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Abstract

Phenomic prediction (PP), a novel approach utilizing Near Infrared Spectroscopy (NIRS)

data, offers an alternative to genomic prediction (GP) for breeding applications. In PP, a

hyperspectral relationship matrix replaces the genomic relationship matrix, potentially cap-

turing both additive and non-additive genetic effects. While PP boasts advantages in cost

and throughput compared to GP, the factors influencing its accuracy remain unclear and

need to be defined. This study investigated the impact of various factors, namely the training

population size, the multi-environment information integration, and the incorporations of

genotype x environment (GxE) effects, on PP compared to GP. We evaluated the prediction

accuracies for several agronomically important traits (days to flowering, plant height, yield,

harvest index, thousand-grain weight, and grain nitrogen content) in a rice diversity panel

grown in four distinct environments. Training population size and GxE effects inclusion had

minimal influence on PP accuracy. The key factor impacting the accuracy of PP was the

number of environments included. Using data from a single environment, GP generally out-

performed PP. However, with data from multiple environments, using genotypic random

effect and relationship matrix per environment, PP achieved comparable accuracies to GP.

Combining PP and GP information did not significantly improve predictions compared to the

best model using a single source of information (e.g., average predictive ability of GP, PP,

and combined GP and PP for grain yield were of 0.44, 0.42, and 0.44, respectively). Our

findings suggest that PP can be as accurate as GP when all genotypes have at least one

NIRS measurement, potentially offering significant advantages for rice breeding programs,

reducing the breeding cycles and lowering program costs.
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Introduction

Genomic selection (GS), a selection methodology based on genomic predicted values, has

emerged as a powerful tool to enhance the efficiency of selection in plant and animal breeding

[1]. By leveraging genome-wide marker information, GS offers several advantages over tradi-

tional breeding methods. It can increase selection intensity and accuracy [2], leading to faster

identification of superior genotypes. Additionally, GS can shorten the breeding cycle length [3,

4], accelerating the development of varieties. The effectiveness of GS for predicting complex

traits like grain yield in plants is well-established [5–8]. Despite these advantages, GS adoption

remains limited in a large share of breeding programs. One key limitation to broader GS adop-

tion is the access and/or the cost associated with genotyping [1]. Generating high-quality geno-

typing data for a large number of crosses at each selection cycle can be a significant technical

and/or financial hurdle. While the genotyping costs have been steadily decreasing and the ease

of genotyping has been generalized [9], this is mostly true in developed countries. In many

breeding programs with limited resource (e.g. orphan crop, developing countries), access to

efficient genotyping infrastructure remain complicated. Therefore, in such cases, the cost-

effectiveness of GS deployment needs to be carefully evaluated.

Rincent et al. [10] proposed an innovative strategy aimed especially at optimizing breeding

programs with limited access to genotyping facilities. This strategy involves the replacement of

genomic information by hyperspectral information, measured for instance by near infrared

reflectance spectrometry (NIRS), to capture genetic variance. Using this methodology, known

as phenomic prediction (PP), the authors showed equivalent or even better PA than with geno-

mic predictions (GP) for several important traits such as grain yield in wheat. NIRS is a high-

throughput, low-cost and non-destructive method which is already frequently used in breed-

ing programs to evaluate different biochemical traits for which wavelengths can serve as prox-

ies, such as protein, starch, and oil content in grains or seeds [11]. The reflectance spectra

observed, likely arise from the complex interplay of various chemical bonds within the ana-

lyzed tissue, which not only depends on genetic effects but also on interaction between traits,

epistatic interactions between specific loci and genotype-by-environment interaction (GxE)

effects [10].

In breeding programs, the aim is to deliver varieties adapted to growing conditions in target

population of environments (TPE). Often, a variety specifically developed for one TPE may

not perform as well elsewhere [12]. This phenomenon, known as GxE, arises from the inter-

play between the plant’s genotype and the environment in which it is grown. A variety that

exhibits superior performance in, for example, a research station might not deliver the same

benefits in farmer’s fields, a problem which is likely to occur more frequently due to climate

change [13, 14]. Integrating the knowledge acquired from GxE studies into breeding programs

empowers breeders to develop varieties with improved adaptation to local environmental con-

ditions. By incorporating GxE effects, breeders can move beyond performance in a single

research station setting and identify varieties that consistently deliver desirable traits across

diverse environments [15] or inversely, highly adapted to a specific TPE. The importance of

GxE interactions is usually taken into account in the breeding scheme, through multi-environ-

ment trials (MET) [16]. These METs consist of testing a given number of genotypes, generally

new varieties of improved lines, in different sites to assess i) their stability across environments

(or TPE) and ii) their potential in a specific TPE. One of the challenges associated with METs

is the substantial cost resulting from evaluating genotypes across diverse locations [17], as

these field trials are one of the most expensive components in breeding programs. Further-

more, accurately predicting the performance of a genotype in a target environment where it

has not yet been phenotyped remains a critical challenge [18]. Development of prediction
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models integrating the GxE effects are useful in that sense [19–23], with an increase of predic-

tive ability (PA) of these models compared to single-environment models. In this context, the

use of genomic prediction [24–26] in which all the genotypes are not phenotyped in all the

sites but predicted from genomic information is attractive, as it may reduce the phenotyping

efforts and thus the global costs associated with MET [27, 28].

Phenomic prediction with its potential to capture a portion of the genetic and GxE varia-

tions that contribute to spectra variability [10], offers the possibility to not only predicting

traits directly related to the analyzed tissue, but also to predict genotype performance in con-

trasting environmental conditions. PS could be a good opportunity to improve breeding pro-

grams with reduced resources. Another interesting aspect of hyperspectral measurement is

that it can capture part of the GxE variance without additional environmental information

which is not possible using genomic prediction [18, 29]. The NIRS profile of a single genotype

can fluctuate between different environments [30]. Recent literature has demonstrated the

potential of phenomic prediction based on hyperspectral data. This approach has shown

strong PA for various traits in several plant species, including soybean [31], maize [29], wheat

[10, 17, 32], rye [33, 34], sugarcane [35], coffee [36] and grapevine [37].

While PS has shown promise in various crops, its application in rice (Oryza sativa) breeding

remains unexplored despite the importance of this crop worldwide. A comprehensive compar-

ison of PS and GS is necessary to elucidate their relative advantages and limitations for rice

breeding programs implementation [30]. Therefore, the aim of the present study is to evaluate

the potential of PS compared to GS in rice breeding using diverse cross-validation scenarios

including between one and three environmental conditions and GxE interactions. To do so,

investigation of the influence of several factors on PS effectiveness, e.g., genetic architecture of

traits, training population size and composition, and prediction models was performed. These

factors are well known to influence the accuracy of GP [2, 38–41] and their impacts on PP

remain to be evaluated [42].

Results

Phenotypic performances

The dataset used originated from a diversity panel chosen to encompass the diversity used in

the upland rice breeding program of FOFIFA and CIRAD institutes. This panel was grown in

Madagascar in four contrasting environments corresponding to two nitrogen conditions, with

high or low levels of nitrogen fertilizers, during two consecutive years [43]. Table 1 summa-

rizes the descriptive statistics for the six investigated traits: days to flowering (DF), plant height

(PH), harvest index (HI), thousand-grain weight (TGW), grain yield (GY) and grain nitrogen

content (GNC). Number of days to flowering averaged 93.2 days with a standard deviation of

7.22 days. At maturity, average plant height was 102.5 ± 16.6 cm. Thousand grain weight

Table 1. Descriptive statistics of the phenotypic measurements from the four environments. (2015-HN, 2015-LN, 2016-HN and 2016-LN) with mean, standard devia-

tion (StdDev), min, max, coefficient of variation (CV) and the broad-sense heritability (H2).

Traits Abbreviations Mean StdDev Min Max CV H2

Days to flowering (days) DF 93.2 7.22 70.0 116 7.76 0.85

Plant height (cm) PH 102.5 16.6 49.3 162.2 16.2 0.94

Thousand grain weight (g) TGW 28.2 4.53 14.9 44.0 16.1 0.94

Grain yield (kg.ha-1) GY 4,162 1,490 227.0 8,871 35.8 0.58

Harvest index HI 0.46 0.08 0.04 0.64 16.9 0.80

Grain nitrogen content (%) GNC 1.56 0.18 0.09 1.19 29.4 0.60

https://doi.org/10.1371/journal.pone.0309502.t001
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averaged 28.2 ± 4.53 g and grain yield averaged 4,162 ± 1,490 kg.ha-1 with a coefficient of varia-

tion of 35.8%. The harvest index ranged from 0.04 to 0.64, and average GNC was 1.56 ± 0.18%.

In terms of variability, DF showed the lowest coefficient of variation (CV, 7.76%) while GY

and GNC showed the highest CV (35.8 and 29.4% respectively). The other traits showed had a

CV ranged from 16.1 to 16.9%.

Mixed linear models were conducted to partition the phenotypic variation for each mea-

sured trait into genotypic, genotype by year, genotype by nitrogen treatment (high levels of

nitrogen (HN) and low levels of nitrogen (LN)), block and residual variances (Fig 1). Geno-

typic variance was moderate to high for all traits, ranging from 22.1% for GY and GNC to

81.4% for TGW. The interaction variances between genotypes and years, as well as between

genotypes and nitrogen treatments, were low to moderate for all traits, ranging from 0% to

18.6%. Significant year effects were observed for all traits, and, in most cases except DF, exhib-

iting higher values in 2016 compared to 2015 (S1 Table). Nitrogen fertilization in the field sig-

nificantly impacted several traits except DF (S1 Table). PH, GY and GNC were increased with

high levels of nitrogen fertilizers by 15.7 cm, 1,111 kg.ha-1 and 0.40%, respectively. Conversely,

HN treatment significantly reduced TGW and HI by 0.51 g and 0.04, respectively. The block

effect nested within replicate, year, and nitrogen treatment explained a relatively small portion

of the total variance, ranging from 0.3% to 14.7% (Fig 1). Finally, broad sense heritability esti-

mates were moderate to high, ranging from 0.58 for GY to 0.94 for PH and TGW (Table 1).

Table 2 presents the phenotypic correlations for each of the six traits based on their BLUEs

measured across the four environmental conditions (2015-HN, 2015-LN, 2016-HN, and

2016-LN). High phenotypic correlations between environmental conditions, ranging from

0.56 to 0.93, were observed for DF, PH, TGW, and HI. Grain yield and GNC exhibited moder-

ate correlations across environmental conditions, ranging from 0.22 to 0.61. These last two

traits were those for which the interaction variances (genotype within a nitrogen treatment

and genotype within a year variances) were high compared to the genetic variance.

Fig 1. Variance decomposition for the six phenotypic traits1 across all the environments. Var Geno, genotypic

variance; Var Geno x Year, variance of the genotype by year interaction; Var Geno x Nitro, variance of the genotype by

nitrogen treatment interaction; Var Bloc(Rep(Year x Nitro)), variance of the bloc nested in a replicate and a nitrogen

treatment and year; and Var Residual, the residual variance. 1 DF = Days to flowering; PH = plant height;

TGW = thousand grain weight; GY = grain yield; HI = harvest index; GNC = grain nitrogen content.

https://doi.org/10.1371/journal.pone.0309502.g001
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Comparison of genomic, phenomic and multi-omics prediction models

The scenarios tested in the current study addressed three objectives: (a) predicting unknown

genotypes in known environments, (b) predicting known genotypes in an unknown environ-

ment, (c) predicting known genotypes in known environments in which they are not observed

(sparse testing scenario). All these scenarios were tested with a variable number of environ-

ments and different sets of genotypes included in the training populations.

Single environment models. While statistically different PA were observed across cross-

validation (CV) scenarios (S2, S3 Tables) within each environment, the magnitude of these dif-

ferences was negligible. Furthermore, no consistent patterns emerged in PA differences related

to either year or nitrogen treatment effects. Consequently, results from all environments were

combined for further analysis (Fig 2).

For all traits except GNC, both GP and GP+PP delivered significantly higher PA compared

to PP alone (Fig 2). Interestingly, while a larger training population improved PA, this

improvement appeared to be low (Fig 2). Finally, for GNC, GP+PP significantly improved PA

compared to PP, which in turn performed significantly better than GP.

Multi-environments models. For scenarios involving two environments, all genotypes

from the first environment were integrated into the training population (TP) as well as a variable

proportion of genotypes from the second (targeted) environment. This proportion ranged from

0% (no genotype from the targeted environment were included in the TP) to 80%, corresponding

to the number of folds used for cross-validation (Table 3). The remaining genotypes from the tar-

geted environment formed the validation population (VP) and were subjected to prediction.

Across all phenotypic traits and regardless of the relationship matrix employed (GP, PP, or

both combined–GP+PP), the inclusion of genotypes from the targeted environment in the TP

significantly increased PA (S2, S3 Tables). Furthermore, a tendency of PA improvement was

observed with the increase of the percentage of genotypes included in the targeted environ-

ment for the TP (Fig 3). Moreover, the models integrating GxE effect (MDs model) tended to

deliver comparable or improved PA compared to models without GxE (MM model), regard-

less of the other effects tested (Fig 3) for all traits except DF and PH. While significant, these

differences stayed low.

Considering the MDs model with 50% of genotypes from the target environment in the TP

(i.e., the 2-fold CV, scenarios 5 to 10), an assessment of the impact of the environment combi-

nations was performed (Fig 4). No global trend emerged across all traits. PA did not increase

when both environments were from the same year or from the same nitrogen treatment.

Including a stressed environment in the TP, such as LN, did not always lead to increased PA in

GP, PP or GP+PP.

Table 2. Pearson correlations between all pairs of environments for all the phenotypic traits1. Correlations were calculated between the BLUEs of the different envi-

ronments, defined as a combination of year x nitrogen treatment (p-value< 0.0001).

2015-HN 2015-HN 2015-HN 2015-LN 2015-LN 2016-HN

2015-LN 2016-HN 2016-LN 2016-HN 2016-LN 2016-LN

DF 0.92 0.72 0.7 0.77 0.77 0.93

PH 0.87 0.87 0.83 0.81 0.82 0.87

TGW 0.93 0.87 0.84 0.88 0.87 0.92

GY 0.49 0.48 0.22 0.38 0.39 0.32

HI 0.8 0.66 0.56 0.67 0.67 0.68

GNC 0.43 0.61 0.24 0.39 0.42 0.42

1 DF = Days to flowering; PH = plant height; TGW = thousand grain weight; GY = grain yield; HI = harvest index; GNC = grain nitrogen content

https://doi.org/10.1371/journal.pone.0309502.t002
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Minimal differences in PA were observed among GP, PP, and GP+PP for most traits, as

illustrated where MDs model was used with a 2-fold CV in Fig 4. The exception was for GNC,

where PP (0.609 ± 0.004) and GP+PP (0.640 ± 0.004) displayed significantly higher PA com-

pared to GP (0.489 ± 0.004). For the other traits, even when statistically significant effects

(p<0.05) were detected, the magnitude of the differences in PA between the best and worst

performing methods (GP, PP, or GP+PP) remained low, below 0.025. For instance, for GY,

the average PA for GP, GP+PP, and PP were 0.444 ± 0.005, 0.438 ± 0.005, and 0.422 ± 0.005,

respectively. These minor variations highlight the comparable performance of all prediction

methods based on genomic, phenomic or combined genomic and phenomic information for

GY.

Using all 14 scenarios, the impact of relationship matrices (prediction models with GP, PP

and GP+PP) and TP (one, two, or three environments integrated) was assessed, prioritizing

these two parameters over the number of k-fold CV (here fixed at k = 5 folds) or the type of

model analyzed (here we chose the MDs, Fig 5). Whichever the relationship matrix used, for

all traits except GNC, an increase in PA was observed when the number of environments inte-

grated in the TP increased from one to two. However, incorporating a third environment

resulted in a plateau, with no further improvement in PA. The increase in PA observed when

moving from one to two environments included in the TP, which corresponds to a shift from

classical CV to sparse-testing validation, was greater for PP compared to GP and GP+PP (Fig

5). Yet, PAs eventually reached the same level for all three prediction models. For GNC, GP

consistently gave lower PA than any combination involving PP, regardless of the number of

Fig 2. Means of the predictive ability for all the four environments when a single environment was considered in

the training population. The dark grey boxes indicate the 2-fold cross-validation (50% of the population was in the TP

and the other 50% in the VP). and the light grey boxes indicate the 5-fold cross-validation (80% of the population in

the TP and the remaining 20% in the VP). The prediction models are GP. genomic predictions; PP. phenomic

predictions; GP+PP. combination of genomic and phenomic information for the predictions. The PAs are averaged

over the 4 scenarios tested (1 to 4, see Table 1 for a detailed description of scenarios). DF = Days to flowering;

PH = plant height; TGW = thousand grain weight; GY = grain yield; HI = harvest index; GNC = grain nitrogen

content.

https://doi.org/10.1371/journal.pone.0309502.g002
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environments included in the TP. However, for this trait, models with GP also benefit from a

steady increase in PA (PA ranging from 0.4 to 0.6) with an increased number of environments

which was not the case for the PP and GP+PP models.

Discussion

Phenomic selection, a recent methodology introduced by Rincent et al. [10], shares a lot of

similarities with GS. The distinction lies in the use of NIRS data, instead of single nucleotide

polymorphism (SNP) data, to capture genetic information and assess genotype similarity. The

effectiveness of PS has been demonstrated in diverse species and across various traits, with

promising results reported in several studies [4, 29]. We compared the PA of models including

different relationship matrices with GP (genomic prediction using the genomic relationship

matrix (GRM)), PP (phenomic prediction using hyperspectral relationship matrix (HRM))

and GP+PP the combination of both matrices in the prediction model. We thus compared the

PAs of PP with GP and the combined GP+PP approach, explored the influence of training

population size and composition and investigated the impact of incorporating GxE effects into

different models. To our knowledge, the present study is the first to evaluate the applicability

of PS in rice, despite the importance of this species worldwide.

When analyzing single environment models with conventional k-fold CV, GP were slightly

higher than what was previously estimated in the rice literature for DF, PH and GY [44–46].

Phenomic prediction exhibited substantially lower PA compared to GP or combined GP+PP,

with the exception of GNC for which NIRS based calibrations were used as a proxy of the trait

[47]. This result deviates from the literature, where PA using HRM and GRM are often compa-

rable across various traits and species [10, 29, 42]. To address potential concerns regarding the

tissue or NIRS measurements, we conducted pre-analyses on milled dry straw that yielded

Table 3. Training and validation populations used for the different scenarios tested in the genomic and phenomic prediction approaches.

Scenario Number of environments† Training population (TP) ‡ Validation population (VP) ‡

1 1 2015-HN (50 or 80%) 2015-HN (50 or 20%)

2 2015-LN (50 or 80%) 2015-LN (50 or 20%)

3 2016-HN (50 or 80%) 2016-HN (50 or 20%)

4 2016-LN (50 or 80%) 2016-LN (50 or 20%)

5 2 2015-HN (100%) + 2015-LN (0. 10. 50 or 80%) 2015-LN (100. 90. 50 or 20%)

6 2015-LN (100%) + 2015-HN (0. 10. 50 or 80%) 2015-HN (100. 90. 50 or 20%)

7 2015-HN (100%) + 2016-HN (0. 10. 50 or 80%) 2016-HN (100. 90. 50 or 20%)

8 2016-HN (100%) + 2016-LN (0. 10. 50 or 80%) 2016-LN (100. 90. 50 or 20%)

9 2016-LN (100%) + 2016-HN (0. 10. 50 or 80%) 2016-HN (100. 90. 50 or 20%)

10 2015-LN (100%) + 2016-LN (0. 10. 50 or 80%) 2016-LN (100. 90. 50 or 20%)

11 3 2015-HN (100%) + 2015-LN (100%) + 2016-HN (0. 50 or 80%) 2016-HN (100. 50 or 20%)

12 2015-HN (100%) + 2015-LN (100%) + 2016-LN (0. 50 or 80%) 2016-LN (100. 50 or 20%)

13 2015-HN (100%) + 2016-LN (100%) + 2016-HN (0. 50 or 80%) 2016-HN (100. 50 or 20%)

14 2015-LN (100%) + 2016-HN (100%) + 2016-LN (0. 50 or 80%) 2016-LN (100. 50 or 20%)

† Refers to the total number of environments included in the scenario.

‡ For scenarios 1 to 4. the k-fold CV was performed with k = 5 (TP = 1-1/k = 80% and VP = 1/k = 20% of the population) or k = 2 (TP = 50% and VP = 50% of the

population). For scenarios 5 to 10 all the data from one environment were included in the TP as well as a proportion of 0. 10. 50 or 80% of the second environment. as a

sparse testing model. the rest of the data of the second environment were accordingly allocated to the VP (100. 90. 50 or 20%). Finally for scenarios 11 to 14. all the data

from two environments as well as three proportions (0. 50 or 80%) of the third environment were considered in the TP and the rest of the data of this third environment

allocated to the VP.

https://doi.org/10.1371/journal.pone.0309502.t003
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similar results to the analyses using milled dry grains. This suggests that the observed low PA

based on PP in single-environment were not due to tissue-specific effects or NIRS measure-

ment issues. Other pre-analyses were performed with different NIRS data preprocessing as it

was previously highlighted that PP could be influenced by the preprocessing applied on the

spectra [42]. However, none of the pre-processing methods yielded significant improvement

in PA for PP compared to GP. The most plausible explanation for the low PA in PP likely

stems from the generally low heritability associated with the NIRS wavelengths employed in

this study (S1 Fig). The NIRS data may not have captured a sufficient amount of genetic infor-

mation relevant to the target traits compared to SNP data. Spectra with low wavelength herita-

bility gave generally lower PA than spectra with high heritability [17].

The present study also examined the influence of TP size on PA. As expected, increasing TP

size led to improved PA, consistent with previous observations by Galan et al. [33]. However,

the magnitude of improvement was not substantial, as observed by Robert et al. in wheat [48].

These authors demonstrated a marginal increase PA for grain yield, ranging from approxi-

mately 0.5 with a TP size of 50 to around 0.6 with a TP size of 250. No real differences in the

effect of TP size were observed between GP, PP, or the combined GP+PP approach in the pres-

ent study. While several studies [30, 49] reported that PP requires a smaller TP size for

Fig 3. Means of the predictive ability for all the combinations of environments when two environments were

considered in the training population. The blue boxes represent the MDs model. integrating a GxE effect. and the red

boxes represent the MM model without GxE effect. For each model (MDs or MM) the difference of coloration of the

boxes represents the percentage of genotypes of the second environment included in the training population (0%. 10%.

50% or 80%). the rest of the second environment being included in the validation population. The PAs are averaged

over the 6 scenarios tested; scenario 5 to scenario 10 (see Table 1 for a detailed description of scenarios). The three

prediction methods are GP. genomic predictions; PP. phenomic predictions; GP+PP. combination of genomic and

phenomic information for the predictions. DF = Days to flowering; PH = plant height; TGW = thousand grain weight;

GY = grain yield; HI = harvest index; GNC = grain nitrogen content.

https://doi.org/10.1371/journal.pone.0309502.g003
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comparable PA compared to GP, Zhu et al. [30] attributed this to the presence of multiple val-

ues per wavelength in NIRS data, as opposed to the binary nature of SNPs in genomic data.

Unlike marker data which provides discrete genotypic categories (two genotypic classes or

three if heterozygotes are present) at each marker, NIRS data offers a continuous distribution

of reflectance values for each wavelength, representing a wider range of potential states. This

suggests that NIRS data might enable achieving similar PA with fewer genotypes in a breeding

program, potentially reducing phenotyping efforts, although this was not found with the pres-

ent results. This could be explained by the lower number of genotypes included in the analyses

in the present study compared to the one of Zhu et al [30].

Interestingly, incorporating data from an additional environment into the TP significantly

improved PA for PP, bringing it at the same level of prediction as GP or GP+PP, which was in

accordance with the literature [17, 32]. The inclusion of NIRS data from additional environ-

ments within the models likely enhances the estimation of genotype relationships, as previ-

ously demonstrated by Robert et al. [32]. This improvement may be attributed to the high

correlations observed for the phenotypic traits between the environments and the relatively

high heritability of those target traits. In essence, the strong environmental correlations may

have allowed PP, in this specific case, to achieve a level of PA comparable to GP. Zhu et al. [30]

reported that for triticale, the PA of PP was highest when environments exhibited strong corre-

lations. This observation is further supported by the work of Robert et al. [32], who investi-

gated PP in wheat considering four datasets in different MET scenarios. Their findings suggest

that the improvement in PA achieved by incorporating multiple environments, compared to a

single one, depends on the degree of correlation between those environments for the trait of

Fig 4. Means of the predictive ability achieved in the MDs model trained with a training population including

50% of the target environment (scenario 5 to 10). The three prediction methods are GP. genomic predictions; PP.

phenomic predictions; GP+PP. combination of genomic and phenomic information for the predictions. A detailed

description of the scenario is given in Table 1. DF = Days to flowering; PH = plant height; TGW = thousand grain

weight; GY = grain yield; HI = harvest index; GNC = grain nitrogen content.

https://doi.org/10.1371/journal.pone.0309502.g004
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interest. This dependence likely arises because the HRM is likely to be more comparable

between correlated environments than between uncorrelated ones. Nevertheless, it is impor-

tant to acknowledge that even with lower heritability or weaker correlations between environ-

ments, PP can offer valuable applications. Indeed, as highlighted by Lane et al. [29], PP can be

effective for ranking genotypes relative to each other. Robert et al. [32] further highlighted that

genotypes can exhibit distinct spectral profiles in one environment but similar profiles in

another environment. This shows the potential of incorporating hyperspectral data from mul-

tiple environments to enhance PA in PP. These variations in genotype specific spectra across

environments likely reflect the capture of some GxE interaction effects. This explanation aligns

with the observation in the present study that models incorporating GxE effects (MDs model)

yielded similar or even superior PA than models without GxE effects for four of the six traits

measured in the present study. Unlike molecular markers, NIRS data are susceptible to envi-

ronmental variations. The potential benefits of incorporating GxE effects into GP have also

been emphasized by several studies [17, 19, 22, 27, 32, 50]. Our study reinforces this result and

extends it to PP. The observed improvement in PA with GxE models in the present study

could also align with the hypothesis proposed by Robert et al. [32] that variance of the traits

were not only additive but also interactive (GxE).

Fig 5. Means of the predictive ability for a training population including one. two or three environments.

including 50% of the target environment and a MDs model. Considering the three prediction methods (GP.

genomic predictions. PP. phenomic predictions; GP+PP. combination of genomic and phenomic information for the

predictions). The PAs are averaged over all the scenarios tested within the corresponding group of scenarios i.e.,

scenario 1 to 4; scenario 5 to 10 and scenario 11 to 14 for Env1. Env2. and Env3. respectively (see Table 1 for a detailed

description of scenarios). DF = Days to flowering; PH = plant height; TGW = thousand grain weight; GY = grain yield;

HI = harvest index; GNC = grain nitrogen content.

https://doi.org/10.1371/journal.pone.0309502.g005
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The inclusion of a third environment into the TP did not lead to a continuous increase in

PA. Instead, PA appeared to plateau after incorporating two environments. This observation

suggested a redundancy effect associated with including excessive environmental data [32]. In

the context of breeding programs, it is crucial to strike a balance between the cost associated

with NIRS measurements in multiple environments and the potential gains in PA. Future

research efforts could explore cost-effective strategies to optimize the number of environments

used in PP for breeding purposes.

It is important to note that the models employed in the present study differed from those

proposed by Robert et al. [32] or Lane et al. [29] in their treatment of GxE effects and multi-

environment hyperspectral data. In the first study, NIRS datasets were combined at the analy-

sis outset, leading to the estimation of a single HRM that integrated information from all envi-

ronments, similar to a GRM. Lane et al. [29] adopted a contrasting approach, estimating a

separate HRM for each environment and subsequently averaging them to create a single

matrix for prediction. In contrast, the present study aimed to capture the genotypic effects

associated with each environment. To achieve this, the number of genotypic effects was set

equal to the number of environments, with one random effect added for each NIRS dataset.

This methodological choice likely influences the predictions by capturing the variance

explained by genotypic effects differently compared to the aforementioned studies. The MDs

model employed in the present study represents a block diagonal structure, where distinct

matrices are utilized for each environment with a similar GxE variance between the environ-

ments [16]. This approach does not allow to take advantage explicitly from the HRM of corre-

lations between environments. Consequently, the model did not capture or integrate the

covariance matrices that might exist between environments. Investigating the PA of alternative

models that incorporate these variance-covariance matrices between environments could be a

promising avenue for future research [51, 52]. Such models might offer the potential for

enhancing even more the models’ PA.

Present study investigated the potential benefits of combining GP and PP by incorporating

them as separate genotypic random effects into the models. While this approach improved PA,

the increase was not substantial across traits, number of environments, or TP size. Overall, the

combined GP+PP strategy resulted in only a slight improvement in PA compared to any of the

best performing method among GP and PP models. These findings align with observations by

Robert et al. [32], who also reported only slightly enhanced PA compared to genomic models

when combining molecular and hyperspectral data in their models. However, unlike the latter

study which employed a single combined HRM-GRM relationship matrix, the present study

utilized separate matrices. In addition, it is also important to stress that despite the observed

improvement in PA, its magnitude may not justify the additional cost associated with combin-

ing both methods in a breeding program. Therefore, the optimal choice between GP and PP

might depend on the specific traits of interest considering cost-effectiveness.

Previous research suggests that incorporating NIRS data collected under stress or unfavor-

able conditions can enhance PA for PP [10, 29]. In the context of the present study, although

the low levels of nitrogen fertilizers might be considered analogous to such stress conditions,

they did not provide improvement of the PA when considered in the TP. Interestingly, Lane

et al. [29] observed that the water-stressed environment, which yielded the highest PA in their

study, also exhibited the lowest repeatability. They mentioned that optimal TP composition

for PP would encompass a broad range of genetic diversity and data from multiple years. This

conclusion aligns with the notion that genotypes tend to exhibit greater phenotypic variability

in stressed environments compared to non-stressed conditions. To evaluate the added value of

incorporating NIRS data from stressed environments into the TS, it is important to assess per-

formances of phenomic predictions across a broad spectrum of environments. This assessment
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should encompass a large panel of environments with a wide range of correlations between

them. Such an investigation would provide a more robust understanding of the generalizability

and effectiveness of this approach and would help breeders to be more efficient in the predic-

tions when using phenomic selection.

Present study represents the first investigation comparing the efficiency of PP to GP in rice.

The present study was performed on a diversity panel in a specific environmental context,

more experiments are needed to reinforce the present results and conclusions as to our knowl-

edge, it is the first study comparing GS and PS in rice. However, a significant advantage of PP

over GP lies in its reduced infrastructure requirements [53]. Notably, PP only necessitates a

NIRS spectrometer, which can lead to substantial cost reductions. While NIRS material can be

quite expensive, it is frequently already available in the centers or institutions running breed-

ing programs. Van Tassel et al. [54] estimated genotyping costs to range from $30 to $50 per

genotype, compared to $2 to $15 per genotype for NIRS measurements, depending on the

technology employed. Even if two NIRS measurements of each genotype are needed to achieve

comparable accuracy to genomic selection, costs would still be between $4 to $30 per genotype

(to which would have to be added the costs of producing the genotypes in a second environ-

ment), making NIRS a more cost-effective approach. Furthermore, PP has the potential to

increase the accuracy of GxE effect estimation, potentially leading to a more accurate evalua-

tion of genotype value. Additionally, NIRS is a non-destructive method and measurements

can be performed on grains prior to sowing, which can contribute to increased selection

intensity.

While PP offers advantages, it also raises several questions not encountered with GP. A crit-

ical consideration involves the optimal tissue for NIRS measurement. Leaf-based measure-

ments are appealing due to their ease and feasibility in field settings without harming plants or

requiring harvest. This approach could facilitate early selection before harvest or even flower-

ing (allowing to identify the most relevant crosses to perform in recurrent selection

approaches), potentially reducing phenotyping costs and breeding cycle length. As NIRS can

be affected by environment, which makes it a good option to capture GxE, would it also be

sensitive to physiological stages when the data is collected? Furthermore, previous research

suggests that for PP, tissues more closely related to the target trait tend to yield higher PA [53].

Supporting this notion, Robert et al. [48] reported lower prediction accuracy for GY using leaf

spectra compared to grain spectra.

Another important question to consider is the optimal integration point of PP within the

breeding scheme compared to GP. Rincent et al. [10] suggested that PP holds promise for

selecting superior genotypes prior to multi-environment testing. In this context, predicting

phenotypic values might offer advantages over predicting additive genetic values. Future

research employing simulations could address this specific question by evaluating the impact

of key factors known to impact the efficiency of breeding schemes. These factors could include

the number of genotypes under study, the number of environments considered, and the opti-

mal timing of PP implementation relative to GP within the breeding cycle.

Material and methods

Details concerning the experimental population, field experiment design, hyperspectral mea-

surements, and genotyping procedures can be found in Rakotoson et al. [43, 55] and Rakoto-

malala et al. [56]. The present study was carried out using the data already acquired and

presented in the last two studies cited, no authorization was carry out the experimentation.

A summary of these aspects is provided in the following sections.

PLOS ONE Performance of phenomic selection in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0309502 December 23, 2024 12 / 21

https://doi.org/10.1371/journal.pone.0309502


Experimental population

The experimental population consisted of a panel of 190 rice accessions that represents the

working collection of the upland rice breeding program conducted in Madagascar by FOFIFA

(Malagasy National Research Center for Rural Development) and CIRAD (French Agricul-

tural Research Center for International Development) (S4 Table). The majority of these acces-

sions came from the tropical japonica genetic group and originated from various breeding

programs, including the FOFIFA-Cirad program, or historical acquisition from IRRI (Interna-

tional Rice Research Institute), CIAT (International Center for Tropical Agriculture in Colom-

bia), EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária in Brazil) and Africa Rice.

Field experiments

Field trials were conducted over two cropping seasons (2014–2015 and 2015–2016), hereafter

referred to as 2015 and 2016, at Ivory in Madagascar (19˚33’27” S, 46˚24’43” E, 960 masl). A

split-block design with two replications was employed in a randomized alpha lattice for each

year. Each replication consisted of 14 blocks, further subdivided into two sub-blocks for evalu-

ating nitrogen fertilization levels. Within each block, 16 accession plots were sown, including

14 tested and two control accessions. Each accession plot received 5 tons of manure per ha and

was further divided into two adjacent subplots, one receiving no mineral nitrogen fertilization

(LN for low nitrogen) and the other receiving additional mineral nitrogen (HN for high nitro-

gen). Subplot sizes varied slightly across replications and years. In 2015, subplots measured 1.8

m × 2.4 m in the first replication and 1.4 m × 2.0 m in the second replication. In 2016, subplots

were 1.8 m × 1.6 m in the first replication and 1.2 m × 1.6 m in the second replication. Field

preparation began with traditional ox plowing, followed by hand-leveling of the soil surface.

Sowing involved placing four to six rice seeds per hill at 20 cm intervals in both directions. A

standardized base dressing was applied to all the plots before sowing, incorporating cattle

manure (5000 kg ha-1), triple superphosphate (69 kg ha-1 P2O5), potassium sulfate (62.4 kg ha-

1 K2O), and dolomite (500 kg ha-1). For the HN plots, additional nitrogen fertilization was pro-

vided using urea (46% N) at a total amount of 120 kg ha-1, split into three equal applications at

the emergence, tillering, and booting stages. Phytosanitary treatments were applied as required

for growing rice in the area and to protect the crop from pest and diseases. As the data

included in this study were collected across two years (2015 and 2016) and two nitrogen treat-

ments, the four nitrogen-year combinations were henceforth referred to as environments.

Phenotypic trait measurements and phenomic data

Building upon the work of Rakotoson et al. [43], this study focuses on six key traits previously

evaluated in each elementary plot. These traits were chosen for their relevance to breeding pro-

grams and their diverse genetic architectures. Days to flowering (DF) was recorded when 50%

of the plants within the plots reached flowering (in days). At maturity, plant height (PH) was

measured on six plants located in the middle of each plot averaged and expressed in cm. Then,

the panicles were counted and hand-threshed, and filled grains were separated from unfilled

grains. The dry weight of filled grains was determined after oven-drying at 60˚C for 72 h. Filled

grains were used to estimate grain yield (GY) calculated and expressed in kg ha-1. Two sub-

samples of 200 filled grains were used to calculate thousand-grain weight (TGW) expressed in

grams. Harvest Index (HI) was calculated as the ratio between GY and total dry biomass

(straw and grain yield). Finally, grain nitrogen content (GNC; %) was measured by collection

of near-infrared spectroscopy (NIRS) on dry grains using a monochromator (LabSpec 4 Stan-

dard-Res Lab Analyzer, ASD Inc., Boulder, USA; wavelengths 1 000–2 500 nm). These samples

were previously ground to 1mm, using a model 1093 Cyclotech sample mill (FOSS, Höganäs,
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Sweden). Near infrared spectra were acquired on 4 samples (technical replicates) per grain lot

and the average spectra were calculated. The NIR spectra of each accession included data from

1,500 wavelengths ranging between 1,000 and 2,500 nm with a 1 nm step.

Genotypic data

Seeds from each accession were grown for DNA extraction at CIRAD Montpellier laboratory

in France. Leaf tissue from a single plant per accession was used for DNA extraction using the

MATAB method [57]. The extracted DNA was then diluted to a concentration of 100 ng μL-1.

Each DNA sample was digested with the ApekI restriction enzyme. Then, each library was sin-

gle-end sequenced in a single-flow cell channel (i.e., 96-plex sequencing, [58]) using an Illu-

mina, Inc. HiSeqTM 2000. Reads were aligned to the rice reference genome (Os-Nipponbare-

Reference-IRGSP-1.0, [59] with Bowtie2 (default parameters). SNP calling was performed

using the Tassel GBS pipeline v5.2.37 (default parameters, [60]). SNPs, with a call rate< 80%,

a heterozygosity rate> 20% or a minor allele frequency (MAF) < 2.5%, were all discarded.

The remaining heterozygotes were converted into missing data. Then, missing data were

imputed using Beagle v4.0 [61]. After imputation, markers with a MAF < 4.2% (8 out of 190)

were discarded. The final resulting matrix comprised 190 individuals and 38 079 SNP

markers.

Statistical analyses

Phenotypic data analyses. The raw data were checked for outliers per environment using

the boxplot.stats function of the R package "stats" [62] with a coefficient of 1.5, which means

that outliers were identified if the phenotypic values were outside 1.5 times the interquartile

range above the upper quartile and below the lower quartile. No outliers were discarded. The

following mixed model was used for variance decomposition, as it was the most parsimonious

according to the AIC criterion:

yijklm ¼ mþ Yeari þ Nitroj þ RepkðNitrojðYeariÞÞ þ BllðRepkðNitrojðYeariÞÞÞ þ genom þ genom

: Yeari þ genom : Nitroj þ eijklm

Where yijklm is the vector of phenotypic values, μ is the overall mean of the phenotypic

value, Yeari is the fixed effect of the year (2015 or 2016); Nitroj is the fixed effect of the nitrogen

treatment (HN or LN); Repk(Nitroj(Yeari) is the fixed effect of the replicate within a year and a

nitrogen treatment; Bll(Repk(Nitroj(Yeari)) is the random effect of the block l nested in repli-

cate k and nitrogen treatment j and year i with distribution Bl � Nð0; s2
BlÞ; genom is the ran-

dom effect of the genotype m with distribution genom � Nð0; s2
gÞ; genom: Yeari is the random

effect of the genotype m by year i, which is part of the genetic by environment interaction

effect; genom: Nitroj is the random effect of the genotype m by nitrogen treatment j, which is

the second part of the genetic by environment interaction effect; and eijklm is the residual con-

sidered as a random effect with distribution e � Nð0; s2
eÞ. Variance decomposition was per-

formed using the lmer function of the R package "lme4" [63].

Broad sense heritability (H2) was estimated using the following equation:

H2 ¼
s2

geno

s2
geno þ

s2
geno:Year
NYear þ

s2
geno:Nitro
NNitro þ

s2
e

NR

where s2
geno is the variance associated with genotypes, s2

geno:year is the genetic by year interaction

effect variance, s2
geno:nitro is the genetic by nitrogen treatment interaction effect variance, s2

e is
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the residual variance, NYear and NNitro are the harmonic mean of the number of years and

nitrogen treatments per genotype and NR is the harmonic mean of the number of replicates

per genotype across the years and nitrogen treatments.

To estimate the correlations between environments, for each trait, correlations of pheno-

typic values between the two years and two nitrogen treatments (four environments) were per-

formed using the rcorr function of the R package "Hmisc" [64].

Spectra pre-processing. As detailed by Brault et al. [37], spectra were processed separately

within each environment. From the average spectra, several pre-processing methods were per-

formed (e.g. smooth, standard normal variate or normalization, detrend and first and second

derivative on normalized spectra). From the preliminary analyses, it appeared that pre-pro-

cessing with the second derivative spectra was more relevant than the other pre-processing

methods to perform predictions. Consequently, we only kept this pre-treatment for the rest of

the study. A mixed model over the reflectance at each wavelength was computed to estimate

the variance components and derive NIRS genotypic BLUPs. The mixed model equation was:

rijk ¼ mþ blockjðRepkÞ þ genoi þ eijk

With rijk representing the reflectance at a given wavelength, μ the intercept; blockj(Repk) the

random effect of block j nested in the repetition k; genoi the random genotypic effect of geno-

type i, and eijk the residual. NIRS heritability (H2) for each wavelength was estimated using the

following equation:

H2 ¼
s2

geno

s2
geno þ

s2
e

NR

where s2
geno is the variance associated with genotypes and NR is the harmonic mean of the

number of replicates per genotype.

Genomic and phenomic predictions. Genomic prediction models were developed based

on a two-stage procedure. First, to correct for the random effects of the replicates and blocks

(Blj(Repk)), then best linear unbiased estimations (BLUEs) of the genotype effect were esti-

mated for each trait within each environment (combination of year and treatment) using the

lmer function (from the lme4 package) and the following model:

yijk ¼ mþ genoi þ BljðRepkÞ þ Repk þ eijk

Where genoi is the fixed effect of the genotype i.

The GP models were run by year and nitrogen treatment and the BLUE values for each trait

were used to compare with the predictions.

To assess the relative effectiveness of PP compared to GP, various cross-validation scenarios

were tested. These scenarios explored the influence of training population (TP) and validation

population (VP) composition on the predictive accuracies (PA), as detailed in Table 3. In addi-

tion, the scenarios varied based on the number of environments included in the analyses.

When a single environment was considered, we implemented a k-fold cross-validation

approach [65] with k sets to 5 (80% of the population used for training and 20% for validation)

or k set to 2 (equal split of the population for training and validation). For each case, 10 replica-

tions were performed, where all the genotypes were predicted using the 5- or 2-folds cross vali-

dation and correlations between predicted values and BLUEs were estimated for all the

genotypes together.

For scenarios involving two environments, data from the first environment were always

incorporated entirely into the TP. Additionally, a variable portion of data from the second
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environment was also included in the TP to assess the impact of the training set size. This vari-

able portion ranged from 0% (no information from the second environment) to 10%, 50%,

and 80%. These variations allowed to evaluate the combined influences of the TP size and of

the inclusion of information from an additional environment and also to compare these sce-

narios to those using only one environment.

Scenarios involving three environments followed a similar structure to those with two envi-

ronments. However, data from the second environment was entirely incorporated into the TP

in all three-environment scenarios. The variable portion for the third environment included in

the TP ranged from 0%, 50%, and 80%. The remaining data from the third environment

(100%, 50%, or 20%, respectively) constituted the VP All the details of the environment combi-

nations are provided in Table 3.

Bayesian linear mixed model was performed for all the analyses using the R package BGGE

[66]. For scenarios including one environment, the GP and PP were run using a univariate sin-

gle-environment model (SM) G-BLUP model considering only the main genotypic effects.

yij ¼ mþ genoj þ eij

yij ¼ mþ phenomj þ eij

yij ¼ mþ genoj þ phenomj þ eij

Where yij is the vector of genotype BLUEs, μ is the intercept and genoj a vector of random

genotypic effect normally distributed genoj � Nð0; s2
gKÞ, with K a kinship matrix based on

SNP marker information calculated with the formula proposed by VanRaden [67] for GP, and

phenomj a vector of random phenomic effect normally distributed phenomj � Nð0; s2
gHÞ with

H a hyperspectral relationship matrix defined as such H ¼ S∗p∗S∗0p =L where S∗p is the matrix of

NIRS genotypic BLUPs and L the number of wavelengths, for PP. The third model combine

genomic and phenomic information.

In the scenarios including more than one environment, a fixed effect of the environment

(MM model) or a G×E interaction random effect (MDs model) was added to the predictive

model. To do so, G×E genomic variance matrices were constructed.

The multi-environment model (MM) assumes that genetic effects across the environment

are constant across genotypes, and therefore the absence of G×E. In this model, a single matrix

containing the genomic relationships was constructed for the main across-environment

effects:

yij ¼ mþ Envi þ genoj þ eij

yij ¼ mþ Envi þ phenomj þ eij

yij ¼ mþ Envi þ genoj þ phenomj þ eij

with Envi representing the fixed effect of the environment (year x nitrogen treatment interac-

tion), genoj the random effect of the genotype, having a variance-covariance structure follow-

ing G � Nð0; J � Ks2
GÞ, where J is a Nenv x Nenv unit matrix (full of ones) and K similarly

defined as before. The Kronecker product between the unit and the relatedness matrix (J�K)

can be interpreted as a uniform genetic effect across environments. phenomj � Nð0; J �Hs2
GÞ

is defined in a similar with H a hyperspectral relationship matrix representing the phenomic

information.
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The multi-environment model (MDs) which is an extension of the MM model includes a

single random deviation effect of the G×E:

yij ¼ mþ Envi þ genoj þ genojxEnvi þ eij

yik ¼ mþ Envi þ phenomk þ phenomkxEnvi þ eij

yij ¼ mþ Envi þ genoj þ phenomk þ genojxEnvi þ phenomkxEnvi þ eij

With all terms similarly defined as in the previous models and genojðor phenomkÞxEnvi �

Nð0; INenv
� KðHÞs2

G�EÞ representing a uniform deviation due to environmental influence, for

the genomic (K) or phenomic (H) terms respectively.

All genomic predictions were performed using the R package BGGE [66] with the following

parameters: burn-in = 10,000, nIter = 70,000 and thin = 10.

Predictive ability (PA) for each model (GP, PP or GP+PP), scenario and TP size was

assessed by calculating the correlation between predicted values and the BLUEs. To account

for potential stochastic effects influencing accuracy comparisons between models and scenar-

ios, all predictions were replicated 10 times considering different training populations. This

allowed to estimate and compare the mean and standard deviation of PA for each model across

all scenarios.

Linear mixed models were then used to compare the model predictive ability. These models

considered the fixed effect of the matrix, training population size, model, or environments or

combination of effects according to the analyses and included a Z-transformation of the PA

data to ensure normality.
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e19379. https://doi.org/10.1371/journal.pone.0019379 PMID: 21573248

59. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, et al. Improvement

of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map

data. Rice. 2013; 6(1):4.

60. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: a high capacity

genotyping by sequencing analysis pipeline. PloS One. 2014; 9(2):e90346. https://doi.org/10.1371/

journal.pone.0090346 PMID: 24587335

61. Browning BL. Beagle 5.1 Tutorial 2019. 2019 [cité 14 sept 2019]. Available on: https://faculty.
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