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Abstract—Given the systematic acquisition of satellite data, it is
possible to generate up-to-date land cover (LC) maps, essential
for effective agricultural territory management, environmental
monitoring, and informed decision-making. Typically, creating a
LC map requires collecting high-quality labeled data, a process
that is both costly and time-consuming. To mitigate the need to
collect large volume of labeled data, we propose a deep learning
framework called REFeD (data Reuse with Effective Feature Dis-
entanglement for land cover mapping), which leverages already
available out-of-year reference data to enhance the production
of up-to-date LC maps. To this end, REFeD integrates remote
sensing and reference data from different domains (e.g., historical
and recent data) utilizing a disentanglement strategy based on
contrastive learning. By separating domain-invariant and domain-
specific features, REFeD isolates useful information associated to
the downstream LC mapping task and mitigates distribution shifts
between domains. Moreover, REFeD incorporates an effective su-
pervision scheme to reinforce feature disentanglement through
multiple levels of supervision at different granularities. Experimen-
tal evaluation on study areas characterized by diverse landscapes,
including Koumbia (West Africa, Burkina Faso) and Centre-Val de
Loire (central Europe, France), demonstrates the effectiveness of
the proposed approach.

Index Terms—Contrastive learning, data-centric artificial
intelligence (data-centric AI), domain adaptation, land cover (LC)
mapping, satellite image time series (SITS).

I. INTRODUCTION

THE unprecedented availability of Earth observation (EO)
data regularly acquired through modern public and private

EO Programmes and Missions (e.g., ESA Copernicus, NASA
Landsat, and PlanetScope to cite a few) opens the opportunity
to collect satellite image time series (SITS) over the same study
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area to characterize and study the underlying spatio-temporal
dynamics and generate accurate land cover (LC) maps [1].
These maps have been demonstrated to be largely beneficial in
a variety of different fields, such as ecology [2], agriculture [3],
forestry [4], environmental monitoring [5], and facilitating well-
informed and sustainable decision-making policies [6]. Typi-
cally, for the creation of LC maps over a region at a certain period
of time, reference data are collected through expensive and
time-demanding field campaigns or tedious manual annotation
activity. These data are then utilized in conjunction with SITS
information through advanced machine learning algorithms [7]
to get the final LC map. While the access to high resolution EO
data is no longer a major constraint, collecting up-to-date labeled
reference data constitutes a consumable (neither enduring nor
lasting) effort. Once served its purpose, reference data will be
disregarded losing any further relevance. Furthermore, when
the process is repeated (e.g., estimate agricultural production or
potential biodiversity loss for a new year for the same or a related
study site), new field campaigns or image photointerpretation
activities must be afforded again with, in general, no way to
profit from previous efforts.

To leverage existing reference data, it is common to apply
the classification model trained on EO images with available
reference data to new unlabeled EO acquisitions. However, when
EO data from different acquisitions are combined under the same
learning framework, challenges related to distribution shifts can
impede the effective training of machine learning models [8]. To
cope with this issue, the most widely studied setting is domain
adaptation (DA) [9], where the main goal is to learn a model
over a labeled source domain and transfer it to an unlabeled
target one [10]. DA methods can be classified into three main
categories based on the availability of labeled data: unsuper-
vised, semisupervised and supervised [11]. Unsupervised do-
main adaptation (UDA) methods address scenarios where no
target labels are available. This is achieved by minimizing the
distribution gap between the source (where labeled data are
available) and target domains (which lack labeled data) [12],
[13].

In the field of remote sensing, significant effort has been
devoted in developing UDA strategies specifically designed for
EO data classification [14]. Recently, many deep-learning-
based UDA methods have gained popularity [15]. While
traditional UDA methods focus on aligning distributions at
the instance [16], feature [17], or classifier levels [18],
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deep-learning-based UDA typically relies on the adversarial
learning framework similar to the one used by generative adver-
sarial networks (GANs) [13]. In this setting, the feature generator
aims to create domain-invariant features from the input data,
and the domain discriminator is designed to recognize whether
the features come from the source or target domain [19], [20],
[21]. Despite the efforts invested in designing and implementing
UDA techniques, the success of UDA depends largely on the
discrepancy between the source and target distributions, mak-
ing these methods susceptible to potential pitfalls and limited
generalizability. Moreover, only recently, strategies have begun
to emerge to analyze SITS data for spatial [22], [23] and temporal
transfer tasks [24]. Finally, these approaches typically assume
the complete absence of reference data for the target domain.
Although relevant in different operational settings, for the con-
sidered LC mapping task, it is often reasonable to assume access
to a certain amount of labeled reference data because of the need
to systematically generate up-to-date LC products.

SDA assumes that labeled samples are present in both the
source and target domains. Typically a manifold alignment is
performed to create a unified representation across domains by
finding a projection to the common latent space, where the class
separability is enhanced [25]. Several UDA strategies can be
extended to the supervised setting, by increasing the reliability of
the adaptation results obtained [17], [26]. However, SDA meth-
ods are particularly relevant when dealing with cross-sensor
adaptation [27], [28] to ensure the possibility of effectively mit-
igating the severe domain shift. Moreover, the requirement for
sufficient labeled samples in both domains can be a significant
limitation [29]. For applications such as land-cover mapping,
if a reasonable amount of target reference data are available,
a supervised classifier can be effectively trained from scratch
without relying on domain adaptation strategies [30]. To address
this issue, Persello and Bruzzone [31] proposed a strategy to
reduce the number of labeled samples needed from the target
domain for effective supervised DA. Although promising, it
requires active engagement with a supervisor responsible for
accurately labeling the requested target samples.

In scenarios where only a limited amount of labeled data
is available for the target domain, the paradigm shifts to
semi-supervised domain adaptation (SSDA). Current SSDA
approaches generally aim to align the target data with the la-
beled source data with feature space mapping and self-training
assignments using pseudolabels [32]. In remote sensing, these
techniques have been widely employed to expand training sets
by leveraging the target domain’s unlabeled data [11], [33], [34].
However, most SSDA approaches have been applied to scenarios
where the labeled and unlabeled data belong to the same EO data,
while little has been done to use them for different temporal
EO acquisitions. Moreover, despite the SSDA setting holds
potential for various real-world problems, it remains largely
unexplored when dealing with SITS data [35] in the context of
systematically producing up-to-date LC maps. Despite the long
history of DA methods, recent efforts toward the systematic and
effective exploitation of available high-quality labeled data have
gained momentum under the framework of data-centric artificial
intelligence (AI) [36]. Under this movement, the attention of

researchers and practitioners is gradually shifting from advanc-
ing model design (model-centric AI) to enhancing the quality
and quantity of the data (data-centric AI).

Considering geospatial and EO data, the data-centric AI per-
spective is even more important since it can steer the community
toward developing methodologies to provide further improve-
ments related to the generalization ability with impact on real-
world relevant problems and applications [37]. Nevertheless,
the two perspectives (model-centric and data-centric AI) play a
complementary role in the larger machine learning deployment
cycle since standard approaches still struggle to manage and
exploit valuable data coming from different and heterogeneous
distributions like, for instance, in the case of combining histor-
ical and up-to-date reference data for the downstream task of
LC mapping [38], where distribution shifts can be related to the
different environmental and/or climatic factors that determine
the EO data acquisition conditions.

In addressing the significant challenge outlined above, more
precisely take advantages of exploiting together both historical
and recent EO data along with reference data to enhance LC map-
ping, we present a novel approach, namely REFeD, rooted on
recent advances in the field of domain adaptation/generalization.
REFeD adopts a model-centric AI perspective, aiming to fulfill a
data-centric AI objective related to the effective exploitation of
EO and reference data coming from two different domains (e.g.,
historical data and recent ones) with the aim to give value again
to historical and/or overlooked reference data, and enhance the
accuracy of the recent LC mapping result toward the systematic
production of up-to-date LC products.

More precisely, REFeD built upon a pseudosiamese network
with unshared parameters that, given a sample, extracts si-
multaneously domain-invariant and domain-specific features,
using the former to make the final decision. The objective is to
disentangle useful information for the downstream LC mapping
task while isolating and discarding domain specific features
that can hinder the learning process in the presence of data
belonging to multiple domains with unaligned data distributions.
The disentanglement process is achieved by shaping a represen-
tation manifold, via contrastive learning, that jointly structures
both domain-invariant and domain-specific features. In addition,
REFeD integrates an effective supervision strategy [39] that
further enforces the disentanglement process via multiple levels
of supervision at different granularities.

Experimental evaluations are carried out to assess the behav-
ior of REFeD considering both baseline and domain adapta-
tion/generalization approaches. To assess the behavior of our
method, we perform both quantitative and qualitative evalua-
tions considering two study sites covering extremely diverse
and contrasted landscapes, namely Koumbia (located in the
West-Africa region, in Burkina Faso) and Centre-Val de Loire
(located in centre Europe, France). For the former study site,
we consider a LC mapping task where data covering exactly
the same geographical area are available for two different years
(2020 and 2021) while, for the latter study site, we consider
a crop type mapping task where data covering two closely
related areas are available for the agricultural seasons 2018 and
2021. The obtained results highlight the potential of utilizing
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Fig. 1. View and location of Koumbia study site. The ground truth data coming from the 2020 year is superposed to a Sentinel-2 image covering the whole area.
In the red box (bottom right), a more detailed view of the study site is depicted.

out-of-year information from the same or similar study sites to
ameliorate the LC mapping process, underscoring the value of
historical data in enhancing the mapping accuracy.

The rest of this article is organized as follows. Study sites and
the associated information are described in Section II. Section III
introduces the proposed framework based on feature disen-
tanglement and contrastive learning to enhance LC mapping
combining multiple reference data. The experimental evaluation
and the related findings are reported and discussed in Section IV,
while Section V draws the conclusions of this article.

II. DATASET DESCRIPTION

To assess the effectiveness of the proposed method under
diverse settings, we consider two different study areas, each
with different LC nomenclature and different availability of
historical data. We collected SITS of Sentinel-2 imagery via the
Microsoft Planetary Computer platform1 that allows to access
level-2A Sentinel-2 products. We consider all bands at 10 and
20 m of spatial resolution for a total of 10 bands per image. We
have conducted resampling of the SWIR 20 m bands to 10 m
resolution, as well as image time series gap filling of cloudy
pixels using multitemporal linear interpolation as explained
in [40] and gap-filled images were generated at a regular 5-day
frequency resulting in a sequence of 72 images for each study
area and year.

A. Dataset 1: Koumbia Study Site

The first study site covers an area around the town of Koumbia,
in the Province of Tuy, Hauts-Bassins region, in the south-west
of Burkina Faso. This area has a surface of about 2338 km2,
and is situated in the subhumid Sudanian zone. The surface is
covered mainly by natural savannah (herbaceous and shrubby)

1https://planetarycomputer.microsoft.com/

and forests, interleaved with a large portion of land (around 35%)
used for rainfed agricultural production (mostly smallholder
farming). The main crops are cereals (maize, sorghum, and mil-
let) and cotton, followed by oleaginous and leguminous. Several
temporary watercourses constitute the hydrographic network
around the city of Koumbia. Fig. 1 presents the study site with the
2020 reference data (ground truth) superposed on a Sentinel-2
image. A more detailed view corresponding to the red box in the
overview is also depicted at the bottom right of the figure.

The ground truth data for 2020 and 2021 has been derived
from a large agricultural LC dataset available online [41], mainly
consisting of field data collected by local experts on several sites
all over the tropics. For this study site, the field surveys were
conducted around the growing peak of the cropping season. The
ground truth data cover the exact same surface for the two refer-
ence years. Table I reports the statistics of the labeled reference
data distribution for the years 2020 and 2021. This study site is
characterized by eight LC classes, namely, “Cereals,” “Cotton,”
“Oleaginous/Leguminous,” “Grassland,” “Shrubland,” “Forest,”
“Bare soil/Built-up” and “Water.”

Fig. 2 shows the NDVI profiles over 2020 and 2021, for the
Koumbia study site, for some of the land cover classes:Cereals,
Oleaginous/Leguminous and Forest. We can observe that
intrayear profiles are quite homogeneous, while interyear pro-
files, for the same land cover class, are shifted or delayed. This
exploratory analysis on the interyear NDVI profiles provide
insights on distribution shifts affecting remote sensing data
coming from different time periods.

B. Dataset 2: Centre Val De Loire Study Site

The second study site covers two spatially disjoint areas
within the Centre Val de Loire, region located in the center of
France. This region of France is characterized by intensive agri-
cultural activity with agricultural surfaces representing around

https://planetarycomputer.microsoft.com/
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TABLE I
GROUND TRUTH STATISTICS FOR YEAR 2020 AND 2021 ON THE KOUMBIA STUDY SITE

Fig. 2. Normalized Difference Vegetation Index (NDVI) profiles for some representative land cover classes: Cereal, Oleaginous/Leguminous and Forest over the
years 2020 and 2021 on the Koumbia study site.

TABLE II
GROUND TRUTH STATISTICS FOR YEARS 2018 AND 2021 ON THE CENTRE-VAL DE LOIRE STUDY SITE

70% of the whole region with cereals and oleaginous as major
crops. The two areas have a cumulative surface of about 840 km2.
Fig. 3 presents the two areas related to the Centre-Val de Loire
study site depicting reference (ground truth) data for year 2018
and 2021 superposed on a Sentinel-2 image. On the right of the
figure, a detail for each of the areas is proposed, in red for 2018
and in blue for 2021.

The ground truth data for the first area, related to 2018, was ob-
tained through the EuroCrop dataset [42] while the ground truth
data for the second area, related to 2021, are gathered from the

Registre Parcellaire Graphique (RPG), the French land parcel
identification system. The data covers only agricultural areas in
order to set up a crop type mapping task. This second dataset cov-
ers a problem that implies both spatial and temporal transfer at
the same time. Also note that a different temporal gap is consid-
ered in this dataset (three years) compared to the previous dataset
(one-year gap). Table II reports the statistics of the labeled
reference data distribution for the years 2018 and 2021. This
study site is characterized by ten classes, namely, “Soft wheat,”
“Maize,” “Barley,” “Other cereals,” “Oleaginous/Proteaginous,”
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Fig. 3. View and location of the Centre-Val de Loire study site. Ground truth data coming from the 2018 and 2021 are superposed to a Sentinel-2 image. On the
right, a detail for each of the areas is proposed, in red for 2018 and blue for 2021.

“Winter Fallows,” “Leguminous,” “Fodder,” “Meadow,” and
“Other crops.”

III. PROPOSED FRAMEWORK

A. Problem Formulation and Notations

The proposed deep learning framework aims at improving
the accuracy of LC mapping results obtained on recently ac-
quired satellite data, i.e., target domain, by using pre-existing
reference data coming from the same study site or a different
yet correlated one, i.e., source domain. Typically, the source
domain consists of some readily-available historical or out-of-
year data, for instance. Differences in climate, weather, and other
environmental conditions can lead to nonnegligible distribution
shifts within SITS data from the different domains. These shifts
may prevent the full exploitation of the source data as a naive
direct enrichment of the target data in a standard supervised
learning setup [43]. Moreover, in case the source data are more
abundant, the learned classifier may likely be biased toward the
source domain. Differently from the literature, the ultimate goal
of REFeD is to maximize the classification performance in the
target domain while taking full advantage of all the reference
data available. In this work, we suppose we are given a set of
Nt labeled samples from a target domain Dt = {(xt

i, y
t
i)}Nt

i=1,
for which we want to train a classifier. Moreover, we dispose
of additional labeled data (say Ns samples) from a source
domain Ds = {(xs

i , y
s
i )}Ns

i=1 that we aim to exploit in order
to improve the performance of our classifier on the target
domain.

In our case, each sample xi ∈ RT×C is the content of a
pixel’s C spectral bands from a SITS defined over T times-
tamps. The corresponding label yi ∈ {1, . . . ,K} is given by

one of K existing classes, shared between source and target
domains—i.e., a closed-set scenario [44]. Depending on the
considered classification task, the classes can be, for instance,
different crops and/or LC types. Let us also define as y′i ∈ {s, t}
the binary label associated with all the available labeled sam-
ples {(xi, y

′
i)}Ns+Nt

i=1 , which specify from which domain each
spectral samples xi belongs, i.e., Dt or Ds.

B. REFeD: Overview

Fig. 4 shows an overview of the proposed deep learning
framework, by depicting the data needed during the training
and inference stages. In the first stage, the supervised classifier
is trained using the labeled data from both Ds and Dt. To take
full advantage of reference data coming from distinct domains,
we propose to disentangle the information carried by the la-
beled input data into two parts: 1) domain-specific information,
and 2) domain-invariant information (i.e., useful discriminative
information for the subsequent classification task). The former
is closely related to the domain to which the data belong, thus
potentially hindering the learning model’s ability to generalize.
The second contains semantic information associated with the
underlying classes, thus usable knowledge that can be exploited
later for the classification process. Taking inspiration from cur-
rent literature in domain adaptation/generalization fields [45],
in the training stage we leverage two branches with separate
encoders to generate the feature vectors, i.e., gspe and ginv .
Dedicated losses,Lcl,Ldom andLcon (detailed in Section III-C)
are employed to effectively disentangle domain-specific from
domain-invariant information in each of the two obtained em-
beddings, by training a domain classifier f ′(·) and task classifier
f(·), respectively. This condition allows us to benefit from the
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Fig. 4. Overview of the proposed framework. Training and inference stages are distinguished: while the former is performed on data coming from both domains,
the latter is done exclusively on target data and uses only the domain-invariant branch (ginf , f ) of the learned model.

labeled samples available in all domains, taking into account the
domain to which each labeled sample belongs.

To maximize the classification results obtained in the target
domain, in the inference stage, the domain-specific encoder
gspe is discarded and only the domain-invariant encoder ginv

is considered. In particular, we generate the LC map of the
target domain using ginv for generating the feature representation
to be classified along with the task classifier f(·) trained in
the previous stage on the whole set of reference data. In the
following, details are given.

C. Feature Disentanglement

Fig. 5 depicts the dual-branch network, consisting of two
encoders with identical architectures but unshared parameters,
used for feature disentanglement. The two encoders, denoted
gspe and ginv : RT×C → RD for domain-specific and domain-
invariant, respectively, share the same architecture but are
learned independently with unshared weights via different loss
functions. In the domain-invariant branch, a task classifier f(·) is
applied to the domain-invariant features extracted by ginv. In the
domain-specific branch, the domain-specific features obtained
via gspe are fed to a domain classifier f ′(·) which encourages the
domain-discriminant information to be channeled to this branch.

a) Domain Classifier: The domain classifier aims to accu-
rately predict domain labels y′i ∈ {s, t}, i.e., determine if each
sample xi belongs either to the source or the target domain, by
minimizing a cross-entropy loss �ce as follows:

Ldom =
1

Ns +Nt

Ns+Nt∑

i=1

�ce (f
′ ◦ gspe(xi), y

′
i) . (1)

b) Task Classifier: In its turn, the task classifier f : RD →
{1, . . . ,K} maps the domain-invariant features onto one of the
K classes of interest guided by the following cross-entropy loss:

Lcl =
1

Ns +Nt

Ns+Nt∑

i=1

�ce (f ◦ ginv(xi), yi) . (2)

Fig. 5. Architecture of the proposed dual-branch network used in the training
stage and composed of two independent branches which disentangle the domain-
invariant information (top branch) from domain-specific information (bottom
branch). Class (Lcl) and domain (Ldom) discrimination losses used respectively
on the top and bottom branches, while a multilevel contrastive loss (Lcon) is
used to intermediate features at different depths from both branches. At inference
time, only the domain-invariant encoder is used for classifying the target domain.

c) Contrastive Learning: To further decouple the two
separate branches, we employ contrastive loss which has
shown promising results for feature disentanglement in previ-
ous works [45]. The general objective of contrastive learning
approaches is to learn data representations by comparing and
contrasting similar and dissimilar information in terms of pair-
wise comparisons. More precisely, pair of similar elements are
denoted as positive pairs and pair of dissimilar elements are
referenced as negative pairs where similarity is defined based
to some criteria. The goal is to ensure that, in the manifold
generated by the representation learnt by the neural network,
positive pairs are close to each other and negative pairs are
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located far apart. In our case, since we have access to both
the class labels and domain labels, we leverage the supervised
contrastive loss proposed by [46], where the positive pairs are
given by all samples sharing the same label. However, here,
the use of the supervised contrastive loss is not trivial since
we have two separate label spaces (class and domain labels).
To address this issue, we adopt a mixed label space Ymix

composed of 3K classes, where the domain-invariant features
are mapped onto the K first labels while the last 2K are re-
served to the domain-specific features—more specifically, K
for the source domain and K for target domain. This leads to
Ymix = {1, . . . ,K, s1, . . . , sK, t1, . . . , tK}.2

For instance, given a sample xs
i coming from the source

domain and associated with label K (i.e., ysi = K), then its cor-
responding domain-specific embedding gspe(x

s
i )will be mapped

to class sK, while its domain-invariant counterpart ginv(x
s
i ) will

be mapped to class K in the mixed label space Ymix. Likewise,
for a target sample xt

i, its embeddings gspe(x
t
i) and ginv(x

t
i) are

mapped to classes tK and K, respectively. Notice that, even
though the two samples come from different domains, their
domain-invariant embeddings are purposely mapped to the same
class K in Ymix.

Denoting z the extracted embeddings (features) ginv(x) and
gspe(x), we consider an augmented batch I of size 2B containing
both ginv(xi) and gspe(xi) features for each i ∈ {1, . . . , B} in
the original batch. The resulting supervised contrastive loss is
defined as follows:

Lcon = −
∑

i∈I

1

|P (i)|
∑

p∈P (i)

log
exp(zi ·zp/τ)∑

a∈I\{i} exp(zi ·za/τ)
(3)

where P (i) := {p ∈ I\{i} : yp = yi} with cardinality |P (i)|
is the set of positive examples w.r.t. the current anchor i ∈
I := {1, . . . , 2B} and τ ∈ R+ is a scalar temperature param-
eter. Therefore, the goal of this loss is to push together, in
the feature space, the embeddings corresponding to the same
category (positive examples) while repelling them from the rest
(negative examples). The positive examples here correspond
to those sharing the same class in the mixed label space Ymix

defined above, in other words, those that share simultaneously
the same class, among the K existing ones, and the same cat-
egory type, among three possibilities: source or target domain
(for domain-specific features), or domain-invariant features—
recalling that domain-invariant features from different samples
of the same class are matched together regardless of the their
provenance (source or target domain). Finally, the disentangle-
ment between domain-invariant and domain-specific features
is achieved through the complementary action of the different
loss functions. Specifically, the optimization terms enforce the
following: i) domain-specific features should contain informa-
tion about their respective domains; ii) domain-invariant features
should be discriminative for the downstream classification task,
and iii) contrastive learning structures the geometric manifold
where domain-specific and domain-invariant features are pushed
away from each other making them orthogonal thus, ensuring

2More generally, we define Ymix = Y ∪ (Y × Y′) with a total of |Ymix|=
(|Y′|+1)|Y| classes.

that these two groups of features carry complementary informa-
tion to some extent.

D. Multilevel Supervision

To further enforce the feature disentanglement, we propose to
perform contrastive learning not only at the level of the encoder’s
output, but at multiple depths within the network architecture.

Then, the loss function described in (3) is actually also applied
to intermediate features at different depths of the network. For
that matter, we denote Ll

con the contrastive loss (3) applied to
the intermediate features zl at depth l, as depicted in Fig. 5.
Specifically, in our case, we use three levels of supervision with:
l = 0 for the encoder’s last internal layer; l = 1 for the encoder’s
output features; l = 2 for the output of the classifier’s first fully
connected layer. Note that Ll

con applies exclusively to features
at depth l, which share the same space dimension, and, thus,
features at different depths are never mixed together.

E. Model Summary and Training

The resulting loss is given by

L = Lce + Ldom +
∑

lLl
con (4)

Empirically, we observed that weighting the different losses did
not have a conclusive impact on the final model performance.
For this reason, we used an unweighted sum of the three terms
as described above.

As backbone, we leverage a widely popular architecture for
the analysis of SITS data, specifically the temporal convolutional
neural network (TempCNN) proposed by [47]. However, any
other recent time series encoders could be used [48], [49]. The
choice of TempCNN as the backbone is due to its simplicity,
which provides us with some assurances that the behavior we
analyze will be primarily related to the proposed framework,
rather than being influenced by the use of a sophisticated and
advanced backbone.

The TempCNN encoder consists of three 1-D convolutional
layers with 64 channels each. The classifier is composed of a
fully connected layer with 256 hidden units, batch normaliza-
tion, and ReLU activation, followed by a linear output layer with
Softmax activation.

IV. EXPERIMENTS

In this section, we report and discuss the experimental eval-
uation carried out on the study sites presented in Section II.
Our objective is to evaluate the performance of REFeD across
various dimensions. First, we undertake a quantitative assess-
ment comparing the performance of REFeD against baselines
and competing approaches. Second, we conduct a qualitative
examination of the LC maps generated by REFeD. Finally,
we inspect the internal representations learned by our model,
visually comparing them to those of some of the top-performing
competitors.3

3The code associated to this article is available at: https://github.com/
cassiofragadantas/SDA_LULC.

https://github.com/cassiofragadantas/SDA_LULC
https://github.com/cassiofragadantas/SDA_LULC
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A. Baseline Methods

With the goal to assess the performance of REFeD w.r.t.
baselines and strategies coming from Semi-Supervised Domain
Adaptation and Domain Generalization literature, we consider.
� Only Source: This strategy trains a model only considering

source data and, then, the obtained classifier is directly de-
ployed on the target data. The main purpose of this method
is to have an empirical estimate about the distribution
shift between source and target domains. We implement
this baseline considering Random Forest, XGBoost, Tem-
pCNN [47], and ATCNN [50] (an extension of temporal
convolutional neural network that integrates attention on
the temporal dimension) as classifiers.

� Only Target: This strategy trains a model only considering
the target labeled data and, then, the obtained classifier
is employed to classify the remaining target samples. The
main purpose of this method is to provide the reference per-
formances without the use of historical or out-of-year data.
We implement this baseline considering random forest,
XGBoost, TempCNN [47], and ATCNN [50] as classifiers.

� Source+Target: This strategy trains a model over both
source and target labeled data. Then, the obtained clas-
sifier is employed to classify the remaining target sam-
ples. Here, the data coming from different distributions
are mixed together constituting a multidomain training
dataset. We implement this baseline considering Random
Forest, XGBoost, TempCNN [47], and ATCNN [50] as
classifiers.

� Fine Tuning: This strategy trains a model over the labeled
source domain and, then, the resulting model is fine tuned
on target labeled samples. This is an alternative way to com-
bine both source and target data. We implement this base-
line considering both TempCNN [47] and ATCNN [50] as
backbone approaches.

� The domain adversarial neural network (DANN) method
originally introduced in [20]. This is a well-known and
largely employed UDA approach that exploits gradient
reversal layer with the aim to obtain data representations
that are invariant to the particular domain they come from.

� The conditional adversarial domain adaptation (CDAN)
approach [51]. This method extends DANN by condition-
ing the domain discriminator on the classification output.

� Sourcerer [35]: This recent SSDA approach has been pro-
posed to cope with the analysis of SITS data for the down-
stream task of LULC mapping. Sourcerer is a bayesian-
inspired, deep learning-based framework, that internally
exploits the TempCNN model as backbone, similarly to
REFeD. The technique leverages a deep learning model
trained on a source domain and then fine-tunes the model
on the available target domain via a regularizing term
that automatically adjusts the degree to which the model
weights are modified to fit the target data.

� POEM [52]: This recent Domain Generalization approach
learns domain-invariant and domain-specific representa-
tions with a similar dual-branch architecture as adopted by
our framework. It enforces polarization via orthogonality

constraints. This approach was primarily introduced for
image classification. In order to transfer it on SITS data,
also for this competitor we employ the TempCNN archi-
tecture as a backbone.

B. Experimental Settings

For all the competing approaches, labeled source data are
entirely employed while, for the target domain, data are split
into three parts: training, validation, and test sets following a
proportion of 50%, 20%, and 30% of the original target dataset,
respectively. Regarding the Only Source baseline, the model is
trained considering only the labeled source data. Concerning
the DANN and CDAN domain adaptation methods, the target
training set is leveraged to set up the adversarial learning stage.
Furthermore, with the aim to avoid possible spatial bias in
the evaluation procedure [53], we impose that all the pixels
belonging to the same object will be exclusively associated
with one of the data partitions (training, validation, or test). The
splitting procedure is repeated five times and the average results
are reported.

Concerning the evaluation tasks, according to the data pre-
sented in Section II, we set up two transfer tasks per benchmark.
Each transfer task is denoted as (Ds + Dt → Dt) where the
right arrow indicates the transfer direction from the combined
source/target labeled training dataset (Ds + Dt) to the test target
(Dt) dataset. For the Koumbia study site, we consider as transfer
tasks (2020 + 2021 → 2021) and (2021 + 2020 → 2020) and
for the Centre-Val de Loire study site, we consider the transfer
tasks (2018 + 2021 → 2021) and (2021 + 2018 → 2018).

The values of the SITS benchmarks were scaled per year and
per band considering the 2nd and 98th percentile of the data
distribution as minimum and maximum values. The assessment
of the model performances was done considering the following
metrics: Weighted F1-score (simply indicated with F1-score)
and Accuracy (global precision).

Implementation details: For the neural network approaches,
the training stage has been conducted for 200 epochs. For
methods based on fine-tuning, we used 100 epochs for the
initial training and 100 epochs for the fine-tuning stage. For
all methods, we adopt a learning rate of 10−4, the AdamW [54]
optimizer, and a batch size of 256. Regarding REFeD, based
on recent literature on contrastive learning [55], we set the
temperature hyperparameter τ to 0.07 and we consider a batch
size of 512 since it has been noted that contrastive loss benefits
from larger batch sizes. The drop out value is set to 50%.
Considering Random Forest classifiers, we optimize the model
via the tuning of one parameter: the number of trees in the forest.
We vary this parameter in the range {100, 200, 300, 400, 500}.
The optimization of this parameter is based on the validation set.
Experiments are carried out on a workstation with a dual Intel (R)
Xeon (R) CPU E5-2667v4 (@3.20GHz) with 256 GB of RAM
and TITAN X (Pascal) GPU. All the deep learning methods are
implemented using the Pytorch deep learning library. All the
models run on a single GPU. Random Forest is implemented
using the Python Scikit-learn library [56] and run on CPU.
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TABLE III
OVERALL PERFORMANCES (F1 SCORES) IN THE KOUMBIA STUDY SITE

TABLE IV
OVERALL PERFORMANCES (F1 SCORES) IN THE CENTRE-VAL DE LOIRE STUDY SITE

C. Comparison With Competing Methods

Tables III and IV summarize the results obtained for the two
study areas, Koumbia and Centre-Val de Loire respectively by
reporting the average F1-score and the accuracy considering the
different combination of methods and strategies. As expected,

regardless of the dataset, for RF, XGBoost, TempCNN and
ATCNNclassifiers, the lowest accuracy is obtained when only
source-labeled data are considered, while the highest classifica-
tion results are obtained when training data from both domains
are used.
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TABLE V
PER-CLASS AVERAGE F1 SCORES FOR KOUMBIA: (A) SCENARIO (2020 + 2021 → 2021), (B) SCENARIO (2020 + 2021 → 2020)

TABLE VI
PER-CLASS AVERAGE F1 SCORES FOR CENTRE-VAL DE LOIRE: (A) SCENARIO (2018 + 2021 → 2021), (B) SCENARIO (2021 + 2018 → 2018)

By focusing our attention on the TempCNN architecture, the
F1-scores obtained using only the source-labeled data are 64.54
and 69.54 in Koumbia on EO data acquired in 2021 and 2020,
respectively, and 47.96 and 43.10 in Centre-Val de Loire on
EO data acquired in 2021 and 2018, respectively. Although
valuable, the historical reference data may not be completely
representative of the recently acquired EO data. This fact is
further supported by the performance of the UDA competitors
(DANN and CDAN), which only achieve on par results to
the Only Source baseline and are outperformed by all other
approaches. Moreover, the class statistical distributions of SITS
acquired over different years can severely shift. Using only
the target-labeled data the obtained accuracy increases, i.e., F1
scores of 76.59 and 75.54 in Koumbia on EO data acquired in
2021 and 2020, respectively, and 82.60 and 73.39 in Centre-Val
de Loire on EO data acquired in 2021 and 2018, respectively. It
is worth noting that the importance of using labeled data from
the target domain is even more visible in the Centre-Val de
Loire dataset since the source and target domains are different
from both the spatial and temporal viewpoints. The joint use
of source and target labeled data has a positive impact on the
classification performances, leading to F1 scores of 78.60 and
78.95 in Koumbia on EO data acquired in 2021 and 2020,
respectively, and 83.46 and 75.17 in Centre-Val de Loire on EO
data acquired in 2021 and 2018, respectively.

These results further improve when using SSDA and DG
methods, which better combine source and target information.
However, the highest classification accuracy is obtained by the
proposed approach REFeD which achieves F1 scores of 79.23
and 82.15 in Koumbia on EO data acquired in 2021 and 2020,
respectively, and 84.45 and 77.60 in Centre-Val de Loire on EO
data acquired in 2021 and 2018, respectively.

Per-class performances are detailed in Table V(a) and (b) for
the Koumbia study site and in Table VI(a) and (b) and Centre-
Val de Loire, respectively. Concerning the Koumbia benchmark,
Table V(a) and (b), we can observe that, no matter the transfer
task, REFeD achieves the best performances in terms of F1-
Score on all the agricultural LC classes. This is of particular
interest since such classes are characterized by strong shifts from
one cultural year to another one due to crop rotations related to
the underlying agricultural practices. A notable improvement,
related to the proposed method, can also be noted on the Forest
LC class, especially for the transfer task (2021 + 2020 → 2020).
Regarding all the other LC classes, REFeD achieves comparable
results w.r.t. to all the other competing methods with, for all these
cases, less than a point of difference in terms of F1-score.

Regarding the Centre-Val de Loire benchmark, Table VI(a)
and (b), we can note that, REFeD obtains a systematic improve-
ment, in terms of F1-Score, for the family of cereal classes
(Soft wheat, Maize, Barley and Other cereals), regardless of
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TABLE VII
TRAINING TIME OF THE DIFFERENT COMPETING APPROACHES FOR THE

KOUMBIA STUDY SITE UNDER THE TRANSFER TASK (2020 + 2021 → 2021)

TABLE VIII
ABLATION ANALYSIS OF REFED OVER THE CENTRE-VAL DE LOIRE STUDY SITE

the transfer task. Notably, the most significant enhancement is
observed in the Leguminous crop class, where REFeD attains an
improvement between 6 and 10 points of F1-Score compared
to the best competing approach. This is even interesting since
the Leguminous class is the most underrepresented crop type in
the considered benchmark in terms of number of samples. This
point further underscores the quality of the proposed approach
demonstrating its ability to handle scenarios characterized by
significant class imbalances, a common situation in real-world
applications. Finally, still regarding the Centre-Val de Loire
benchmark, we can underline that for the transfer task (2021
+ 2018 → 2018), REFeD achieves the best performances for all
the crop type classes.

Table VII reports the training time of the various competing
approaches involved in the experimental evaluation. All the
methods require between 12 min and 1.5 h to complete the
training stage, with REFeD taking approximately 40 min to
learn its internal parameters. The Random Forest method has
the highest training time, likely because it does not leverage
GPU computation, unlike the other approaches. Given that a
LC classification model typically needs to be trained once per
season (or year), the observed training times remain more than
reasonable and align well with the constraints associated with
the downstream application.

Fig. 6. Average performance of the proposed REFeD approach (solid blue
line) and corresponding standard deviation (shaded blue area) when varying the
target training set size from 1% to 50% of the available data. As a baseline, the
performance using only source data (i.e., no target data) is shown in orange.

D. Further Analysis of the Proposed Approach

Ablation study: In Table VIII, we evaluate the importance
of each component of the proposed approach by reporting the
method’s performance when removing each component indi-
vidually, namely: 1) the domain classifier, 2) the contrastive
loss, and 3) the multilevel supervision. In the latter scenario,
the contrastive loss is applied only to the output features (those
at depth l = 1, i.e., z1 in Fig. 5). All three tested variants achieve
worse results than the full architecture, which corroborates the
effectiveness and complementary nature of these components
in enhancing the overall performance. This suggests that each
component plays a crucial role in tackling different aspects of the
problem, and their combined effect is necessary to fully leverage
the strengths of the proposed approach.

Reduced target training set: In Fig. 6, we evaluate the perfor-
mance of our proposed approach in a regime of limited target
data availability. Naturally, performance improves as more target
data becomes available. However, it is noteworthy that even
when exploiting a very limited amount of target data (only 1%
of the full dataset), REFeD already attains remarkably superior
results than relying solely on source data.

E. Visual Analysis

In this part of the experimental assessment, we provide
qualitative analyses to further evaluate the behavior of REFeD
considering the Koumbia site, in the transfer task (2021 + 2020
→ 2020). To this end, in addition to our framework, we also
consider the top-performing competitors: POEM, Sourcerer and
TempCNN (Source + Target). We first inspect some extracts from
the obtained LC maps and, then we visually examine the internal
representations learned by the different methods by means of the
t-SNE [57] dimensionality reduction technique.
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Fig. 7. Extracts from the provided LC maps per method. Ground truth areas outlined over the extracts using the same color codes of Fig. 1.

1) Land Cover (LC) Maps: In order to give a further insight
into the performances of the proposed method, we performed
a qualitative analysis of the LC maps provided by each of the
competing methods. In Fig. 7, we report some examples for the
(2021 + 2020→ 2020) transfer scenario over the Koumbia study
site. As easily observable, the Sourcerer method tend to generate
much noisier maps with respect to the competitors, which seems
to be the main factor limiting its global performances. The other
methods provide maps of comparable spatial characteristics,
with REFeD significantly outperforming the competitors on
classes related to natural vegetation with different densities (like
the Forest class on the first row—bottom/right of the clip). More
occasionally, REFeD also seems to retrieve the correct crop class
to whole fields within the cropland which are entirely misclassi-
fied by other methods (e.g., second row, for the big Cereal field in
the middle). Otherwise, the systematic improvement of REFeD
over its best competitors mainly occurs at the finest scales, like
for the fields in the example on the last row of Fig. 7, where
most of the “holes” generated by TempCNN and POEM appear
as properly filled.

2) Visualization of Internal Model Representations: In this
last stage of our experimental evaluation, we provide a visual
inspection of the internal feature representation learned by
REFeD, POEM, Sourcerer, and TempCNN (Source + Target)
on the Koumbia study site. To this end, we randomly chose 50
samples per LC class from the target domain and we extracted the
corresponding feature representation per method. Subsequently,
we applied t-SNE [57] to reduce the feature dimensionality for
visualization purposes. Results are depicted in Fig. 8. We can

Fig. 8. t-SNE results for the proposed approach (top left) and three dif-
ferent baselines: POEM (top right), Sourcerer (bottom left), and TempCNN
(Source+Target) (bottom right) on the Koumbia study.

note that all the methods well separate samples coming from
the Water and Bare soil classes from the rest of the data.
However, while competing approaches clearly mix together
samples from all other LC classes, REFeD partially alleviates
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clutter issues on the remaining classes providing a better visual
behavior in terms of cluster structure, on the considered subset
of target data. This can be noted, for instance, regarding both the
agricultural (Cereals, Cotton, and Oleaginous/Leguminous) and
natural vegetation (Grassland, Shrubland, and Forest) classes.
Overall, the visualization of internal features representation is
coherent with the quantitative as well as qualitative findings we
previously discussed.

V. CONCLUSION

In this work we have presented REFeD, a novel deep learning
framework that enhances the accuracy of the current LC map-
ping process by combining together EO and reference historical
and recent data with the aim to give value again to overlooked
reference data under a data-centric perspective. REFeD is based
on a dual-branch network, consisting of two encoders with
identical architectures but unshared parameters. It relies on con-
trastive learning to disentangle invariant and specific per-domain
features to recover the intrinsic information related to the down-
stream LC mapping task. Furthermore, REFeD is equipped with
an effective supervision scheme where feature disentanglement
is further enforced via multiple levels of supervision.

From the results obtained, it turned out that the use of histor-
ical reference data alone is not sufficient to perform an update
of the existing LC maps, even when considering the same study
area. As expected, the use of labeled data coming from the target
year leads to improvements in classification accuracy, however,
REFeD achieves the highest classification accuracy leading to
the possibility of enhancing the considered LC mapping task
by exploiting auxiliary reference labeled data (i.e., historical
reference data on the same study area or a related one). In addi-
tion, the results obtained with REFeD, on study areas featured
by diverse and contrasted landscapes, highlight its added value
compared to both: i) the direct combination of source and labeled
data and ii) recent competing methods from related literature.
Most importantly, REFeD systematically outperforms models
that only exploit target data paving the way to the reuse of
historical and/or overlooked reference data for the LC mapping
task taking as input SITS data.

Limitations and future work: In situations characterized by
significant imbalance in data sample volumes between different
domains (years), our approach, like any other machine learning
framework dealing with data from multiple domain distribu-
tions, may struggle to effectively leverage historical knowledge
to enhance the land cover mapping process. This issue has
not been investigated in our current research, but it could be
the focus of a dedicated study. Such a study would explore
this dimension in depth, aiming to determine the minimum
historical data volume necessary to improve the classification
performance considering, at least, all the frameworks evaluated
in this research. Further analysis could focus on characteriz-
ing the performance of the model under different degrees of
distribution shift to assess its robustness. A straightforward
approach would be to assume that the temporal gap between
historical and current data is directly proportional to the degree
of distribution shift between remotely sensed data. However,

this assumption may be inaccurate because, depending on the
specific pair of years considered in the case study, remotely
sensed data from closer years may have a higher distribution shift
than any data from any pair of years, regardless of the temporal
gap. To address this point, we first need to define a method
for estimating the magnitude and nature of distribution shifts.
This is a particularly challenging task, but one that could have
significant benefits in general areas of transfer learning. Once
a measure of distribution shift has been established, we could
then analyze the performance of our approach in scenarios with
increasing degrees of distribution shift. A current limitation of
our framework is the fact that it can only handle a single year of
historical data. Future extensions could include adapting REFeD
to scenarios where multiple year of historical ground truth data
is available, further advancing the effective reuse of overlooked
and/or neglected efforts related to past resource-intensive field
campaigns. To this purpose, a straightforward extension should
consist into directly adding data coming from other years into
the learning process increasing the cardinality of the Ymix set.
While this can be a cost-free solution, it could struggle to scale
up as the number of available years of historical ground truth
data increases. Another solution could be model the problem as
a kind of semisupervised multisource domain adaptation process
where the goal would be to extract an invariant representation
across all the data domains.

In addition, we can contemplate the use of complementary
remote sensing data in a multisource setting where the domains
are described by different sensors (e.g., Sentinel-2, Sentinel-1,
and Landsat). Finally, another interesting enhancement for the
current framework would be the capacity to leverage additional
unlabeled data that might be available from the target domain.
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