then use the fine-tuned model 
to classify each unseen segment.

Text Augmentation

To improve the results of the CamemBERT model, we aug-
ment the training data, which are then used for fine-tuning 
the model. We use each segment k times to generate k new 
segments. Using this method, we increment the number of 
examples of an underrepresented class, which improves the 
imbalance of our data. In the following, we detail different 
strategies that we use to generate new text. They are based 
on grammatical information, semantic information, etc.

POS-Driven Method
In this method, we replace certain words [48] in each 

segment with semantically meaningful phrases derived by 
CamemBERT. To achieve that, we mask certain parts of 
speech in the segment and then ask CamemBERT to solve 
the masked word prediction task, a main principle of lan-
guage models of type BERT [44]. In this task, the model 
tries to predict the original vocabulary of the masked content 
on the basis of only its context. For the selection of parts 
of speech, we mask all adjectives and adverbs as in [48] 
because they are usually not thematic key phrases. The aim 
of this method is to introduce a variety of newly generated 
segments without changing the main content. In practice, 
newly generated sentences are grammatically correct but do 
not always have the same meaning (Fig. 6). We also experi-
ment with masking all verbs and all nouns in the segments 
to generate more diverse examples.

simclass(dnew) = mean
( ∑

i∈{dclass}

F(dnew) × F(i)
)
,
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Semantic-Driven Method
This method is based on the hypothesis that an ideal clas-

sifier would classify segments by the presence of words from 
the nomenclature. In this hypothesis, we assume that not all 
nomenclature words included in the test data are present in 
the training data. Therefore, we can attempt to artificially 
include them in the training data (Fig. 7). To achieve this, we 
replace a random word in the segment with a random con-
cept from an enriched nomenclature. Since we do not have 
the full list of nomenclature concepts, but only 67 thematic 
words, we use a special dictionary [19, 60, 61] to enrich our 
thematic words with synonyms. We select s synonyms at 
most for the dictionary (the exact value is detailed in “Model 
Parameters”). A new segment generated by this method is 
not always grammatically correct, but it is guaranteed to 
include at least one nomenclature concept from an enriched 
vocabulary.

Fig. 6   An example of a text 
augmentation using Cam-
emBERT and masked word 
prediction

Fig. 7   Euler diagram represent-
ing distribution of nomenclature 
concepts in training and test 
data. The set of nomenclature 
concepts included in train data 
is shown in green color and the 
set of nomenclature concepts 
presented in test data is shown 
in blue. The set of nomenclature 
concepts which are included 
in test data but not included in 
train data are shown using black 
stripes

Table 1   Number of concepts in the nomenclature, expert nomencla-
ture and their extended versions

Type of nomenclature Number 
of con-
cepts

Nomenclature 67
Enriched nomenclature (WordNet, s = 5) 134
Enriched nomenclature (Agrovoc, s = 5) 120
Enriched nomenclature (DES, s = 5) 153
Expert nomenclature 207
Enriched expert nomenclature (WordNet, s = 5) 406
Enriched expert nomenclature (Agrovoc, s = 5) 429
Enriched expert nomenclature (DES, s = 5) 487



SN Computer Science           (2025) 6:115 	 Page 11 of 24    115 

SN Computer Science

Combined Approach
This method is based on two previous ideas. First, we 

check the presence of the words from an extended expert 
nomenclature6 in the segment (Table 1). If at least one of 
these words is present in the segment, we use the latter to 
generate a new segment with POS-Driven Method.

After identifying relevant segments, we move to the last 
part of our framework: rule formulation. In that part, we 
generate the necessary elements for expert rule construction 
by creating summaries of the relevant segments. In the fol-
lowing, we define the methods used for this process.

Rule Formulation

In this section, we detail two different approaches used for 
summarizing the relevant rules determined in the previous 
parts of our framework: an approach based on classical 
AMR graphs and the state-of-the-art LLM-based approach. 
The first approach is developed by us, while the latter is 
used out of the box. In the following, we provide a detailed 
explanation of both of these approaches.

Approach Based on AMR Graphs

The overall workflow of the approach based on AMR graphs 
consists of several principal modules: automatic translation, 
AMR parsing, keyword extraction, summary graph extrac-
tion, and AMR-to-text (Fig. 8). In the following paragraphs, 
we elaborate on each of these modules. Except for keyword 
extraction and summary graph extraction, we use existing 
implementations available in open access. For the excep-
tions, we develop these modules ourselves.

Automatic translation
To utilize AMR graphs, which were originally designed 

for English texts [92], we employ an automatic translation 
system, which we detail later in “Implementation Details”. 
The purpose of this system is to first automatically translate 
our input segments from French to English (Fr → En) and 
then automatically translate the resulting summaries from 
English to French (En → Fr).

AMR Parsing and AMR-to-Text
There are two main procedures associated with AMR 

graphs: AMR parsing and AMR-to-text. AMR parsing is 
a process of constructing an AMR graph from a given text 
(Fig. 9), and AMR-to-text is the generation of text from a 
given AMR graph.

AMR parsing and AMR-to-text can be performed in 
several ways. The implementation we use for both tasks is 
based on a neural network, which was trained on a corpus of 

Fig. 8   The workflow presenting different steps of the AMR-based approach. Modules in red are developed by ourselves and modules in blue are 
existing implementations

Fig. 9   An example of AMR parsing for the sentence “If a piece of land can be built on then there must be a road” in the graph format (on the 
left) and corresponding to its description in the Penman format (on the right)

6  A nomenclature, manually extended by an expert (included in our 
code).
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annotated examples with reference summaries. After pars-
ing, the graph is stored in the Penman format [42], a seri-
alization format originally designed for encoding semantic 
dependencies represented by directed, rooted graphs (Fig. 9). 
Penman is widely used in AMR applications, and we employ 
this format to extract the summary graph in the dedicated 
module. The same format is used as an input for the AMR-
to-text module.

Keyword Extraction
Our AMR-based approach requires the identification of 

the most important words, which we refer to as keywords, 
and we exploit an existing implementation of a keyword 
extractor to find them. By a keyword, we understand a 
nomenclature concept, a trigger word, or a named entity. We 
already used the notions of trigger words and nomenclature 
in the previous section dedicated to segment construction.

A named entity is a real-world object such as a person, 
location, organization, product, etc. that can be identified by 
a proper name [62]. The implementation that we use auto-
matically searches for geopolitical entities (such as countries 
and cities) and locations (geographical objects) on the basis 

of an open-source library. All the keywords are detected 
automatically in this implementation via their stemmed rep-
resentation (Fig. 10). For example, for trigger words “être 
interdit” and “admettre”, this representation corresponds 
to “être interd” and “admettr”, respectively. More details 
on the implementation are provided in “Implementation 
Details”. Once the keywords are found, we pass them to the 
summary graph extraction module (Fig. 8).

Summary Graph Extraction AMR allows for the 
rephrasing of input text into a more compact fragment, 
avoiding some details. However, it does not permit signifi-
cant compression of an input fragment without additional 
manipulations with the graph. One way to achieve that 
is to extract a subgraph called the summary graph [56], 
which contains the most essential information related to 
the task. To extract such a graph, we use keywords, which 
we find automatically with the keyword extraction mod-
ule described above. For each keyword, we search for a 
corresponding node called the target node in the graph. 
Once this node is found, we extract the subtree associated 
with it. In addition to the subtree, we extract the full path 

Fig. 10   An example of a textual segment with highlighted keywords (at the top) and its translation to English (at the bottom). “Trig_PLU” cor-
responds to trigger words and “Nomc_Hn” to nomenclature concepts with n indicating the level of hierarchy [36]

Fig. 11   En example of a subgraph (shown in different colors) extracted with the keyword “position”. The target node is highlighted in red, the 
subtree is in beige and the path from the root to the target node is in violet
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from the root node to the target node, which includes all 
the nodes and edges directly connected to the target node 
(Fig. 11).

Once the subgraphs corresponding to different keywords 
are extracted, we sum them by merging the same nodes and 
edges. This is realized by the standard functionality of the 
AMR libraries that we use (see “Implementation Details” 
for details). The resulting “fusionned” graph is then used to 
generate the final summary (Fig. 12).

We perform subgraph extraction for all segments that are 
“large enough”. We use a heuristic to make this decision: if 
a segment contains fewer than k keywords, we use the full 
AMR graph to generate a summary; otherwise, we extract 
subgraphs using keywords. In our implementation, we set 
k = 3 , which is guided by intuition: a segment with too few 
keywords (i.e., fewer than 3) is semantically poor; thus, the 
full segment must be used for summarization without the 
need to extract a summary graph.

Fig. 12   An example of con-
structing a summary graph 
using keywords. The AMR 
graph corresponding to the seg-
ment from Fig. 10 is at the top, 
the final summary graph is at 
the bottom, and the subgraphs 
extracted using different key-
words are in the middle
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The last problem we faced in summary graph extraction 
is how to find French keywords in the English versions of 
segments. This process is called text alignment [18], and we 
benefit from using an existing implementation [78].

Approach Based on LLM

As discussed in “Rule Formulation”, the application of an 
LLM in computer science systems is not a novel concept 
[67, 80]. The main limitation of this approach is the proba-
bilistic nature of LLMs, resulting in nondeterministic out-
puts. However, their ease of use and statistically favourable 
results, particularly in text summarization tasks [70], are 
notable advantages.

To generate portions of text containing elements for 
expert rule construction, we automatically query ChatGPT, 
an instance of an LLM. In this process, we use the following 
query in the French language: “résumé abstrait à 20 mots 
maximum:”,7 which is followed by a textual segment for 
which a text portion needs to be obtained. This query was 
selected experimentally, and a limit of 20 words was added 
to avoid long outputs or multiple sentences. Without this 
restriction, the system might produce a sentence as long as 
the original segment or output multiple sentences. Given that 
our AMR-based summaries contain 20 words on average, we 
use the same number of words in the query for ChatGPT. 
Importantly, ChatGPT does not consider this a strong con-
straint. As a result, it occasionally generates phrases longer 
than the specified limit.

Experimental Evaluation

Data

Our dataset [37], which we use for the experiments, contains 
1934 labelled segments extracted from 9 PLU and PPRI doc-
uments. In the data, the segments are labelled as belonging 
to one of 4 classes: Verifiable, Non-verifiable, Informative, 
and Not pertinent. We combine the classes Verifiable and 
Non-verifiable to derive the class Strict, and we combine the 
classes Strict and Informative to derive the class Pertinent 
(Fig. 3). The detailed statistics for each type of segment and 
each document are presented in Table 2.

To evaluate the rule formulation, we selected 64 segments 
of the class Verifiable, 32 segments from Informative, and 
32 from Non-verifiable [37]. By fixing the number of seg-
ments in this way, we ensured diverse selection encompass-
ing all types within the Pertinent class (Fig. 3). We prioritize 
the class Verifiable because of its greater importance for 
the continuation of our project. Verifiable segments were 
selected by removing all duplicate or similar segments that 
did not pass the threshold of 30 by the Levenshtein distance 
[52]. Informative and Non-verifiable segments were selected 
uniformly at random. The same procedure was applied (the 
Levenshtein distance with a threshold of 30) to verify that 
there are no duplicate or similar segments of the Informative 
and Non-verifiable classes.

Experimental Settings

Model Parameters

We evaluate our methods via the following parameters. In 
turn, we fix n ∈ [1..10] . In the vector similarity model, we 

Table 2   Number of segments corresponding to each class and each document

Document Number of segments

1st classification 2nd classification 3rd classification

Pertinent Not pertinent Total Strict Informative Total Verifiable Non-verifiable Total

PLU Montpellier ZONE-A 29 42 71 27 2 29 8 19 27
PLU Montpellier ZONE-N 48 78 126 39 9 48 12 27 39
PLU Montpellier ZONE-AU0 31 58 89 28 3 31 6 22 28
PLU Montpellier ZONE-14AU 23 59 82 21 2 23 8 13 21
PLU Montpellier ZONE-5AU 30 64 94 27 3 30 4 23 27
PLU Montpellier ZONE-4AU1 65 101 166 55 10 65 7 48 55
PPRI Montpellier 88 37 125 83 5 88 22 61 83
PPRI Grabels 54 45 99 47 7 54 33 14 47
PLU Grabels 306 776 1082 261 45 306 47 214 261
Total 674 1260 1934 588 86 674 147 441 588

35% 65% 100% 87% 13% 100% 25% 75% 100%

7  In English: “abstractive summary in 20 words maximum”.
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use two types of term frequencies: TF and TF-IDF. In the 
ML method, we use two types of vectors: those based on 
TF and those based on TF-IDF. In addition, we experiment 
with 4 classifiers: decision trees [71], random forests [17], 
SVM [22], and stochastic gradient descent (SGD) [77]. We 
report only the best parameter settings with respect to each 
baseline method.

In the CamemBERT implementation, we use the param-
eters recommended in [44]: the learning rate 2 × 10−5 and 
� = 10 × 10−8 . We also fix the number of epochs to 10 and 
the batch size to 16. We repeat each experiment 10 times to 
address the model instability problem [95] and report the 
best and average results, which we compute via the mean 
function.

For data augmentation, we test each of the methods pre-
sented in “Text Augmentation” with k ∈ [1..5] . As before, 
we report only the results corresponding to the best per-
forming values of k. To implement Semantic-Driven Method 
and Combined Approach, we test 3 different dictionaries as 
sources of synonyms: WordNet [60], Agrovoc [19], and DES 
[61]. For each of the dictionaries, we fix s = 5 on the basis 
of our preliminary experiments (Table 1).

Finally, in the AMR-based approach, we use the value 
k = 3 to determine if a segment is large enough, which was 
selected experimentally. To evaluate each segment in our 
selection described in “Data”, we generate 1 summary via 
the approach that is based on AMR graphs and 3 summaries 
via LLM. We use ChatGPT of version 3.5-turbo-0301 as an 
instance of an LLM. Compared with ChatGPT, the AMR 
approach is deterministic; for this reason, we generate only 
1 summary using AMR graphs and several with ChatGPT.

Evaluation Protocol

Segment Classification
We do not require any specific validation framework 

for trigger words since there is no training phase in the 
method. To evaluate the vector-similarity model, we use 
leave-one-out cross validation (CV) implemented as fol-
lows: each of the segments is used for testing, while all the 
others are used for training. For the ML method, which is 
based on frequency vectors, we use a more common vali-
dation framework. To evaluate this method, we implement 
10-fold CV, with each fold containing 10% of all segments. 
The model is trained on 9 folds, while the last fold is used 
for validation. The process is repeated 10 times until each 
fold is used as a test set. Finally, to evaluate CamemBERT, 
we use stratified sampling implemented as follows. The 
data are split into 2 parts: 80% of the segments are used 
for learning, whereas the other 20% are used for validation. 
The split is performed such that the proportion of posi-
tive and negative examples for each type of classification 
remains the same (Table 2).

Rule formulation
We evaluate text portions for expert rule construction in 

two ways: automatically and manually. For automatic evalu-
ation, we compute the semantic textual similarity between 
each segment and each text portion via BERT [44]. We 
employ the cosine similarity as the similarity measure and 
use BERT to compute embedding vectors of the text por-
tions and the original segments. Since ground truth text 
portions are very costly to obtain, we do not use standard 
metrics such as ROUGE [55]. Instead, we developed our 
own metric. We then rank all the portions of each segment 
via the following algorithm. If a similarity score is less than 
0.5, the portion receives a rank of 0; otherwise, it receives 
a rank starting from 1, where 1 corresponds to the most 
similar. For example, if 4 portions receive similarity scores 
0.49, 0.65, 0.48, 0.72, they will be ranked as 0, 2, 0, 1 for 
1st, 2nd, 3rd, and 4th, respectively.

In the manual evaluation, we ask a group of volunteers 
to rank the generated portions in 2 steps, following a simi-
lar procedure to that of the automatic evaluation. In the 1st 
step, we ask them to assign a score of 0 to all portions that 
do not contain elements for expert rule construction or are 
not pertinent. In the 2nd step, we ask them to rank all the 
portions that did not receive a score of 0 in the previous step 
by assigning a rank starting from 1, where 1 corresponds to 
the best-quality portion. Similar to the automatic evaluation, 
there cannot be 2 portions with the same rank. For example, 
if two portions passed the 1st step, one of them must receive 
a rank of 1, and the other 2. In this way, we evaluate each 
segment by 2 different people to minimize the risk of error. 
In total, we asked 9 people to participate in this experiment, 
each of whom annotated approximately 30 segments (2 peo-
ple annotated 33 each, 5 annotated 30 each, and 2 annotated 
20 each). To assess the degree of agreement between differ-
ent annotators, we computed the kappa coefficient [20]. We 
obtained 0.41 as the average value, which corresponds to 
fair agreement [49].

Quality Measures

Segment Classification In the 1st classification, we use the 
precision, recall, and F 1 score to assess the quality of our 
prediction:

Prec =
TP

TP + FP
,

Rec =
TP

TP + FN
,

F1 = 2 ⋅
Prec ⋅ Rec

Prec + Rec
,
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where TP represents true positive examples, FP represents 
false positive, and FN represents false negative. In the 2nd 
and 3rd classifications, we compute each of those values 
for both classes. To determine which of the results are the 
best, we use weighted accuracy. For that, we assign a clas-
sification cost of 1 to examples of an overrepresented class 
(Strict and Non-verifiable) and cost new_cost to examples 
of an underrepresented class (Informative and Verifiable), 
derived by:

where |D| is the number of examples of both classes for the 
classification task and |N| is the number of examples of an 
underrepresented class. We then perform an evaluation on 
the basis of the costs defined: the FNs and TNs receive a 
score of new_cost for every example of an underrepresented 
class w.r.t. its real class, whereas the FPs and TPs receive 
a score of 1 for positives. We benefit from using weighted 
accuracy twice: to determine the best performing epoch in 
each experiment and to select the best result among 10 runs.

Rule Formulation
To assess the quality of the text portions generated by dif-

ferent approaches, we use the mean reciprocal rank (MRR) 
[85], precision at k (P@k), and recall at k (R@k) with 
k ∈ [1, 4] . The MRR calculates the average of the recipro-
cal ranks at which the first relevant text portion is retrieved 
via a given approach. We define MRR as:

where Q refers to the set of segments used for evaluation and 
where ranki represents the rank position of the first relevant 
portion of the text generated by a given approach for the i-th 
segment. If the approach does not produce a relevant portion 
for the i-th segment, 1

ranki
 is set to 0 [85]. For example, if an 

approach is evaluated on 4 segments and for segment 1, it is 
ranked 1st, for segment 2, it is ranked 2nd, for segment 3, it 
is ranked 4th, and for segment 4, there is no relevant result, 
then the MRR of this approach is 1

4
(1 +

1

2
+

1

4
+ 0) = 0.4375 . 

We compute the MMR for each approach and each user and 
report an average between users. We define P@k and R@k 
as:

new_cost =
|D|

2 ⋅ |N|
,

MRR =
1

|Q|

|Q|∑

i=1

1

ranki
,

P@k =
|{relevant@k} ∩ {generated}|

|{generated}|
,

R@k =
|{relevant@k} ∩ {generated}|

|{relevant}|
,

where relevant corresponds to the portions of text that are 
relevant to a given approach, generated corresponds to the 
portions generated by a given approach, and k corresponds 
to the lower bound of rank k. P@k shows the fraction of 
generated text portions that are relevant with respect to a 
given approach and rank k. In this way, P@4 is identical to 
the percentage of text portions that passed the 1st step of 
the evaluation. R@k gives a measure of how many of the 
relevant text portions passed the lower bound of rank k out 
of all the relevant items. If there is at least one portion gener-
ated by the approach, its R@4 is always 100%, and we thus 
do not output this measure. Similar to MRR, we compute 
P@k and R@k for each approach and user and then find an 
average between users. We use MRR, P@k, and R@k for 
both the automatic and manual evaluation.

Implementation Details

To perform segment classification, we implemented base-
line methods and state-of-the-art and text augmentation 
approaches in Python (see footnote 5). We used the NLTK 
library [14] to implement tokenization, remove stop words, 
and find stemmed representations of segments for the base-
line methods. In addition, we used the Stanford POS-Tagger 
[82] for the French language to determine part-of-speech 
in POS-Driven Method and Combined Approach for data 
augmentation. We used the scikit-learn library [66] to imple-
ment the decision trees, random forests, SVM, and SGD 
classifiers. We also used this library to implement precision, 
recall, F 1 score, and weighted versions of accuracy. Finally, 
we used the CamembertForSequenceClassification model 
from the HuggingFace library [90] as the CamemBERT 
implementation.

For rule formulation, we used [40] as an implementa-
tion of the keyword extraction module, which is based on 
[38]. In addition, we used amrlib [1] for the AMR parsing 
and AMR-to-text modules and [78] for text alignment. We 
also used [34] to manipulate AMR graphs in the Penman 
format. For the automatic translation system, we employed 
[29] to convert input segments from French to English and 
then generated portions from English back to French. Our 
approach is not constrained to a specific translation system, 

Table 3   Evaluation results with different methods on 1st classifica-
tion task

Method Results

Precision Recall F
1

Trigger words (n = 10) 0.35 0.98 0.51
Vector similarity (TF-IDF) 0.66 0.96 0.78
ML approach (TF, SVM) 0.87 0.81 0.83
CamemBERT 0.86 0.96 0.91
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and we selected this translator, as it is widely used in the 
literature and has demonstrated good results [3, 23, 69, 87]. 
Finally, we use [66] to compute the kappa coefficient, and we 
implement (see footnote 5) MRR, P@k, and R@k ourselves.

Results

Segment Classification

1st Classification The summary of results8 is presented in 
Table 3. Trigger words can discover almost all pertinent 
segments (recall 98%). However, the low precision of this 
method results in an average performance equal to that of 
random guessing (F1 score 51%). Compared with trigger 

words, the vector similarity method results in identical recall 
but improves precision by twofold. The ML approach fur-
ther improves precision, but its recall decreases compared 
with that of the previous method. Nevertheless, it slightly 
outperforms the latter. Finally, CamemBERT smooths out 
this difference by providing precision similar to that of 
the ML approach and recall identical to that of the vector 
similarity method. The overall result of CamemBERT (F1 
score 91%) demonstrates the very good performance of the 
method. We thus use the classifier trained by this method in 
our framework.

To verify the quality of the resulting classifier, we per-
form a detailed study of the segments classified by Cam-
emBERT. For each example in the test data classified as TP 
(128 segments out of 135 positive examples in the test data), 
we collect all the features that led to this result via Lime [76] 
(Fig. 13). As a result, 35.06% of all positive features are 
expert nomenclature concepts. This is a very good result, 
showing that CamemBERT can capture thematic concepts 

Fig. 13   An example of a segment analysis using Lime, from left to 
right: the classification results with probability scores, the features 
which led to these results, original segment with negative and posi-

tive features highlighted in blue and orange consequently (with some 
of the features coming from the expert nomenclature concepts: ter-
rain, zone and accès)

Table 4   Evaluation results 
with different methods on 2nd 
classification task

*corresponds to the weighted version

Method Results

Class Strict Class informative Accuracy*

Precision Recall F
1

Precision Recall F
1

Trigger words (n = 1) 0.92 0.56 0.70 0.18 0.67 0.29 0.60
Vector similarity (TF-IDF) 0.99 0.92 0.95 0.62 0.92 0.74 0.92
ML approach (TF-IDF, SGD) 0.97 0.99 0.98 0.93 0.81 0.85 0.93
CamemBERT 0.99 1.00 1.00 1.00 0.94 0.97 0.98

8  For more detailed results w.r.t. each method and each parameter, 
please refer to our annex provided with our code: https://​github.​com/​
kopte​lovmax/​AIR-​FUD/​blob/​main/​class​ifica​tion_​resul​ts.​ods.

https://github.com/koptelovmax/AIR-FUD/blob/main/classification_results.ods
https://github.com/koptelovmax/AIR-FUD/blob/main/classification_results.ods
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and use them as indicators of positive examples. Another 
result of this analysis is that 10.0% of all the top 1 distinct 
features are trigger words. Despite the relatively low per-
centage, this is also a good result given that the features 
should not only consist of nomenclature concepts.

2nd Classification A summary of the results (see footnote 
8) is shown in Table 4. Trigger words provide satisfactory 
performance for the class Strict (F1 score 70%) and quite a 
low result for the Informative class. This can be explained 
by the fact that trigger words are included in both classes, 
which makes this method ineffective. The vector similarity 
method improves the results for both classes; however, the 
class Strict outperforms the Informative class due to high 
imbalance of classes (Table 2). The ML approach com-
pensates for this shortcoming by improving the results of 
the underrepresented class. The overall performance of the 
resulting classifier (weighted accuracy 93%) is sufficient for 
its choice for the framework. The results of CamemBERT, 
with a 100% F 1 score on class Strict and 100% precision 
on class Informative, may indicate that the model does not 
generalize well. To avoid potential overfitting, we have 
decided not to employ CamemBERT in the final version of 
the framework for this task.

3rd Classification
A summary of the results (see footnote 8) is presented 

in Table  5. The trigger words perform similarly to the 
2nd classification task, with the only difference being that 
the class Verifiable has worse results than does the class 
Non-verifiable. The two next methods, vector similarity 
and the ML approach, improve the results of the trigger 
words, maintaining the trend of better performance of the 

Non-verifiable class. The latter can be explained by the fact 
that the Non-verifiable class is better represented in the data 
than the Verifiable class is (Table 2). CamemBERT slightly 
improves the situation by minimizing this difference to 13% 
(F1 class Verifiable 82% vs. F 1 class Non-verifiable 94%). 
We attempt to minimize this difference further by perform-
ing data augmentation of the underrepresented class (“Text 
Augmentation”). To achieve that, we continue applying our 
methods defined in “Text Augmentation”.

Text Augmentation
Most of the best results for data augmentation (see foot-

note 8) correspond to the settings with the positive class 
(i.e., the class Verifiable in our case) augmented to 50% or 
more (Table 10). This correlation can be observed mostly 
in POS-Driven Method and Semantic-Driven Method (class 
Verifiable max F 1 score 86–87%). Nevertheless, Combined 
Approach allows the data to be kept unbalanced and offers 
the same performance (or even better, taking into account 
weighted accuracy). Surprisingly, Semantic-Driven Method 
and Combined Approach can improve the results. Accord-
ing to our initial hypothesis, all pertinent segments should 
include nomenclature concepts. Following the results on 
augmented data, we can conclude that the class Verifiable 
contains more nomenclature concepts than does the class 
Non-verifiable. Ultimately, the best result in our experi-
ments (see footnote 8) corresponds to Combined Approach 
with the DES dictionary as a source of synonyms (Table 5). 
Compared with the setting with nouns, the setting in which 
adjectives and adverbs are replaced requires fewer cycles 
of data augmentation ( k = 1 ), which requires repeating the 
augmentation process twice ( k = 2 ). Using this method, we 

Table 5   Evaluation results 
with different methods on 3rd 
classification task

*corresponds to the weighted version

Method Results

Class verifiable Class non-verifiable Accuracy∗

Precision Recall F
1

Precision Recall F
1

Trigger words (n = 1) 0.31 0.70 0.43 0.83 0.49 0.62 0.57
Vector similarity (TF-IDF) 0.53 0.97 0.68 0.98 0.71 0.83 0.81
ML approach (TF, Decision Trees) 0.66 0.78 0.71 0.94 0.89 0.91 0.85
CamemBERT 0.78 0.86 0.82 0.95 0.92 0.94 0.90
CamemBERT+data augmentation 0.82 0.93 0.87 0.98 0.93 0.95 0.93

Table 6   Automatic evaluation 
of the AMR-based approach and 
several runs of ChatGPT

Approach Quality measures

MRR P@1 P@2 P@3 P@4 R@1 R@2 R@3

AMR-based 0.43 0.23 0.38 0.51 0.82 0.29 0.47 0.62
ChatGPT (run 1) 0.54 0.30 0.54 0.80 0.94 0.32 0.58 0.86
ChatGPT (run 2) 0.50 0.21 0.52 0.84 0.97 0.22 0.54 0.86
ChatGPT (run 3) 0.52 0.26 0.55 0.81 0.95 0.27 0.58 0.86
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can improve the performance of CamemBERT for the Verifi-
able class by 6% (max F 1 score from 82% to 87%). We thus 
use the resulting method in the AIR-FUD+ framework for 
processing new documents.

Rule formulation The results of the automatic evaluation 
are presented in Table 6.

As seen from the results, ChatGPT generally performs 
better than the approach based on AMR graphs, except for a 
few cases where the AMR-based approach outperforms its 
competitor. These exceptions include P@1 of ChatGPT (run 
2) and R@1 of ChatGPT (runs 2, 3). This indicates that the 
automatic evaluator favours text portions generated by the 
AMR-based approach over its competitors and ranks them in 
the first place. Overall, this is a positive result, demonstrat-
ing that an approach based on AMR graphs remains compet-
itive with the state-of-the-art methods. Next, the results of 
ChatGPT vary across runs. This is not surprising given the 
probabilistic nature of LLMs. The text portions generated by 
ChatGPT exhibit variability across different runs, even if the 
query remains the same. Unfortunately, this behaviour is not 
stable: MRR, P@1, and R@1 show the best performance in 
the first run; P@3 and P@4 in the second; and P@2, R@2, 
and R@3 in the last run. The results do not show a consistent 
trend of improvement or deterioration across different runs. 
Our experiments did not detect such a trend.

To verify whether there is a variance in performance 
across different segment types, we recomputed the quality 

measures with respect to different classes (Table 7). Com-
pared with all classes, the performance gap between the 
AMR-based approach and ChatGPT is lower for the Verifi-
able and Non-verifiable classes and greater for the Informa-
tive class. Moreover, the AMR approach provides a better 
R@1 than ChatGPT does for the Informative and Non-ver-
ifiable classes. This is not the only difference we noticed. 
Interestingly, compared with the all-class setting, the AMR-
based approach performs better for the Verifiable (MRR, 
P@2, P@3, P@4, R@2, R@3) and Non-verifiable classes 
(P@1, P@2, P@3, R@1, R@2, R@3), whereas the perfor-
mance of ChatGPT for these classes decreases (MRR, P@2, 
P@3, P@4, R@2, R@3). Additionally, the Informative class 
demonstrates the opposite behaviour: the performance of the 
AMR approach decreases, but ChatGPT improves in per-
formance compared with the all-class setting (MRR, P@2, 
P@3, P@4, R@2, R@3). This can be explained by the fact 
that segments of the Informative class are usually longer 
and contain fewer important keywords, making it more dif-
ficult for the AMR approach to capture semantics, whereas 
ChatGPT usually performs better on general texts than on 
specific tasks [46]. Segments of the Verifiable and Non-
verifiable classes are more concise, making our approach 
easier and more challenging for ChatGPT.

An automatic evaluation demonstrated that ChatGPT 
performs globally better than the AMR-based approach 
does. This study also demonstrated the potential of the 

Table 7   Automatic evaluation 
of the AMR-based approach and 
ChatGPT (averaged among 3 
runs) based on different classes 
of segments

Approach Quality measures

MRR P@1 P@2 P@3 P@4 R@1 R@2 R@3

All classes
AMR-based 0.43 0.23 0.38 0.51 0.82 0.29 0.47 0.62
ChatGPT (mean) 0.52 0.26 0.54 0.82 0.95 0.27 0.56 0.86

Verifiable
AMR-based 0.45 0.23 0.44 0.58 0.86 0.27 0.51 0.67
ChatGPT (mean) 0.51 0.26 0.52 0.79 0.93 0.27 0.55 0.85

Informative
AMR-based 0.38 0.22 0.25 0.34 0.78 0.28 0.32 0.44
ChatGPT (mean) 0.54 0.26 0.58 0.86 0.97 0.27 0.60 0.89

Non-verifiable
AMR-based 0.43 0.25 0.41 0.53 0.78 0.32 0.52 0.68
ChatGPT (mean) 0.52 0.25 0.53 0.82 0.97 0.26 0.55 0.85

Table 8   Manual evaluation of 
the AMR-based approach and 
several runs of ChatGPT

Approach Quality measures

MRR P@1 P@2 P@3 P@4 R@1 R@2 R@3

AMR-based 0.10 0.06 0.11 0.13 0.17 0.34 0.66 0.77
ChatGPT (run 1) 0.50 0.30 0.60 0.75 0.76 0.40 0.79 0.99
ChatGPT (run 2) 0.52 0.34 0.57 0.77 0.77 0.44 0.74 0.99
ChatGPT (run 3) 0.47 0.25 0.54 0.75 0.76 0.33 0.71 0.98



	 SN Computer Science           (2025) 6:115   115   Page 20 of 24

SN Computer Science

AMR-based approach and highlighted some of the limita-
tions of ChatGPT. However, our generated portions of text 
are intended for use in expert rule construction; thus, manual 
verification should be performed. We continue to evaluate 
the generated portions manually to confirm or disprove our 
findings. The results of this manual evaluation are presented 
in Table 8.

According to the new results, only R@1, R@2, and 
R@3 demonstrate a similar performance of the AMR-based 
approach to ChatGPT. Other measures show a greater per-
formance gap between the two approaches than before. The 
number of times the AMR-based approach did not pass the 
first step is much lower than that in the automatic evaluation, 
as indicated by the P@4 measure (only 17% of text por-
tions passed the first human evaluation, compared with 82% 

in the automatic evaluation). This could occur if a major-
ity of the generated portions are not pertinent (e.g., due to 
errors in automatic translation) or incomplete (e.g., lacking 
important information from the original segment). The lat-
ter is less likely considering that the automatic evaluation 
did not detect it. In contrast, the former is quite possible 
since a small change in vocabulary may not be effectively 
detected by computing semantic similarity with the origi-
nal segment, but it is much easier for humans to recognize. 
Such a low result in the first step directly impacts the over-
all performance of the approach. The new values of R@1, 
R@2, and R@3 indicate that humans still prefer portions of 
text generated by ChatGPT rather than by the AMR-based 
approach. Finally, the results of ChatGPT still vary from run 
to run, but a common trend is now visible. The best result 

Table 9   Manual evaluation of 
the AMR-based approach and 
ChatGPT (averaged among 3 
runs) based on different classes 
of segments

Approach Quality measures

MRR P@1 P@2 P@3 P@4 R@1 R@2 R@3

All classes
AMR-based 0.10 0.06 0.11 0.13 0.17 0.34 0.66 0.77
ChatGPT (mean) 0.50 0.30 0.57 0.76 0.76 0.39 0.75 0.99

Verifiable
AMR-based 0.06 0.02 0.05 0.09 0.14 0.18 0.39 0.71
ChatGPT (mean) 0.54 0.32 0.61 0.82 0.83 0.38 0.73 0.99

Informative
AMR-based 0.13 0.08 0.17 0.17 0.20 0.42 0.89 0.89
ChatGPT (mean) 0.50 0.30 0.58 0.74 0.76 0.40 0.76 0.99

Non-verifiable
AMR-based 0.15 0.11 0.17 0.17 0.20 0.51 0.80 0.80
ChatGPT (mean) 0.42 0.27 0.47 0.61 0.62 0.43 0.76 0.98

Table 10   Results of text augmentation for 3rd classification and their comparison with performance on original data

*corresponds to the weighted version

Method Size of training data Results on test data

Class Verifiable Class Non-veri-
fiable

Accuracy*

Number of segments % positive F
1
 score F

1
 score

Total Positive avg max avg max

Original data 470 118 25 0.80 0.82 0.93 0.94 0.90
POS-Driven Method (adj+adv, k = 1) 573 221 39 0.82 0.86 0.94 0.96 0.92
POS-Driven Method (nouns, k = 2) 706 354 50 0.81 0.84 0.94 0.95 0.91
POS-Driven Method (verbs, k = 3) 818 466 57 0.83 0.86 0.94 0.95 0.92
Semantic-Driven Method (WordNet, k = 1) 588 236 40 0.82 0.85 0.93 0.95 0.92
Semantic-Driven Method (DES, k = 2) 706 354 50 0.82 0.87 0.94 0.95 0.93
Semantic-Driven Method (Agrovoc, k = 3) 824 472 57 0.82 0.86 0.94 0.95 0.92
Combined Approach (DES, adj+adv, k = 1) 540 188 35 0.82 0.87 0.94 0.95 0.93
Combined Approach (DES, nouns, k = 2) 628 276 44 0.82 0.87 0.94 0.96 0.93
Combined Approach (DES, verbs, k = 4) 786 434 55 0.83 0.85 0.94 0.95 0.92
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corresponds to the second run according to most quality 
measures (MRR, P@1, P@3, P@4, R@1), and the last run 
is the worst according to all measures. This phenomenon 
can be explained by the fact that querying ChatGPT is per-
formed during one session, and the system can improve the 
quality of the output based on previous iterations up to a cer-
tain level. It was surprising that we were not able to detect 
this phenomenon with automatic evaluation. Evaluation by 
humans is more accurate for such tasks, and it demonstrated 
almost perfect agreement.

With respect to the results of different classes, the com-
mon trend slightly changed: the Informative class was 
replaced by Verifiable, which has the highest performance 
gap in the manual evaluation (Table 9).

Detailed analysis shows that the results of the AMR 
approach improve for the Informative and Non-verifiable 
classes even though they become worse for the Verifiable 
class.

ChatGPT behaves the opposite way: it improves on 
Verifiable (except for R@1, R@2), performs identically on 
Informative and drops on Non-verifiable (except for R@1, 
R@2). This is an interesting outcome demonstrating that 
manual evaluation can present results from another angle. 
In summary, there is a significant gap in the results between 
AMR and ChatGPT, with the latter leading. For some meas-
ures, this gap can reach 10 fold. This is because AMR can-
not successfully pass the first step of human evaluation. On 
the other hand, R@1 and R@2 of the Non-verifiable class 
indicate that among the portions that passed the first step, 
humans prefer those generated by the AMR. This makes the 
AMR-based approach not useless and relegates it to some 
specific cases.

Conclusion

In this work, we presented the AIR-FUD+ framework for 
(semi)automatic identification and formulation of rules in 
urban planning documents in the French language. The 
framework is used within the scope of the Hérelles project, 
which aims to improve the management of land artificiali-
zation. The first step in the framework involves extracting 
constraints from urban planning documents by identifying 
segments that contain rules and determining their types. The 
next step is to reformulate these segments into concise text 
portions that include all the necessary elements for formulat-
ing the constraints.

We showed experimentally via a manually annotated cor-
pus that AIR-FUD+ can correctly identify the rules within 
the hierarchy of classes. We proposed a cascade approach for 
this purpose, and we demonstrated a good performance. In 
addition, we developed several text augmentation methods 
based on text mining and a language model that can solve 

the data imbalance problem and improve the overall results 
for the latest classification task.

We demonstrated that it is indeed possible to use iden-
tified segments to generate portions of text containing all 
necessary elements for expert rule construction. We propose 
two solutions: a classical approach based on AMR graphs 
and a state-of-the-art solution using an LLM (ChatGPT). 
The results demonstrated a performance gap between the 
two approaches, with the LLM approach leading. In our 
project, we will continue using the LLM, as it better meets 
our performance requirements. However, in some sensi-
tive applications where reproducibility and interpretabil-
ity are more important, we suggest exploring AMR-based 
approaches. Our findings indicate that, in specific cases, the 
AMR-based approach has the potential to be competitive 
with the LLM.

To date, we have only conducted evaluations on both 
parts—segment classification and rule formulation—using 
the corpus that we constructed. It would be interesting to 
apply our framework to new unseen documents. Depending 
on the results obtained, adjustments to the choice of classi-
fiers and the data augmentation method could be made for 
each classification task. Finally, it would be interesting to 
continue the work on enhancing the reproducibility of an 
LLM and improving the results of the AMR-based approach. 
A promising direction would be to explore the combination 
of these two approaches to increase the reproducibility of the 
ChatGPT results. This could also improve its effectiveness, 
especially in cases where it may not perform optimally.
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