
            

LETTER • OPEN ACCESS

Scaling up the assessment of logging’s impact on
forest structure in Central Africa using field and
UAV data
To cite this article: Chloé Dupuis et al 2025 Environ. Res. Lett. 20 014018

 

View the article online for updates and enhancements.

You may also like
Quantifying long-term changes in carbon
stocks and forest structure from Amazon
forest degradation
Danielle I Rappaport, Douglas C Morton,
Marcos Longo et al.

-

Influence of logging on the effects of
wildfire in Siberia
E A Kukavskaya, L V Buryak, G A Ivanova
et al.

-

Satellite-based primary forest degradation
assessment in the Democratic Republic of
the Congo, 2000–2010
I Zhuravleva, S Turubanova, P Potapov et
al.

-

This content was downloaded from IP address 102.141.46.243 on 10/06/2025 at 10:45

https://doi.org/10.1088/1748-9326/ad99ea
/article/10.1088/1748-9326/aac331
/article/10.1088/1748-9326/aac331
/article/10.1088/1748-9326/aac331
/article/10.1088/1748-9326/8/4/045034
/article/10.1088/1748-9326/8/4/045034
/article/10.1088/1748-9326/8/2/024034
/article/10.1088/1748-9326/8/2/024034
/article/10.1088/1748-9326/8/2/024034
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvYbNRYH4uvqhhz1y2xQIXhm6ltkaPau9TmJQOC1ETVzameMjaD7n1qCHUaCzQjXQEMBaTYyoHDeH6MZk5y4MPChSJKxbpMKLLQbOiBLRh2AHMs_kEylc7kTBUH5kZ-ZBB4zGpoq_qlpaD1melXh_dpAZ6BIei4YWjP6SxEXOaiY12WNQHSnPJZtOaYpjTyV-VOQYo3hXGT0VgJWSnNHXkfrmZJCBMonTBFQUONiFeOmjoUiZ3T-LpkQzDH8z7VWBPu-UFRZEOeXPW2OABzKPtHX2FTZHSSg2bL6mDN0qZqLWXXw90xjYftAJMquYXyooTgYkcrOLH6kjMfc1pLmZpOxqwmqz8KdpuGtFWxFRc5_cFY&sig=Cg0ArKJSzOn98UUazO5Q&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3DIOP_2025_TIA%26utm_id%3DIOP%2BTIA


Environ. Res. Lett. 20 (2025) 014018 https://doi.org/10.1088/1748-9326/ad99ea

OPEN ACCESS

RECEIVED

28 June 2024

REVISED

25 November 2024

ACCEPTED FOR PUBLICATION

3 December 2024

PUBLISHED

13 December 2024

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Scaling up the assessment of logging’s impact on forest structure
in Central Africa using field and UAV data
Chloé Dupuis1,∗, Gauthier Ligot1, Jean-François Bastin1, Philippe Lejeune1, Jean-Louis Doucet1,
Vivien Rossi2 and Adeline Fayolle1,2
1 TERRA Teaching and Research Centre (Forest is Life), Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés n◦2,
Gembloux 5030, Belgium

2 CIRAD, For̂ets et Sociétés, F-34398 Montpellier, France
∗ Author to whom any correspondence should be addressed.

E-mail: chloedupuis719@protonmail.com

Keywords: selective logging, Central Africa, forest structure, canopy opening, logging intensity, forest disturbance, upscaling

Supplementary material for this article is available online

Abstract
A third of the forest area in Central Africa has been granted to logging companies. Logging is
highly selective in the region, with an average of 0.7–4.0 trees harvested per ha, but its direct impact
on forest structure and the spatial variation of this impact remain understudied. Here, we
investigated the direct impact of logging on forest structure, we related this impact to logging
intensity and canopy opening. We compiled unique datasets collecting field measurements and
aerial observations in four FSC certified concessions. Our data includes pre- and post-logging
inventory of forest plots covering 38 ha, records of over 6000 harvested trees, and drone RGB
images covering over 6000 ha. In average, logging activities reduced forest above-ground biomass
by 8.8%, stem density by 6.5%, basal-area by 8.5% and canopy cover by 4.4%. Strong relationships
were found between the reduction in biomass, stem density, or basal area with logging intensity,
canopy opening and the number and volume of harvested trees (relative root mean squared error
(rRMSE) between 0.128 and 0.164). Additionally, we demonstrated that canopy opening can be a
good indicator to monitor and upscale logging intensity (rRMSE between 0.0005 and 0.0022). This
study is the first covering extensive inventory plots and uninhabited aerial vehicle images before
and after logging in different locations in Central Africa, providing a valuable reference to evaluate
the impact of logging on forest structure. It demonstrates how canopy opening can be used to
estimate measurements usually collected in the field and provides to the remote sensing
community a unique dataset that will help improving monitoring systems (Dupuis et al 2024
(available at: https://hdl.handle.net/2268/323683)). These findings also have significant
implications to control and manage logging activities, especially for certification standards, forest
administrations, and European regulations.

1. Introduction

In recent years (2015–2019), tropical forests degrad-
ation has increased by 38% while annual deforest-
ation has decreased by 5% (Vancutsem et al 2021).
Degradation, defined as ‘a disturbance in the tree
cover canopy that is visible from space over a short
time period, leading to a loss of biodiversity and/or
carbon storage’ (Vancutsem et al 2021), is attributed
to human activities such as agriculture, logging, fires,
road construction, mining, and wood fuel collection

(Vancutsem et al 2021, Bayas et al 2022, Tyukavina
et al 2018). InCentral Africa, small-scale agriculture is
the primary driver of forest loss measured on Landsat
imagery (84%), followed by industrial logging activ-
ities (9.5%) (Tyukavina et al 2018). Industrial log-
ging in the region covers one-third of the forest area
(Eba’a Atyi et al 2022) and is highly selective, tar-
geting a limited number of high-value tree species
and harvesting a restricted number of trees (0.7–
4.0 trees·ha−1) every 20–35 years (BAD2018,Medjibe
et al 2011). InCentral Africa, logging companiesmust
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produce Forest Management Plans, which address
various environmental and social issues including
Reduced Impact Logging (BAD 2018, Medjibe et al
2011). About 10% of production forests are certi-
fied by the Forest Stewardship Council ensuring that
Forest Management Plans are adopted and imple-
mented by these companies (Tritsch et al 2020, FSC
2022).

Logging activities impact forest structure, leading
to a direct loss of aboveground biomass (AGB) ran-
ging from 7.1% to 13.4%, as measured on inventory
plots, and a canopy opening of 4%–11%, observed
using uninhabited aerial vehicle (UAV) and satel-
lite imagery (Ngueguim et al 2009, Medjibe, et al
2013, Dupuis et al 2023). The extent of ground
damage varies depending on the type of logging
operations: felling gaps range in size from 218 to
578 m2 (Doucet et al 2009, Medjibe et al 2011), while
log yards are approximately 1200 m2 (Durrieu de
Madron et al 2000). Additionally, skid trails have a
mean width of 4.1 m (Medjibe et al 2011), narrower
than secondary (width = 24.8 m) and primary roads
(width = 39.3 m) (Hirsh et al 2013). Earlier stud-
ies have demonstrated that the AGB rapidly recov-
ers after logging, as illustrated in the M’Baïki experi-
ment in the Central African Republic (Gourlet-Fleury
et al 2013). It has also been shown that canopy open-
ing for logging roads construction does not per-
sist (Kleinschroth et al 2019). This rapid recovery
is attributed to the growth stimulation of remaining
trees and the recruitment of new trees, often includ-
ing fast-growing pioneer species (Sist and Nguyen-
Thé 2002, Peña-Claros et al 2008, Gourlet-Fleury et al
2013). Logging intensity has a direct impact on the
amount of damages caused to the forest (Durrieu
de Madron et al 2000) and its capacity to recover
(Gourlet-Fleury et al 2013, Rutishauser et al 2015,
Maurent et al 2023).

Logging activities are currently monitored on
various scales. On a local level, research inventory
plots ranging from 1 to 10 ha provide accurate data,
e.g. to study forest recovery after logging (Gourlet-
Fleury et al 2013). However, these plots may not fully
represent the entire surface impacted by logging activ-
ities. On a broader scale, logging companies gather
field data, recording the location of harvested trees
along with their diameter and species to plan their
activities (BAD 2018). Remote sensing tools on a lar-
ger scale have revolutionized the study of tropical
forests that are difficult to access by enabling faster
and more comprehensive data collection (Sanchez-
Azofeifa et al 2017). While satellite-based systems
allow systematicmonitoring, they cannot detect small
disturbances (Dupuis et al 2023). UAV RGB data has
been identified as a potential bridge between satellite
and field-collected data but remains poorly explored
(Bourgoin et al 2020, Dupuis et al 2020). Canopy

opening is a frequently measured indicator using
remote sensing tools and has great potential for integ-
rating remote sensing and field data for large-scale
monitoring but it has not been thoroughly explored
yet (Dupuis et al 2020).

This study aims to assess the direct impact of
selective logging on forest structure, and investigate
how logging damages are affected by logging intens-
ity. Field and UAV measurements will be integrated
to spatially extent this information in Central Africa.
The following questions are addressed. (1) What is
the impact of logging on forest structure, specifically
on AGB (in Mg·ha−1), basal area (BA, in m2·ha−1),
stem density (N, ha−1) and canopy cover (propor-
tion of canopy opening), using inventory plots? (2)
How logging intensity (harvested volume and num-
ber of trees) and canopy opening (proportion) can be
used to estimate the impact of logging on forest struc-
ture? (3) How can canopy opening be used to predict
logging intensity using a dataset combining UAV data
with harvested trees on a larger scale?

2. Material andmethods

2.1. Study sites
Field inventory campaigns were conducted in four
FSC-certified logging companies, incorporating the
installation of forest plots andUAV flights both before
and after logging, where industrial and mechanized
operations are employed (figures 1(a) and S1). The
sites encompassed various types of tropical moist
forests (Fayolle et al 2014, Réjou-Méchain et al 2021).
Sites A and B corresponded to dense, mature semi-
deciduous forests dominated by Celtis spp. These
forests feature a stratified canopy, with deciduous
trees allowing more light penetration during the
dry season, promoting moderate understorey growth
(Fayolle et al 2014, Loubota et al 2018). Site C, by con-
trast, is characterized by a highly open canopy, with
widely spaced trees and a dense herbaceous under-
storey dominated by Marantaceae species, a typical
feature of post-disturbance environments that pro-
mote herbaceous layer development (Gillet 2013).
Finally, site D is dominated by Aucoumea klaineana
(Okoumé) (Van Hoef et al 2019), the most important
timber species in Gabon. The site underwent its first
logging cycle prior to our study, which focuses on the
second harvesting rotation.

2.2. Inventory plots and harvested trees
Forest inventory plots were installed before any log-
ging activities in sites A (1× 4 ha), B (2× 9 ha) andD
(4× 4 ha) (figures 1 and 2(a)), following the protocol
for the installation of permanent sampling plots pro-
posed by Picard andGourlet-Fleury (2008). Each plot
was geolocated using a Garmin GPS for sites B and D,
and a GPS with RTK/PPK corrections for site A. Prior
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Figure 1. Location of the study sites across Central Africa and information about the field and UAV data collected in each site. The
map shows protected areas (in green), non-certified (in red) and sustainable forest management (SFM) in certified logging
concessions (in yellow). Country limits are shown in black and main rivers are in blue.

to logging, all trees with a diameter at breast height
(DBH) ⩾ 10 cm were identified by field botanists,
measured and recorded (figure 2(a)). Each tree was
geolocated using the x and y coordinates within the
20 × 20 m quadrats (see Picard and Gourlet-Fleury
2008, p 81), then calibrated against UAV images based
on the emerging tree crowns tominimize geolocation
errors. DBH was measured using a tape at a height of
1.3 m for regular stems, or 30 cm above the top of the
buttresses, and then converted to DBH using a taper
model for irregular stems (Bauwens et al 2021). In
most 1 ha subplots (figure 1), at least 50 trees includ-
ing the 10 largest trees and 10 trees randomly selec-
ted in 10 cm wide diameter classes to cover the dia-
meter range, were selected for height measurement
(Sullivan et al 2018). The total height of these trees (H
in m) was measured using a VERTEX Haglöf ultra-
sonic meter or a Nikon Forestry laser rangefinder.
The social status (understory, canopy or emergent)
was observed in the field for all trees in sites A and
D. After logging, each tree was revisited and categor-
ized into one of four damage categories based on the
impact of logging activities: alive, when it was intact;
damaged, when the tree was impacted by logging but
could still live (i.e. debranched, broken, barked, lean-
ing tree); harvested, when it was cut by the logging
company; dead, when it was dead or had no chance

to survive because of logging activities (i.e. uprooted
tree or lying on the ground). The general category
‘impacted’ gathers all trees that are damaged, har-
vested or dead (figure 2(a)). In addition, in the UAV
covered areas, we recorded the location and the DBH
of all harvested trees (6503 trees in total, figure 2(b)).
The recorded DBH corresponded to the midpoint of
the diameter class estimated by operators in site A,
and to the DBH measured with a tape in sites B, C
and D.

2.3. Canopy gap identification on UAV images

RGB images, where each pixel is defined by the
amount of red, green, and blue color, were obtained
fromUAV flights performed before and after logging,
except for site A forwhich flights were performed only
after logging (figure 1). Technical information can be
found in table S1. GPS data with RTK/PPK correc-
tions were processed using RTKLIB to ensure accur-
ate georeferencing of the images (Takasu and Yasuda
2009, Cledat et al 2020). Orthomosaic and digital sur-
face model (DSM) at 10 cm resolution were gener-
ated using photogrammetry in Metashape software
(Lisein et al 2013). Using before and after orthomo-
saic and DSM canopy gaps caused by logging activ-
ities were photo-interpreted, manually digitalized in
QGIS and categorized into felling gaps, roads, skid
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Figure 2. Example of plot data (a) and UAV images (b) used to assess the impact of logging on forest structure from site D.
Example of 4 ha plots and inventoried trees are shown in (a). Impacted trees correspond to all trees that are not intact after
logging activities. Locations of harvested trees provided by logging companies, UAV images taken after logging and canopy
openings categorized in different types of gaps are shown in (b). ‘Others’ refers to gaps where the cause of damage was not clearly
identifiable.

trails, log yards and others when the cause was not
clearly identifiable (figures 2(b) and S1). In site A,
where only post-logging images were available, errors
in photointerpretation were minimized by utilizing
the locations of harvested trees and by recognizing
the clear distinctions between natural gaps and log-
ging gaps, characterized by the absence of logs and
associated damages (figure S2). This dataset is avail-
able at (Dupuis et al 2024). In site A, the length of
41 felling gaps were measured in the field using a
VERTEX Haglöf ultrasonic meter. The length from
the stump to the outer edge of the crown within each
gap was recorded in the field, accounting for damage
delineated under the canopy, as well as assessed on
UAV images to capture damages occurring within the
canopy (figure S3). The difference between field and
UAV measurements was assessed by calculating the
mean absolute error (MAE), the root mean squared
error (RMSE) and the relative RMSE to the mean
(rRMSE).

2.4. Biomass and volume estimates at the tree level
The AGB (in kg) of all trees in the inventory
plots was calculated using the pantropical allometric
equation of Chave et al (2014) that was earlier val-
idated for Central Africa (Fayolle et al 2018). Site-
specific height-diameter allometric equations were
first developed to estimate the height of all trees in the
plots fitting non-linear Michaelis–Menten model as
recommended (Molto et al 2013, Fayolle et al 2016).
The BIOMASS package in R (Réjou-Méchain et al
2017) was used to extract wood density values (spe-
cies average) and to compute AGB estimates (res-
ults shown in tons). The commercial timber volume
(in m3), i.e. the over-bark volume, of all harves-
ted trees was estimated using DBH measurements
and species-specific allometric equations (table S4)

compiled from Gourlet-Fleury et al (2013), Henry
et al (2013) and Ligot et al (2019).

2.5. Data analyses
Forest structural attributes were firstly assessed at
the 1 ha-subplot level computing for example AGB
(in t·ha−1), BA (in m2·ha−1), and NHA (in num-
ber of trees·ha−1). The choice of 1 ha subplots is
recommended for upscaling field data to larger areas
(Réjou-Méchain et al 2019), and allows for cover-
ing a gradient of logging intensity within the study
sites. The reduction in these attributes (delta AGB,
BA and NHA), called logging impact (3.1 in figure 3),
was assessed computing the metrics by damage cat-
egories (‘intact’ or ‘impacted’ trees) and social status
(understory, canopy, emergent) before and after log-
ging inventories. Logging intensity was quantified as
the number (N harvested·ha−1) and commercial tim-
ber volume (V harvested in m3·ha−1) of harvested
trees per hectare, both using the inventory plots and
the harvested trees (figure 3, Paragraph 2.2). At the
UAV-flight level and using gap photo-interpretation,
canopy opening was evaluated according to differ-
ent types of logging operations (felling gaps, logging
roads, log yards, skid trails, others).

At the 1 ha-subplot level, we explored the rela-
tionships between logging impact, logging intensity
and canopy opening (3.2 and 3.3 in figure 3). Logging
impact was modeled using an exponential decay
model including logging intensity as an explanatory
variable (equation (1)). As intensity increases, dam-
ages tend to overlap, resulting in a decrease in damage
per tree (Durrieu de Madron et al 2000, Guitet et al
2012). Logging impact was modeled using an expo-
nential growthmodel including canopy opening as an
explanatory variable (equation (2)), indicating that
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Figure 3. Forest structural attributes measured at different scales, from the inventory plots (paragraph 3.1) to the UAV flights
level, and relationships established between these attributes (paragraphs 3.2, 3.3 and 3.4).

larger openings result in a greater impact on forest
structure.

At the UAV flight level, logging intensity was
modeled using grids of various sizes, ranging from
1 ha to 100 ha (see example in white grid lines in
figure 3 with a grid size of 500 m). A linear model
was used to estimate logging intensity, with canopy
opening as the explanatory variable (3.4 in figure 3,
equation (3). By varying grid sizes, we aimed to
identify the scale at which these attributes could be
most reliably estimated. The data were collected from
various sites and forest types, leading to inherent
clusterswithin the dataset, and thus non-independent
data. Non-linear (equations (1) and (2)) and linear
(equation (3))mixedmodelswere used to address this
issue as they can accommodate the dataset structural
complexity. These models include random effects
to account for sites and forest types (α and β in
equations (1)–(3) but these models can be used to
predict new observations considering only the fixed
effects (marginal model with α = 0 and β = 0 in
equations (1)–(3). Due to the limited size of the data-
set (38 ha), the MAE, RMSE, and rRMSE of the mar-
ginalmodels for equations (1) and (2) were calculated
on the entire dataset. For equation (3), as the dataset
was bigger (6000 ha of UAV flights), a k-fold cross-
validation with k = 5 was performed. Each site cor-
responds to a fold and site C was divided into two

folds representing areas of 6500 × 2000 m separated
by 200 m. Equal numbers of points were randomly
selected in each fold during cross-validation,

y= 1− exp((b+β)x)+ εij (1)

where y = Delta AGB, BA or NHA, x = V or N
harvested

y=

(
1

1− x

)1/(b+β)

− 1+ εij (2)

where y = Delta AGB, BA or NHA, x = canopy
opening

y= (a+ α)+ bx+ εij (3)

where y = V or N harvested, x = canopy opening

3. Results

3.1. Impact of logging on forest structure
Before logging, the mean estimated average AGB
was 435.4 t·ha−1, with 381.7 trees·ha−1 and a BA
of 32.8 m2·ha−1 (table 1). Only slight variations
across sites were observed with lower AGB and BA
in Okoumé forests than in Celtis forests (figure S4).
Understory trees were more abundant (75% of NHA)
and emergent/canopy trees stored a greater propor-
tion of biomass (75% AGB and 78% BA, table 1).
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Table 1. Impact of logging on the aboveground biomass (AGB), the number of trees (NHA) and the basal area (BA) for trees with
DBH> 10 cm, categorized by damage status and social position of the trees.

After logging

Structural attribute Before logging Damaged Dead Harvested All impacted trees

AGB (t·ha−1) 435.4 10.3 5.9 22.0 38.2 (−8.8%)
sd= 83.9 sd= 31.9 sd= 12.1 sd= 28.1 sd= 49.8

% in emergent 39.5 37.5 13.5 90.4 68.1
% in canopy 35.3 38.2 29.0 9.6 19.2
% in understory 25.2 24.3 57.5 0.0 12.7
AGB (t per m3 harvested) / 0.6 0.3 1.2 2.1

NHA (# trees·ha−1) 381.7 13.3 10.3 1.1 24.7 (−6.5%)
sd= 42.1 sd= 47.6 sd= 9.5 sd= 1.2 sd= 33.9

% in emergent 5.9 3.7 1.5 91.4 7.3
% in canopy 18.9 20.1 7.9 8.6 14.9
% in understory 75.3 76.2 90.5 0.0 77.8
NHA (# trees per m3 harvested) / 0.72 0.56 0.06 1.34

BA (m2·ha−1) 32.8 0.8 0.5 1.5 2.8 (−8.5%)
sd= 4.86 sd= 2.33 sd= 0.76 sd= 1.87 sd= 3.44

% in emergent 33.4 26.3 9.9 91.3 62.6
% in canopy 34.6 37.4 25.4 8.7 18.8
% in understory 32.0 36.3 64.8 0.0 18.6
BA (m2 per m3 harvested) / 0.04 0.03 0.08 0.15

For an average logging intensity of 1.1 trees harvested
per hectare corresponding to an exploitable volume
of 18.4m3·ha−1, AGB,NHA and BAwere respectively
reduced by an average of 8.8%, 6.5% and 8.5% (table
1). Most impacted trees were understory trees (77.8%
of NHA), but canopy trees (14.9%) and emergent
trees (7.2%) were also impacted. The DBH of harves-
ted trees ranged between 80 and 200 cm, resulting in a
significant reduction in AGB at the 1 ha subplot level
(table 1, figure S5). In Okoumé forests (site D), 71%
of the harvested trees were Aucoumea klaineana trees,
while inCeltis forests (site A and B) Entandrophragma
cylindricum and Erythrophleum suaveolens accounted
for 75% of the harvested trees (table S3).

Over the 5937 ha covered by the UAV flights,
4.4% of the canopy area was impacted by logging
activities. Felling gaps had a mean area of 577.7 m2

(median = 448.2 m2, sd = 531.1 m2, N = 2443)
(figure S6) corresponding to 217 m2 of gap per har-
vested tree. Felling gaps were the most important dis-
turbance accounting for 56% of the impacted area,
followed by logging roads (23%), skid trails (10%),
the category ‘others’ (8%) and log yards (3%), with
only slight differences between sites (table S2). For
site A, the lengths of felling gaps measured on UAV
images (mean = 37.8 m, sd = 8.2 m) were smaller
than those measured on the ground (mean= 43.2 m,
sd = 5.7 m), with a MAE of 6.2 m and a RMSE of
7.6 m (figure S7).

3.2. Relationships between logging impact and
logging intensity at 1 ha level
Relationships were identified to predict logging
impact (delta AGB, NHA, BA) based on logging
intensity expressed in harvested volume (V harves-
ted, figure 4) and number of harvested trees (N har-
vested, figure S8) at the 1 ha-subplot level. V har-
vested was a better explanatory variable of logging
impact thanN harvested, and a different responsewas
observed depending on the forest type. For the same
logging intensity, the logging impact was more severe
inCeltis forests than in Okoumé forests (figures 4 and
S8). Random effect values associated with different
sites and types of forest for conditional models are
presented in table S5. Marginal models were nearly
identical between types and sites, with a rRMSE
ranging between 0.128 and 0.164 across variables
(figures 4 and S8).

3.3. Relationships between logging impact and
canopy opening on the 1 ha scale
Relationships were identified for the prediction of
logging impact (delta AGB, NHA, BA) based on can-
opy opening, with a rRMSE ranging between 0.119
and 0.150 for marginal models (figure 5). Three 1 ha-
subplots in site B showed a reduction in AGB and
BA with not much canopy opening because of skid
trails under the canopy that are not visible on UAV
images.
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Figure 4. Prediction of logging impact based on logging intensity in terms of volume (V) harvested per hectare within
1 ha-subplots (n= 38), according to the different sites and types of forest. Marginal and conditional models for each site and type
of forests are shown on the graphs. The table contains the mean absolute error (MAE), the root mean squared error (RMSE) and
the relative root mean squared error (rRMSE) for the marginal models, as well as the fixed effects (b) and the standard deviations
of the mixed model residuals (error) for equation (1). Values of random effects for the conditional models are in table S5.

3.4. Relationships between the logging intensity
and canopy opening on different scales
Relationships were identified to predict logging
intensity based on canopy opening on different scales
ranging between 1 and 100 ha (figure 6, see example
in white grid lines in figure 3 with a grid size of
500 m). Marginal and conditional models for differ-
ent sites and types of forest were very similar and
provided a good fit to the data, thus only marginal
models are presented in figure 6. The average MAE
ranged between 2.4 and 8.1 m3 for predicting V har-
vested, and between 0.3 and 0.86 trees for predict-
ing N harvested. However, below the grid size of
500 × 500 m, there was significant noise in the dis-
tribution of points, with extreme values of logging
intensity. Upon observing the data, this noise is partly
explained by the mislocation of harvested trees or by
edge effects, which are smoothed from a grid size of
500× 500 m.

4. Discussion

Our results show that the selective logging applied
in FSC-certified concessions in Central Africa has a
small direct impact on the forest structure. On aver-
age, logging reduced AGB by 8.8%,NHAby 6.5% and
BA by 8.5% which is analogous to previous results
(Pinard et al 1995, Sist 2000).Our estimates alignwith

other studies conducted in Central Africa, estimating
direct AGB losses ranging between 7.1% and 13.4%
depending on whether concessions are FSC-certified
or not (Ngueguim et al 2009, Medjibe et al 2013).
There is no significant difference in carbon emissions
between FSC-certified and non-certified logging con-
cessions. However, Reduced Impact Logging practices
can effectively reduce emissions by approximately
half without compromising timber yields (Umunay
et al 2019). Felling gaps exhibited the most important
impact on the canopy cover, which is consistent with
earlier results found in south-east Cameroon (Dupuis
et al 2023) and in French Guiana (Guitet et al 2012).
Themean size of canopy opening (578m2 withN har-
vested = 2443 and 217 m2 per harvested trees) was
nevertheless smaller than earlier measurements in
Gabon (mean= 787m2,N harvested= 12) (Medjibe,
et al 2013), but close to the estimation of Doucet
et al (2009) in Cameroon, where the average gap area
was 265.8 m2 (N harvested = 174). Concerning can-
opy opening, our estimates show that low-intensity
logging activities (1–2 trees·ha−1) cause an open-
ing of 4.4% of the canopy which is lower than the
11% measured in south-east Cameroon (Ngueguim
et al 2009). This difference can be partly explained by
the resolution of images used to measure the canopy
opening, i.e. 10 cm for the UAV images (this study)
and 30 m for the Landsat images (Ngueguim et al
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Figure 5. Prediction of logging impact based on canopy opening within 1 ha-subplots (n= 38), according to the different sites
and types of forest. Marginal and conditional models for each site and type of forests are shown on the graphs. The table contains
the mean absolute error (MAE), the root mean squared error (RMSE) and the relative root mean squared error (rRMSE) for the
marginal models, as well as the fixed effects (b) and the standard deviations of the mixed model residuals (error) for equation (2).
Values of random effects for the conditional models are in table S5.

2009), suggesting that, depending on data resolution,
measurements may be overestimated. In this study,
we demonstrated that the impact of logging varies
by forest type. One possible explanation is that in
forests dominated by a single species, such asOkoumé
forests (Guidosse et al 2022), the average crown size
of the harvested trees tends to be smaller compared
to the larger crowns of species like Meliaceae (e.g.
Entandrophragma cylindricum in Celtis forests, see
table S3). This difference in crown size may lead to
less canopy opening in Okoumé forests compared to
Celtis forests, where larger-crowned trees are harves-
ted. Second, certain exploited species, like Okoumé,
tend to be more gregarious (Quentin et al 2022),
leading to concentrated exploitation in specific areas.
This can result in overlapping damages and reduce
the need for operators to penetrate deep into the
forest to find valuable trees, thereby minimizing the
impact caused by roads and skid trails, and lead-
ing to reduced canopy opening per harvested tree.
Finally, we showed that logging practices in Central
Africa have low impact on canopy compared to other
continents. In French Guiana, a logging intensity of
3.5 trees·ha−1 resulted in a canopy opening of 20%
(measured on SPOT images, resolution = 4–20 m)
(Guitet et al 2012), whereas forest in Malaysia, a log-
ging intensity of 27 trees·ha−1 led to a canopy opening

of 21% (measuredwith fish eye photographs from the
ground) (Saiful and Latiff 2019).

Logging impacts primarily depends on logging
intensity. The reduction in BA has become a wide-
spread indicator of logging intensity, it was also used
in the M’Baïki forest experiment and related to the
proportion of pioneer species (Ouédraogo et al 2011,
Gourlet-Fleury et al 2013). The direct impact of log-
ging on other structural attributes such as AGB and
NHA has been proposed to evaluate the sustainab-
ility of logging activities (Sist et al 2021) and used
to model forest recovery after logging (Rutishauser
et al 2015, Eliott et al 2023). Tree information neces-
sary to compute these structural attributes and, con-
sequently, logging impacts is not commonly meas-
ured in tropical forests. This process requires invent-
ory plots in the field, which can be expensive and
time-consuming. Additionally, some measurements
are challenging, such as tree heights, which are needed
to calculateAGB (Larjavaara et al 2013).Here, we pro-
posed to use more accessible measurements, i.e. log-
ging intensity (V or N harvested per ha) and can-
opy opening as a starting point to predict logging
impact (delta AGB, BA, NHA). Logging intensity is a
commonly used metric (BAD 2018) and is recorded
by logging companies for timber trackability, while
canopy opening can be measured by remote sensing

8
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Figure 6. Prediction of logging intensity in terms of V and N harvested (according to the location of 6503 trees harvested) based
on canopy opening within grids of size ranging between 1 and 100 ha, according to the different sites and types of forest. Marginal
models considering sites and types of forest are shown on the graphs. The tables contain the average mean absolute error
(mMAE), root mean squared error (mRMSE) and relative root mean squared error (mrRMSE) for the k-fold cross-validation of
the marginal models, as well as the fixed effects (a) and (b) and the standard deviations of the mixed model residuals (error).
Values of random effects for the conditional models are in table S6.

(Dupuis et al 2020). For example, logging compan-
ies could use their existing inventory data to evalu-
ate the impact of logging on forest structure, enabling
them to adapt their practices for improved sustainab-
ility. By employing these alternative metrics, we aim
to provide a more practical approach for assessing
logging impacts and facilitating sustainable practices
in tropical forest management. The models used to
assess the logging impact based on logging intensity
and canopy opening were built using a dataset that
covers a total area of 38 ha across 3 sites. Further
validation in other locations and forest types should
be carried out, such as Marantaceae forests. While
waiting for these valuable data, the marginal mod-
els presented here could provide initial estimates of
the logging impact on forest structural attributes.
Concerning the models predicting logging intensity
based on canopy opening, and using ∼6000 ha of
UAV flights and>6000 harvested trees, they could be
utilized with high confidence, when measured over
a grid of 500 × 500 m at least, due to the extens-
ive dataset covering four sites and three types of
forest.

In addition to this information on the direct
impact of logging on forest structure, this study also
confirms that UAV could act as a bridge between
field inventories and satellite-based monitoring tech-
niques. Logging impacts on forest structure are typic-
ally measured on a small scale, using inventory plots
ranging from 1 to 10 ha. However, these observa-
tions may not be representative of the overall log-
ging intensity due to spatial variations within Central
African logging concessions, as shown in this study,
and higher pressure on smaller concessions (Pérez
et al 2005). Localized intensity can surpass the aver-
age of 0.7–4.0 trees per hectare, with certain areas
experiencing up to 9–10 trees and 180–200 m3 har-
vested, along with 85% of canopy opening in 1 ha
plots (Dupuis et al 2023,Welsink et al 2023). A larger-
scale evaluation should be recommended, and using
UAV RGB imagery as a bridge offers a cost-effective
alternative to LiDAR, and can be repeated affordably
to detect and quantify disturbances (Ota et al 2019,
Réjou-Méchain et al 2019, McNicol et al 2021). In
French Guiana, Bourgoin et al (2020) used texture
indices to reveal disturbances on UAV images, while

9
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we propose to use a simpler indicator here in Central
Africa, the percentage of canopy opening after log-
ging. Canopy opening is a key indicator of disturb-
ance frequently measured by remote sensing (Dupuis
et al 2020), and can be detected automatically onUAV
images using a classification algorithm (Castillo et al
2022) or manually, as shown in this study. Moreover,
canopy opening is a simple metric attributed to the
fall of emergent and canopy trees, contributing signi-
ficantly to the decrease in AGB and BA because large
trees shape the structure of tropical moist forests
(Bastin et al 2018). Canopy opening measured on
UAV images can help detect small disturbances that
are not identifiable using satellite data. This inform-
ation can be used to accurately assess the extent of
disturbances and calibrate satellite-based methods
(Castillo et al 2022, Dupuis et al 2023, Heinrich et al
2023), and finally upscale the impact of logging on
large scale (Réjou-Méchain et al 2019). Indeed, cur-
rent large-scale disturbance detection methods such
as theTropicalMoist Forest products (Vancutsem et al
2021) and the RADD system (Reiche et al 2021) have
limited accuracy as shown in Cameroon (Dupuis et al
2023). Promising results indicate that it may soon be
possible to detect forest disturbance caused by log-
ging on a large scale (Carstairs et al 2022, Dupuis et al
2023, Welsink et al 2023) and the datasets created in
this study could certainly contribute to this improve-
ment. Similar to the Geo-Trees project (Chave
et al 2019, Geo-Trees 2024), which was designed
for biomass estimation, the protocol used in this
study—combining inventory plots and UAV flights—
could be replicated in various regions to estab-
lish reliable references for calibrating satellite-based
methods.

5. Conclusion

This study covers multiple inventory plots and UAV
images in Central Africa, improving the represent-
ativeness of the results compared to local stud-
ies and providing a valuable reference to evalu-
ate logging activities’ impact on forest structure.
Logging practices in Central Africa have small dir-
ect impact on forest structural attributes and on can-
opy compared to other continents. Logging impact
is strongly related to logging intensity and canopy
openings, but the models proposed in this study
and based on a few plots should be further valid-
ated. Logging intensity can be predicted with high
confidence based on canopy openings when meas-
ured over a grid of 500 × 500 m at least. By using
UAV-measured canopy openings as a bridge, we show
how field data can be connected to remote sensing
measurements for large-scale monitoring of logging

impacts on forest structure. These findings have
strong implications for forest disturbancemonitoring
systems, which is particularly important within the
context of environmental crises, sustainable forest
management, certification standards, and European
regulations.

Data availability statement

The dataset is available at this link: https://hdl.handle.
net/2268/323683 (Dupuis et al 2024).
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