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A B S T R A C T

How ecosystems will provide ecosystem services in the future given uncertain changes in climate and land use is 
an open question that challenges decision-making on adaptation to climate change. Prospective assessments of 
ecosystem services should carefully include and communicate the sources of uncertainties that affect the pre-
dictions. We used the ecosystem service of soil protection against erosion in the Maurienne Valley (French Alps) 
as a case study to illustrate how several sources of uncertainties can be integrated into an assessment of future 
ecosystem service supply. We modeled future erosion rates in the Maurienne Valley for years 2020 and 2085 
using the Revised Universal Soil Loss Equation (RUSLE) and six climatic and socioeconomic scenarios. We 
quantified how the ecosystem service supply will be likely affected by climate and land-use change, separately 
and jointly. We assessed the effects of different sources of uncertainty on projected erosion rates: scenarios, 
climate models choice, and methods to parametrize the ecosystem service model. Land-use change increased 
erosion (+ 3.3 ton.ha-1.yr-1 on average, with significant increases in 81 % of the study site), while climate 
change contributed to a slight reduction (-0.21 ton.ha-1.yr-1 on average with significant decrease 20 % of the 
study site). The uncertainty of the ecosystem service model parameterization explained 93 % of the variance in 
erosion values. Furthermore, uncertainty linked to climate models and future scenarios contributed almost 
equally to the variability in the direction (positive or negative) of erosion change (41 % and 38 % respectively). 
The uncertainties surrounding the direction of future changes in ecosystem services come mainly from un-
certainties in climate models and future scenarios rather than from uncertainties in the ecosystem service model 
parameters. Assessing the likelihood of future changes in ecosystem services helps prioritize locations where 
adaptation solutions are likely to be needed.

1. Introduction

Ecosystems and the services they provide (ecosystem services, ES) 
are under increasing pressure from global drivers of change, particularly 
climate change and land use and land cover (LULC) transformations. 
Climate change directly affects ecosystems by altering temperature, 
precipitation patterns, and the frequency of extreme weather events, 
leading to shifts in ecosystem processes and biodiversity loss 
(Masson-Delmonte et al., 2021). LULC changes, shaped by human ac-
tivities and socioeconomic dynamics, further compound these pressures 

by modifying habitat structures, ecosystem functions, and ES supply 
(Díaz et al., 2019; Song et al., 2018). While climate and LULC changes 
often interact to exacerbate ecosystem degradation, LULC changes can 
also offer opportunities for adaptation. Strategic land management, such 
as forest restoration or sustainable agricultural practices, has the po-
tential to mitigate the adverse effects of climate change by enhancing 
ecosystem resilience and maintaining ES supply (Fedele et al., 2018; 
Lavorel et al., 2020; Pyke and Andelman, 2007). These adaptation 
strategies, often referred to as ecosystem-based adaptation or 
nature-based solutions, provide dual benefits: they reduce human 
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vulnerability to climate risks while promoting biodiversity conservation 
and social co-benefits (Albert et al., 2021; Jones et al., 2012).

Designing effective adaptation strategies requires robust knowledge 
of how ES will respond to future changes in climate and LULC. This 
knowledge is crucial to anticipate risks, avoid maladaptive decisions, 
and identify opportunities for sustainable resource management 
(Chhetri et al., 2019; Lavorel et al., 2019). However, predicting future 
ES supply is challenging due to the inherent uncertainties associated 
with global change drivers and the ES modelling process. These un-
certainties may arise from the variability in future climate trajectories, 
socioeconomic development pathways, input data choices and quality, 
ES model choice, model parametrization and their inherent limitations 
(Refsgaard et al., 2007). Addressing these uncertainties is essential to 
provide reliable projections that can inform policy and decision-making.

Because uncertainties arise from many steps in the modeling process, 
assessing their contributions to the variability of model outputs is 
recognized as a challenge for the ES modeling and mapping community 
(Hamel and Bryant, 2017). Current approaches of uncertainty analysis 
in ES modeling often focus on quantifying the variability associated with 
input data, such as climate projections, land use scenarios, or 
socio-economic pathways and their propagation to the model output 
(Baustert et al., 2018; Refsgaard et al., 2007). Scenario-based modeling, 
for instance, is commonly used to explore how alternative futures may 
impact ES supply (Hamel and Bryant, 2017). Similarly, multi-model 
ensembles are employed to capture the range of possible outcomes 
from different modeling frameworks, particularly in climate and hy-
drological studies (van Vliet et al., 2016; Veerkamp et al., 2023; Vetter 
et al., 2015). While approaches, such as Monte Carlo simulations, geo-
statistics, difference maps or grid-uncertainty maps, are increasingly 
used to address uncertainties in modeling, they are still marginally used 
in the ES assessment community (Hamel and Bryant, 2017; Visser et al., 
2006). Furthermore, spatially explicit uncertainty assessments provide 
critical insights for localized adaptation planning but also remain 
underutilized (Baustert et al., 2018; Stritih et al., 2018; Visser et al., 
2006).

This methodological gap underscores the need for comprehensive 
analysis that incorporate multiple sources of uncertainty while 
providing actionable, spatially explicit outputs (Visser et al., 2006). 
Addressing this gap is essential for advancing ES modeling and ensuring 
its relevance for decision-makers operating under complex and uncer-
tain future conditions. To address the limitations of prospective ES as-
sessments and integrate multiple sources of uncertainty, we adopted the 
uncertainty framework proposed by Walker et al. (2003), refined by 
Refsgaard et al. (2007). This framework categorizes uncertainties by 
their location in the modelling process (e.g., data inputs, model struc-
ture), nature (e.g., variability or knowledge gaps), and type (e.g., sta-
tistical or scenario-based). Using this framework, we evaluated three 
sources of uncertainty: 

1. Scenario uncertainty: Variability in socioeconomic and emission 
trajectories.

2. Climate model uncertainty: Differences in projections across multi-
ple climate models.

3. Model parameter uncertainty: Assumptions related to the parame-
terization of the ES model.

In this study, we focus on soil erosion regulation in the French Alps, a 
critical regulating service in mountainous regions. Soil erosion con-
tributes to risk reduction and supports productive activities, such as 
agriculture (Guerra et al., 2016). However, mountain ecosystems, 
including the French Alps, are particularly sensitive to climate change, 
as evidenced by shifts in hydrological cycles, vegetation dynamics, and 
erosion processes (Hock et al., 2019). Steep slopes, diverse plant cover, 
and varying land use patterns make erosion regulation a highly 
context-dependent service, influenced by multiple factors, including 
rainfall and vegetation changes (López-Vicente and Navas, 2010). To 

model soil erosion, we used the Revised Universal Soil Loss Equation 
(RUSLE), a robust and widely applied empirical model that estimates 
long-term soil loss based on drivers such as rainfall, soil properties, and 
land cover (Renard, 1997). RUSLE is particularly well-suited for our 
study due to its adaptability to different contexts, including alpine re-
gions (Aiello et al., 2019; Borrelli et al., 2020; BoSCo et al., 2009; Gia-
ninetto et al., 2020; Panagos, Borrelli, Poesen, et al., 2015). This analysis 
focused on two key RUSLE factors directly influenced by climate change 
and LULC projections: rainfall erosivity and land cover changes.

Specifically, this study aimed to: (1) estimate current (2020) and 
future (2085) erosion rates and disentangle the contributions of climate 
and LULC changes to these differences; (2) map the level of agreement 
among models and methods regarding the direction and significance of 
future erosion changes; (3) quantify the contribution of different un-
certainty sources to the magnitude and direction of projected changes. 
By incorporating three sources of uncertainty and using a novel meth-
odology to map agreement on future ES supply, we provide spatially 
explicit information on likely changes in erosion, improve understand-
ing on the drivers of these changes, assess the contribution of the sources 
of uncertainty to model outputs, and provide practical guidance on how 
our probabilistic mapping of future ES supply can inform adaptation 
planning decisions.

2. Material & methods

2.1. Overall approach

ES modeling commonly relies on data used as proxies to describe 
ecosystem state (e.g., land use and land cover maps) or earth observa-
tion data (e.g., vegetation indices) (Egarter Vigl et al., 2017; Schägner 
et al., 2013; Stritih et al., 2018). Climate variables are also major inputs 
to the modeling of ES that are sensitive to climate, especially when 
assessing the effect of future climate change (Lavorel, 2019; Schirpke 
et al., 2017). To understand how the future drivers of change with their 
related sources uncertainty can modify the supply of ES in the future, we 
used multiple scenarios of future change in LULC and climate. To 
analyze changes in a phenomenon characterized by interannual vari-
ability (i.e., erosion and soil protection depends on annual rainfall), we 
developed a specific method that can apply to any ES with interannual 
variability.

Our approach relied on a spatially explicit modeling process that 
estimated ES supply for two time windows (2020 and 2085) at a 0.005 
arc degree spatial resolution. Several scenarios of climate change or 
LULC change were considered, and we developed an original method to 
compare present and future maps of the ES supply to assess its change 
over time. For each time window, to account for the interannual vari-
ability of climate variables (rainfall in our case), we produced maps of 
the ES supply for each year of a 30-year period centered in 2020 and 
2085. Those 30 maps accounting for interannual variability of rainfall 
were produced for all combinations of uncertainty sources accounted 
here (e.g. LULC and climate scenarios, climate models and ES model 
parametrization methods).

2.2. Study site

We modeled erosion in the Maurienne valley in the French Alps, a 
120-km-long alpine valley located on the border with Italy. Its altitude 
ranges from 289 to 3571 m a.s.l., with a mean altitude of 2034 m a.s.l.. It 
covers 1 976 km² and its center is located at 45◦11′N - 6◦39′E (Fig. 1). 
The valley is shaped by the Arc River which flows from the east to the 
west. The montane climate has a sharp rainfall gradient from the 
northwest (more humid) to the southeast (drier). Between 1999 and 
2019, the average annual rainfall was 1641 mm in Saint-Rémy-de- 
Maurienne (western part of the valley) and 1142 mm in Aussois (eastern 
part). Temperatures follow a west-east altitudinal gradient, with milder 
average temperatures in the west (4.6 ◦C mean annual temperature in 
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Saint-Rémy-de-Maurienne) and colder average temperatures in the east 
(0.1 ◦C mean annual temperature in Aussois). The catchment geology in 
its far western part is mainly ortho-gneiss or locally schist (low to me-
dium erodibility) followed by a large band of schist, conglomerate, and 
flysch (high erodibility) extending until the central area of the valley 
with coal and carbonate type rock (low erodibility); the eastern part of 
the valley is formed of lustrous shales, i.e. calcareous and detrital sedi-
ments, as well as ophiolites (medium to high erodibility).

Land cover comprises a high share of bare soils (36 %), mainly 
located at high altitude in the eastern part of the valley, while forest 
covers slopes at low and medium altitudes and grasslands prevail at 
medium to high altitude (each 26 %). The rest of the landscape is 
composed of shrubs (5 %), glaciers (2 %) at very altitudes, built-up land 
(2 %) and water surfaces (1 %) (Fig. 1).

2.3. Erosion model

The RUSLE model was originally developed for U.S. agricultural land 
management at the parcel scale, but has since undergone multiple de-
velopments (Renard, 1997; Wischmeier and Smith, 1978). In particular, 
remote sensing data and Geographical Information Systems (GIS) have 
allowed using the RUSLE model at larger scales: from the watershed 
level to the earth scale (Fu et al., 2005; Kouli et al., 2009; Lu et al., 2004; 
Panagos et al., 2015; Zhang et al., 2013). The RUSLE model considers six 
factors affecting soil erosion:

Eq. (1): Revised Universal Soil Loss Equation 

A = R ∗ C ∗ L ∗ S ∗ K ∗ P (1) 

Where A is the soil loss estimation in ton.ha− 1.yr− 1, R is the rainfall 

erosivity factor (i.e. the erosion power of rainfall) in MJ.mm.ha− 1.h− 1. 
yr− 1, K is the soil erodibility factor (i.e., the sensibility of soils to erosion) 
in ton.h.MJ− 1.mm− 1, L is the slope length (dimensionless), S is the slope 
steepness (dimensionless), C is the vegetation cover factor (dimension-
less, between 0 and 1), and P is the effect of soil conservation practices 
(dimensionless, between 0 and 1) (Eq. (1): Revised Universal Soil Loss 
Equation). In the absence of information on soil conservation practices 
in the studied area, we used a constant value of one for the P factor (i.e. 
we ignored its effect on erosion). The factors linked to slope (LS factor) 
and soil texture (K factor) were also considered constant at our time 
scale, the Table 2 provides information on the data we used to calculate 
them, also, a full description of the methods used to estimate those pa-
rameters is available in Supplementary Materials D and E.

Rainfall erosivity (the R factor) is usually calculated using the 
maximal rainfall intensity at a 30 mins temporal resolution (Renard, 
1997). As this type of hourly climate data was not available for future 
projections, we estimated the R factor based on annual rainfall data 
following Renard (1997). Rainfall erosivity was calculated for two 
time-periods of 30 years centered in 2020 for the present and 2085 for 
the future. The annual rainfall data were transformed into rainfall fac-
tors used inside the ES model by using 4 different equations accounting 
for the uncertainty in the model parameterization (see Supplementary 
material B).

Cover factor (the C factor) were derived from LULC classes using 
conversion tables with the minimum, mean and maximal values of the 
ranges indicated by (Panagos et al., 2015) (see Supplementary material 
C for a description of the conversion tables). Given the probabilistic 
nature of the LULC data, each erosion calculation used a mean value of 
the C factor weighted by the probability of each LULC (as each LULC was 

Fig. 1. Data flow for the uncertainty sources assessed in the analysis. Acronyms in the figure stand for: GhG: Greenhouse Gases, RCP: Representative Concentration 
Pathway, SSP: Shared Socioeconomic Pathway, GCM: Global Circulation Model, RCM: Regional Climate Model, GCAM: Global Change Assessment Model, LULC: 
Land Use and Land Cover, R factor: Rainfall erosivity factor, C factor: land cover factor, LS: Slope length and steepness factors, K: soil erosivity factor, RUSLE: Revised 
Universal Soil Loss Equation.
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associated to a probability and a value of C according to a cover factor 
table).

2.4. Climate scenarios

Future precipitation was estimated using climate projections derived 

from different models that simulate the effects of greenhouse gas (GHG) 
emissions on climate variables under multiple socio-economic and 
emission scenarios (Fig. 2).

We selected six future socio-economic scenarios provided by the 
IPCC. These scenarios are the IPCC Shared Socioeconomic Pathway 
(O’Neill et al., 2014) and Representative Concentration Pathways (Riahi 

Fig. 2. Study site location, altitude and land use and land cover. A. Location of Maurienne valley. B. Study site digital elevation model. C. Study site land use and land 
cover in 2016. The detailed land use and land cover dataset is provided by the Data Management Authority from the Savoie department.
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et al., 2017; van Vuuren et al., 2011). The Shared Socioeconomic 
Pathways (SSP) describe possible future trajectories of human societies, 
including efforts to reduce GHG emissions. The Representative Con-
centration Pathways (RCP) account for the intensity of radiative forcing 
induced by atmospheric GHG in the future. Because the SSP and RCP are 
related, not all combinations of SSP and RCP are evaluated. We selected 
all combinations of SSP and RCP used in our climate dataset that 
matched the scenarios used in our LULC datasets, giving 6 couples of 
SSP-RCP in total (SSP1–5 with RCP4.5 and SSP5 with RCP 8.5). To ac-
count for climate model uncertainty, we considered seven different 
climate models, i.e., combinations of a General Circulation Model 
(GCM) and a Regional Climate Model (RCM) (Table 1 and Supplemen-
tary material A). The climate data for the seven models and the two 
emissions scenarios (RCP 4.5 and RCP 8.5) was obtained through the 
ADAMONT method, developed by the EURO–CORDEX project 
(Verfaillie et al., 2017). The ADAMONT dataset provides climate data 
specifically for mountain contexts (Verfaillie et al., 2017) (Supplemen-
tary material A), structured by altitude slices of 300 m and mountain 
ranges (seven in our study site).

2.5. LULC scenarios

We used a global land use dataset produced by a Global Change 
Assessment Model (GCAM) and the Demeter downscaling method (Chen 
et al., 2020; Chen and Vernon, 2020) (Fig. 2, Tables 1 and 2 and Sup-
plementary Materials A). GCAM are dynamic models simulating eco-
nomic systems and natural resources under climate change to produce 
scenarios that include LULC (Calvin et al., 2019). We extracted data for 
our six SSP-RCP scenarios and our three GCM. The Demeter dataset 
provides the probability of each pixel to belong to 32 LULC classes, 
which we aggregated into 6 broad classes (glacier, bare soil, meadows, 
shrubs, forest, crop, and water surface). We discarded the urban class 
because we assumed no erosion in urban areas and because many pixels 
were incorrectly classified as urban (as shown by a comparison with the 
Sentinel 2 dataset of current LULC). After deleting the urban class, we 
applied a correction factor to the probabilities to ensure a sum of 1. 
Finally, we downscaled the dataset to a 150 m spatial resolution by using 
the disaggregate function with the bilinear method from the raster 
package (Hijmans et al., 2022) in the R software (R Core Team, 2018 - 
version 4.0.1).

2.6. Uncertainty assessment

2.6.1. Mapping the likely change in ecosystem service supply despite 
uncertainty

We first resampled all spatial input data at a spatial resolution of 
0.005 arc degree (approximately 220×120 m resolution, with 9537 
pixels for the whole study site) with the R software version 4.0.1 (R Core 
Team, 2018). We then calculated erosion at two time periods (2020 and 
2085) for 504 combination of input variables (i.e., combinations of 6 
SSP-RCP scenarios, 7 climate models, 4 rainfall erosivity equations, and 
3 cover factor tables) (Fig. 2 and Supplementary Material: A, B and C). 
Erosion was calculated for each year of the two time-periods of 30 years 
centered in 2020 for the present and 2085 for the future (details in 
Supplementary Material A-C).

To analyze the significance of ES supply change between 2020 and 
2085 considering interannual rainfall variability, and between scenario 
and model combinations, we performed a Z-test, which compared the 30 
values of ES supply in the present with those of the future (normality was 
verified for 60 % of the pixels across the two 30-year periods using a 
Shapiro-test). The Z-test was applied for each pixel and each case. We 
used -1.96 and 1.96 as thresholds for negative or positive significant 
difference. As we were interested in understanding how climate models 
and ES model parametrization affected the future direction of change 
and its likelihood, we calculated to frequencies of significant increase or 
decrease for each pixel and each of the scenarios of future LULC and 

Table 1 
Description of the SSP-RCP scenarios used in the study and their effect on the 
RUSLE model parameters.

Scenarios Effect on the 
RUSLE

Name Description: adapted 
from Riahi et al. 
(2017) and van 
Vuuren et al. (2011)

Representative 
Concentration 
Pathway (RCP): 
Scenarios of future 
greenhouse gases 
concentration

Cover factor 
(C) and 
Rainfall 
erosivity factor 
(R) through 
climate change 
and LULC 
changes.

RCP4.5 
(combined 
with the 5 
SSP 
scenarios)

Intermediate 
scenario of radiative 
forcing (4.5 W/m²) in 
year 2100

RCP8.5 
(combined 
with SSP5 in 
this study)

Extreme scenario of 
radiative forcing (8.5 
W/m²) in year 2100

Shared Socio- 
economic 
Pathways (SSP): 
Scenarios of 
socioeconomic 
change by 2100

Cover factor 
(C) through 
LULC

SSP1 Sustainability 
(Taking the Green 
Road). Sustainable 
path; inclusive 
development; low 
material growth and 
lower resource and 
energy intensity; low 
adaptation and 
mitigation 
challenges:

SSP2 Middle of the Road. 
No marked shift from 
historical patterns; 
slow progress in 
achieving sustainable 
development goals; 
middle adaptation 
and mitigation 
challenges.

SSP3 Regional Rivalry (A 
Rocky Road). 
Resurgent 
nationalism and 
conflicts; focus on 
national or regional 
energy and food 
security; strong 
environmental 
degradation in some 
regions; high 
adaptation and 
mitigation 
challenges.

SSP4 Inequality (A Road 
divided). Increasing 
disparities and 
inequalities across 
and within countries; 
conflict and unrest; 
focus of 
environmental 
policies on local 
issues around 
middle- and high- 
income areas; high 
adaptation and low 
mitigation 
challenges.

SSP5 Fossil-fueled 
Development 
(Taking the 
Highway). 
Increasing faith in 
competitive markets; 
exploitation of fossil 
fuel; adoption of 
resource and energy 
intensive lifestyles; 
high mitigation and 
low adaptation 
challenges:
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climate change. Pixels were classified into four categories: likely in-
crease (with <10 % of cases of significant decrease and >10 % of sig-
nificant increase), likely decrease (with <10 % of cases of significant 
increase and >10 % of significant decrease), likely no change (with <10 
% of cases of both significant increase and decrease), and uncertainty 
(with >10 % of cases of both significant increase and decrease). This 
method focused on the agreement among cases regarding the future 
change in the ES supply and thus allowed the rapid identification of 
locations where future change is likely to be significant (positive or 
negative), locations where change is unlikely, and locations where 
change is significant but uncertain because cases disagree on its 

direction.

2.6.2. Uncertainty contribution to the magnitude and direction of change
To assess how time affected ES supply in terms of magnitude and the 

respective contributions of the different uncertainty sources to the ES 
supply projections, we fitted a linear mixed-effects model using lmer4 
package in R and a restricted maximum likelihood method (Bates et al., 
2015). The model was fitted on the log-transformed ES values. Time 
period was set as a fixed effect, while random effects were the SSP-RCP 
scenario couples, the climate models, and the methods used to param-
etrize the ES model. The contributions of individual uncertainty sources 

Table 2 
Data sources, nature and description.

Data source RUSLE factor Description Spatial res. Temp. 
res.

Reference

Rainfall data Rainfall erosivity 
factor (R)

Simulated rainfall data under climate change scenario RCP 4.5 
and 8.5 and 7 couples of regional and general circulation model. 
The dataset used are the products made for mountain context 
using the ADAMONT downscaling method of the 
EURO–CORDEX project. Time series are going from 2005 to 
2100.

Structured by points 
accounting for massifs sliced 
by 300 m of altitude

1-year 
time 
steps

http://www.drias-c 
limat.fr/
(Verfaillie et al., 2017)

Land use and 
land cover 
data

Cover factor (C) Simulated future land use and land cover from 2015 to 2090 
under 6 future scenarios and 3 GCM. Land use and land cover are 
distributed originally in 32 classes and each of them are assigned 
as probabilities on each pixel.

0.05◦ pixels downscaled to 
150 m

5-year 
time 
steps

https://data.pnnl. 
gov/dataset/13192
(Chen and Vernon, 
2020)

Digital 
elevation 
model

Slope length and 
steepness (L and 
S)

Digital elevation model over the study area at 5 m spatial 
resolution.

5 m _ https://geoservices.ign. 
fr/

Soil database Soil erodibility 
factor (K)

DonneSol V2 database containing data for multiple soil layers 
over our study site. Data for organic matter content, clay, silt and 
sand percentages for the upper layer of soil were used to 
estimate K factor.

Vector format _ French National Institute 
of Agronomic Research 
(INRAe)

Fig. 3. Soil losses in 2020 in ton.ha− 1.yr− 1. Urban, permanent snow, glaciers, and water were discarded from the analysis and displayed in gray. The climate and 
LULC datasets were averaged across the six scenarios as they were similar in 2020.
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to the overall variability of erosion values were quantified by their 
respective variance explained.

Finally, to assess how uncertainty sources contributed to the direc-
tion of change in ES supply, we transformed the supply differences be-
tween 2020 and 2085 into a binary variable indicating positive or 
negative change in the future. We then fitted a binomial model using the 
R package lmer4 where all sources of uncertainty were implemented as 
random effects. This statistical model provides an understanding of how 
the sources of uncertainty explain the variability of the future direction 
of ES supply change.

3. Results

3.1. Erosion changes and their drivers

In 2020, erosion rates in the Maurienne Valley ranged from 0 to 46 
tons⋅ha⁻¹⋅yr⁻¹, with a mean of 4.5 tons⋅ha⁻¹⋅yr⁻¹ when averaging over 
scenarios, climate models and erosion parameterization methods 
(Fig. 3). Lower values were observed at low and mid-altitudes, primarily 
in forested areas, while the highest values occurred in steep, high- 
altitude zones. By 2085, projected changes in erosion ranged from -65 
to +134 tons⋅ha⁻¹⋅yr⁻¹, with a mean increase of +2.9 tons⋅ha⁻¹⋅yr⁻¹ 
across all combinations of input data. LULC changes alone contributed 
an average increase of +3.3 tons⋅ha⁻¹⋅yr⁻¹, while climate change alone 
led to a small mean reduction of -0.21 tons⋅ha⁻¹⋅yr⁻¹ (Fig. 4). The com-
bined effects of LULC and climate change showed that LULC-driven in-
creases often outweighed climate-driven reductions (Fig. 5).

Changes in erosion resulted from changes in land cover change (C 
factor) and rainfall erosivity (R factor) in several ways. Regarding land 
cover, increased cropland areas and decreased forest, shrubland, and 
grassland led to significant increases in erosion rates (Fig. 6A). The 
"Regional Rivalry" scenario (SSP3 – RCP 4.5) exhibited the greatest in-
creases, reflecting widespread vegetation loss and cropland expansion. 
Future changes in the C factor depend mostly on future scenarios and 
almost not on the climate model (Fig. 6B). Variance analysis showed that 
scenarios explained 23 % of the variance in absolute changes in the C 
factor, whereas climate models explained only 0.2 % (Fig. 6B). 
Regarding rainfall erosivity, climate change led to a mean reduction in 
rainfall erosivity of 4.6 % across models, with the largest reductions 
observed under RCP 8.5 on average (Fig. 7). This contributed to local-
ized decreases in erosion but did not offset the increases driven by land 
use changes. Climate models, rather than scenarios, were the main 
sources of variability in changes in rainfall erosivity, with 67 % of 
variance explained by climate models compared with 0.4 % by RCP 
scenarios. Nevertheless, disparities in the direction and magnitude of 

future changes were greatest under RCP 8.5 (with a higher standard 
deviation of change in the precipitation erosivity factor than under RCP 
4.5).

3.2. Likelihood of erosion changes under uncertainty

The likelihood of erosion changes varied spatially across the study 
site. LULC changes led to significant erosion increases in 81 % of the area 
across scenarios, while climate-driven decreases were significant in 20 
% of the area on average across the six scenarios (Fig. 5).

The sustainability scenario (SSP1 – RCP 4.5) predicted the largest 
areas of significant erosion reduction (18 %), whereas the "Regional 
Rivalry" scenario (SSP3 – RCP 4.5) projected the highest proportion of 
significant increases (93 %). Under the “Fossil-fueled Development” 
scenario (SSP5 – RCP 8.5), uncertainty in the direction of significant 
change was most pronounced, with 7 % of the area showing conflicting 
projections of significant increases or decreases, reflecting the large 
disagreement among climate models regarding future change in rainfall 
erosivity under the RCP 8.5 (Fig. 7).

The direction of future changes in erosion due to climate change 
alone was most uncertain under RCP 8.5 (Fig. 5). Under this scenario, 
the climate models projected conflicting significant increases or de-
creases in 16 % of the area (compared to <2 % under other scenarios) 
due to a large disagreement in the change in rainfall erosivity between 
climate models under RCP 8.5 (Fig. 7). When considering the combined 
effect of drivers of change, an overlap of LULC-related increases with 
CC-related decreases mostly resulted in a significant net increase in 
erosion due to the strongest positive change induced by LULC change 
(Fig. 5). Under RCP 8.5, some uncertainties in CC-related changes were 
propagated to the overall trend by both climate and LULC changes, 
while others were offset by LULC-induced increases (Fig. 5). In all other 
scenarios, the addition of the two drivers of change slightly increased the 
occurrence of areas of uncertain significant change (+3 % uncertain 
areas on average across the five scenarios associated with RCP 4.5).

3.3. Contribution of uncertainty sources to the magnitude and direction of 
changes

The three sources of uncertainty tested in our analysis had very 
different contributions to the overall uncertainty in either the magnitude 
or the direction of the predicted change. For the magnitude of erosion 
change, the uncertainty due to erosion model parametrization was the 
primary contributor to overall uncertainty, accounting for 93 % of the 
total variance. Climate model uncertainty explained 6 %, while scenario 
uncertainty contributed only 1 % (Supplementary Materials F).

Fig. 4. Cumulative distribution of absolute changes in erosion (ton.ha− 1.yr− 1) between 2020 and 2085 for different SSP-RCP couples (columns) and drivers of change 
(rows). Observation unit is the number of pixels over the study site.
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For the direction of erosion change, uncertainty was more evenly 
distributed across sources. The binomial model of variability in the di-
rection of erosion change showed that the choice of climate models 
contributed almost as much to the explained variance as scenario un-
certainties (41 % and 38 %, respectively), whereas, the erosion param-
eter uncertainty contributed 21 % of the explained variance 
(Supplementary Materials F).

4. Discussion

4.1. Projected erosion changes and their drivers in the Maurienne Valley

Our results indicate significant changes in soil erosion across the 
Maurienne Valley by 2085, with an overall increasing trend primarily 
driven by LULC changes. Current erosion estimates from our study (4.5 
ton⋅ha⁻¹⋅yr⁻¹ on average) align closely with Europe-wide findings 
(Panagos et al., 2015a), showing similar spatial patterns: lower rates in 
valley floors and higher rates in steep, high-altitude areas. Future pro-
jections indicate that, whereas climate change has only a small overall 
effect on erosion, it influences spatial variability through changes in 
rainfall erosivity, consistent with previous studies (Panagos et al., 2021). 
Our findings highlight the dominant role of LULC dynamics in shaping 
erosion trends, particularly in mountain regions where land manage-
ment decisions critically influence soil loss.

Under the intermediate RCP 4.5 emissions scenario, our projections 
show that socioeconomic pathways drive divergent outcomes, with SSP1 
(sustainability) resulting in the smallest increases in erosion, while 
alternative pathways project substantial increases due to intensified 
land use pressures. Overall, LULC changes emerge as the dominant 
driver of erosion increases, largely exceeding the modest decreases 
induced by climate change. This is consistent with previous research, 
which highlights the critical role of LULC dynamics as both a driver of 
increased erosion risk and a potential adaptation strategy to mitigate 
climate-induced impacts (Gianinetto et al., 2020; Mullan et al., 2012). 
Specifically, future cropland expansion and losses of natural vegetation 
are the primary contributors to increased erosion rates, as documented 
in studies by Vanwalleghem et al. (2017) and Borrelli et al. (2020).

Our analysis highlights the variability introduced by climate model 
outputs, particularly under the high-emissions SSP5 – RCP 8.5 scenario, 
where rainfall projections varied significantly across climate models, 
leading to uncertain predictions in 16 % of the study area. While 
changes in rainfall erosivity are highly sensitive to the selected climate 
model, land cover changes are more strongly influenced by socioeco-
nomic scenarios and less affected the choice of climate model. This 
decoupling underscores the importance of integrating both LULC sce-
narios and climate models to improve the reliability of ES projections.

4.2. Uncertainty assessment

Our analysis reveals that different sources of uncertainty have 
distinct impacts on the projections of future erosion. The uncertainty in 
model parameterization, particularly in the C and R factors of the RUSLE 
model, is the dominant contributor to variability in the magnitude of 
erosion estimates. This finding aligns with previous studies that high-
light the sensitivity of erosion models to land cover parameterization, as 
the choice of conversion tables or calculation methods can lead to sub-
stantially different erosion rates (Carr et al., 2020; Estrada-Carmona 
et al., 2017).

Conversely, uncertainties in direction of future significant changes in 
erosion come primarily from uncertainties linked to climate models and 
socioeconomic scenarios. Climate models exhibit substantial variability 
in their projections of rainfall patterns, especially under high-emission 
scenarios like SSP5 – RCP 8.5. This variability leads to inconsistencies 
in whether future erosion will increase or decrease across certain areas. 
Similarly, the inherent unpredictability of future socioeconomic path-
ways (ontological uncertainty) further contributes to variability in the 
directional trends of erosion change (Refsgaard et al., 2007; Walker 
et al., 2003). These findings emphasize the critical need to consider 
multiple climate models and scenarios in ES impact assessments to 
adequately capture the range of potential outcomes (Sørland et al., 
2018).

By analyzing the contributions of these uncertainty sources, our 
study highlights a crucial distinction: the variability in erosion magni-
tudes is driven by epistemic uncertainties (knowledge gaps) in ES model 

Fig. 5. Likelihood and agreement of future erosion change across climate models and erosion parameters uncertainty sources decomposed future drivers of change 
and scenarios.
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parameterization, while the variability in erosion direction is shaped by 
a combination of epistemic and ontological uncertainties (future 
unpredictability). This differentiation underscores the importance of 
tailoring uncertainty management strategies to specific research or 
policy questions. For instance, efforts to refine predictions of erosion 
magnitude should focus on improving the accuracy of model parame-
terization, such as better characterizing C and R factor inputs. 

Meanwhile, assessments that aim to identify the likelihood of directional 
changes should prioritize the integration of diverse climate models and 
scenarios to capture the range of plausible futures.

Representing diverse uncertainties in a spatially explicit manner is 
essential for understanding their implications, improving ES modeling, 
and effectively communicating the uncertainty of model outputs. As 
Visser (2006) emphasizes, uncertainty mapping should move beyond 

Fig. 6. LULC changes and consequences for C-factor across future scenarios. A: Land use and land cover composition in the study site across the two time periods, the 
6 scenarios and the 3 global circulation models. B: C factor absolute difference between 2020 and 2085 by future scenarios and choice of climate models. The boxplot 
is represented using interquartile range and median while whiskers correspond to 1.5 interquartile range.
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merely acknowledging variability to making it actionable by dis-
tinguishing areas with robust predictions from those with high ambi-
guity. However, traditional approaches rarely integrate multiple sources 
of uncertainty into a coherent spatial framework, limiting their potential 
utility (Hamel and Bryant, 2017). Our approach addresses these chal-
lenges by developing a probabilistic mapping framework that includes 
uncertainties from climate models, LULC scenarios, and model param-
eterization. By mapping the agreement among these sources regarding 
the significance and direction of erosion change, we provide a novel 
visualization that highlights both areas of high predictive confidence 
and regions of high uncertainty.

4.3. Adaptation to climate change in a context of uncertainty

Our analysis provides actionable insights for guiding adaptation 
strategies by identifying locations where erosion risks are significant 
across future scenarios. By integrating multiple sources of uncertainty 
into probabilistic erosion mapping, we highlight areas of high confi-
dence for erosion increases, as well as regions where uncertainty about 
the direction of change persists. This spatially explicit approach is 
particularly valuable for prioritizing adaptation measures and designing 
targeted interventions to mitigate future erosion risks in an uncertain 
context (Siders and Pierce, 2021; Visser et al., 2006).

By assessing the likelihood of erosion changes across future sce-
narios, we can identify key locations of interest for adaptation, where 
significant increases in erosion consistently appear. The inclusion of two 
drivers of change (climate change and LULC transitions due to socio-
economic changes) enables differentiating adaptation options, as LULC 
management can reduce future local impacts of climate change 
(Costanza and Terando, 2019; Duguma et al., 2014; Pyke and Andelman, 
2007).

Where LULC transitions from natural areas to crops are the dominant 
driver of future increased erosion, adaptation efforts could focus on 
preventing vegetation degradation, such as regulating livestock stocking 
rates to avoid overgrazing, limiting conversion of grassland to cropland, 

or promoting landscape encroachment by abandoning agriculture on the 
least valuable grasslands (Rey, 2021). Agricultural practices play a 
crucial role in shaping future erosion risks, particularly through the P 
factor in the RUSLE model, which accounts for soil conservation tech-
niques and was not integrated in this study. Practices such as reduced or 
no-tillage and cropland terracing have proven effective in mitigating soil 
loss (Panagos et al., 2015). In our study area, remnants of early 
20th-century agricultural terraces remain visible in the landscape. These 
terraces, if restored, could act as natural barriers to erosion while 
enhancing water retention and soil stability. Future research could 
explore how such measures influence erosion by analyzing how the P 
factor implementation modify the likely erosion change, offering a 
pathway for testing candidate adaptation solutions. In contrast, where 
climate change is the main driver of future erosion change, investing in 
sustainable agricultural practices, nature-based solutions and ecological 
engineering to stabilize soils can mitigate impacts (Kumar et al., 2021; 
Soini et al., 2023). In locations where the direction of future erosion 
change remains uncertain, no-regret strategies can be prioritized 
(Heltberg et al., 2009). For example, passive restoration of low-value 
agricultural lands combined with long-term monitoring could improve 
erosion mitigation while generating co-benefits for biodiversity and ES 
(Egarter Vigl et al., 2017). Our probabilistic approach allows for these 
adaptation strategies to be implemented in areas where confidence in 
the future ES change is the highest, ensuring adaptation efforts remain 
effective even under unpredictable future conditions.

In this regard, an innovative but still unexplored feature of our 
approach lies in its potential to adapt detection thresholds for significant 
erosion changes to better support decision-making. In our results, 
thresholds were set at 10 %, but adjusting these thresholds could help 
refine adaptation priorities. For example, raising thresholds would 
highlight only the locations experiencing the most certain changes, 
thereby identifying areas requiring immediate and high-priority adap-
tation solutions. Conversely, lower thresholds reveal regions with 
moderate but widespread risks, useful for identifying broader-scale in-
terventions. This feature could make our probabilistic framework 

Fig. 7. R factor absolute difference between 2020 and 2085 by future scenarios and choice of climate models. The boxplot is represented using interquartile range 
and median while whiskers correspond to 1.5 interquartile range.
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particularly well-suited for tailoring adaptation strategies to the specific 
needs and resources of local actors.

Our approach demonstrates the potential utility of probabilistic 
mapping for prioritizing adaptation solutions based on the likely 
magnitude and direction of change in ES supply, even with uncertain 
information about the future (Dessai and Hulme, 2004). As climate, 
socioeconomic trajectories, and adaptation outcomes evolve, this 
framework can be iteratively refined. By engaging local stakeholders, 
scientists and decision-makers can co-produce robust adaptation path-
ways that address local priorities while remaining flexible to emerging 
data and shifting conditions (Lavorel et al., 2019).

4.4. Limitations

The RUSLE model’s C factor, which represents land cover manage-
ment, is highly sensitive to the choice of conversion tables and meth-
odologies. The variability in these values across different tables 
contributes significantly to uncertainty in erosion projections. Our study 
used only one conversion table and examined its minimum, average, and 
maximum values, but this was insufficient to fully capture the range of 
possible outcomes. Disagreements in the literature over C values for bare 
soils (from 0 to 1) highlight the difficulty in accurately characterizing 
high-altitude land uses, which are critical for understanding erosion 
dynamics in mountainous regions. Our choice of a C-factor value of 0 for 
bare soils, following Panagos et al. (2015) led to null erosion values in 
these areas. Bare soils are mainly located at very high altitude where 
rainfall and erosivity are also the highest which suggest that we might 
have underestimated the global erosion rates over the study site (for a 
detailed analysis of the effect of C factor value in bare soil see Supple-
mentary material G). Better distinguishing between bare rock and bare 
soil areas in the LULC dataset would help mitigate these methodological 
biases.

The estimation of rainfall erosivity in our study relied on annual 
rainfall as a proxy, rather than the modified Fournier index typically 
used in the RUSLE to assess rainfall erosivity (R factor) over short time 
scales (e.g., half-hourly resolution) (Renard, 1997; Renard and Frei-
mund, 1994). This approach does not account for extreme rainfall events 
at fine temporal resolution, which are critical for understanding peak 
erosion risks (Panagos et al., 2015). The omission of such events restricts 
our understanding of variability in erosion rates, particularly under 
scenarios where intense rainfall episodes are projected to become more 
frequent due to climate change (Calanca, 2007). This limitation un-
derscores the need for a more detailed temporal resolution in rainfall 
modeling to adequately assess erosion risks.

The use of the GCAM-Demeter LU dataset for LULC projections in-
troduces limitations related to its resolution and scope (Chen et al., 
2020). This dataset provides a globally consistent framework but lacks 
the specificity needed for high-resolution, alpine regions. The coarse 
resolution prevents the accurate representation of local land use dy-
namics such as high-altitude greening, tree-line shifts, and grassland 
encroachment, which can significantly affect erosion patterns (Carlson 
et al., 2017; Egarter Vigl et al., 2017). As a result, this dataset may: 1) 
overestimate cropland expansion and vegetation loss, 2) poorly capture 
the fine dynamics of high-altitude revegetation and tree-line shifts, and 
3) ignore the reduction in snow cover that should lead to more erosion in 
winter, all of which can lead to discrepancies in erosion projections, 
especially in high elevation areas. Reproducing our analysis with 
another LULC projection dataset more tailored to the specific Alpine 
context as well as working on the seasonality of the erosion process are 
two potential opportunities for improving our model outputs.

Our study focused on integrating specific sources of uncertainty, 
such as climate models, LULC scenarios, and model parameterization. 
However, it did not fully account for many other uncertainty sources, 
such as the uncertainties that are embedded in the datasets used as input 
data in our modelling process, using other input datasets, spatial and 
temporal resolution (for climate) of input data, other RUSLE model 

parametrization, or the choice of erosion model itself to name a few 
(Carr et al., 2020; Estrada-Carmona et al., 2017; Walker et al., 2003; 
Wang et al., 2018). Although it is never possible to include all sources of 
uncertainty, the integration and analysis of each of these other sources 
represents a challenge and a new perspective for improving the quan-
tification of uncertainty in predictive ES models (Hamel and Bryant, 
2017; Refsgaard et al., 2007).

5. Conclusions

This study provides a comprehensive analysis of future erosion in the 
Maurienne Valley, highlighting the dominant role of LULC changes in 
driving significant increases in erosion rates by 2085. While climate 
change generally decreases erosion through reduced rainfall, its effects 
are overshadowed by the impacts of projected cropland expansion and 
vegetation loss, emphasizing the critical need for sustainable land 
management practices. By integrating multiple sources of uncertainty 
(including model parameterization, climate models, and socioeconomic 
scenarios), our probabilistic framework allowed us to map the likelihood 
of erosion changes, distinguishing areas of high predictive confidence 
from regions of uncertainty. This distinction revealed that uncertainty in 
model parameterization primarily affects the magnitude of changes, 
while uncertainties in climate models and scenarios drive variability in 
the direction of change. In practice, decision-makers should prioritize 
interventions in areas where LULC-driven erosion increases are most 
likely, while employing no-regret strategies, such as revegetation and 
soil conservation, in regions of where erosion change is highly uncer-
tain. Additionally, adaptive monitoring in areas of high uncertainty can 
help refine predictions as new data emerge. Future research should aim 
to validate erosion models with empirical data, test a wider range of 
inputs data (socioeconomic scenarios and climate models), include other 
uncertainty sources and further develop probabilistic mapping ap-
proaches to better support decision-making in complex and uncertain 
contexts. This study demonstrates how probabilistic assessments can 
improve our understanding of likely future changes in ES in a uncertain 
context, providing insights into ES management research and practice 
for adaptation to global change.
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Carr, T.W., Balkovič, J., Dodds, P.E., Folberth, C., Fulajtar, E., Skalsky, R., 2020. 
Uncertainties, Sensitivities and Robustness of Simulated Water Erosion in an EPIC-based 
Global-Gridded Crop Model [Preprint]. Earth System Science/Response to Global 
Change: Models, Holocene/Anthropocene. https://doi.org/10.5194/bg-2020-93.

Chen, M., Vernon, C., 2020. GCAM-Demeter LU Dataset (No. Project ID: 68344; 
Instrument ID: 85000; Upload ID: 1188). Pacific Northwest National Laboratory 2; 
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). https://doi. 
org/10.25584/data.2020-04.1188/1614678. 

Chen, M., Vernon, C.R., Graham, N.T., Hejazi, M., Huang, M., Cheng, Y., Calvin, K., 2020. 
Global land use for 2015–2100 at 0.05◦ resolution under diverse socioeconomic and 
climate scenarios. Sci. Data 7 (1). https://doi.org/10.1038/s41597-020-00669-x. 
Article 1. 

Chhetri, N., Stuhlmacher, M., Ishtiaque, A., 2019. Nested pathways to adaptation. 
Environ. Res. Commun. 1 (1), 015001. https://doi.org/10.1088/2515-7620/aaf9f9.

Costanza, J.K., Terando, A.J., 2019. Landscape connectivity planning for adaptation to 
future climate and land-use change. Curr. Landsc. Ecol. Rep. 4 (1), 1–13. https://doi. 
org/10.1007/s40823-019-0035-2.

Dessai, S., Hulme, M., 2004. Does climate adaptation policy need probabilities? Clim. 
Policy 22. https://doi.org/10.1080/14693062.2004.9685515.

Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Agard, J., Arneth, A., Balvanera, P., 
Brauman, K.A., Butchart, S.H.M., Chan, K.M.A., Garibaldi, L.A., Ichii, K., Liu, J., 
Subramanian, S.M., Midgley, G.F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., … 
Zayas, C.N. (2019). Pervasive human-driven decline of life on Earth points to the need for 
transformative change. 32. 10.1126/science.aax3100.

Duguma, L., Minang, P., Van Noordwijk, M., 2014. Climate Change mitigation and 
adaptation in the land use sector : from complementarity to synergy. Environ. 
Manage. 54. https://doi.org/10.1007/s00267-014-0331-x.

Egarter Vigl, L., Tasser, E., Schirpke, U., Tappeiner, U, 2017. Using land use/land cover 
trajectories to uncover ecosystem service patterns across the Alps. Reg. Environ. 
Change 17 (8), 2237–2250. https://doi.org/10.1007/s10113-017-1132-6.

Estrada-Carmona, N., Harper, E.B., DeClerck, F., Fremier, A.K., 2017. Quantifying model 
uncertainty to improve watershed-level ecosystem service quantification : a global 
sensitivity analysis of the RUSLE. Int. J. Biodivers. Sci., Ecosyst. Serv Manage. 13 (1), 
40–50. https://doi.org/10.1080/21513732.2016.1237383.

Fedele, G., Locatelli, B., Djoudi, H., Colloff, M.J., 2018. Reducing risks by transforming 
landscapes : cross-scale effects of land-use changes on ecosystem services. PLoS. One 
13 (4), e0195895. https://doi.org/10.1371/journal.pone.0195895.

Fu, B.J., Zhao, W.W., Chen, L.D., Zhang, Q.J., Lü, Y.H., Gulinck, H., Poesen, J., 2005. 
Assessment of soil erosion at large watershed scale using RUSLE and GIS : a case 
study in the Loess Plateau of China: ASSESSMENT OF SOIL EROSION USING RUSLE 
AND GIS. Land Degrad. Develop. 16 (1), 73–85. https://doi.org/10.1002/ldr.646.

Gianinetto, M., Aiello, M., Vezzoli, R., Polinelli, F.N., Rulli, M.C., Chiarelli, D.D., 
Bocchiola, D., Ravazzani, G., Soncini, A., 2020. Future scenarios of soil erosion in the 
Alps under climate change and land cover transformations simulated with automatic 
machine learning. Clim. 8 (2), 28. https://doi.org/10.3390/cli8020028.

Guerra, C.A., Maes, J., Geijzendorffer, I., Metzger, M.J., 2016. An assessment of soil 
erosion prevention by vegetation in Mediterranean Europe : current trends of 
ecosystem service provision. Ecol. Indic. 60, 213–222. https://doi.org/10.1016/j. 
ecolind.2015.06.043.

Hamel, P., Bryant, B.P., 2017. Uncertainty assessment in ecosystem services analyses : 
seven challenges and practical responses. Ecosyst. Serv. 24, 1–15. https://doi.org/ 
10.1016/j.ecoser.2016.12.008.

Heltberg, R., Siegel, P.B., & Jorgensen, S.L. (2009). Addressing Human vulnerability to 
climate change : toward a ‘No regrets’ Approach.

Hijmans, R.J., Etten, J.van, Sumner, M., Cheng, J., Baston, D., Bevan, A., Bivand, R., 
Busetto, L., Canty, M., Fasoli, B., Forrest, D., Ghosh, A., Golicher, D., Gray, J., 
Greenberg, J.A., Hiemstra, P., Hingee, K., Ilich, A., Geosciences, I.for M.A., … 
Wueest, R. (2022). raster : geographic Data Analysis and Modeling (Version 3.5-15) 
[Logiciel]. https://CRAN.R-project.org/package=raster.

Hock, R., Rasul, G., Adler, C., Caceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, 
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