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A B S T R A C T

Rubber tree breeding faces significant challenges, mainly due to the low female fertility of the plant, the long 
breeding cycles and the complex trait architecture. The advent of genomic selection offers a significant oppor-
tunity to explore more effective breeding strategies and accelerate genetic gains. This study investigates genomic 
prediction strategies for Hevea brasiliensis breeding, focusing on two biparental families connected by a common 
parent and evaluated among four different sites. The objective was to assess the impact of using full-sib and half- 
sib populations on prediction accuracy for key traits, rubber production and sucrose content. Results confirmed 
that prediction accuracies are higher when the training and validation populations consist of full-sibs (0.54 for 
rubber production and 0.36 for sucrose), as compared to half-sibs (0.17 for rubber production and 0.21 for 
sucrose). Combining full-sibs and half-sibs in the training population yielded prediction performance comparable 
to intra-family models (0.52 for rubber production and 0.37 for sucrose), providing a more practical option for 
breeding programs. Additionally, the integration of QTL information into prediction models for rubber pro-
duction did not improved accuracy in full-sib (0.53) or half-sib (0.16) validation approaches and reduced ac-
curacy in cross-validation, likely due to the polygenic nature of the trait and genotype-by-environment 
interactions. Rubber tree breeding programs could benefit from constructing training populations composed of 
multiple related families, simplifying logistics while maintaining prediction accuracy across more diverse pop-
ulations than single biparental families. This approach offers a promising pathway to enhance the efficiency and 
genetic gains in rubber tree genomic selection.

1. Introduction

Hevea brasiliensis is the most efficient cultivated species for the pro-
duction of natural rubber (NR, 1,4-cis-polyisoprene polymer), grown on 

an area of around 14 million hectares worldwide with a global pro-
duction of 14.5 million tonnes in 2023, and widely used in the tyre in-
dustry (FAO, 2022). Overall, Southeast Asia currently account for 87 % 
of NR production, with Thailand, Indonesia, Vietnam, India, China and 
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Malaysia as the main producers, and 76 % of the consumption (40 % by 
China). In West Africa, Côte d′Ivoire has emerged as the third largest NR 
producer in the world in 2023, with 11 % of global production, behind 
Thailand and Indonesia and ahead of Vietnam (IRSG, 2024).

Rubber cropping was initiated by the agro-industrial sector at the 
beginning of the 1900s. Currently, 85 % of the total planted area is 
carried out by smallholders (Fox and Castella, 2013; Wang et al., 2023). 
In Côte d’Ivoire, most of the stakeholders in the NR sector are organised 
in an association called APROMAC (Association des Professionnels du 
Caoutchouc Naturel de Côte d’Ivoire). This association represents the 
interests of planters, provides them with technical support and registers 
the planted areas and their owners in order to enable the traceability of 
the origin of rubber and to comply with national and international 
standards against deforestation (Bager et al., 2021; Kumeh and 
Ramcilovic-Suominen, 2023).

Natural rubber is issued from the latex of Hevea brasiliensis (hereafter 
called “rubber tree”), collected through periodic bark tapping, which 
involves cutting into the laticiferous system located in the outer part of 
the bark (Hao and Wu, 2000). After planting, the trees grow during the 
so-called “immature period” until the initiation of tapping at around 6 
years of age. Then, the productive period of the plot before felling lasts 
around 25–30 years. Latex or coagulated rubber from the fields is dried 
in factories on the production sites, and then transferred in the form of 
dry blocks to manufacturing sites for the production of vulcanised rub-
ber end-use items such as tires (Webster and Baulkwill, 1995).

Rubber genetic improvement was initially marked by the develop-
ment of phenotypic selection and clonal trees grafted onto seedling 
rootstocks (Marattukalam and Saraswathyamma, 1992; Van Helten, 
1918). Phenotypic selection emerged as the primary method for 
extracting new clonal varieties from diverse populations, with an 
increasing contribution of quantitative genetics and advancements in 
computing technology playing a crucial role in this process. Clonal se-
lection was first applied to seedlings issued from natural pollination, 
then to full sib families issued from manual pollination (Simmonds, 
1989). In Côte d’Ivoire, a breeding program launched in 1972 by the 
IRCA (Institut des Recherches sur le Caoutchouc en Afrique), using such 
methods, has successfully developed high-performing clones. These 
clones are now extensively cultivated in industrial plantations and, to a 
lesser extent, by smallholders (Elabo et al., 2019). Genetic selection has 
improved the yield over the past century, increasing from around 650 kg 
rubber ha− 1 to 2500 kg rubber ha− 1 between 1920s and 1990s.

Due to the long time period required for clonal evaluation, a 
distinction was done between, on the one hand, early selection on 
mother-tree seedlings and then on grafted trees in small scale trials with 
small plots and a short duration of evaluation, and, on the other hand, 
large scale trials with large plots and a long duration of evaluation. One 
main limitation is the low female fertility of the plant, which limits 
genetic recombination and the building of mating designs, and generates 
unbalanced full-sib families (Clément-Demange et al., 2007). Enhancing 
the genetic improvement of this species is still at stake to meet 
increasing global demand and to address challenges such as yield opti-
mization, resistance to multiple diseases and adaptation to the 
environment.

Recent developments in genomic technologies have significantly 
advanced breeding methodologies across various crops, including 
perennial species. The integration of single nucleotide polymorphism 
(SNP) markers, genomic selection (GS) and quantitative trait loci (QTL) 
mapping has enabled more precise selection for complex traits, accel-
erating genetic gain (Cooper et al., 2009; Darkwa et al., 2020; Li et al., 
2022; Vignal et al., 2002). Genomic selection involves the use of 
genome-wide markers to predict the breeding values of individuals, 
thereby reducing the cost of phenotypic evaluation, increasing selection 
intensity, and enhancing the selection process efficiency (Meuwissen 
et al., 2001). This innovative methodology integrates quantitative ge-
netics principles, high-throughput genomic technologies and biostatics 
methods to analyse genome-wide single-nucleotide polymorphisms 

(SNP) (Goddard and Hayes, 2007; Grattapaglia et al., 2018). It uses 
prediction models constructed from a genetically related training pop-
ulation, comprising individuals with both genotypic and phenotypic 
data, to predict the genetic potential of selection candidates which are 
genotyped but not phenotyped (Robert-Granié et al., 2011). It has 
become a cornerstone in animal breeding programs (Hayes et al., 2009; 
Wiggans et al., 2017) and is increasingly adopted in plant breeding 
(Voss-Fels et al., 2019). Moreover, ongoing research continues to 
develop innovative approaches to enhance the utility of GS in diverse 
breeding contexts.

Genomic selection has been successfully applied in various crop 
species, in particular tropical perennial crops and plantation trees 
(Balocchi et al., 2023; Bouvet et al., 2020; Duarte et al., 2024; Seyum 
et al., 2022). Its potential in Hevea brasiliensis has been explored in 
recent studies. Cros et al. (2019) analysed GS efficiency for rubber 
production in the full-sib family PB260 x RRIM600 which was pheno-
typed and genotyped with 332 SSR markers. For the same family, 
Munyengwa et al. (2021) studied how to manage missing data for 
genomic predictions made with SNP obtained by 
genotyping-by-sequencing (GBS). Souza et al. (2019) studied how to 
manage G x E interactions with GS models, whereas Aono et al. (2022)
investigated on the application of machine learning to genomic pre-
diction in rubber tree. So far, these studies considered populations 
comprising only one or a few full-sib families.

Many parameters affect GS accuracy, i.e. the correlation between the 
predicted and true genetic value, like the size of the training population, 
the trait, the type and density of genotypic data, the relatedness between 
individuals, etc. In rubber tree, despite the advancements reported 
above, the influence of genetic relatedness between training and vali-
dation populations on the efficacy of GS remains an area that requires 
further exploration. Several studies have demonstrated that genomic 
selection accuracy is strongly influenced by the degree of genetic 
relatedness between the training and selection populations (Adeyemo 
et al., 2020; Asoro et al., 2011; Daetwyler et al., 2013; Grattapaglia, 
2014; Isidro y Sánchez and Akdemir, 2021). It is therefore crucial to 
understand the influence of such relationships on a model population 
before implementing a breeding cycle based on GS. Additionally, num-
ber of studies have emphasized the potential of including quantitative 
trait locus (QTL) data into prediction models with the aim of enhancing 
the GS efficiency (Grattapaglia, 2022; Grattapaglia et al., 2018; Nsibi 
et al., 2020; Zhang et al., 2023). However, this approach has not yet 
been explored in Hevea brasiliensis.

This study aims to address two primary objectives in advancing GS 
for Hevea brasiliensis. The first objective is to evaluate the impact of 
genetic relatedness between training and validation populations on 
prediction accuracy for key traits, rubber production and sucrose con-
tent. The second objective is to assess the potential of incorporating QTL 
information into GS models to improve predictive performance.

For this purpose, we used datasets from two related full-sib families, 
derived from two F1 crosses PB260 × RRIM600 and PB260 × RRIC100, 
genotyped with 14,143 SNP markers and phenotyped for rubber yield 
and sucrose content at four trial sites in Côte d’Ivoire and Nigeria.

The influence of genetic relatedness between training and validation 
populations were examined on the accuracy of genomic predictions by 
comparing three different training population structures: (1) training 
and validation populations consisting of full-sibs, (2) training and vali-
dation populations consisting of half-sibs, and (3) a training population 
that was a mixture of full-sibs and half-sibs. To investigate the effect of 
integrating QTL information into the genomic prediction model, prior 
QTL detection was conducted in the training population and the infor-
mation obtained from these analyses was incorporated into the GS 
model.
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2. Materials and methods

2.1. Plant material

The plant material used in this study consists of two families of Hevea 
brasiliensis related by a common female parent, clone PB260. PB260, 
derived from the cross PB5/51 × PB49, was developed in 1958. Known 
for its vigour and high latex yield, PB260 is widely used as a female in 
crosses due to its superior female fertility (Cros et al., 2019). This clone 
exhibits a relatively rapid growth during the immature period prior to 
tapping, and is particularly characterised by a rapid increase in latex 
production once tapping begins, and low sucrose content in latex cells.

The male parents, RRIM600 and RRIC100, are prominent clones in 
major rubber producing regions and remain widely used as varieties in 
rubber cropping. RRIM600, derived from the TJIR1 × PB86 cross, was 
selected by the Rubber Research Institute of Malaysia in 1937. It com-
bines moderate growth, latex yield and sucrose content in the latex cells, 
making it a stable performer under variety of conditions. This clone has 
historically been the most widely planted clone in the world due to its 
adaptability to different environments. RRIC100, selected by the Rubber 
Research Institute of Sri Lanka, is the result of a cross involving the clone 
RRIC52 as the female parent, with the male parent being unidentified 
(CIRAD, 2011). It is characterised by very fast growth during the 
immature period, allowing tapping to begin before the age of five. While 
its latex yield and sucrose content in latex cells are moderate, RRIC100 is 
highly valued for its exceptional tolerance to fungal leaf diseases. This 
disease tolerance significantly influenced its inclusion as a breeding 
parent, although it was not addressed in this study.

For each family, individuals were divided into two groups for phe-
notyping at two different experimental sites.

2.2. Methods

2.2.1. Study Sites
The study was conducted among four sites in Côte d′Ivoire and 

Nigeria. The PB260 ×RRIM600 family was evaluated at two different 
sites in Côte d′Ivoire as describe by Cros et al. (2019). The first site as to 
referred as Site 1, is the SOGB plantation (Société des Caoutchoucs de 
Grand-Bereby), located in the southwest region of Côte d′Ivoire (lati-
tude: 4◦40′54′′ N, longitude: 7◦06′05′′ W). At this site, 265 genotypes 
were planted in 2012. The second site, Site 2, is the Toupah plantation, 
part of the SAPH group (Société Africaine de Plantations d′Hévéa) and 
situated in the Grands-Ponts region of Côte d′Ivoire (latitude: 5◦ 19′ 
47.79′′ N, longitude: 4◦ 36′ 39.74′′ W). At this location, 176 genotypes 
planted in July 2013.

The PB260 ×RRIC100 family was planted in two additional sites, 
one in Nigeria and another in Côte d′Ivoire. The first site, Site 3, is the 
Osse River plantation of Rubber Estates Nigeria Limited (RENL), located 
in Edo State, Nigeria (latitude: 6◦27’24.13"N, longitude: 5◦24’50.92"E), 
where 250 genotypes were planted in 2012. The second site for this 
family, Site 4, was again at the SOGB plantation in Côte d′Ivoire, where 
172 genotypes were planted in 2014.

2.2.2. Experimental design
At all four sites, the trees were planted using complete block designs, 

with six blocks and individual trees randomised within each block. The 
density was 1600 trees per hectare, with a spacing of 2.5 m between 
trees.

2.2.3. Phenotypic data
Phenotypic data were collected for three traits: rubber production 

and sucrose content, following the protocol outlined by Cros et al. 
(2019) and Munyengwa et al. (2021). The trees were tapped every two 
days using a half-spiral system, and latex was collected in 180 ml plastic 
boxes attached to the trunks. No ethephon stimulation was applied, 
ensuring natural latex flow. The raw rubber production data over a 

three-month period were analysed using a linear mixed model and the 
Best Linear Unbiased Prediction (BLUP) method via the lme4 R package 
(Bates et al., 2015). This process adjusted the rubber production for 
experimental design effects (blocks) and variations in tree girth at tap-
ping initiation date. These adjusted values, referred to as phenotypes, 
represent the genetic performance of each clone. The phenotypic data of 
each site were standardized by centering and scaling using the following 
formula (Eq. 1): 

zi = (xi − x) / σx (1) 

where zi is the standardized value for the iᵗʰ observation, xi the raw 
adjusted value for the iᵗʰ observation, x is the mean of all raw adjusted 
values and σx their standard deviation. This transformation ensures that 
the phenotypic data have a mean of zero and a standard deviation of one 
for all sites.

2.2.4. Molecular data
Genomic DNA was extracted from young, healthy leaflets using 

mixed alkyl trimethylammonium bromide (MATAB) buffer and 
Macherey-Nagel NucleoMag magnetic beadst (Macherey-Nagel, Düren, 
Germany) on the Beckman Fxp robot (Beckman Coulter, CA, USA). 
Subsequent to the DNA extraction process, two enzymes (Pst1 and Mse1) 
were employed for DNA digestion, in conjunction with barcodes and 
adapters, and then multiplexed to accommodate 96 individuals per li-
brary. These libraries were processed using the CIRAD (Centre de 
Coopération Internationale en Recherche Agronomique pour le 
Développement) Genotyping Technology Platform and then sent to 
Azenta Life Sciences (Germany) for next-generation sequencing. The 
Genotyping-by-Sequencing (GBS) methodology included several key 
steps: normalization of genomic DNA, digestion with PstI and MseI, 
ligation with barcoded adapter sequences, pooling of PCR products 
(combining 96 genotypes into one GBS library), DNA purification, PCR 
amplification with adapter-specific primers, dual DNA purification, and 
sequencing on the Novasq 6000 platform, producing paired-end reads of 
150 nucleotides for each fragment (Mournet et al., 2020).

Single nucleotide polymorphisms (SNPs) were identified from the 
sequence reads using the reference genome of PB 260 (Ismawanto et al., 
2024; Lopez, 2023) and VcfHunter, a pipeline available at https://gith 
ub.com/SouthGreenPlatform/VcfHunter/ (Garsmeur et al., 2018).

2.2.5. Marker filtering and quality checking
Molecular markers, encoded using allelic dosage values of 0, 1, and 2 

depending on the number of alternative alleles copies present, were 
contained in VCF (variant call format) files. Before proceeding with the 
analysis, a quality check of the genotyping data was conducted to 
identify and remove outliers and other inconsistencies. The quality 
assessment revealed that, on average, 13 % of data was missing per in-
dividual in the initial dataset. From the initial set of 14,143 bi-allelic 
SNPs, 12,960 markers were selected for further analysis based on a 
minor allele frequency (MAF) threshold of 0.05 and a maximum of 30 % 
missing data. All SNPs were positioned on 27 pseudo-chromosomes. This 
filtering process led to the elimination of 81 individuals. The missing 
data percentage per marker ranged from 0 % to 28.9 %, with an average 
of 10.06 %. As a result, the data preparation process yielded a dataset 
consisting of 674 genotyped individuals and 12,960 SNP markers. 
Missing data were subsequently imputed using Beagle 5.4 (Browning 
et al., 2018).

2.2.6. Validation approaches for genomic predictions
Genomic predictions were conducted within and between sites, 

resulting in 28 distinct prediction scenarios for a given trait (e.g. Site 1 
toward Site 2, Site 2 + Site 3 toward Site 4, etc.). Based on the use of a 
single site or of multiple sites and on the degree of relatedness between 
the training and validation populations, the different scenarios were 
grouped into five principal prediction approaches.
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2.2.6.1. Cross-validation within each site. The performance of prediction 
within each site, and thus within full-sibs, was assessed using a cross- 
validation strategy for the different traits. The population was 
randomly partitioned into two subsets: 80 % of the set was used as the 
training population to predict the genetic values of the remaining 
partition (20 % of the set), whose phenotypes were assumed to be un-
known. This procedure was repeated 30 times, with samples drawn with 
replacement from the set.

2.2.6.2. Prediction using full-sib data across sites. Secondly, the efficacy 
of the prediction was evaluated using phenotypic data from a full-sib to 
predict the genetic values of their full-sib planted on disparate sites. The 
dataset from each of the four sites was successively employed as a 
training set to predict the GEBVs of their full-sib planted on the other 
sites (e.g., site 1 toward site 2 or site 3 toward site 4). The approach, 
designated as "FS", allowed the testing of four distinct scenarios.

2.2.6.3. Prediction using half-sib data across sites. Subsequently, the ef-
ficiency of prediction was tested using phenotypic data from a family of 
full-sibs to predict the genetic values of their half-sibs planted on sepa-
rate sites (e.g., site 1 toward site 3 or site 4 toward site 2). Designated as 
“HS”, this validation approach allowed the testing of eight different 
prediction scenarios.

Additionally, the HS scenario was extended into a scenario named 
“HS2” which allowed for studying the impact of increasing the size of 
the training population. This was achieved by combining data from two 
sites planted with clones of the same family for the training of the model 
and using it to predict the genetic values of half-sibs at other sites. This 
resulted in four scenarios (e.g., site 1 + site 2 towards site 3 or site 3 +

site 4 towards site 2).

2.2.6.4. Prediction using data from a training set comprising a mixture of 
full-sib and half-sib relatives in relation to the validation population.
Finally, the prediction model was trained using a dataset that included 
both full-sib and half-sib relatives from two different sites. This was done 
with the aim of evaluating the prediction performance when the training 
set is composed of mixed familial relationships, which reflect the 
complexity of genetic relationships in the hevea breeding programmes. 
The training dataset was constructed by combining data from two 
families at two different sites with the objective to predict the genetic 
values of other sites. This allowed for the testing of eight different sce-
narios, for example, site 1 + site 3 towards site 2 or site 2 + site 4 to-
wards site 3. We referred to this prediction approach as “Mix”.

2.2.7. Statistical methods for genomic predictions
The Genomic Best Linear Unbiased Prediction (GBLUP) model was 

utilized for genomic prediction (VanRaden, 2007), evaluating various 
scenarios based on the relatedness between the training and validation 
populations. This model links phenotypic variability to the variation 
explained by all markers, assumed to be in linkage disequilibrium with 
loci responsible for the traits of interest. The equation of the model is 
given by Eq. 2: 

y = 1µ + Xg + e (2) 

where y is the vector of adjusted phenotypes of the training set, µ the 
overall mean, 1 a column vector of 1 s, g ∼ N(0, Gσ2

g ) is the vector of 
additive genetic effects of the training and validation sets. X is the 
incidence matrix associated with vector g. Gσ2

g is the variance- 
covariance matrix of g, σ2

g the additive variance and G the genomic 
additive relationship matrix. G was obtained from the training and 
validation SNP data as G = ZZʹ/nsnp, with the matrix with Z the matrix of 
SNP genotypes with SNPs in columns and standardized so that columns 
have mean zero and standard deviation one, and Z’ is the transpose of Z 
(Pérez and de los Campos, 2014). G was adjusted to be non-singular as G 
= (1 − α)G + Iα, with α = 0.001 (Legarra, 2017). e ∼ N(0, Iσ2

e ) is the 

vector of residual effects. Variance parameters were estimated by 
restricted maximum likelihood (REML) and solutions of the mixed 
models, i.e. the vector ĝ, were obtained by resolving Henderson’s mixed 
model equations (Henderson, 1975), using lme4GS package 
(Caamal-Pat et al., 2021).

The prediction accuracy was evaluated using Pearson’s correlation 
coefficient between the observed and predicted phenotypes.

To assess the effect of site for cross-validations and validation sce-
narios for between site predictions, analyses of variance (ANOVA) were 
performed separately for each trait on the accuracy. A Tukey’s HSD 
(honestly significant difference) test was used for pairwise comparison 
of prediction accuracies between sites and validation approaches.

2.2.8. Genomic prediction optimization using QTL
To enhance the accuracy of genomic selection models, we integrated 

genetic architecture (i.e. QTL results) into these models. This method-
ology involves partitioning molecular markers into two groups based on 
their association with phenotypic variation. SNPs with the highest 
average probability of inclusion are used as covariates. This approach 
aims to prioritize markers strongly linked to specific traits and to inform 
the genomic prediction models, which is expected to enhance their 
performance. This approach was evaluated on the rubber production 
trait.

Two strategies were explored to implement this approach effectively. 
The first strategy, similar to cross-validation approach, involved using a 
random sample of 80 % of the population from a given site to detect 
markers associated with QTLs. The information regarding the QTL- 
derived markers was then used in the GS model to predict the genetic 
values of the remaining 20 % of the population. This procedure was 
repeated 30 times for each site to ensure robustness. The second strategy 
utilized the entire population of one site to detect QTL-associated 
markers, with the goal of using this QTL information to predict the ge-
netic values of individuals from another site.

The QTL analyses were made for rubber production using the BayesC 
model from the BGLR package (Pérez and de los Campos, 2014). BayesC 
is a Bayesian variable selection method that can be used for QTL 
detection (Amadeu et al., 2021; Pérez-Rodríguez and De Los Campos, 
2022). The selection of relevant variables (i.e. SNP) is based on their 
posterior inclusion probabilities, provided by the function. The inclusion 
probability indicates the importance of a SNP in trait variability. We 
conducted 60,000 iterations with a proportion of markers having 
non-zero effects set at 0.001. For each site, five analyses were per-
formed. An average inclusion probability was calculated over the five 
analyses to select markers linked to traits. The proportion of phenotypic 
variation explained by each SNP was measured using the R² metric, 
which was derived from a linear model with the phenotype as the 
dependent variable and the SNP as a fixed effect, using the lme4GS 
package.

The GBLUP model which incorporated prior information about the 
QTL associated with the trait is illustrated by Eq. 3: 

y = 1µ + X1g1 + X2g2 + e (3) 

Here, g1 denotes the part of the additive genetic values associated 
with the selected markers, while g2 denotes the part associated with the 
other markers. g1 ~ N (0, G1σ2

g1) and g2 ~ N (0, G2σ2
g2), with G1 and G2 

being the genomic additive relationship matrix computed with the 
markers within genomic region of interest or with the markers outside 
this region, respectively.

ANOVA followed by a Tukey’s HSD test was employed for pairwise 
comparison of prediction accuracies between models.

3. Results

3.1. Exploration of the phenotypic data

Table 1 presents the descriptive statistics for the phenotypic traits, 
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showing notable variation in latex production, sucrose content and tree 
girth across the four sites. Latex production ranged from 7578.53 cg at 
site 1–24161.9 cg at site 2. Heritability estimates for latex production 
ranged from 85 % at Site 3–94 % at Site 4. For sucrose content, Site 1 
had the highest mean value (26.08 mM/L), whereas Sites 3 had the 
lowest (14.94 mM/L). The heritability ranged from 56 % (Site 3) to 
69 % (Site 2).

Tree girth was only measured at Sites 3 and 4, with site 4 having a 
higher girth (31.91 mm) compared to Site 3 (26.81 mm). The herita-
bility for this trait varied from 85 % at Site 4–65 % at Site 3.

3.2. Genomic predictions using cross-validation approach

The predictions for the three traits, namely rubber production, su-
crose content and tree girth, among four different sites using cross- 
validation demonstrated variability in prediction accuracy among sites 
and traits (Fig. 1).

The prediction accuracy for rubber production varied significantly 

among the four sites (Table 2). Sites 1 and 3 demonstrated the highest 
prediction accuracies, with values of 0.63 and 0.57, respectively. In 
contrast, Sites 4 and 2 exhibited lower prediction accuracies of 0.37 and 
0.33. These two sites differed significantly in terms of prediction accu-
racy, compared to Sites 1 and 3.

For sucrose content, the prediction accuracy varied notably among 
the four sites. Site 2 exhibited the highest prediction accuracy at 0.51. 

Table 1 
Descriptive statistics of phenotypic traits measured across sites.

Site Trait Mean SD Min Max Heritability (%)

Site 1 Latex production (cg) 7578,53 2807,59 1658,22 16618,77 90
Sucrose content (mM/L) 26,08 3,44 17,6 35,04 56

Site 2 Latex production (cg) 24161,9 6774,81 8290,39 48573 93
Sucrose content (mM/L) 17,6 1,56 13,66 23,38 69

Site 3 Tree girth (mm) 26,81 2,14 20,56 33,33 65
Latex production (cg) 11062,99 3608,17 1471,61 22897,21 85
Sucrose content (mM/L) 14,94 2,92 7,76 29,86 57

Site 4 Tree girth (mm) 31,91 2,08 26,07 36,47 85
Latex production (cg) 18774,93 4319,56 10739,25 31584,19 94
Sucrose content (mM/L) 17,23 3,49 9,13 29,97 67

Fig. 1. GS accuracy for rubber production, sucrose content and tree girth among sites obtained by cross-validation.

Table 2 
Comparison of prediction accuracy among sites for each trait using Tukey’s HSD 
test for significant differences. Values followed by the same letter (s) among sites 
are not significantly different at P ≤ 0.05.

Rubber production Sucrose content Tree girth

Site 1 0,63 a 0,42 ab -
Site 2 0,33 b 0,51 a -
Site 3 0,57 a 0,30c 0,45 a
Site 4 0,37 b 0,41 b 0,34 b
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With an accuracy of 0.42. Site 1 was not significantly different from 
either Site 2 or Site 4, which had an accuracy of 0.41. Site 3, with the 
lowest prediction accuracy of 0.30, was significantly different from the 
other sites.

Tree girth was only evaluated at Sites 3 and 4, with Site 4 showing 
better prediction performance (mean = 0.453) compared to Site 3 (mean 
= 0.341).

3.3. Impact of relatedness between training and validation populations on 
genomic prediction

The genomic prediction accuracy for rubber production and sucrose 
content varied depending on the validation scenario and the trait 
(Fig. 2).

For rubber production, the FS approach achieved the highest accu-
racy of 0.54, closely followed by the Mix approach, at 0.52. The variance 
analysis indicates that using full-sib data (FS) or combining full-sib with 
half-sib data (Mix) for model training provide similar prediction per-
formance. In contrast, the HS2 and HS approaches resulted in signifi-
cantly lower accuracies of 0.20 and 0.17, respectively (Table 3).

For sucrose content, similar trends were observed. Thus, the Mix and 
FS approaches gave similar prediction accuracies (0.37 and 0.36, 
respectively), while HS and HS2 led to lower values (although the dif-
ference between HS2 and FS/mix was not significant). As with the 
previous trait, increasing the size of the training population with the 
HS2 approach increased the prediction accuracy compared to the HS 
scenario.

3.4. Optimization of genomic prediction with QTL information

3.4.1. QTL detection
The QTL analysis for rubber production across four different sites 

identified several significant markers, with varying genomic location and 
phenotypic effect according to sites. The top five markers identified from 
the QTL detection analyses using the full dataset from each site are pre-
sented in Table 4. A small number of common genomic regions were 

identified among sites of the same family, i.e. a 4.2 Mbp region on pseudo- 
chromosome ptg000024 for family PB260 x RRIM600 (Sites 1 and 2) and 
two regions of 2.6 Mbp on ptg000006 and 5.7 Mbp on ptg000017 for 
PB260 x RIC100 (Sites 3 and 4). However, no common significant SNPs 
were detected. At Site 1, the top three markers (ptg000024l_22674579, 
ptg000024l_20455161, and ptg000024l_23205187) were all located on a 
region covering less than 3Mbp on pseudo-chromosome ptg000024l, 
explaining 17 %, 15 %, and 14 % of the phenotypic variation, respec-
tively. The subsequent markers were positioned on different pseudo- 
chromosomes, contributing to lower proportions of the variation (7 % 
and 5 %, respectively). For Site 2, the most important marker was 
ptg000024l_18962668, explaining 16 % of the phenotypic variation. 
Moreover, two markers were found on pseudo-chromosome ptg000005l, 
contributing 14 % and 10 %. Additionally, two markers were identified on 
pseudo-chromosome ptg000029l, explaining 11 % and 9 % of the varia-
tion, respectively. At Site 3, the marker ptg000006l_87274838 was the 
most significant, accounting for 15 % of the phenotypic variation. 
Notably, two markers positioned on pseudo-chromosome ptg000008l 
explained 11 % and 10 % of the variation, respectively. Furthermore, two 
other markers on pseudo-chromosome ptg000017l contributed 8 % and 
7 % of the variation. Finally, at Site 4, the key marker 
ptg000014l_44438953 explained 14 % of the phenotypic variation, fol-
lowed by two markers located on pseudo-chromosome ptg000006l (each 
accounted for 11 % of the variation).

By using random samples comprising 80 % of the population to 
detect markers associated with QTLs, the ranking of markers by 
importance showed variability across different analyses of the same site. 
In the 30 analyses conducted, between 10 and 20 distinct SNPs were 
identified as having the highest probability of inclusion for a given site. 
A single SNP appeared as the top-ranked marker between 3 and 14 times 
out of the 30 analyses for site 1 (Table 5).

3.4.2. Integration of QTL information into GS models
The Fig. 4 presents the GS accuracy with the cross-validation strategy 

in the four sites using the GBLUP model and the GBLUP model 
augmented with QTL information. The prediction accuracy decreased in 

Fig. 2. GS accuracy for rubber production and sucrose content using different validation approaches across sites.
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all sites when using the model integrating QTL information. On Site 1, 
the decrease was small, with the GS accuracy of the GBLUP + QTL 
model being 0.62 against 0.63 for the GBLUP model, but stronger de-
creases were found in the other sites. Thus, in Site 2, the accuracy of the 
GBLUP model was 0.41 against 0.33 for the GBLUP + QTL model at 
0.33. On Site 3, the inclusion of QTL information in the GBLUP model 
significantly reduced the accuracy from 0.52 to 0.42. Similarly, in Site 4, 
the GBLUP model had an accuracy of 0.40, while the GBLUP + QTL 
model decreased to 0.34 (Table 6).

The second strategy involved using phenotypic data from a single 
site, supplemented with trait-associated marker information, to predict 
the genetic values of individuals at a different site through the imple-
mentation of a FS and HS validation approach.

For the FS scenario, the GS accuracy for the GBLUP model was 0.53, 
while the GBLUP + QTL model showed a slightly lower accuracy of 0.52; 
however, the difference was not statistically significant (Table 7). In the 
HS scenario, the GBLUP model and the GBLUP + QTL model also dis-
played similar accuracies, with values of 0.16 and 0.13, respectively, 
with no significant differences observed between the models (Fig. 5).

4. Discussion

In genomic selection programs, the choice of the training population 
is crucial for the accuracy and effectiveness of breeding efforts. In this 
research, we investigated the impact of genetic relatedness between 

Fig. 3. Genomic regions associated with rubber production for each site. Each dot represents a SNP. PI: probability of inclusion.

Table 3 
Comparison of GS accuracy by validation approaches for each trait using 
Tukey’s HSD test for significant differences. Values with the same letter among 
validation approaches are not significantly different at P = 0.05.

Rubber production Sucrose content

FS 0,54 a 0,36 ab
HS 0,17 b 0,21 b
HS2 0,20 b 0,26 ab
Mix 0,52 a 0,37 a

Table 4 
Top 5 markers (with the highest probability of inclusion) identified from QTL 
detection analysis for rubber production using entire dataset of each site.

Site Marker Pseudo- 
chromosome

Position 
(pb)

phenotypic 
variation (R², in 
%)

Site 
1

ptg000024l_22674579 ptg000024l 22674579 17
ptg000024l_20455161 ptg000024l 20455161 15
ptg000024l_23205187 ptg000024l 23205187 14
ptg000008l_11355608 ptg000008l 11355608 7
ptg000033l_21322938 ptg000033l 21322938 5

Site 
2

ptg000024l_18962668 ptg000024l 18962668 16
ptg000005l_80904429 ptg000005l 80904429 14
ptg000029l_2144265 ptg000029l 2144265 11
ptg000005l_86014406 ptg000005l 86014406 10
ptg000029l_2424338 ptg000029l 2424338 9

Site 
3

ptg000006l_87274838 ptg000006l 87274838 15
ptg000008l_24778126 ptg000008l 24778126 11
ptg000008l_25862107 ptg000008l 25862107 10
ptg000017l_43295569 ptg000017l 43295569 8
ptg000017l_44457735 ptg000017l 44457735 7

Site 
4

ptg000014l_44438953 ptg000014l 44438953 14
ptg000006l_84657378 ptg000006l 84657378 11
ptg000008l_1908656 ptg000008l 1908656 11
ptg000017l_38788405 ptg000017l 38788405 9
ptg000005l_90912486 ptg000005l 90912486 7
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training and validation populations, as well as the integration of prior 
QTL information, on the efficiency of genomic selection in Hevea brasi-
liensis, using two biparental families planted across four distinct sites. By 
estimating GS prediction accuracy for rubber production, tree girth, and 
sucrose content across different sites and families, the present study 
provided a broader perspective on the performance of GS for this spe-
cies. Among the traits, rubber production exhibited the highest GS ac-
curacy, suggesting it is influenced by a larger number of genes compared 

Table 5 
Top markers identified based on inclusion probability from QTL analysis using 80 % of the population per site. Frequency indicates the number of times a marker had 
the highest inclusion probability over the 30 replicates of analysis.

Site 1 Frequency Site 2 Frequency Site 3 Frequency Site 4 Frequency

ptg000024l_22674579 14 ptg000024l_18962668 12 ptg000006l_87274838 3 ptg000014l_44438953 12
ptg000012l_103928856 7 ptg000005l_15237515 3 ptg000006l_89299314 3 ptg000008l_1908656 3
ptg000024l_20455161 2 ptg000005l_86014406 2 ptg000008l_23887251 3 ptg000006l_84657378 2
ptg000001l_78905997 1 ptg000005l_86103026 2 ptg000017l_41216414 3 ptg000017l_38788405 2
ptg000002l_90885569 1 ptg000024l_18966905 2 ptg000008l_24778126 2 ptg000002l_9056815 1
ptg000005l_15508981 1 ptg000001l_24891765 1 ptg000030l_5386154 2 ptg000005l_90912486 1
ptg000008l_14352859 1 ptg000001l_37184084 1 ptg000001l_18827744 1 ptg000005l_96828545 1
ptg000017l_49813050 1 ptg000005l_14411091 1 ptg000001l_81389555 1 ptg000006l_79881853 1
ptg000021l_63535779 1 ptg000005l_16764351 1 ptg000006l_75411744 1 ptg000012l_104393027 1
ptg000024l_24628149 1 ptg000005l_84888882 1 ptg000006l_79443043 1 ptg000012l_99873043 1
 ptg000008l_81049708 1 ptg000008l_25862107 1 ptg000013l_55295056 1
 ptg000012l_83460118 1 ptg000008l_9278955 1 ptg000013l_58906799 1
 ptg000014l_31089981 1 ptg000010l_19353106 1 ptg000023l_2355330 1
 ptg000023l_12532345 1 ptg000016l_46345493 1 ptg000023l_38596384 1
  ptg000017l_42053065 1 ptg000023l_85788303 1
  ptg000017l_42490831 1 
  ptg000017l_42614127 1 
  ptg000021l_61579198 1 
  ptg000029l_904508 1 
  ptg000033l_10403229 1 

Fig. 4. GS accuracy for rubber production according to prediction model across sites.

Table 6 
Comparison of GS accuracy according to prediction model and site using Tukey’s 
HSD test for significant differences. Values followed by the same letter (s) among 
prediction models are not significantly different at P ≤ 0.05.

Site 1 Site 2 Site 3 Site 4

GBLUP model 0,63 a 0,41 a 0,52 a 0,40 a
GBLUP model + QTL 0,62 a 0,33 a 0,42 b 0,34 b
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to the other traits. Furthermore, our results revealed significant varia-
tions in GS accuracy depending on the site and family, illustrating the 
need for caution when considering the practical application of the 
method.

4.1. Impact of relatedness on genomic predictions

The analysis of relatedness between training and validation pop-
ulations demonstrated that closer genetic relationships, as in the FS 
approach, resulted in higher prediction accuracies for rubber produc-
tion. Conversely a substantial drop in accuracy was observed with the 
HS and HS2 approaches, underscoring the critical role of genetic relat-
edness in building robust prediction models. In particular, when a 
genomic prediction model is trained on one family to perform pre-
dictions in another family, the accuracy tends to be lower than what can 
be achieved within each family, despite the fact that the two families are 
connected by a common parent. These findings are consistent with a 
number of studies in other plant species (Brauner et al., 2020; Duhnen 
et al., 2017; Guo et al., 2014; Habier et al., 2007; Lorenz et al., 2012; Rio 
et al., 2019, 2021; Windhausen et al., 2012) which have shown that 
genomic selection models perform better when training and validation 
sets are closely related. This deterioration in the prediction accuracy can 

be attributed to differences between families in terms of alleles 
contributing to trait variation, allele frequencies at QTLs (Schopp et al., 
2017) and QTL allele effects and differences in linkage disequilibrium 
between markers and QTLs (de Roos et al., 2009), leading to biases in 
the effects estimated at markers. While using the same full-sib family for 
training and validation allowed for the highest prediction accuracies, 
this approach requires creating as many training sets as there are 
candidate families, which is resource-intensive and unrealistic for 
large-scale breeding programs.

This study showed that combining full-sibs and half-sibs in the 
training population, as in the Mix approach, can achieve prediction 
performances comparable to intra-family models. A practical approach 
could involve constructing a single training population composed of 
multiple families connected by common parents in genomic selection. 
This strategy would have two practical advantages compared to the use 
of multiple training populations, each consisting of a single full-sib 
family. First, it would eliminate the need for artificial pollinations, 
which require significant labour time, and replace them with open 
pollinations among a small number of selected individuals. Second, it 
would allow for the management of a single training population within 
the breeding program, which could be used generically for all families 
related to the initially selected individuals, particularly their progenies. 
Third, the training set would be made of full-sibs and a panel of several 
half-sib families (not of a single one as in our study), and this can in-
crease the prediction accuracy, as found by Juliana et al. (2022). Such an 
approach relying on multiple connected families has also been recom-
mended by Brauner et al. (2020). The higher genericity of such a 
training population would reduce the number of individuals to be phe-
notyped among several full-sib families, and predictions could be 
applied to a larger selection population, thus allowing for a higher se-
lection intensity and genetic diversity.

Table 7 
Comparison of GS accuracy according to prediction model and validation 
approach using Tukey’s HSD test for significant differences. Values followed by 
the same letter (s) among prediction models are not significantly different at 
P ≤ 0.05.

FS HS

GBLUP model 0,53 a 0,16 a
GBLUP model + QTL 0,52 a 0,13 a

Fig. 5. GS accuracy for rubber production according to prediction model and validation approach across sites.
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Before implementing this strategy, it is important to quantify the 
effect, in terms of accuracy of genomic prediction, of using a training 
population that includes a mix of full-sibs and half-sibs from the selec-
tion family, compared to a training population composed solely of full- 
sibs. Here, we have shown that adding half-sibs to a training population 
that includes a full-sib family does not reduce accuracy compared to 
calibrating with only full-sibs. This demonstrates that the proposed 
strategy is feasible. Additionally, the results also showed that increasing 
the size of the training population by adding half-sibs does not increase 
the accuracy of genomic prediction. This suggests two possibilities. The 
first is that it might be possible to reduce the size of the different full-sib 
families, which would increase the efficiency of genomic selection per 
unit cost and/or allow the reallocation of saved resources to evaluate 
other families. The second would be to increase the density of molecular 
markers to enhance segregation within the population and thus make 
better use of the available population size.

4.2. QTL detection

The objective was to identify QTL with potentially strong effects and 
integrate them into the GS model, rather than focusing on the segrega-
tion of favourable alleles within the family, as in the case of classical 
QTL mapping approaches. Few methods of QTL detection are well-suited 
for full-sib families between heterozygous parents. The BayesC model, a 
bayesian variable selection method of the whole genome association 
analysis type, was chosen for its simplicity and flexibility among several 
methods, including single interval mapping with Rqtl (Broman et al., 
2003, 2019) and composite interval mapping with FullsibQTL (Gazaffi 
et al., 2014). BayesC partitions molecular markers based on their pos-
terior inclusion probabilities, enabling the prioritisation of markers 
strongly associated with trait variation (Wolc and Dekkers, 2022). Un-
like traditional QTL mapping approaches, this method does not require a 
genetic linkage map. By conducting multiple iterations and selecting 
SNPs with the highest average inclusion probabilities across analyses, 
we ensured robust identification of genomic regions linked to rubber 
production. Improving QTL detection could be a key area for future 
research. Higher-resolution mapping techniques and denser marker ar-
rays may provide better resolution in future studies (Heidari et al., 2011; 
Wu et al., 2022). Additionally, multi-environment QTL analyses or 
modelling genotype-by-environment interactions could allow for the 
identification of more stable QTL, potentially enhancing their utility in 
genomic predictions (Ahmadi and Bartholomé, 2022).

4.3. Integration of QTL information in genomic prediction models

The integration of QTL information into GS models, while theoreti-
cally promising (Grattapaglia, 2022; Grattapaglia et al., 2018; Nsibi 
et al., 2020; Zhang et al., 2023), resulted in a consistent decrease in 
prediction accuracy across all cases (cross-validation or other valida-
tions approaches) in our study. This outcome may be attributed to the 
complex genetic architecture of the trait, with multiple small-effect 
QTLs (Morgante et al., 2018). This is supported by the fact that the 
highest R² for each site accounts for only 14–17 % of the total pheno-
typic variance, and that several regions were identified depending on 
site, family and, for cross-validations, sample of training individuals. For 
instance, in Nsibi et al. (2020), where positive results were obtained 
when adding QTL information in the GS model, the R² values for the 
QTLs reached up to 51.2 %, and 40 % of their QTLs had R² values 
≥ 17 %. The inconsistency between the results of the different sites, 
even for a same family, further reduces the effectiveness of predictions, 
as it indicates instability in QTL detection, which is likely caused by GxE 
interaction. The instability of QTLs can further complicate predictions, 
as noted by Nsibi (2021), especially for polygenic trait, reducing the 
expected performance from incorporating QTL data. McElroy et al. 
(2018), working on cocoa, also considered the use of a priori informa-
tion on the SNPs, by making genomic predictions including as fixed 

effects the SNPs detected by GWAS. This did not improve prediction 
accuracies in their study, but this likely occurred as a consequence of the 
genetic differentiation between the training and application pop-
ulations, making irrelevant the detected SNPs, and as a consequence of 
the small number of SNPs identified by GWAS. When considering pre-
dictions between half-sib families, the absence of common QTLs be-
tween the two families further explains the failure of using QTL 
information for genomic selection prediction.

The goal of the cross-validation study was to consider a situation 
without GxE interactions, assuming that this could make effective the 
genomic prediction approach that incorporated QTL information into 
the model. However, this was not the result observed. We assume that 
the explanation lies not only in the low variance explained by the SNPs 
at the QTLs, but also in populations that were too small for QTL detec-
tion using a cross-validation approach, where 20 % of individuals are set 
aside for validation. This is suggested by the fact that different QTLs 
were identified when using different samples in a given site.

The negative effect of incorporating QTL information into the GS 
models in our study may be attributed to the fact that only a single SNP 
was included in the model, which may not have been sufficient to cap-
ture a large enough portion of the genetic variance. Preliminary analyses 
were conducted using up to 5 SNPs with the highest probability of in-
clusion, but this did not lead to any improvement in the results (data not 
shown). The consistent reduction in prediction accuracy when incor-
porating QTL information suggests that this approach, as implemented 
in this study, does not yet provide a reliable advantage for improving 
genomic predictions in Hevea brasiliensis. This has consequences for 
breeding programs, as it demonstrates the need to carefully consider the 
added value of QTLs in predictive models, especially for polygenic traits.

Finally, integrating functional annotations (e.g. candidate genes) 
could enhance the effectiveness of QTL-informed genomic selection, 
representing a valuable addition to our current approach. Prioritising 
specific genomic regions or gene networks based on prior biological 
knowledge could improve the accuracy of predictions, particularly for 
complex traits. Furthermore, integrating omics approaches (tran-
scriptomics, metabolomics, and proteomics) could enhance genomic 
prediction by capturing intricate biological interactions and non-linear 
relationships, ultimately leading to more precise and reliable trait pre-
dictions (Ahmadi and Bartholomé, 2022; Alemu et al., 2024).

4.4. Phenotypic data

The study was conducted across four diverse sites: three in Côte 
d’Ivoire (two at the SOGB plantation and one at the Toupah plantation) 
and one in Nigeria (Osse River plantation). These sites differ in envi-
ronmental conditions, including soil type, climate, and management 
practices, which significantly influenced phenotypic variability for traits 
such as latex production, sucrose content, and tree girth. The observed 
variation in genomic prediction accuracy across suggests a significant 
amount of genotype-by-environment interactions. For instance, the 
higher prediction accuracies for latex production at certain sites could 
be linked to more stable phenotypic expression under specific environ-
mental conditions. Conversely, the lower accuracies observed at other 
sites underscore the challenges posed by greater environmental 
heterogeneity.

5. Conclusion

The present study provided a broader perspective on the perfor-
mance of GS for rubber tree by considering various traits, sites and 
families. This study provides a comprehensive evaluation of genomic 
prediction models in rubber tree breeding, highlighting the importance 
of environmental factors, genetic relatedness, and careful integration of 
QTL information. Our results suggest that the construction of a training 
population composed of several families connected by common parents 
is an interesting strategy for rubber breeding. Future research should 
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focus on refining genomic selection models by incorporating environ-
mental covariates and modelling genotype by environment interactions 
to enhance prediction accuracy across diverse conditions. Additionally, 
the results suggest that leveraging closely related training populations 
and validating QTL effects across multiple environments could improve 
the reliability of genomic predictions in rubber tree breeding programs.
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