Sensory texture and sweetness acceptance thresholds of boiled yam

Adinsi L*.1,2, Djirbil Moussa I.2, Honfozo L.2, Bouniol A.3, Meghar K.3 et al.

1 Ecole des Sciences et Techniques de Conservation et de Transformation des Produits A.gricoles, Université Nationale d'Agriculture, Sakété, Bénin ; 2 Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 01 BP 526 Cotonou, Bénin; 3 CIRAD, UMR QualiSud, F-34398 Montpellier, France *adinsil2003@yahoo.fr

INTRODUCTION

Context

Problematic

Objectifs

Boiled yam key quality attributes are: crumbly, easy to break, and sweet taste

New yam varieties are being developed but high or medium throughput tools to assess the required quality traits and their range of acceptance are limited

To assess the acceptance thresholds of these quality attributes

establish the predictive models for sensory attributes and overall liking

All yam varieties can, by tentative effort be processed into boiled yam, but all of them are not really acceptable for boiling and consuming

Low adoption of new yam varieties

METHODOLOGY

Processing, sensory analysis, consumer testing and biophysical analysis of yam and boiled yam

Peeling central section

Consumer testing

Consumers: 113

P14

scale

Just About test: crumbly, easy

Overall liking: 9-point hedonic

to chew and sweet taste

7 D. rotoundata varieties including one improved

2 D. Alata including one improved

Quantitative descriptive analysis from boiled yam

Attributes: crumbly, easy to chew and sweet taste

Scale: 0-10 cm

Trained panelists: 13

Biophysical analysis

Uniaxial texture: penetration and compression tests _boiled yam

Dry matter (DM): raw (R) and boiled yam (B)

Development of predictive models

Linear (simple and multiple) regressions were applied to predict the sensory attributes by the biophysical parameters

Overall liking model as function of sensory attributes was selected by using the lack of fit test (F-test) and associated p-value

RESULTS

Acceptability thresholds for sensory attributes and biophysical parameters

Sensory attributes	JAR level (%)	Sensory score		Penetration force (PF) (N)		DMR (g/100g)	
		Min	Max	Min	Max	Min	Max
Easy to break	60	5	8	5	9	33	40
	80	5	7	6	8	35	38
Crumbly	60	> 6		< 7			
	80	> 7		< 6			
Sweet taste	60	> 6		-		> 39	
	80	> 7		-		> 45	

Prediction of texture sensory attributes and overall liking of boiled yam through biophysical parameters

Dependent variables	Prediction regression equation	R ²
Easiness to break	15.33 – 0.54 x PF – 0.15 x DMR	0.95
Crumbliness	- 0.61 x PF + 10.56	0.88
Overall liking	2.4 – 0.41 x PF + 0.18 x DMR	0.79

CONCLUSION

The acceptance thresholds from sensory the instrumental measurements are promising tools for yam breeders. The predictive models can be used to screen yam varieties that meet required consumer's preferences

ACKNOWLEDGMENTS

To the grant opportunity INV-008567 (formerly OPP1178942): Breeding RTB Products for End User Preferences (RTBfoods), to the French Agricultural Research Centre for International Development (CIRAD), Montpellier, France, by the Bill & Melinda Gates Foundation (BMGF): https://rtbfoods.cirad.fr

REFERENCE

Adinsi, L. et al (2024). Characterizing quality traits of boiled yam: texture and taste for enhanced breeding efficiency and impact. doi:10.1111/ijfs.14902