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1,2,3*, José Omar Ospina4, Mario Sandoval4, Natalia Espinosa3,4,

Jairo Arcos5, Yolima Ospina3, Julien Frouin1,2, Cédric Beartschi1,2, Thaura Ghneim6,

Cécile Grenier1,2*

1 CIRAD, UMR AGAP Institut, Montpellier, France, 2 UMR AGAP institut, Univ Montpellier, CIRAD, INRAE,

Institut Agro, Montpellier, France, 3 Alliance Bioversity CIAT, Cali, Colombia, 4 FEDEARROZ–Fondo
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Abstract

Over half of the world’s arable land is acidic, which constrains cereal production. In South

America, different rice-growing regions (Cerrado in Brazil and Llanos in Colombia and Vene-

zuela) are particularly affected due to high aluminum toxicity levels. For this reason, efforts

have been made to breed for tolerance to aluminum toxicity using synthetic populations.

The breeding program of CIAT-CIRAD is a good example of the use of recurrent selection to

increase productivity for the Llanos in Colombia. In this study, we evaluated the perfor-

mance of genomic prediction models to optimize the breeding scheme by hastening the

development of an improved synthetic population and elite lines. We characterized 334 fam-

ilies at the S0:4 generation in two conditions. One condition was the control, managed with

liming, while the other had high aluminum toxicity. Four traits were considered: days to flow-

ering (FL), plant height (PH), grain yield (YLD), and zinc concentration in the polished grain

(ZN). The population presented a high tolerance to aluminum toxicity, with more than 72%

of the families showing a higher yield under aluminum conditions. The performance of the

families under the aluminum toxicity condition was predicted using four different models: a

single-environment model and three multi-environment models. The multi-environment

models differed in the way they integrated genotype-by-environment interactions. The best

predictive abilities were achieved using multi-environment models: 0.67 for FL, 0.60 for PH,

0.53 for YLD, and 0.65 for ZN. The gain of multi-environment over single-environment mod-

els ranged from 71% for YLD to 430% for FL. The selection of the best-performing families

based on multi-trait indices, including the four traits mentioned above, facilitated the identifi-

cation of suitable families for recombination. This information will be used to develop a new

cycle of recurrent selection through genomic selection.
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Introduction

Acid soils represent over 50% of the world’s arable land and are a significant constraint on

cereal production [1]. Acidity is caused by low saturation of cations due to leaching triggered

by intense weathering in a humid tropical climate. Most of these soils are present in the tropics,

especially in South America and Africa, in a proportion of 43% and 27%, respectively (Oka-

gawa 1984 in [2]). The production of most staple crops is negatively impacted by acid soils [3].

Aluminum (Al) is a metal naturally abundant in the soil, which, when pH values fall below 5.0,

becomes highly phytotoxic by adopting a trivalent form (Al3+) [4]. Once solubilized, Al causes

rapid root growth inhibition, leading to a reduced and stunted root system. Al3+ alters the abil-

ity of plants to acquire both water and nutrients. While rice (Oryza sativa) is known to be one

of the most tolerant species among the Poaceae [5], the level of tolerance varies greatly within

the species, with japonica accessions being, on average, more tolerant than indica accessions

[6]. A large fraction of the acid soils in the southern tropical belt consisting of ultisols and oxi-

sols are vast areas of anthropic savannas on heavily eroded and degraded soils [7]. In South

America, acid soils support sub-humid savannas (Cerrados in Brazil and Llanos in Colombia

and Venezuela) and the tropical rainforest of the Amazon basin [2]. Because of its relatively

good tolerance to acid soils, upland rice is an important component of rice-pasture cropping

systems, developed as both productive and sustainable for the savannas [2].

Many studies have focused on the response to Al toxicity to identify tolerant lines and

improve productivity [8–11]. More recently, the efforts were focused on the analysis of mor-

pho-physiological traits to characterize the genetic control of mechanisms involved in crop tol-

erance to high Al3+ concentrations [6, 12, 13]. In this context, tolerance to Al toxicity was

assessed primarily by examining root and shoot characteristics during the vegetative phase

under hydroponic conditions. While the mechanism of root tip exclusion of Al3+ appears as a

primary control of tolerance to Al toxicity, scientific reports often highlight the complexity of

tolerance to Al toxicity [14–17]. Numerous QTLs for rice tolerance to Al toxicity have been

described, and several genes have been cloned [18–20]. Therefore, the genetic regulation of

rice’s ability to withstand Al toxicity is intricate and involves multiple genes with varying

degrees of effect. Improving tolerance to Al toxicity in rice thus translates into manipulating a

quantitative trait that can be bred for with an appropriate breeding scheme.

Today, one of the most efficient molecular breeding approaches to improve traits controlled

by many genes is undoubtedly genomic selection (GS). Through the integration of molecular

markers covering the whole genome, GS is used to estimate the breeding value of selection

candidates. First proposed in 2001 for animal breeding [21], GS was first evaluated in plant

species in the late 2000s [22–25]. Empirical and simulation studies have confirmed the benefits

of GS since then [26, 27]. Best adapted to polygenic traits such as yield, GS has been applied in

rice since 2014 (see [28, 29] for reviews). As for phenotypic selection, a central component of

GS in plant breeding is the integration of genotype by environment interactions (GxE) [27,

30]. Since 2012, several prediction models taking into account GxE have been proposed [31].

First, Burgueño et al. [32] extended the single-environment genomic best linear unbiased pre-

diction (GBLUP) to incorporate multiple environments. This approach has been further devel-

oped in various studies with different statistical methods, such as non-linear kernels and

Bayesian inference [33–36]. In parallel, reaction norm models taking advantage of environ-

mental covariates were also developed to better capture GxE [37, 38]. These recent advance-

ments in GS have improved data integration from multi-environment trials, leading to

increased accuracy in most cases [31]. One approach to predicting adaptive traits or tolerance

to abiotic stresses is to include a GxE interaction component in the GS model, which is a com-

mon practice according to previous studies [29]. Another option is to create a two-step model
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based on an index used to express the tolerance of the genotypes to the constraining factor

under consideration [39].

Rice breeding for tolerance to acid soils began in the CIAT in the early 1980s to develop

upland rice lines well-suited to the soil conditions found in savannas. The goal was to establish

more stable and productive rice-pasture cropping systems in these environments. The breed-

ing program aimed to develop rice plants that could grow in acidic, nutrient-poor soil with

high levels of Al saturation with early vigor, resistance to rice blast (Pyricularia grisea Sacc.),

good grain quality (translucent, long-slender grain), and early maturity (total cycle about 115

days) [9, 10]. First, a large collection of material was screened for its adaptation to acid soils

[8]. The best material was used as parents for crosses in a classical pedigree breeding approach.

From these efforts, a variety derived from a cross between indica and japonica rice was released

by CIAT and ICA (Colombian Agricultural Institute) in 1991 as "Oryzica sabana 6" [40]. It

combined the productivity of the indica and the tolerance to Al toxicity of the tropical japon-

ica. In parallel to pedigree breeding, recurrent selection based on a synthetic population was

used to develop improved material with a particular focus on adaptation to acid soils [41]. A

large base population was first developed with the contribution of 27 rice varieties from Brazil,

Africa, and Asia selected for their adaptation to upland cultivation crossed with a male sterile

rice cultivar (IR36) [42]. This initial pool of germplasm was recombined for several cycles and

further improved with successive additions of 21 upland elite lines from CIRAD (French Agri-

cultural Research Centre for International Development), IRRI (International Rice Research

Institute), and Embrapa (Brazilian Agricultural Research Corporation) [43, 44]. The resulting

populations improved through recurrent selection and formed a diverse pool of genotypes

with an increased frequency of favorable alleles to be further exploited through pedigree breed-

ing. Recurrent selection has the advantage of targeting the improvement of quantitative traits

with a large number of loci involved, which is usually the case for adaptive traits. Several cycles

of recurrent selection on acid soils with Al toxicity have resulted in a population with a high

potential for productivity in the Llanos of Colombia [45].

Recently, the program has explored the potential of early genomic prediction to decrease

cycle time and increase selection intensity. In this study, we evaluated the performance of

genomic prediction models trained on S0-derived families to enhance the tolerance to Al toxic-

ity of the upland rice synthetic population. We evaluated the population under two conditions:

acid soil with Al toxicity and control managed with liming. The yield stability index was com-

puted and also predicted to identify tolerant families. In addition, the performance of the fami-

lies under Al toxicity was predicted using three multi-environment models (including GxE or

not). Using estimated values derived from the best-performing model, we developed a multi-

trait selection index that included the yield stability index. Finally, the opportunity to optimize

the CIAT-CIRAD breeding scheme by hastening the development of an improved population

and identifying promising elite lines was discussed.

Material and methods

Plant material

The synthetic population (PCT27) used in this study is from the tropical japonica group of rice

(Oryza sativa L.). Synthetic populations are developed by crossing multiple genotypes, either

segregating or fixed, known for their agronomic performance. In the case of the PCT27, the

population was derived from previous synthetic populations of the CIAT-CIRAD breeding

program to improve the Al tolerance of upland rice via recurrent selection using genic male

sterility (ms) [45, 46]. The PCT27 population was formed from advanced lines derived from

four original populations. These advanced lines were thirty-five S2:4 families represented by
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one fertile plant heterozygous for thems gene [ms:MS] identified using marker-assisted selec-

tion [47]. The PCT27 was then generated by mixing equal amounts of seeds from each selfed

plant. Two cycles of recombination were then performed using male-sterile plants, as thems
gene is segregating in the population. A subset of the population (334 S0) was selected to evalu-

ate the performance of genomic prediction models [48]. The S0 were genotyped and then

advanced at the S0:4 generation (four generations of inbreeding with bulk harvest) for

phenotyping.

Six checks were also used to assess the response to Al toxicity. Those were the tropical

japonica variety Azucena, the indicamega variety IR64, and four elite indica cultivars released

by FEDEARROZ (Fondo Nacional del Arroz) for their high productivity achieved under

favorable rainfed conditions (FED67, FED68, FED70, FED_Ibis).

Field trial and phenotyping

Field phenotyping was performed during the main rice season in Colombia in 2020 at the

FEDEARROZ experimental station in Santa Marta Aguazul, in the Casanare department of

Colombia (4˚59’38.23"N; - 72˚ 23’59.55"O, and 290 masl). We compared two conditions on

the same field, characterized by its acid soil. On one part of the field, liming with CaCO3 and

MgCO3 was applied in a ratio Ca:Mg = 4:1 to correct for soil acidity three months before the

sowing by broadcast and vertical incorporation with vibratory chisels at a depth of 0–20 cm.

This condition is referred to as LIM in the rest of the article. On the other half of the field, no

treatment was applied (hereafter referred to as ALU). The two conditions were set 20 meters

apart. Soil texture and chemical analysis are provided in Table 1.

For each condition, the trial followed a partially replicated experimental design (p-rep) to

distribute 334 genotypes and six checks in 36 blocks of 14 plots. The percentage replication in

the p-rep was 25% of the PCT27, and each check was repeated six times. The trial was estab-

lished by direct seeding. The plot size was two rows of 3 meters with 26 cm between rows. For

both conditions, no additional irrigation was applied to the plots. The fertilizer application was

split into three, with NPK nutrients (230 kg/ha urea, 217 kg/ha DAP, 150 kg/ha KC) added 8,

20, and 30 days after sowing. No phytosanitary treatment was applied.

Four traits were measured following the IRRI Standard Evaluation System [49] on all the

material included. Flowering date (FL) was expressed as the number of days after sowing when

50% of the plants within a plot reached anthesis. Plant height (PH) was calculated as the aver-

age height measured in centimeters of five plants with their panicle extended. Grain yield

(YLD) was obtained by weighing the grains collected within each plot and expressed in grams

Table 1. Soil chemical characteristics for the two conditions: LIM with liming three months before sowing and ALU without liming.

pH O.M. P Ca Mg K Al Al Sat

g.kg-1 mg.dm-3 cmol.dm-3 %

LIM

Mean 5.19 1.82 15.84 5.00 1.60 0.43 0.53 7.35

sd 0.35 0.23 2.93 1.24 0.33 0.08 0.38 5.96

ALU

Mean 4.39 1.71 20.32 2.07 0.55 0.38 2.32 35.17

sd 0.04 0.15 7.34 0.73 0.13 0.03 0.33 5.85

The average value was obtained from six samples taken at 0-20cm depth in each field. The quantification of organic mater (O.M.) and different elements (phosphorus

(P), calcium (Ca), magnesium (Mg), potassium (K), and Aluminum (Al)) is provided. Aluminum saturation (Al Sat) is calculated as the ratio between the exchangeable

Al and the effective cation exchange capacity.

https://doi.org/10.1371/journal.pone.0307009.t001
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per plot for a relative humidity of 14%. The grain zinc concentration (ZN), expressed in parts

per million (ppm), was measured on a sample of harvested grains, polished in Teflon equip-

ment, and using energy dispersive X-ray fluorescence spectrometry (X-supreme 8000, Oxford

Instrument, Shanghai, CN) available at the CIAT-HQ Nutritional Laboratory. The yield stabil-

ity index (iYLD) was calculated as iYLD ¼ YLDALU � YLDLIM
YLDLIM

∗100.

Genotyping

Genotyping-by-sequencing was performed on the 334 S0 plants as described in Baertschi et al.

[48].

Briefly, the fastq sequences were aligned to the reference genome, Os-Nipponbare-Refer-

ence-IRGSP-1.0, using Bowtie2. SNP calling was performed using the Tassel GBS pipeline

[50]. Loci were filtered based on several criteria: missing data (<20%), depth for each data

point (>10), minor allele frequency (>2.5%), and bi-allelic status of SNPs. To ensure accuracy,

the read depth for SNP calling was set to a minimum of 10 to minimize the probability of

under-calling a heterozygous site. Missing data were then imputed using Beagle 4.1. After

quality control, 9928 SNPs remained for the genetic characterization (S1 Fig). The population

analyzed in this study was not depleted of rare alleles, as evidenced by the minor allele fre-

quency distribution (S2 Fig). Although the degree of allelic fixation varied considerably among

the genotypes, individuals in the S0 generation exhibited relatively low levels of fixation. The

average marker density of 1 SNP every 40 kb was sufficient to capture all linked QTLs with the

SNP matrix, considering the relatively large average linkage disequilibrium (LD) and the slow

LD decay observed (S3 Fig). Furthermore, no genetic structure was identified among the set of

genotypes (S4 Fig).

Statistical analyses

Phenotypic analysis. The single-trial analysis of variance was performed using the SpATS
function of the R package SpATS [51]. We used a mixed model integrating two-dimensional

P-splines to adjust for spatial heterogeneity [52, 53] using plot coordinates: row and column.

For each condition, the following model was used:

y ¼ Xbþ Zusþ Xsbs þ Zssþ ε:

where y is the vector of phenotypes, β is the vector of fixed effects, including the intercept and

genotypes (families and checks), and X is the associated design matrix. The vector u includes

mutually independent sub-vectors of random row (r) and column (c) effects that account for

discontinuous variation. The design matrix Zu = [Zr|Zc] and covariance matrix U ¼
diagðs2

r Ir; s
2
c IcÞ are used to model these effects. The smooth spatial surface is expressed as a

mixed model comprising the fixed term Xsβs and the random term Zss, where s is a vector of

random spatial effects with a covariance matrix S. The design matrices Xs and Zs and the

covariance matrix S have been described previously [53]. The vector ε represents the residuals

(also called nugget) with distribution ε � Nð0; s2
εIÞ. A similar model was used to estimate the

variance components with the only difference that the genotypes were treated as a random

effect. Broad sense heritability (H2) was estimated per condition using the following equation:

H2 ¼
s2
G

s2
G þ s

2
ε

where s2
G is the genetic variance of the trait under study and s2

ε is the variance of the residuals.

The phenotypic performances for subsequent analyses were represented by the best linear
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unbiased estimators (BLUEs) for each trait. The correlations of phenotypic performances

(BLUEs) between the two conditions were performed using the rcorr function of the R package

Hmisc [54]. Multivariate analysis was conducted with the R package Factominer [55].

Genomic selection. We used GS models to predict the performance of the S0 families

under ALU. We compared two cross-validation (CV) scenarios. For each scenario, the popula-

tion was divided into a number of folds (k) of approximately equal size. The first scenario (sin-

gle-environment) was set to estimate the predictive ability of the model when only the ALU

condition was used. In this scenario, the data in k-1 folds was used to train the model and pre-

dict the phenotypes in the remaining fold (the testing fold). The second scenario (multi-envi-

ronment) took advantage of the information on the two conditions (LIM and ALU). The

training set was composed of the whole population phenotyped in LIM and k-1 folds pheno-

typed in ALU. The testing set comprised the remaining fold of the families phenotyped in

ALU. For the two scenarios, a 5-fold CV was used with 80% of the population assigned to the

training set and 20% to the testing set in each successive fold, and ten repetitions were per-

formed. The predictive ability was estimated as the Pearson correlation between genomic esti-

mated breeding values (GEBV) and BLUEs of the validation set.

The Genomic Best Linear Unbiased Predictor (GBLUP) was used for multi-environment

models [56]. The prediction design was similar to a sparse testing scheme where some lines

were evaluated in some environments but not in others [57]. All predictions were performed

using the R package BGGE, which allows different integration of multi-environment informa-

tion and the modeling of GxE interactions [58, 59]. For the first scenario, single-environment

(SM) GBLUP was performed, and we predicted the performance under ALU and LIM. For the

second scenario, three different multi-environment models were implemented, all used to pre-

dict the performance under ALU: i) a multi-environment model (MM) assuming that genetic

effects across the environment are constant, and therefore the absence of GxE interactions; ii)

a multi-environment model (MDs), which is an extension of the MM model including a single

random deviation effect of the GxE; and iii) a multi-environment model (MDe) with an envi-

ronment-specific variance deviation effect for the GxE. More details about these models can

be found in [58]. All four models were performed using the following parameters: burn-

in = 5,000, nIter = 70,000, and thin = 5. The genomic relationship matrix was estimated using

the linear kernel with the getK function from BGGE.

For each trait and model, variance components and GEBVs were obtained. Predictive abili-

ties (PAs) were estimated as the correlation between the GEBVs and the BLUEs in ALU. The

PA between the models was compared with Tukey’s range test.

Selection of the families. Our objective was to propose a selection for the families based on

a linear GS index (GSi) that combined the four traits predicted for the ALU condition with the

MM model (FL, PH, YLD, and ZN). We compared it to a phenotypic selection index (PSi) based

on the same four traits observed in the LIM condition combined with the yield stability index

(iYLD). The selection indices had the following general form: IG = β0γ, where β is the unknown

vector of weights and γ the vector of genomic estimated breeding values or phenotypic values

[60]. β was estimated with the following equation: b̂ ¼ P� 1Gw, where P and G are the variance-

covariance matrices of phenotypic and genetic values, respectively, and w the vector of economic

weights [61, 62]. In the GSi case, the matrix Pwas calculated using the BLUEs, while the matrix

Gwas computed using the GEBVs predicted by the model MM. On the other hand, for PSi, the

matrix Pwas estimated using BLUEs in LIM, and the matrix Gwas estimated using the GEBV

generated by the SM model for the LIM condition without cross-validation. The weights (w)

were defined based on empirical observations from previous RS cycles: 0, -0.2, 1, and 0.8 for FL,

PH, YLD, and ZN, respectively. For the PSi, the iYLD was given a weight of 0.5.
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The top 10% of the families were selected based on the indices, and the selection differential

(S) was calculated as the difference between the mean of the whole population and the mean of

the selected families for a given trait.

Results

Phenotypic variability in relation to aluminum phytodisponibility

Broad sense heritabilities measured within conditions (Table 2) were moderate (0.56) to high

(0.75), indicating limited spatial variations in both experiments. The highest values were

obtained for FL (0.75 in ALU and 0.74 in LIM) and the lowest for PH (0.6 in ALU and 0.56 in

LIM). For all the traits except YLD, heritabilities were lower in LIM compared to ALU. The

reduction of Al phytodisponibility in LIM compared to ALU had a limited impact on the aver-

age phenotypic performance of the population. The population flowered earlier in LIM (70.2

days) than in ALU (71.8). We observed a reduction of 4 cm for PH and 1.2 ppm for ZN in LIM

compared to ALU (Table 2). Interestingly, YLD increased, on average, from 1941 kg/ha in

LIM to 2219 kg/ha in ALU. The opposite trend was found for the checks with higher YLD in

LIM compared to ALU, confirming the tolerance to Al toxicity of the population (Fig 1). The

soil conditions also impacted the phenotypic variability associated with the average perfor-

mance of the population. For most of the traits, CVs were lower in ALU compared to LIM

(Table 2). Among the four traits, FL and PH were the least variable, followed by ZN, with val-

ues ranging from 5.7% for FL in ALU to 13% for ZN in LIM. As expected, YLD was the trait

for which the CVs were the highest: 28.9% (ALU) and 28.8% (LIM). A moderate GxE interac-

tion was found between the two conditions. Indeed, the correlations between conditions were

all significant (p<0.05), ranging from 0.51 for YLD to 0.64 for FL (Fig 1). In both conditions,

the correlations between FL and YLD, were negative: -0.39 and -0.29 for ALU and LIM,

respectively (S5 Fig). Significant but lower correlations were also found between ZN and YLD:

-0.16 and -0.20 for ALU and LIM, respectively.

Evaluation and prediction of tolerance to aluminum toxicity

Based on the yield stability index iYLD, the population presented good tolerance to Al toxicity,

with 72% of the families being tolerant (iYLD > 0). The average iYLD value for the population

was 19.1. This masked a large variation between families, with index values ranging from -56.8

to 151.0. iYLD was significantly correlated with PH in LIM (-0.28, p< 0.01) (S5 Fig). Interest-

ingly, this negative phenotypic correlation between iYLD and PH was not found in ALU

conditions.

Table 2. Descriptive statistics for the four traits considered: Days to flowering (FL, days), plant height (PH, cm), grain yield (YLD, kg/ha), and grain zinc concentra-

tion (ZN, ppm). In addition to the mean and range, the coefficient of variation (CV) and broad-sense heritability (H2) are presented.

TRAIT Condition Mean* Range CV H2

FL ALU 71.8 a 60.9–83.4 5.69 0.75

LIM 70.2 b 54.9–81.4 7.25 0.74

PH ALU 112 a 86.7–149 8.28 0.6

LIM 108 b 72.6–137 8.65 0.56

YLD ALU 2219 a 494–4063 28.9 0.65

LIM 1946 b 674–3707 28.8 0.71

ZN ALU 20.6 a 14.1–29.7 11.8 0.7

LIM 19.4 b 12.4–26.5 13 0.65

*Within a trait, means followed by different letters are significantly different at p<0.05

https://doi.org/10.1371/journal.pone.0307009.t002
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The high-yielding families were identified based on the population distribution for produc-

tivity under the two soil conditions (Fig 2). Only eight families were considered to be high-

yielding in the two conditions. The high-yielding families displayed different behaviors in

terms of relative performance (iYLD). As expected, the families with the highest yield in ALU

were, on average, more tolerant than the rest of the population (iYLD = 46.7). On the contrary,

the families performing better under LIM had, on average, an iYLD of -9.3.

The SM model’s genomic prediction for iYLD resulted in a very low PA of -0.12, as shown

in Table 3. This is much lower than the estimated value for YLD in the ALU or LIM condition

(S1 Table). However,

the prediction for iYLD via the ratio of predicted yield values in the two conditions was also

poorly correlated with iYLD (-0.13) (S6 Fig).

Performance of multi-environment models

GS was performed with four models differing in their capacity to account for GxE interactions.

In addition to the additive genetic variance, all models included a random intercept for each

line to capture residual genetic variation. The model with the lowest proportion of residual

variances for all traits was MDe followed by SM (except for FL, Table 4 and S2 Table). The

MM model presented the highest residual variances in proportion to the total variance

explained by the model. As expected, the genetic variances for the SM and MM models were

higher compared to MDs and MDe, as the interaction components explained more than 20%

Fig 1. Distribution of the four traits evaluated in two conditions: Flowering time (FL), plant height (PH), grain yield (YLD), and

zinc concentration in polished grain (ZN). The population is in black, and the controls are in red. The correlation coefficients

(Spearman ρ) between the two conditions (ALU and LIM) for the population are indicated at the top of each panel.

https://doi.org/10.1371/journal.pone.0307009.g001
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of the total variance (Table 4). For all traits, the performance of the families in ALU was pre-

dicted (Fig 3 and Table 3). The model taking only one site into account for the prediction

(SM) resulted in lower PAs than multi-environment models for all traits. The PA was the

Fig 2. Identification of the best-performing families for grain yield (YLD) in the two conditions (LIM and ALU). The best ten

percent of families in LIM or ALU are represented in blue and red, respectively. In purple are the best families in the two conditions.

The dashed line represents the equation y = x, and the solid line represents the linear regression between the two conditions with the

95% confidence interval (grey area).

https://doi.org/10.1371/journal.pone.0307009.g002

Table 3. Predictive abilities (mean and standard deviation (SD)) obtained with the four genomic prediction mod-

els (see material and methods). The four traits are presented: days to flowering (FL), plant height (PH), grain yield

(YLD), grain zinc concentration (ZN), and the index of yield stability under aluminum toxicity (iYLD).

Trait METHOD MEAN SD

FL SM 0.126 0.035

MM 0.668 0.002

MDs 0.659 0.004

MDe 0.634 0.006

PH SM 0.324 0.023

MM 0.603 0.002

MDs 0.585 0.009

MDe 0.563 0.013

YLD SM 0.258 0.031

MM 0.531 0.003

MDs 0.476 0.012

MDe 0.442 0.015

ZN SM 0.335 0.031

MM 0.647 0.002

MDs 0.612 0.009

MDe 0.587 0.013

iYLD SM -0.117 0.024

https://doi.org/10.1371/journal.pone.0307009.t003
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lowest for FL (0.13) and the highest for ZN (0.33). When data from the two conditions were

considered to predict performances in ALU, a significant increase in PA was observed for all

traits (Fig 3). The increase in PA varied depending on the model, with a range of 71% to 430%

for YLD and FL, respectively. The modeling of GxE interaction had a reduced impact on the

PA for most of the traits. Indeed, the best model for all traits was the one that only considered

the genetic variance and did not include GxE interaction (MM). The best PAs for each trait

were observed for the MM model: 0.67, 0.65, 0.60, and 0.53 for FL, ZN, PH, and YLD, respec-

tively. The modeling of an environment-specific variance deviation effect (MDe) resulted in a

significant reduction of PA in all the cases compared to the model with a single random devia-

tion effect (MDs).

Performance of the selected families

The families selected based on the multi-trait index presented, on average, a higher PH, YLD,

ZN, and iYLD and a lower FL (Fig 4). Despite the weights to reduce PH and maintain FL, the

higher weight on YLD and the correlations with YLD (positive for PH and negative for FL),

the selection differential was positive for PH (+ 3 cm with GSi, +1.5 cm with PSi) and negative

for FL (- 2.1 days with GSi, -1.8 with PSi). The selection differential was positive for the other

traits: + 378.6 kg/ha for YLD, + 1.3 ppm for ZN using GSi and + 526.3 kg/ha for YLD,

Table 4. Proportion of variance accounted for by each component of the model for the four traits considering the four models. The four models are a single-environ-

ment model (SM) and multi-environment models (MM, MDs, and MDe, see the definition in the method section) for each of the four traits: flowering time (FL), plant

height (PH), grain yield (YLD) and zinc concentration in polished grain (ZN). The variance components are defined as s2
�

for the residual variance, s2
g for the genetic vari-

ance, s2
I for the variance of the random intercept, s2

ge for the variance resulting from the GxE interaction, and s2
ALU and s2

LIM are the two environment-specific variances.

Trait Variance component SM_ALU MM MDs MDe

FL s2
�

16% 20% 11% 5%

s2
g 54% 55% 42% 23%

s2
I 30% 25% 22% 13%

s2
ge 25%

s2
ALU 23%

s2
LIM 37%

PH s2
�

11% 23% 12% 6%

s2
g 68% 62% 48% 26%

s2
I 20% 14% 13% 8%

s2
ge 26%

s2
ALU 32%

s2
LIM 28%

YLD s2
�

13% 28% 16% 8%

s2
g 64% 57% 43% 22%

s2
I 23% 15% 13% 7%

s2
ge 28%

s2
ALU 39%

s2
LIM 25%

ZN s2
�

11% 23% 13% 7%

s2
g 69% 60% 48% 27%

s2
I 20% 17% 16% 9%

s2
ge 23%

s2
ALU 29%

s2
LIM 28%

https://doi.org/10.1371/journal.pone.0307009.t004
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+ 1.5 ppm for ZN using PSi. Integrating iYLD in PSi helped select families with higher yields

in ALU and more tolerant families compared to GSi. (Fig 5). Out of the top eight highest-yield-

ing families in the two conditions, five were selected using PSi and three using GSi.

Discussion

Upland rice performance under aluminum toxicity

The PCT27 population’s response to Al toxicity indicated good tolerance. On average, the pop-

ulation flowered two days later and was 4 cm taller under acid soil conditions. Interestingly,

the average grain yield was greater under the natural acid soil conditions than limed condi-

tions. These results were consistent with the observations made on a population of recurrent

selection at the foundation of the synthetic PCT27, reporting greater yield under higher levels

of Al toxicity [45]. Similar results were reported by Arbelaez et al. [63], who conducted a study

on the adaptation of rice germplasm to upland acid soil conditions. They used field phenotyp-

ing to evaluate introgression lines developed from a cross between wild and cultivated rice.

While the introgression lines flowered earlier and were smaller in acid soils than in limed con-

ditions, no particular differences were found for traits related to productivity, such as tiller

number or panicle number. In controlled conditions, Kang et al. [64] found a delay in flower-

ing time of nine days for two tolerant lines under a low level of Al toxicity. Contrary to our

study, they observed a significant drop (up to 42%) in grain yield for tolerant varieties, which

was linked to a decrease in the number of panicles per plant and filled grains per panicle.

These differences are related to the material studied and the conditions of evaluations of Al

Fig 3. Predictive abilities obtained for the ALU condition using four genomic prediction models. The comparison was done

between a single-environment model (SM) and multi-environment models (MM, MDs and MDe, see the definition in the method

section) for each of the four traits (flowering time (FL), plant height (PH), grain yield (YLD) and zinc concentration in polished grain

(ZN)). The letters in each panel indicate a significant difference between means based on Tukey’s range test.

https://doi.org/10.1371/journal.pone.0307009.g003
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toxicity. Most recent studies on rice have been conducted under managed conditions, primar-

ily through hydroponics [64–68]. While evaluations at the vegetative stage in controlled condi-

tions present several advantages compared to field evaluations, limitations can arise in the

context of applied breeding. A limited number of studies have compared the level of tolerance

obtained under hydroponic conditions and the level of productivity in the field. Howeler &

Cadavid [8] found a correlation of 0.64 between grain yield in field conditions and the

response to Al toxicity for 240 rice cultivars. The diversity of the material evaluated (with toler-

ant and susceptible lines) could explain this good correlation. In our study, the population is

more homogeneous, as highlighted by the lack of evident genetic structure and the moderate

GxE found for all the traits, including grain yield. Indeed, most families (72%) were classified

as tolerant with iYLD > 0. This large proportion of families having greater yield under ALU

than under LIM indicates that the source population, which was improved for many cycles

under savanna soil conditions, may have been under strong selection for Al tolerance, thus

holding reduced variability for that trait. Loss of additive variance for adaptive traits is not rare

for traits under strong selection, as reported for tropical japonica rice growing in Al stress con-

ditions [69]. In the context of recurrent selection on a japonica population, this reinforces the

interest in genomic prediction to better capture minor genetic effects for Al tolerance.

Fig 4. Distribution of the phenotypic value in ALU for the selected families (in black) and the rest of the population (in grey). The selection

was based on the GS index (panel A) and phenotypic selection index (panel B). The two indices are defined in the material and methods section.

The four traits (flowering time (FL), plant height (PH), grain yield (YLD), and zinc concentration in polished grain (ZN)) and the yield stability

index (iYLD) are represented. The vertical dashed lines represent the mean values for the selected families (in black) and the entire population

(in grey). The selection differential (S) is indicated for each trait in the trait’s units.

https://doi.org/10.1371/journal.pone.0307009.g004
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Genomic selection for tolerance to aluminum toxicity

Several studies have investigated the interest of genomic prediction for rice breeding; however,

none have delved into its potential application for the selection of Al toxicity tolerance [28].

While most studies using multi-environment GS have aimed to predict genotype performance

and overall stability across various conditions, our objective was to select for adaptation to acid

soils. The accuracy of these studies varied greatly depending on several factors, including the

trait being studied, the type of population, and the validation method used. Accuracies typi-

cally ranged from 0 to 0.80, leading to different interpretations of the added value of GS for

breeding programs. In our study, the single-environment model to predict families’ perfor-

mance under ALU conditions yielded low PAs ranging from 0.13 to 0.33. These PAs were

Fig 5. Phenotypic diversity in ALU of the population and the selected families. The families selected with the GS index are shown in

panel A, and those selected with the phenotypic selection index are shown in panel B. The population is represented with circles, and

the selected families are represented by large dots. The colors represent the different classes of yield performance according to the

conditions (see Fig 2). The four traits (flowering time (FL), plant height (PH), grain yield (YLD), and zinc concentration in polished

grain (ZN)) and the yield stability index (iYLD) are represented.

https://doi.org/10.1371/journal.pone.0307009.g005
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lower than those previously reported for similar genetic material with a comparable training

set size [46, 48]. Although the phenotypic variability for each trait was similar between studies,

we observed a reduced level of broad-sense heritability in the present experiment that can

explain the lower PAs. With PAs ranging from 0.44 to 0.67, multi-environment models out-

performed single-environment models for all the traits. Previous studies on rice using a similar

cross-validation approach (prediction of unobserved phenotypes of individuals evaluated at

least in one environment) have shown that multi-environment models can significantly

improve PAs by allowing information sharing across correlated environments [48, 70–72].

However, we observed a decrease in accuracy for most traits when the GxE interactions were

included in the models (MDs and MDe). This tendency contrasts with the generally reported

benefit of integrating GxE in the prediction models [31, 73]. In a related study on maize and

wheat, Cuevas et al. [57] showed that multi-environment models that integrate GxE with or

without a specific variance for each environment outperformed other models. They also found

that including a random intercept of each line in the model captured extra genetic variability,

but only for GBLUP. On rice, Monteverde et al. [72] tested the multienvironment modeling

approach for GS, considering three years of phenotypic evaluation to represent the environ-

ment parameter. They reported a greater accuracy when including covariance between envi-

ronments in the model. The proper modeling of genetic correlations between environments

had a direct impact on PA. The study found that the multi-environment GBLUP models per-

form better when an unstructured covariance matrix is used, as compared to when a separate

variance component per environment is used, assuming no genetic correlation between envi-

ronments. The authors emphasized the advantage of incorporating information from multiple

environments in the prediction models, as it enables the models to use the correlation between

different environments and leverage information across them.

Our multi-environment is limited to ALU and LIM conditions. To improve the popula-

tion’s tolerance to Al, we predicted the grain yield under ALU, but also considered the index

iYLD. The PA for the stability index was very low and much lower than for the quantitative

traits from which it is derived. In the context of multi-environment evaluation, Huang et al.

[74] reported that prediction accuracy for trait stability was similar to or higher than that for

predicting directly phenotypic performance. This finding suggests the potential for selecting

for adaptability, especially for traits with high GxE, such as grain yield. However, in the case of

tolerance to abiotic stress, predicting stability or susceptibility indices obtained from traits

measured in contrasting environments has proven challenging. Cerrudo et al. [75] and Ben

Hassen et al. [70] studied the performance of GS for abiotic stress tolerance and alternative

cultivation methods. Cerrudo et al. [75] examined drought stress susceptibility in a population

of wheat lines. They found that the prediction accuracy for yield under drought conditions

was lower than under well-watered conditions due to the reduced phenotypic variation for

drought stress susceptibility among the studied population. Similarly, Ben Hassen et al. [70]

studied the performance of prediction models for rice lines evaluated under alternate wetting

and drying and irrigated fields with continuous flooding conditions. The authors used two

parameters to test the performance of rice under the two water regimes: the regression slope,

which measures stability, and the index of relative performance. The prediction accuracy

obtained with the regression slope was low and even lower when using the index. To explain

the low prediction accuracy obtained with the index of relative performance, the authors sug-

gested a limited genetic control of variation for the response index. In line with their findings,

the predictive ability for iYLD in this study was low. Indeed, whether the index was predicted

directly or calculated based on environment predictions, its accuracy was very low. This result

highlights the cumulative nature of prediction imprecision and the difficulty of GS models in

capturing GxE when summarized into an index.
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Implications for breeding

Genomic prediction is an interesting tool, especially in the context of population improvement

through recurrent selection, as it is implemented in the CIAT-CIRAD breeding program.

Indeed, it enables a reduction of the breeding cycle length while increasing the selection inten-

sity. Genomic prediction has been shown to be an effective tool to reduce cycle time in rice

breeding [28]. It presents several advantages in the case of recurrent selection, as the recycling

of the best families can be decoupled from their evaluation thanks to across-cycle prediction.

We have previously shown that cycle time can be reduced from three years to one year [46,

48]. In addition, predicting among a set of families much larger than the set used to train the

model can increase the selection intensity, especially for traits that require more effort to evalu-

ate. Furthermore, the benefits of using genomic prediction rely on the fact that phenotyping

does not have to be performed for the whole population in all the environments of interest.

Utilizing shared information from different environments through sparse testing can benefit

breeding programs, both in terms of time and cost [76, 77]. In the present case, improving the

population for standard growing conditions while maintaining its high tolerance to Al toxicity

could be done by using a sparse testing approach and genomic prediction. A subset of families

would be evaluated in acid soils and another overlapping subset in normal soil conditions [29].

Our intent was to predict the performance of lines extracted from an unstructured popula-

tion to select either new parental lines for the next cycle of selection or candidates to enter the

pedigree breeding scheme for variety development. The multitrait selection index based on the

predicted performance of the families in the stress condition (ALU) while gathering the shared

information from the performance in the standard condition (LIM) offered a good compro-

mise to select material with good performance in both conditions. The gain in YLD_ALU

achieved using the GS index (GSi) was lower than with the phenotypic selection index (PSi)

(17% and 24% gain for GSi and PSi, respectively), and this probably resulted from greater con-

sideration of grain yield parameter in the latter (integration of iYLD). However, the selection

process results in terms of selected families demonstrated that the GSi is effective in selecting

families with good performance under both ALU and LIM conditions. It is worth noting that

most of the information used in creating the GSi was derived from the LIM condition. Selec-

tion indices are powerful tools in the context of recurrent selection as they move the popula-

tion mean across cycles in the desired direction for all traits, even when they are negatively

correlated [78]. In our case, yield was negatively correlated with both days to flowering and

zinc content in the two conditions. Nonetheless, the selection index allowed the selection of

families with a potential to deliver a genetic gain of 0.4 t/ha for grain yield under Al toxic soils,

while improving grain zinc concentration by +1.3 ppm. In a recent study on rice, Ramos Gui-

marães et al. [79] used different selection indices to identify families that could be recombined

in a recurrent population. The selection indices included six traits: grain yield, plant height,

days to flowering, panicle blast, leaf scald, and grain discoloration. By using these indices, they

were able to efficiently select for grain yield while reducing the other traits. The most suitable

index was based on the rank of the genotypes [80]. The main advantage of this index is that it

does not require the estimation of genetic parameters or the assignment of weights, and so is

easy to use. One important aspect of using selection indices is the assignment of meaningful

economic weights, which is a major challenge for breeders. In the present study, the weights

were assigned based on historical data from the program. In the future, it will be interesting to

compare the index derived from the ranking of evaluated families with the one based on

weights. If the former performs better, it would be simpler to use it in the breeding programs

due to its easy estimation.
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Conclusion

This study shows that a large proportion of the PCT27 population presents tolerance to Al tox-

icity, with families with high yield in both standard and stress conditions, offering a chance for

GS to improve the population further. Applying genomic prediction in the S0 generation could

significantly speed up the breeding program by decoupling family selection from phenotypic

evaluation. Genomic prediction and sparse testing show promise for enhancing crop stability

across environments with acid soils while considering GxE interactions. Indeed, our goal in

the breeding program is to improve rice’s productive potential under favorable conditions in

terms of productivity and grain quality, as well as its tolerance to Al toxicity. The selection

index must be carefully defined, considering both overall performance and stability.
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28. Bartholomé J, Prakash PT, Cobb JN. Genomic Prediction: Progress and Perspectives for Rice Improve-
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