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A B S T R A C T

The present study aimed to provide data on what extend of organic management (OF) improve 
soil health compared to conventional farms (CF). In this study, a total of 24 top soil samples 
(0–30 cm) were collected from Mo Cay Nam and Mo Cay Bac, Ben Tre, Vietnam, representing 
organic vs conventional farm soils, respectively to analyze farming systems in terms of the 
chemical, physical, and biological soil properties. Soil nutrients, soil microbial density, dehy
drogenase enzyme activity and soil bacteria diversity were detected using atomic absorption 
spectrometry, serial dilution and plating; triphenyl formazan detection, and DNA extraction using 
Invitrogen™ and Qubit™, respectively. Our results indicated that soil bulk density was 11 % 
lower and soil porosity was 4 % higher, respectively at organic farms compared to the conven
tional farms. Meanwhile, both soil NH4

+ and available phosphorus contents were higher in the 
organic farming soils (38.9 mg kg− 1 and 69.0 mg kg− 1, respectively). Total soil bacteria and 
cellulose-decomposing bacteria were found to be insignificantly lower in conventional farms (CF) 
as compared to organic farms (OF) (6.01 log CFU g− 1 soil vs 6.26 log CFU g− 1 soil) and (3.82 log 
CFU g− 1 soil vs 4.18 log CFU g− 1 soil), respectively. The beta diversity of soil bacterial com
munity, along with the bacterial orders Bacillales, Frankiales, Elsterales, Pseudomonadales, and 
Pedosphaerales exhibited higher with organic farming practices and dehydrogenase enzyme ac
tivity in organic farms (OF) was significantly higher (0.61 µg TPF g− 1 soil hour− 1) as compared to 
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0.47 µg TPF g− 1 soil hour− 1 in conventional farms (CF). This study demonstrates the benefits of 
organic management on soil health in coconut plantations and promotes the overall health of 
coconut orchards.

1. Introduction

Considerable population in the world is facing with serious food security which motivate the farming systems involve into more 
exacerbating methods to compensate the food demand (Petersen et al., 2021). Constant utilization of agricultural lands through 
conventional agricultural practices caused to severe environmental problems such as soil/water pollution and reduced soil health 
(Tuomisto et al., 2012). In coconut production in Mekong River Delta in Vietnam, persistent monoculture cultivation, over the long 
term, poses a notable risk upon the soil physical, chemical, and biological quality, and ineffective resource utilization on a local and 
global level (Swoboda et al., 2022). Harmful chemical fertilizer usage raised the problems with soil quality and fertility including 
organic matter loss and elevated soil salinity (Mensik et al., 2018; Mavi et al., 2023). Numerous studies displayed the deleterious 
impacts of conventional practices including tillage, chemical-based approaches for pest, and disease management through a reduction 
of soil organic matter, soil structure, diversity and abundance of soil organisms, and soil nutrients (Montgomery and Bikle, 2016). 
Moreover, conventional farming practices typically stimulate soil microbial activity to have a faster organic matter decomposition 
process, which in turn significantly reduce soil food webs, earthworm community, and density of soil microbes and soil organic matter 
(Wardle, 1995; Crittenden et al., 2014; Blakemore, 2018; Mcinga et al., 2020).

Organic farming methods involve a system that excludes synthetic inputs such as fertilizers, pesticides, hormones, and feed ad
ditives (USDA, 2012), and become one of the best options for combating against reduced soil health and productivity while promoting 
sustainable land use. Minimizing the export biomass from farms, particularly coconut husk, can enhance the potassium supply to palms 
through organic farming practices (Mensik et al., 2018, Magalhaes et al., 2023). Numerous studies on organic farming techniques 
indicate a predominant influence of biological activity and shifts in microbial community structure, along with their corresponding 
favored metabolic pathways (Nihad et al., 2023; Purba and Noer, 2023). Organic methods typically promote the growth of microbial 
diversity and abundance, as well as increase microbial biomass and enzyme activities (Ghabbour et al., 2017; Lori et al., 2017). In 
particular, research indicates that microbial biomass carbon and nitrogen had 41 % and 51 % higher, respectively, in organic plots, 
while microbial enzyme activity were higher in organic farm soil compared to conventional farms with a variation between 32 % and 
74 % (Lori et al., 2017).

The Mekong Delta region is the primary area for coconut cultivation, with around 130,000 ha dedicated to this crop, constituting 
approximately 80 % of the country’s total coconut acreage. Among the provinces in the Mekong Delta, Ben Tre stands out as a sig
nificant coconut hub, boasting the largest coconut plantation area of over 65,000 ha and yielding approximately 540 million fruits/ 
year (Nguyen et al., 2019). Most coconut gardens aged over 20 years old, planted at the spacing of 7.5 × 7.5 m and are mainly managed 
as monoculture with the application of chemical-based agricultural practices (Bhat et al., 2023).

Conventional farming systems are consistently deteriorating the physical, chemical and biological properties other than causing 
environmental pollution caused from excess fertilizer applications. The integral consequences on soil health and soil fertility of the two 
different farming systems including conventional and organic coconut farms in Ben Tre province, Vietnam have not been systemat
ically investigated yet. Additionally, comparative coconut farming studies to determine the most suitable management practice has 
been neglected in that region. This study evaluated and compared the results of over 3 years of organic coconut farm practices versus 
that of conventional coconut farming practices for over 20 years on soil health and fertility. We aimed to detect the amendment 
potential for organic practices in conventional coconut production systems in terms of 1) the chemical, physical and biological soil 
quality properties, and 2) the composition and diversity of soil bacterial community structure. Our results hold remarkable potential to 
significantly assist agricultural managers in making decisions regarding management practices that are aligned with climate-smart 
agriculture (Paustian et al., 2016).

2. Material and methods

2.1. Study site

Mo Cay Nam district is characterized as a region predominantly involved in organic farming; a practice adopted by approximately 
75 % of households with coconut trees aged over 20 years. In Mo Cay Nam district, the coconut plantations are grown with addition of 
manures as fertilizer without any pesticide application. In order to identify the farmers who practice organic farming in these two sites, 
a survey was carried out and only farmers who had been engaged in this practice for more than three years were chosen, and data 
regarding the kind and quantity of organic materials they employed in their main agricultural systems was gathered. The organic 
coconut farms were practiced by applying only certified organic fertilizer products supplied from Betrimex Viet Nam, and Luong Quoi 
Coconut Processing Limited Company and as well cow manure (20–40 kg plant− 1 year− 1), and chicken manure (5–8 kg plant− 1 

year− 1). Moreover, in organic coconut farms farmers have not applied any chemical fertilizers and pesticides during cultivation time. 
Conversely, Mo Cay Bac district in Ben Tre province exhibits a contrasting profile, with a significant majority of farmers (73.3 %) 
following conventional and chemical-based agricultural methods for over two decades, same as the age of the coconut trees in this 
area. Moreover, Mo Cay Nam and Mo Cay Bac are neighboring districts with the baseline original soil that was not significantly 
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different at the beginning (Fig. 1). Therefore, Mo Cay Nam and Mo Cay Bac districts, in Ben Tre province, Vietnam were selected to take 
soil samples for organic and conventional coconut farms, respectively. Coconuts in these two districts are primarily grown for oil 
production. However, in the conventional coconut farms, farmers exclusively apply traditional management practices using an average 
amount of 0.38 N, 0.44 P2O5, 0.27 K2O kg tree− 1 year− 1 synthetic fertilizers including NPK 20–20–15, Urea, Long Thanh Super 
Phosphate, and KCl. Furthermore, they employ various herbicides, insecticides, and fungicides to manage and control weeds, pests, 
and related diseases and avoid application of organic materials.

2.2. Soil sample collection and analysis

In Ben Tre region 60060 ha is occupied with conventional farming while 17940 ha farm is applied for organic coconut farming. We 
have selected 12 farms from each coconut farm locations in Mo Cay Nam (organic farm) and Mo Cay Bac (conventional farm) which 
summed up to 24 farms to represent the Ben Tre region.

From each soil sampling coconut farm illustrating for an individual soil sample, the top 0–30 cm of soil layers from 10 different 
spots within each coconut farm were collected for an intensive representation of two different farming approaches and combined to 
constitute one soil sample following a Zig-Zag curve approach using a 5 cm diameter coring soil auger. We obtained one composite soil 
sample by pooling 10 subsamples collected from each farm plot. This resulted in 12 representative samples for organic farming systems 
and 12 samples for conventional farming systems. The conventional farm locations have been interpreted as the control samples. Fresh 
soil samples were carefully sealed in plastic bags, stored in a temperature-controlled cooler box at 4℃, and promptly delivered to the 
laboratory for comprehensive analysis. At the laboratory, after removing debris and passing through a 2 mm sieve, soil DNA extraction 
and soil microbiological properties were performed immediately. The remaining samples underwent air-drying, crushing, and sieving 
through a 2 mm sieve for analysis of soil physical and chemical properties. Two days after soil preparation, physical and chemical 
properties of soil were analyzed (Houba et al., 1995). In addition, undisturbed soil samples were taken by soil ring sampler, following 
the procedure of Mtyobile et al. (2019) that 3 ring samples of soil were randomly taken from each coconut farm to measure soil bulk 
density and porosity.

2.2.1. Soil physical properties
The soil’s bulk density was assessed using metallic cores of known volume through the cylinder method. Briefly, the procedures are 

adopted from Mtyobile et al. (2019) and Van et al. (2022). The soil samples were possessed from three sampling points from soil layer 
0–10 cm in each coconut farm and placed in plastic trays for the bulk density (BD) analysis in the laboratory. Following collection, soil 
cores were oven-dried at 105℃ for 48 hours. Bulk density (BD) was determined by calculating the ratio of dry soil mass to the volume 
of the soil cores. The soil’s total porosity was subsequently calculated using the bulk density values and particle density (Mtyobile 
et al., 2019). The particle density of soil is calculated as the ratio of the dry mass (in grams) of soil to the volume of soil particles. The 

Fig. 1. Map of study site locations of two coconut farming practices adopted at Mo Cay Bac and Mo Cay Nam districts, Ben Tre, Vietnam (Google 
Earth Pro ver 7.1.8).
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soil porosity was obtained using the equation: 

Soil porosity= [1-(Soil bulk density/Particle density)]x100                                                                                                             

2.2.2. Soil chemical properties
Soil pHw (H2O) and EC were measured in 1:2.5 (w/v) soil slurry (Estefan et al., 2013; Bado et al., 2016). Soil NO3

- –N and NH4
+-N 

were extracted by 2 M KCl and detected at 540 and 650 nm wavelength, respectively using spectrophotometer (Beckman DU640i 
UV/Vis, Germany) (Haney et al., 2010). Exchangeable K (BaCl2 extractant solution) and total K were detected through atomic ab
sorption spectroscopy (Thermo Scientific™, MA, USA) (Houba et al., 1995; Schaffers and Sykora, 2000). Available phosphorus was 
determined by the Bray II method and detected at 880 nm wavelength by UV spectrophotometer (Bray and Kurtz, 1945). Total 
phosphorus was detected by ammonium phosphomolybdate method and measured at 880 nm wavelength (Nagul et al., 2015). Total 
nitrogen was identified by the Kjeldahl method using semi-micro Kjeldahl Nitrogen Detector (Saez et al., 2013). Soil organic matter 
(SOM) was analyzed by Walkley and Black (1934).

2.2.3. Determination of the soil microbial density
The total number of viable bacteria, fungi, actinomycetes, nitrogen-fixing bacteria, phosphorus-solubilizing bacteria, potassium- 

solubilizing bacteria, silicate-solubilizing bacteria, and cellulose-decomposing bacteria was estimated using serial dilution and 
plating techniques (Dubey and Maheshwari, 1999). Briefly, 10 g of soil sample was suspended in 90 mL sterilized PBS (Phosphate-
buffered saline), shaken on a shaker for 2 h prior to plating on the agar media. Tryptic soy broth (TSA), potato dextrose agar (PDA), 
Gause No.1, Burk’s N-free, NBRIP, Alexandrov, and soil extract agar (SEA) medium were used for bacteria, fungi, actinomycetes, 
nitrogen-fixing bacteria, phosphorus solubilizing bacteria, potassium solubilizing bacteria, and silicate solubilizing bacteria, and 
cellulose decomposing bacteria, respectively. The plates, then, were incubated at 32 ◦C for microbial growth. The viable counts were 
taken after 1–4 days of incubation (Mehta and Nautiyal, 2001; Park et al., 2005; Zhang et al., 2023).

2.2.4. Determination of dehydrogenase enzyme activity
Dehydrogenase enzyme activity in soil was evaluated following the procedure described in Stevenson (1959) and Burdock et al. 

(2011). Briefly, six replicates of 1 g of soil (measured on a dry weight basis) were placed in individual 20 mL test tubes. Of those six, 
three test tubes remained non-sterilized, while the other three underwent sterilization at 121◦C for 20 minutes. To each test tube, one 
mL of 0.25 M Tris buffer, 50 µL of a 0.04 M glucose solution, and 0.2 mL of a 0.008 M solution of chloride (INT) were mixed suc
cessively. Aluminum foil was used to cover test tubes placed in a rack, and the rack was subsequently placed inside the incubator at 
30 ◦C for 6 hours. Afterwards, 10 mL of 99.5 % Ethanol (C2H5OH) was supplemented to each test tube, and the sample was mixed 
thoroughly with a vortex machine for 1 minute and filtered via Whatman filter. Lastly, triphenyl formazan content generated by soil 
microbes in filtrate was quantified by UV–visible spectroscopy at a wavelength of 485 nm (Multiskan™ SkyHigh Microplate Spec
trophotometer, SoftMax®Pro 7.0 software). Triple replication was conducted to obtain satisfactory results as micromoles of triphenyl 
formazan per kilogram of dry soil per hour.

2.2.5. DNA extraction, purification and sequencing

2.2.5.1. Extraction of the total genomic DNA. Genomic DNA extraction was carried out following the protocols of Thermo Fisher 
Scientific. DNA concentration extraction was performed utilizing an Invitrogen™ Qubit™ 4 Starter Kit.

2.2.5.2. Amplicon generation and library preparation. The sequencing library was prepared using a MetaVX Library Preparation Kit. In 
summary, 20–50 ng of DNA was utilized to produce amplicons covering the V3 and V4 hypervariable regions of the bacterial 16S rRNA 
gene. The forward primer contained the sequence ‘CCTACGGRRBGCASCAGKVRVGAAT’ and the reverse primer sequence was 
‘GGACTACNVGGGTWTCTAATCC’ (Vassileva et al., 2023). The ABI GeneAmp 9700 PCR thermocycler (ABI, CA, USA) was then 
employed to amplify the two distinct hypervariable regions of the bacterial 16S rRNA gene through PCR amplification (Procedures 
followed the thermal cycling conditions presented in Table S2). Next, the size of PCR products was assessed using 1.5 % agarose gel 
electrophoresis, where fragments were anticipated to be around 600 base pairs. Finally, detection was performed using a microplate 
reader (Tecan, Infinite 200 Pro).

2.2.5.3. Illumina sequencing and data analysis. Next-generation sequencing was performed using the Illumina Miseq/Novaseq Plat
form, supplied by Illumina based in San Diego, USA, and facilitated by the company Azenta Life Science in China. This involved 
double-end sequencing, where the initial reads from both ends were paired to eliminate sequences containing the ambiguous ’N’ 
character, retaining sequences with a length greater than 200 base pairs. Subsequently, quality filtering and chimeric sequence 
removal were performed. The obtained sequences were clustered into operational taxonomic units (OTUs) using VSEARCH clustering 
(version 1.9.6), with a sequence similarity threshold set to 97 %. The 16S rRNA reference database was established using Silva, version 
138. The RDP (Ribosomal Database Program) classifier with a Bayesian algorithm was employed to analyze the taxonomy of species in 
the representative sequences. This analysis enabled statistical evaluation of the community composition of each sample across various 
levels of species classification. The microbial diversity within the soil samples (alpha and beta diversity indices, and rarefaction curves) 
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was investigated by calculating Shannon, Chao1, and observed species metrics. The chao1 metric represents for the species richness 
while the Shannon metric estimates OTU abundances, and elucidates for both richness and evenness. The detected species metric is the 
count of unique OTUs found in the sample. For beta diversity analysis of soil samples, both the weighted and unweighted UniFrac 
approach were used to produce the distance matrix. Microbial diversity was analyzed using sequence abundances by taking Weighted 
UniFrac into account.

2.3. Statistical analysis

The paired t-test specifically compared means of paired observations from both farming practices. These statistical analyses offered 
a comprehensive insight into the interplay between soil properties. The findings are expressed as mean values accompanied by their 
respective standard deviations (SD) and significant differences were verified by paired t-test. Statistical tests were conducted with the 
Minitab (version 19) software. Pearson’s correlation was analyzed using PROC CORR in SAS 9.4 while the principal component 
analysis (PCA) was conducted by R studio software with the built-in factoextra R package to examine the relationships among soil 
properties under different practices in coconut farms.

3. Results and discussion

3.1. Effect of organic and conventional practices on soil physicochemical, and biological properties

3.1.1. Soil physical properties
Organic farming positively influenced on soil bulk density and soil porosity by value of 1.08 g cm− 3 and 53.4 %, respectively as 

compared to that of conventional farming, 1.20 g cm− 3 and 51.3 %, respectively (Table 1). Bulk density and soil porosity are critical 
soil physical properties needed for evaluating the degree of soil compaction and the amount of water and air in soil (Mtyobile et al., 
2019; Van et al., 2022). These finding indicated that organic farming management reduces the risk of soil compaction. The reduced soil 
bulk density under organic farming practices is attributed to the increased soil organic matter content (Shepherd, Markus, 2002). 
According to Karami et al. (2012), the application of diverse organic matter sources could decrease soil bulk density while enhancing 
soil porosity and water infiltration rate. The lower bulk density and higher porosity of soil under organic farming practices are 
important for soil, air and nutrient management. This means that higher water, air, and nutrients under organic farming can be easily 
transferred into deeper layers of soil and stored there for later usage, especially when there is heavy rain compared with conventional 
farming practices (Williams et al., 2020). Water and nutrient evaporation reduction are also critical for water and nutrient conser
vation in water and nutrient-limited regions (Williams et al., 2022). These consequences of organic practices could add to the 
improvement of the soil health system, especially in rain-fed conditions where precipitation is widely varied.

3.1.2. Soil chemical properties
Soil pH (5.01 and 5.06) and total potassium concentration (1.40 and 1.46 for conventional vs organic farming, respectively) did not 

Table 1 
Soil physical, chemical, and biological properties associated with two different coconut farming practices in Ben Tre province, Vietnam.

Soil properties Conventional farming Organic farming F CV (%)

Soil physical properties Bulk density (g cm− 3) 1.20a 1.08b * 11.6
Soil porosity (Φ, %) 51.3b 53.4a * 2.72

Soil chemical properties pHW value 5.01 5.06 ns 9.22
EC value (mS cm− 1) 0.51b 1.14a * 6.14
Total N (%N) 0.12b 0.15a * 2.16
Total P (%P2O5) 0.13b 0.17a * 19.1
Total K (%K2O) 1.40 1.46 ns 14.6
Soil Organic Matter (%) 2.99b 3.54a * 17.0
Nitrate (NO3

- , mg kg− 1) 4.69b 6.42a * 26.5
Ammonium (NH4

+, mg kg− 1) 22.3b 38.9a * 31.9
Available phosphorus (Pav, mg kg− 1) 26.8b 69.0a * 73.9
Exchangeable potassium (Kex, meq 100 g− 1) 0.59b 1.49a * 55.2

Soil microbial densities (log (CFU g− 1 soil) Bacteria 6.01b 6.26a * 4.19
Actinomycetes 4.55a 4.10b * 7.56
Fungi 3.65 3.46 ns 7.96
Nitrogen fixing bacteria 5.84 6.06 ns 5.58
Phosphorus solubilizing bacteria 6.45a 5.23b * 12.9
Potassium solubilizing bacteria 5.82 5.98 ns 4.31
Silicate solubilizing bacteria 4.67 4.76 ns 6.29
Cellulose decomposing bacteria 3.82b 4.18a * 17.0

Soil enzyme activity Dehydrogenase (µg TPF g− 1 soil hour− 1) 0.47b 0.61a * 2.03

Note:
* means in the same rows with different letters are significantly (p < 0.05) different according to t-test; ns: non-significant; N: nitrogen; P: phos

phorus; K: potassium; N: nitrogen; Pav: available phosphorus, Kex: exchangeable potassium; CFU: Colony forming unit; TPF: triphenyl formazan.
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significantly differ from each other (p < 0.05) (Table 1). This means that within a period of 4 years, organic coconut farm practices did 
not influence the soil pH and total potassium concentration although soil pH and total potassium concentration were marginally higher 
in farms under an organic production system (Table 1). However, the organic system showed significantly higher values of soil EC, TN, 
TP, NO3

- , P-PO4
3-, and exchangeable potassium in comparison to the conventional system.

In the organic coconut farming model, the values of soil EC, TN, TP, soil organic matter, NO3
- , P-PO4

3-, and exchangeable potassium 
were 1.14 mS cm− 1, 0.15 % N, 0.17 % P, 3.54 % SOM, 6.42 mg kg− 1 NO3

- , 38.9 % mg kg− 1 NH4
+, 69.0 % mg kg− 1 P, 1.49 meq 100 g− 1, 

respectively, while in the conventional coconut model they were much lower and obtained values were 0.51 mS cm− 1, 0.12 % N, 
0.13 % P, 2.99 % SOM, 4.69 mg kg− 1 NO3

- , 22.3 mg kg− 1 NH4
+, 26.8 mg kg− 1 P, 0.56 meq 100 g− 1 K, respectively. This means that by 

increasing available phosphorus by 158 %, exchangeable potassium by 156 %, soil EC by 124 %, NH4
+ by 74 %, NO3

- by 37 %, total 
phosphorus content by 31 %, and soil organic matter by 18 %, organic coconut farming increases significantly soil chemical properties 
and make it more favorable to better soil biodiversity. Many of these soil chemical characteristics are linked to the use of organic 
amendments (Williams et al., 2022; Gopinath et al., 2023; Zhang et al., 2023).

Our research indicated a notable increase in soil organic matter within organic coconut farms compared to conventional ones. This 
result follows Waring et al. (2022) who indicated that shifting from traditional to organic production systems improved soil organic 
carbon content. This increment in soil organic matter in organic coconut farms could be due to the addition of organic sources from the 
coconut tree residues and organic fertilizer additions. Those organic supplements led to a gradually higher accumulation of soil organic 
matter (Chakraborty et al., 2011; Rahman et al., 2022). Previously, some studies indicated that long-term practices of organic 
amendments in organic farms strongly had a notable improvement in soil organic matter (Koishi et al., 2020). Similarly, Messmer et al. 
(2012) found 44 % increase at soil organic matter in the 0–15 cm layer of soil profile over four years for organic farming practices. The 
primary factor was the enhanced soil fertility in organic farming, creating an optimal growth environment for microorganisms. 
Organic fertilizers and organic residues from coconut trees provided carbon, nitrogen, phosphorus, and potassium sources that were 
effectively absorbed, decomposed, and released by soil microorganisms. Contrarily, the chemical fertilizer and pesticide-based farming 
systems bearing a lower soil organic matter and cellulose-decomposing bacterial population, have diminished organic matter 
decomposition process, causing less plant available nutrient in the conventional farming soil for plant and soil microorganisms to take 
up (Karami et al., 2012; Li et al., 2017; Tang et al., 2023).

3.1.3. Soil microbial populations
No significant differences between the two types of management were observed for soil fungal populations, and biological nitrogen 

fixing, potassium solubilizing, and silicate solubilizing soil bacterial populations (p > 0.05) (Table 1). One explanation for our findings 
of no significant difference between two farms with regard of nitrogen fixing bacteria may be that, the time for the organic farm 
practice was not long enough to change the number of the nitrogen fixing bacteria although the number of nitrogen fixing bacteria in 
the organic coconut farms was slightly higher (9.06 CFU g− 1) to compare with that of the conventional coconut farms (5.84 CFU g− 1).

However, total cultural bacterial numbers and numbers of cellulose-decomposing bacteria were significantly higher in the soil of 
the organic farms compared to the conventional farms (p < 0.05) (Table 1). The population of cellulose decomposing bacteria in the 
organic farming coconut system averaging 4.18 Log colony forming unit (CFU) (CFU g− 1), is 9.42 % higher and underlines a statis
tically significant difference compared to the conventional farming system, which is 3.82 Log (CFU g− 1). The difference is potentially 
caused by the application of organic fertilizer, which introduced a substantial amount of cellulose into the soil, promoting the activity 
of soil-borne cellulose-degrading bacterial strains.

Utilization of these functional bacteria in compost and surface soil has the potential to enhance cellulose degradation (Li et al., 
2023; Zhang et al., 2023). When the heterotrophic bacterial population constantly receives organic carbon inputs in the organic 
coconut farming system, the population of soil bacteria, and cellulose decomposing bacteria increases by using the available source of 
carbon (Nirukshan et al., 2016). Lazcano et al. (2013) showed similar enhanced numbers of bacterial and fungal populations in organic 
farming applied with organic manure regularly. Accordingly, the bacterial population responded to the added organic fertilizer co
conut farms while the population of fungi were the same in both types of management. However, in the literature fungal populations of 
agricultural soils have been positively described as impacted by organic amendments (Nakhro and Dkhar, 2010; Swer et al., 2011). In 
conventional farming, the phosphorus solubilizing bacteria rate averaged 6.45 Log (CFU g− 1), which was 23 % higher and displayed a 
significant difference when compared to the organic coconut farming system with the average phosphorus solubilizing bacteria 
population of 5.23 Log (CFU g− 1) (p < 0.05). Similar observations were made about actinomyces. This could be attributed to the lower 
availability of nutrients in conventional farms. Likely, Bao et al. (2021), stated that in less fertile soils, a higher population of acti
nomycetes, and an increased presence of functional genes are associated with the decomposition of organic matter compared to soils 
with higher fertility. Thus, such results have been orienting the development of the organic system in coconut farms.

3.1.4. Soil enzyme activity
Table 1 represents the results of assessing dehydrogenase enzyme activity in organic vs. conventional systems in Mo Cay Bac and 

Mo Cay Nam districts, Ben Tre province, Vietnam. Numerically, the highest soil enzyme activity dehydrogenase was found in organic 
farming systems with a value of 0.61 µg TPF g− 1 hour− 1 and 29.7 % higher while conventional farming systems achieved 0.47 µg TPF 
g− 1 hour− 1 (p < 0.05). This emphasizes that within organic coconut farming systems, a consistent and continuous supply of organic 
carbon sources as the energy is provided to soil microorganisms, inducing to an elevation in the microbial population, and enhancing 
the activity of the dehydrogenase enzyme within this soil category (Cardarelli et al., 2023). Similarly Wells et al. (2000) reported an 
increase in soil dehydrogenase enzyme activity in organic farms especially by bacteria resulting in higher dehydrogenase activity.
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3.1.5. Variation of soil prokaryotic communities

3.1.5.1. Soil alpha and beta diversity indices. In the effort to characterize soil microbiota composition, the chao1 diversity index 
showed that community richness was consistent between conventional and organic farms, suggesting a comparable number of alpha- 
diversity (measured by observed richness or evenness of taxa) in both coconut farming systems (Fig. 2). Likewise, the Shannon di
versity index showed no difference between the two farming systems (conventional and organic), suggesting a comparable number of 
alpha diversities in both coconut farming systems (Fig. 2).

The short-term application of organic farming practices in this study has not yet had a positive effect on the richness of soil bacterial 
species. In natural ecosystems, healthy and disease-free plants benefit from a diverse array of microbes, forming a complex plant- 
associated microbial community often referred to as the plant’s "second genome." This microbial community plays a significant 
role in enhancing plant growth and productivity (Berendsen et al., 2012; Hacquard, 2016). Our results are consistent with those of 
Durrer et al. (2021), who concluded that the short-term implementation of organic practices in maize cultivation did not result in 
significant alterations in the α-diversity indices of the bacterial community.

Previous studies comparing conventional and organic farming practices on microbial communities have also noted a beneficial 

Fig. 2. A comparison was conducted between the Shannon and Chao1 diversity indices for conventional coconut farms (n = 12) and organic co
conut farms (n = 12). Chao1 assesses the species count, while Shannon evaluates the effective species count for alpha diversity. There was no 
significant difference between conventional and organic coconut farming practices in terms of Chao1 richness (p = 0.51, t-test) and Shannon 
richness (p = 0.51, t-test).

Fig. 3. Comparison between the non-metric multidimensional scaling (NMDS) feasibility and Principal Coordinates Analysis (PCoA) analysis for 
beta diversity of soil bacterial community for conventional coconut farms (n = 12) and organic coconut farms (n = 12). Note: NMDS - Each point 
represents a sample, and the distance between the points indicates the degree of difference. Stress < 0.2 indicates NMDS can accurately reflect the difference 
between the groups.
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impact of short-term organic coconut farming practices on beta diversity (Olden et al., 2004; Constancias et al., 2014; Hartmann et al., 
2015; Lupatini et al., 2017). The consistent presence of various organic substrates in the soil, including organic fertilizers, coconut tree 
residues, and biofertilizer applications, created diverse habitat niches. These niches could be inhabited by a diverse microbial com
munity, leading to an enhancement in soil beta-diversity and the overall structure of the soil microbial community. The reduced 
heterogeneity, reflected as lower beta diversity in the microbial community of the conventional coconut system, suggests a trend 
towards increased similarity in the composition of soil bacterial communities across various taxonomic or functional groups (Olden 
et al., 2004). Other studies have similarly affirmed that soil microorganisms tend to exhibit greater diversity and abundance in organic 
systems compared to conventional ones across different soil types (Wang et al., 2016, Crowder et al., 2010; Klaus et al., 2013).

Using sequence similarity, the non-metric multidimensional scaling (NMDS) matrix was created from the OTU percentages in each 
soil sample. This matrix was analyzed to assess the similarity of beta diversity, which represents the variation in community 
composition (i.e., the observed taxa identities) among samples within a habitat across different soil samples (Fig. 3). NMDS ordination 
revealed distinct beta diversity associated with organic coconut farm practices (Fig. 3). Furthermore, principal coordinate analysis 
(PCoA) was utilized to illustrate the clustering outcomes of bacterial soil samples based on the Bray–Curtis distance. The soil samples 
from organic coconut farming system were distributed in different quadrants as compared with the soil samples from the conventional 
coconut farming system, indicating that these soil samples from two different farming practices had substantial environmental het
erogeneity and significant separation of the soil communities (Fig. 3). The farming method played a significant role in influencing the 
taxonomic and phylogenetic variabilities of the microbial communities. Specifically, the organic coconut farming system exhibited a 
greater impact on community variability compared to conventional coconut farming. Our research suggests that maintaining a steady 
organic coconut farming system has beneficial effects on microbial community variability. Specifically, it promotes more diverse 
communities in organic systems compared to conventional ones.

In the organic coconut farms, use of only organic fertilizers contributes to increasing the organic matter content in the soil, and the 
absence of chemical spraying could protect the microbial community in the soil. These are two main factors that contribute to the 
difference in soil properties between the two groups of coconut farming practices, because adding organic matter is a prerequisite, an 
important component, related to all physical, chemical and biological properties of the soil (Fageria, 2012; Lori et al., 2017), sug
gesting that organic farming helps increase from 32 % to 84 % carbon and N in microbial biomass as well as the activity of dehy
drogenase, urease and protease enzymes compared to the conventional farming system. In addition, many studies have evaluated the 
impact of organic fertilizers from different sources on soil microbial communities showed that the use of organic fertilizers helped to 
increase biomass and respiratory activity of soil microorganisms, thereby increasing soil chemical properties through the minerali
zation of their organic matter (Ridder et al., 2010). Riaz et al. (2017) stated that the provision of organic fertilizers to the soil enhanced 
the soil microbial community in numbers and diversity, which is important for nutrient cycling and pest control arising from the soil 
environment, especially organic farming stimulated an increase of the numbers of cellulose decomposing bacteria, which is significant 

Fig. 4. (a) A Venn diagram illustrating the overall number of OTUs found in soil from conventional and organic coconut farming systems, (b) A 
stacked bar plot displaying the relative abundance of various phyla in the two distinct farming systems. Phyla with relative abundances less than 
0.01 % were grouped together and labeled as "others" (n = 12 for each farming system).
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in maintaining soil fertility through the nutrient conversion cycle for crops (Bramble et al., 2024; Ratul et al., 2018).

3.1.5.2. Composition of soil bacterial community structure. In total, 26,775 bacterial OTUs (operational taxonomic unit) were identified, 
with 2972 OTUs (11.1 %) exclusively found in soil from conventional coconut fields and 4129 OTUs (15.42 % of total OTUs) in soil 
from organic coconut fields (Fig. 4a) which is 38.9 % higher than conventional farming system. Additionally, 9837 OTUs (73.84 %) 
were shared between soils from fields managed with both organic and conventional practices. The taxonomic diversity of the pro
karyotic community was influenced by the different farming methods. The findings revealed that classified sequences were associated 
with the top 30 bacterial phyla across both farming practice groups (Fig. 4b). Distinct patterns of variation at the phylum level were 
evident between the groups practicing organic coconut farming and those practicing conventional coconut farming. Organic coconut 
farming practices improved the relative abundances of 10 soil bacterial phyla including Acidobacteriota (25.39 %), Proteobacteria 
(21.96 %), Firmicutes (17.59 %), Chloroflexi (5.99 %), k_Bacteria_Unclassified (0.89 %), Desulfobacterota (0.84 %), Nitropirota 
(0.84 %), Patescibacteria (0.68 %), GAL 15 (0.67 %), and RCP2–54 (0.48 %) as compared to the soil samples collected from the 
traditional coconut farming practices in which only 4 soil bacterial phyla including Actinobacteriota (18.61 %), Verrucomicrobiota 
(2.56 %), Gemmatimonadota (2.28 %), and Myxococcota (1.27 %) were stimulated to increase (Fig. 4b).

The most abundantly identified bacteria phyla in both organic and conventional coconut farms was found to be Acidobacteriota, 
Proteobacteria, Actinobacteriota, Firmicutes, Chloroflexi, Bateroidota, Verrrucomicrobiota, and Gemmatimonadota. Further analysis 
indicated that Acidobacteriota, Proteobacteria, Firmicutes (Bacillota), and Chloroflexi were the top four phyla that increased signif
icantly in soil samples in the organic coconut farm group. These top four soil bacterial phyla are considered as beneficial bacteria in soil 
with different functionality for soil ecology (Kalam et al., 2020). Initially, Acidobacteriota thrive and proliferate in acidic and 

Fig. 5. (a) Relative abundance of the top 30 bacterial orders in the two different soil samples (Group 1: conventional coconut farming practices, and 
Group 2: Organic coconut farming practices), (b) Heat map analysis of the top 30 bacterial Genera in the two different soil samples.
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nutrient-poor environments, so they are characterized as oligotrophic bacteria (Kielak et al., 2016). Proteobacteria includes Rhizobium 
sp., Agrobacterium sp. benefits for plant and soil (Rahimlou et al., 2021). Firmicutes (Bacillota) contains notable genera of Bacillota 
including Bacilli, order Bacillales and are gram-positive and obligate anaerobic bacteria possessing spore-forming, and cocci- or 
rod-shaped characteristics. They can be used as bioremediation and phytoremediation of heavy metals and organic chemical pollutants 
in soils (Hashmi et al., 2013) other than bio-fertilizer, and biocontrol agents. The Chloroflexota encompass a bacterial phylum 
comprising aerobic thermophiles that utilize oxygen and thrive in elevated temperatures; anoxygenic phototrophs, which utilize light 
for photosynthesis (such as green non-sulfur bacteria), as well as anaerobic halo-respirerers that utilize halogenated organic com
pounds (like toxic chlorinated ethenes and polychlorinated biphenyls) as electron acceptors (Ward et al., 2009).

Inversely, the most significantly predominant phylum stimulated in conventional farming soil samples was Actinobacteriota 

Fig. 6. Pearson’s correlations among soil physio-biochemical properties under organic (a) and conventional (b) coconut production; Note: Corre
lation coefficient (r) > 0 indicates positive association. Gradient color map represents the power of association between variables; darker blue indicating 
positively stronger relationship, deeper red indicating negatively stronger relationship. SOM: Soil organic matter; NFB: Nitrogen fixing bacteria; PSB: phos
phorus solubilizing bacteria; PoSB: Potassium solubilizing bacteria; CDB: Cellulose decomposing bacteria; DHA: Dehydrogenase activity, SSB: Silicate solu
bilizing bacteria.
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(18.61 %), which has specialized metabolism inhabiting competitive and nutrient limited environments. Actinobacteria can survive 
much better than other groups of soil microbes and play multifunctional roles (Mitra et al., 2022). Numerous actinobacteria play roles 
in solubilizing and mobilizing nutrients, particularly phosphates and iron. Additionally, they serve as supportive bacteria in mycor
rhizal symbiosis and biological nitrogen fixation (Boukhatem et al., 2022).

When comparing organic and conventional coconut farming methods, it was evident that the organic coconut farming approach led 
to a notable rise in the relative abundance of seven soil bacterial orders out of 30 prevalent genera including Bacillales, Subgroup_2, 
Frankiales, Subgroup_13, Elsterales, Pseudomonadales, Pedosphaerales, and AD3 (Fig. 5a). Treatment with conventional coconut 
farming practices caused an increment of abundance of Streptacidiphilus, Burkholderia-Caballeronia-Paraburkholderia, Streptomyces, 
Acidobactericeae_(Subgroup_1) _Unclassified, Chitinophagaceace_Unclassified, Pseudomonas, Sphingomonas, and Acidobacter, and 
reduced abundance of the potentially favorable Acinetobacter and Fictibacillus (Fig. 5b).

We found that the relative abundance of Bacillales, Frankiales, Elsterales, Pseudomonadales, and Pedosphaerales significantly 
increased with organic farming practices. When farming practices are altered, the diversity of the bacterial community changes, 
leading to variations in its functionality within soil ecological systems (Knelman et al., 2012; Eo and Park, 2016; Zhang et al., 2016). 
The variation in the diversity of the bacterial community was primarily influenced by changes in the relative abundance of specific 
bacterial orders. This change enhances the functional productivity of the bacterial community in coconut planting soil (Gopal et al., 
2009; Cardoso et al., 2021) and potentially reduce the relative abundance of pathogens and their pathogenic effects (Pirttilae et al., 
2021; Wei et al., 2023). Murillo et al. (2023) observed that numerous Bacillus spp. within the Bacillales order, originating from the 
avocado rhizosphere, exhibited the capability to boost plant growth and alleviate symptoms of Fusarium wilt in A. thaliana when 
introduced into the soil which clearly indicates the potential of these strains and their metabolites as biocontrol agents against avocado 
pathogens and biofertilizers.

Diagne et al. (2013) and Nouioui et al. (2019) indicated that nitrogen-fixing bacteria Frankia (Frankiales) reduced the negative 
impacts of abiotic and biotic stresses. Introducing Frankia through inoculation notably enhances plant growth, biomass, shoot and root 
nitrogen content, as well as the survival rate after transplantation in fields of actinorhizal plants (Narayanasamy et al., 2020).

Elsterales were identified as advantageous genera that could potentially enhance the growth of tobacco plants (Chen et al., 2022). 
Pseudomonas from the Pseudomonadales order is present both in the rhizosphere and within the plant itself, contributing to soil and 
plant defense mechanisms. The Pseudomonas spp are known to regulate plant pathogens and effectively manage diseases through direct 
and indirect means. Pseudomonas spp. can serve as plant growth-promoting rhizobacteria (PGPR), aiding in nitrogen fixation, phos
phorus and potassium solubilization, and production of phytohormones, lytic enzymes, volatile organic compounds, antibiotics, and 
secondary metabolites under stress conditions (Oleńska et al., 2020).

These findings imply that organic coconut farming methods may enhance soil health conditions, fostering an environment 
conducive to the growth of potentially beneficial microorganisms.

3.2. Relationship among soil physio-biochemical properties in organic and conventional coconut productions

The correlations of soil physical, chemical, and biological properties varied between two coconut farming systems. Regression 
revealed predominant of significant correlations in coconut farms applying organic practices, as compared to the conventional system 
(Fig. 6). Adopting organic farming practices significantly led to the improvements in soil organic matter, soil porosity, electrical 
conductivity, total nitrogen, phosphorous, exchangeable potassium and their available forms, soil microbial density including the soil 
bacteria, and cellulose decomposing bacteria. Both management practices revealed significant correlations between soil organic 
matter and total nitrogen indicating the nitrogen is sourced from the soil organic matter. Porosity is an important soil quality indicator 
associated with water penetration and nutrient element transfer in the rhizosphere (Pagliai et al., 2004). Under organic management, 
the soil organic matter and soil porosity were found significantly related to total phosphorous, available phosphorous, and phos
phorous solubilizing bacteria which was not indicated in coconut farm implementing conventional system which is supported by 
Girma et al. (2020) too. The presence of phosphorus bacteria under organic management system provided higher available phosphorus 
and total P so on. Highly correlated covariates in organic farming include total nitrogen and soil organic matter, Chao1, and Shannon 
indices which are later found also in our PCA analysis, silicate solubilizing bacteria and pH.

In our study, reduction in total phosphorus in the soil was primarily influenced by the abundance of phosphorus-solubilizing 
bacteria, subsequently leading to an enhancement in available phosphorus. Notably, the increase in soil organic matter under 
organic practices was identified as the primary contributing factor to the augmentation of dehydrogenase enzyme abundances which 
aligns well with a meta-analysis conducted by Lori et al. (2017). In conventional coconut production, no significant correlation was 
found to be associated with the improvement in soil physical properties as well as soil microbial richness and abundance indices except 
for the relatively high correlation between actinomycetes and phosphorus solubilizing bacteria with nitrate. Also, potassium solubi
lizing bacteria have been found to be relatively highly correlated with the abundance of bacteria and fungi. However, in this study we 
found that the soil EC of the conventional coconut farm soils was significantly lower than that in the organic coconut farm soils, 
meaning that an acidification process has been happening in conventional farming soils due to the intensive application of chemical 
fertilizer, and soil acidification causes an important negative impact on soil bacterial abundance and diversity (Li et al., 2023). 
Moreover, Santos et al. (2020) reported that the soluble salts as a major component of soil acidification with effects on plant growth 
and microbial activity. The incorporation of intensive tillage, chemical fertilizer, pesticide, and herbicide applications, as commonly 
seen in conventional farming systems, had adverse effects on soil physical and chemical properties, posing a serious threat to soil 
microbial communities (Dubey et al., 2019; Lupatini et al., 2017).

PCA results demonstrate the positive effect of organic management on soil organic matter, actinomycetes abundance, potassium 
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solubilizing bacteria, and dehydrogenase activity in contrast to conventional farming practices, which is emphasized in Table 1. 
Moreover, Chao1 and Shannon indices are similar in both farming systems. These two diversity indices were positively correlated to 
the soil organic matter in the organic coconut farming system and positively related to the abundance of actinomycetes in the con
ventional coconut farming system. High demand for dissolved potassium by coconut trees in the soil can lead to competition for 
available potassium sources with microbial communities. Hence, the activity of potassium-solubilizing bacteria is vital in coconut- 
cultivated soil to generate sources of dissolved potassium for such bacterial group’s growth and survival. While the high correla
tion of nitrogen fixing bacteria exists with silicate solubilizing bacteria, available potassium, actinomycetes, and ammonium in organic 
farming contributing to Dim 1, in conventional farming we found more correlation among dehydrogenase enzyme activities with 
potassium solubilizing bacteria, silicate solubilizing bacteria, nitrogen fixing bacteria and fungi corresponding mostly to to Dim 2 
(Fig. 7). It’s also noteworthy that previous studies by Lu et al. (2023) have demonstrated that the potassium requirement of coconut 
trees exceeds the available potassium. Additionally, incorporation of coconut husks residues in organic farming practices greatly 
contribute to improved supply of available potassium to coconut palms. These further underscores the significance of potassium in the 
growth and yield of coconut trees (Mensik et al., 2018, Magalhaes et al., 2023). Many previous studies also mentioned that many 
factors positively respond to organic farming including soil enzyme activity, soil nutrients, diversity of microbial community (García 
et al., 2008; Wang et al., 2016).

4. Conclusions

Our study highlighted that short-term organic coconut farming application significantly contributes to a great deal of soil char
acteristics such as soil porosity, EC, soil organic matter, total nitrogen, total phosphorus, available phosphorus, exchangeable po
tassium, total heterotrophic bacteria, and population of cellulose decomposing bacteria in coconut orchards. Continuously, the 
organic-based practices of coconut farms depicted a higher dehydrogenase enzyme activity compared to conventional farming. Our 
results indicate that implementing organic farming techniques may influence microbial composition and attract beneficial bacteria to 
coconut farm soil. In addition, in organic coconut farms, a strong correlation has been observed between soil organic matter with total 
nitrogen, phosphorus, and dehydrogenase enzyme activity. Subsequent research is needed to investigate the potential benefits of 
combined applications of organic farming systems and intercropping plants for enhancing the beneficial effects on soil fertility and at 
the same time increasing the quality of coconut production in Mekong Delta Region, Vietnam. These findings suggest that adoption of 
organic farming methods provide significant benefits to soil quality and environmental health through exclusion of chemical fertilizer 
and pesticide applications and continuously added organic supplies.

Fig. 7. PCA of soil physio-biochemical parameters under organic (a) and conventional (b) coconut production. SOM: Soil organic matter; NFB: 
Nitrogen fixing bacteria; PSB: phosphorus solubilizing bacteria; PoSB: Potassium solubilizing bacteria; CDB: Cellulose decomposing bacteria; DHA: Dehy
drogenase activity. SSB: Silicate solubilizing bacteria.
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