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Abstract
Robusta coffee, a vital cash crop for Vietnamese smallholders, significantly contributes to the national economy. Vietnam is 
the largest exporter of Robusta coffee, supplying 53% of the global market. However, this success has come at a cost. Dec-
ades of intensive Robusta coffee cultivation in Vietnam have led to severe soil acidification and biodiversity loss, favoring 
soil-borne pathogens. There is a lack of literature analyzing how intensive management causes soil acidification, advances 
the spread of soilborne pathogens, and the application of soil amendments to address these issues. Therefore, this review 
explores the causes of acidification, pathogen proliferation, and sustainable amendments like lime and biochar to mitigate 
these effects. The study synthesizes findings from studies on soil acidification, soil-borne pathogen dynamics, and sustain-
able soil amendments in Robusta coffee systems. We found that the overuse of nitrogen-based chemical fertilizers to grow 
coffee is the primary driver of soil acidification, consequently increasing soilborne diseases and the severity of plant diseases. 
Additionally, the effects of soil amendments as a sustainable solution to reduce soil acidity, enhance soil health, and better 
control soilborne pathogens. The implementation of sustainable coffee farming systems is strongly recommended to meet 
the increased demand for safe and green products worldwide. Locally available resources (lime, biochar, and agricultural 
wastes) present immediate solutions, but urgent action is required to prevent irreversible damage. However, the effects of 
amendments significantly vary in field conditions, suggesting that further studies should be conducted to address these 
challenges and promote sustainability.
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1  Introduction

Robusta coffee (Coffea canephora var. Robusta) dominates 
Vietnam’s agricultural economy, with 650,000 hectares con-
tributing 53% of the global supply (ICO 2022; DCP 2023). 
However, intensive cultivation practices have led to severe 
soil degradation, threatening long-term sustainability. Coffee 
cultivation is primarily concentrated in the Central Highlands 
(Figure 3), with 90% of the coffee farms being managed by 
smallholder farmers (Rigal et al 2023).

The shift towards intensive coffee cultivation, particularly 
the excessive use of nitrogen (N) fertilizers over the past 
few decades, has been aimed at maximizing coffee yields 
(Castro et al 2012; Capa et al. 2015), but this has led to 
adverse agronomic, economic, and ecological consequences, 
with soil degradation, particularly acidification (lowering 
of soil pH), and soilborne plant diseases posing significant 
threats to coffee production (Dung et al 2019; Zhang et al 
2022). While N fertilizer application is marginally positively 
correlated with coffee yield, it has also been identified as 
the primary cause of soil acidification (Castro et al 2012; 
Zhang et al 2022). Acidification results in reduced soil pH, 

increased metal toxicity including aluminum (Al), manga-
nese (Mn), and iron (Fe), and deficiencies in phosphorus (P), 
calcium (Ca), magnesium (Mg), and potassium (K), conse-
quently impacting soil fertility, plants, and soil microorgan-
isms (Kunhikrishnan et al 2016). Acidification disrupts the 
balance of microbial ecosystems (Deng et al 2024), leading 
to a decrease in the overall relative abundances of bacte-
ria and fungi, as well as a reduction in potential beneficial 
microbes (Zhao et al 2018). Furthermore, acidification has 
been shown to increase soilborne diseases and the severity 
of plant diseases while also promoting pathogen establish-
ment (Fagard et al 2014; Martinez et al 2021; Zhang et al 
2022) (Fig. 1).

The intensive farming practices adopted in Vietnam led 
to a 115% increase in coffee yields from 1996 to 2020 (Hong 
et al. 2017; DCP 2021). However, this approach has resulted 
in a significant decrease in soil pH and an increase in the 
occurrence of yellowing leaf diseases. These diseases are 
caused by plant parasitic nematodes (Meloidogyne spp. and 
Pratylenchus spp.) and fungi (Fusarium spp. and Rhizoctonia 
spp.) (Khoa et al 2014; Hoa et al 2016; Hoang et al 2021). 
These pathogens are well-known as the most economically 
damaging diseases in coffee-producing countries globally, 
including Vietnam (Barros et al 2014; Hoa et al 2016; Hoang 
et al 2021; Machado, Kumar and Fatobene 2023), causing 
up to 40–50% yield losses (Barbosa et al 2004; Mulatu et al 
2023). Soil acidity has been identified as a significant issue 
in coffee farming systems in Vietnam (Anh and Thuy 2017; 
Dung et al 2019), with populations of pathogenic fungi and 
plant parasitic nematodes under crops being 3–5 times higher 
than background levels (Dung et al 2019). Nematodes and 
fungi have infected around 36–43% of productive coffee 
plantations and 79% of replanted coffee farms in the Central 
Highlands (Khoa et al 2014; Dung et al 2019), resulting in 
the death of approximately 40% of replanted coffee planta-
tions (Da et al. 2012; Khoa et al 2014). Long-term intensive 
coffee cultivation with high density (1100 trees ha−1) has cre-
ated optimal conditions for soil pathogen incidence (Fig. 2) 
(Arita, Silva and Machado 2020; Machado, Kumar and Fato-
bene 2023). To control these diseases, farmers used exces-
sive chemical inputs, with their application only increasing 
in an attempt to maintain high yields in the face of increas-
ing disease pressures (Nysanth et al 2022). Seriously, rely-
ing solely on synthetic pesticides can degrade coffee quality, 
pose health risks, contribute to environmental pollution, and 
lead to long-term inefficiency (Malta et al. 2003; Mekonen 
et al. 2014; Silva et al 2017; Duong 2021; Khan et al 2021). 
Sustainable practices, such as intercropping, biochar and lime 
application, and agricultural waste applications (e.g., organic 
fertilizers and mulch), have been identified as potential soil 
amendments that could help mitigate acidic soil pH, control 
soilborne diseases, and improve soil fertility and crop yield 
through complex mechanisms (Beltagi et al 2022; Goldan 
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et al 2023; Sánchez et al 2023; Souza et al 2023; Deng et al 
2024). However, their effects depend on various factors such 
as the materials used, application rates, soil types, target spe-
cies, and agroecological conditions (Li et al. 2018; Rayne and 
Aula 2020; Poveda et al. 2021) (Fig. 3).

There are currently no studies or reviews that inves-
tigate the link between soil acidification and soilborne 
pests and diseases caused by long-term intensive Robusta 
coffee cultivation in Vietnam. It is clear that there is a 
need for more knowledge about potential strategies using 

sustainable soil practices to remedy the issues. Moreover, 
knowledge of the mechanisms contributing to soil acid-
ification and the role of soil amendments in protecting 
coffee from soilborne pests and diseases remains limited. 
This review paper provides comprehensive insights into 
the consequences of long-term intensive Robusta coffee 
cultivation related to soil acidification and the spread of 
soilborne pathogens, the mechanisms of soil acidification, 
and the impact of implementing soil amendments on soil 
acidification and soilborne disease incidence.

Figure 1   An example of a 
conventional Robusta coffee 
plantation in Vietnam (mono-
culture, high density with 1100 
trees per hectare, and intensive 
mineral fertilization and irriga-
tion). Photo credit: Long

Figure 2   Example of mature Robusta coffee tree infected by plant parasitic nematodes and pathogenic fungi. The specific symptoms are a stunt-
ing, leaf yellowing and b galls on root system. Photo credit: Long
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2 � Methodology

This review synthesizes findings from studies on soil acidifi-
cation, soil-borne pathogens, and sustainable amendments in 
the cultivation of Robusta coffee, particularly in Vietnam’s 
Central Highlands. A systematic search was conducted 
across the Scopus, Web of Science, and Google Scholar 
databases to gather comprehensive literature (including 
peer-reviewed papers, books, and articles) using the key-
words “coffee cultivation,” “soil acidification,” “soil-borne 
pathogens,” and “sustainable soil amendments.” The search 

focused on publications from 1995 to 2024 within the agri-
cultural domain (see Figure 4). A comprehensive search 
yielded a total of 1679 papers, including 950 from Scopus, 
91 from Web of Science, and 638 from Google Scholar. This 
diverse collection highlights the extensive research avail-
able on the topic. Given the limited number of publications 
specifically addressing the impact of intensive coffee cultiva-
tion on soil health indicators in Vietnam, it was necessary 
to expand the literature search on a global scale. All papers 
were exported to EndNote 21 (Clarivate Analytics) to iden-
tify and remove duplicates and irrelevant topics. Next, we 

Figure 3   Distribution of coffee 
cultivated areas in the Central 
Highlands, Vietnam. The region 
consists of five provinces, 
accounting for 90% of the coffee 
farms (data was retrieved from 
DCP 2023)
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screened the titles and abstracts of articles and documents 
addressing various aspects of intensive coffee plantation, 
soil acidification, soil-borne disease pressure, and sustain-
able soil amendments. Ultimately, we selected 195 papers 
that met our criteria, which included 2 papers published in 
1997 and 1999, and 193 articles published between 2000 and 
2024. We then carefully reviewed the full texts to identify 
the study design, findings, and recommendations.

3 � Acidification caused by coffee cultivation

Coffee is the key crop in Vietnam that requires the largest 
application of mineral fertilizers and chemical pesticides. 
While there is a relationship between coffee yield and ferti-
lizer rates (Castro et al 2012; Byrareddy et al 2019), they are 
not strongly correlated (Byrareddy et al 2019), and excessive 
N inputs can also reduce yield (Lesueur et al 2022). Unfortu-
nately, smallholder coffee growers have embraced intensive 
farming methods and heavily use agrochemicals in attempts 
to chase high yields (Castro et al 2012; Hong et al. 2017). 
Vietnam has achieved the highest coffee yield, with an aver-
age of 3 t green coffee bean ha−1, compared to other coffee-
producing countries (Havemann et al 2015; DCP 2023). The 
recommended use of mineral fertilizers in coffee cultivation 
by public extension services varied significantly, depend-
ing on soil types, plantation ages, and target yields (MARD 

2013). However, mineral fertilizers have been excessively 
applied up to 50% higher than recommendations (especially 
N) (Byrareddy et al 2019; Rigal et al 2023).

Soil pH is a critical indicator of soil health, with a broad 
impact on soil nutrient availability, microbial diversity, and 
crop production (Lauber et al 2009). One of the main causes of 
soil acidification in intensified agriculture is the excessive use 
of mineral N fertilizers (Zhou et al 2013; Zhang et al 2022). 
Acidification occurs primarily due to the accumulation of H+ 
in the soil, resulting from nitrification and urea hydrolysis, 
which releases protons into the soil (Barak et al 1997). The 
mechanisms of N application that significantly accelerate soil 
acidification and increase trace metal toxicity can be explained 
as follows: (1) N addition directly promotes soil nitrification 
and hydrolysis (Cai et al 2014; Zhao et al 2020), leading to 
the indirect stimulation of NH4

+ or NO3
− assimilation into 

root systems (Britto and Kronzucker 2002), resulting in the 
exudation of H+ ions; (2) N addition significantly decreases 
exchangeable Ca2+, Mg2+, and K+ (Cai et al 2014) while 
increasing Cd, Mn2+, and Al3+ (Tian and Niu 2015; Zhao et al 
2020). These processes are summarized in Figure 5.

Zhao et al. (2018) conducted a study on the soil charac-
teristics of coffee plantations with varying lengths of mono-
culture history and intensive management in Hainan, China. 
They found that long-term monoculture of intensive coffee 
farming resulted in a significant decrease in soil pH. There 
was a difference of about 1.8 pH units between the youngest 

Figure 4   Description of scoping review search method to identify the articles, screen with inclusion criteria, and the number of included studies
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and oldest plantations. In the Central Highlands of Vietnam, 
coffee plantations currently have strongly acidic soils, with 
pH levels ranging from 4.06 to 5.64 (Tu and Toan 2015; Ha 
2016; Anh and Thuy 2017; Huyen et al 2018; Dung et al 
2019). These acidic soil conditions lead to nutrient limi-
tations, such as low phosphorus availability and toxicities 
from Al and Mn. These conditions are also exacerbated by 
leaching from the high annual precipitation, ranging from 
1800 to 2000 mm in the Central Highlands (Dinh, Aires 
and Rahn 2022).

4 � Effects of soil acidification in coffee 
plantations

4.1 � Physicochemical effects

One of the most harmful effects of soil acidification is an 
increase in Al and Mn bioavailability, which can be toxic to 
crops (Rosilawati et al. 2014; Wang et al 2015). When the 
pH drops below 5.6, the production of H+ and Al3+ occurs 
much faster (Cai et al 2014). High concentrations of Al3+ 
and Mn2+ in acidic soil can lead to deformities and dysfunc-
tion of the root system, inhibiting root cell development 

(Barcelo and Poschenrieder 2002; Kochian et al. 2004) and 
growth (Zu et al. 2014; Panhwar et al. 2020).

Soil acidification also decreases soil exchangeable 
base cations, causing nutrient imbalance and deficiency, 
adversely impacting plant growth (Cai et al 2014; Tian 
and Niu 2015). Base cations are also known to buffer the 
soil pH (Tian and Niu 2015; Zhao et al 2020). Acidifica-
tion promotes the leaching of base cations such as Ca2+, 
Mg2+, K+, and Na+ and allows H+ and Al3+ ions to con-
centrate in the exchangeable cation pool (White 2006; 
Neina 2019). Similarly, P is bioavailable at a neutral pH, 
but only 30% remains bioavailable at a pH below 6. Simi-
lar observations are found for available N and K, which 
decrease by 30% and 50% at pH 5.5 and 5.0, respectively, 
compared to a neutral pH (Zimdahl 2015).

Several studies have investigated the impact of intensive 
management on the soil of coffee plantations in Vietnam 
(Anh and Thuy 2017; Hong 2017; Dung et al 2019). Soil 
porosity declined by 9–48%; Al and Fe bioavailability 
increased by 41% and 27% (Ha 2016) and Ca and Mg bio-
availability. In addition to the degradation of soil health, 
plant health is also negatively impacted by soil acidification, 
as it reduces plant defense (Liao, Li and Yao 2019; Joseph 
et al 2021; Zhang, Wang and Feng 2021) (Fig. 6).

Figure 5   How intensive nitrogen application and high annual precipitation cause soil acidification in coffee plantations in Vietnam
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4.2 � Biological effects

The root microbiome acts as a biological barrier and plays 
a crucial role in enhancing plant resistance to abiotic and 
biotic stresses, improving nutrient uptake, protecting plants 
from pathogen infection, regulating soilborne disease occur-
rence, and promoting plant growth (Banerjee and Heijden 
2023; Wu et al 2023). Soil acidification has been found to 
decrease the biodiversity of soil organisms. For example, 
at pH < 4, 70% of important soil biota was lost (Han et al. 
2007), and soil fauna community composition at pH 7.0 was 
significantly higher than at pH 3.5 (Wei et al 2017). Relative 
abundance and diversity of bacteria at soil pH 8.3 were dou-
ble compared to soil pH 4.0 (Rousk et al 2010). Moreover, 
soil enzymatic and microbial activities, along with microbial 
biomass, are strongly negatively correlated with soil acidi-
fication (Zhang et al 2015; Shili et al 2017). Ammonia-oxi-
dizing bacteria and ammonia-oxidizing archaea play a vital 
role in N cycling and nitrification, and they are adversely 
impacted by acidic soil pH (Epelde et al 2010; Wang et al 
2018b; Zhao et al 2020).

Acidification promotes the growth of pathogens and 
decreases beneficial microbiomes and plant resistance to 
disease. This results from the deterioration of soil param-
eters and reduced available soil nutrients (Fan et al. 2018; 
Zhang et al. 2022). Mulder et al. (2005) reported a close 
relationship between nematodes, fungal and bacterial abun-
dance, and soil acidification. Decreased pH directly disrupts 
the balance of soil microbial communities, shifting from 
bacterial-dominant to fungal-dominant communities and pro-
moting the growth of soilborne pathogens (Deng et al 2024). 
Zhang et al (2017) found that bacterial richness and diver-
sity indexes were significantly lower in acidic soils, while 

the abundance of pathogenic fungi (such as Cladosporium, 
Pyrenochaeta, and Exophiala) gradually increased (Deng 
et al 2024). An example of the effects of acidic soil is the 
90% decrease in the abundance of Rhizophagus irregula-
ris, inhibiting arbuscular mycorrhizal fungi development 
and formation (Liu et al 2020). Soil pH strongly influences 
bacteria, particularly beneficial microorganisms, more than 
fungal abundance (Branco et al. 2022; Coleine et al. 2022; 
Deng et al. 2024). Zhao et al (2018) demonstrated that long-
term monoculture coffee in Hainan, China, with intensive 
management, decreased soil pH and organic matter content 
(OM). This resulted in a decline in soil bacteria and fungi 
abundance over time. Specifically, the relative abundances 
of bacterial Proteobacteria, Bacteroidetes, Nitrospira, and 
fungal Ascomycota phyla decreased. Additionally, acidic soil 
in coffee plantations was found to promote the growth and 
reproduction of plant parasitic nematodes, particularly root-
knot nematodes (Wang et al. 2009; Nisa et al 2021). The soil 
acidity indirectly decreased the abundance and diversity of 
antagonistic microorganisms due to soil nutrient deficiency. 
Since antagonistic microorganisms rely heavily on soil nutri-
ents, soil pathogens are less reliant on soil nutrients and more 
reliant on their host plants; thus, the growth inhibition of 
antagonistic microorganisms and the promotion of pathogens 
in the soil micro-ecosystems occur (Cortois et al 2016; Shen 
et al 2018; Zhang et al 2022; Deng et al 2024).

Due to the perennial nature and intensive cultivation 
of coffee crops, in addition to changes in soil properties, 
a significant increase in nematode parasitism in crops and 
nematode density in soils has been observed (Arita, Silva 
and Machado 2020; Machado, Kumar and Fatobene 2023). 
Reports have also indicated that Fusarium species cause 
severe damage to coffee production, leading to a significant 

Figure 6   Summary of the 
relationships between intensive 
coffee cultivation, soil health, 
and soilborne pathogens
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decrease in coffee yield (Mulatu 2019; López et al 2020; 
Faifi et al 2022). It is important to note that nematodes and 
fusarium coexist in infected plantations, making manage-
ment challenging (Khoa et al 2014; Khan 2023). In Vietnam, 
approximately 40% of replanted coffee plantations failed due 
to nematode and fungal infections (Da et al. 2012; Khoa 
et al. 2012; Dan and Van 2016). Nematodes have been iden-
tified as the primary pathogens or predisposing agents, with 
the independent capability to attack and weaken host plants, 
leading to modifications that promote fungal and bacterial 
invasion and increase fungal pathogenicity (Nair 2021; Sal-
gado and Terra 2021; Khan et al 2023). Therefore, managing 
nematodes could indirectly reduce the threat of Fusarium 
infections in coffee plantations.

5 � Potential effects of soil amendments 
on soil health and soilborne pathogens

Many amendments (e.g., lime, biochar, and agricultural 
wastes) have been trialed to decrease soil acidification and 
ameliorate soil acidity. Those materials provide nutrients (Dai 
et al 2018; Amoah et al 2020; Saliu and Oladoja 2021; Siedt 
et al 2021), reduce H+, neutralize acid (Dai et al 2017; Shi et al 
2019; Rayne and Aula 2020), and improve soil physicochemi-
cal and biological parameters (Kader et al 2017; Azim et al 
2018; Shuning et al 2020; Wang et al 2020; Siedt et al 2021). 
Additionally, soilborne pathogen management by soil amend-
ments resulted from the various mode actions through soil pH 
increase, modifying soil characteristics, microbial community, 
and function, especially significantly enhancing the abundance 
of beneficial biocontrol fungi, promoting the induction of plant 
defenses, increasing nutrient and space competition, and pro-
ducing pathogen-inhibiting compounds (Jaiswal et al 2017; 
Abbott et al 2018; Deng et al 2024). Due to extreme acidifica-
tion, increasing soil pH is an urgent and mandatory practice to 
raise soil pH, improve soil health, and retain coffee production. 
Furthermore, the high demand for “green” coffee products and 
maintenance of certain yield levels, restoring soil health, and 
control of soilborne diseases through sustainable practices is 
a positive strategy.

5.1 � Potential effects of biochar amendment

5.1.1 � Soil physicochemical effects

The alkalinity of biochar was demonstrated through its cal-
cium carbonate equivalent, which can significantly improve 
soil pH, affect soil properties, and suppress soilborne patho-
gens. Increasing the amount of biochar application gradually 
raises soil pH and improves acidic soil and soil properties 
due to the alkaline nature and high pH buffering capacity of 
biochar (Chintala et al 2013b; Dai et al 2017). Since most 

biochar is alkaline, it directly increases pH and base cations 
and decreases H+ and Al3+ concentrations in acidic soil, with 
no positive effect in alkaline soil (Zwieten et al 2010). Car-
bonates and oxides formed from the pyrolysis process of feed-
stocks react with H+ and Al3+ in the soil, thereby raising soil 
pH and reducing the exchangeable acidity (Novak et al 2009; 
Enders et al 2012). Additionally, the functional groups of bio-
char (-COO- and -O-) also react with H+ in the soil (Yuan 
et al. 2011). The mitigation of soil acidity by biochar addition 
in coffee cultivation was investigated in greenhouse and field 
conditions. Soil pH value increased by varying amounts, from 
0.03 to 1.17 units, depending on biochar feedstocks, applica-
tion rate and method, and ecological conditions. The positive 
effects of biochar on coffee cultivation are summarized in 
Table 1. Generally, under greenhouse conditions, a 2% biochar 
application increased pH by 1.1 units, significantly decreas-
ing Al, compared to the control (Herviyanti et al 2020). In 
field conditions, soil pH was 0.18, 0.23, and 0.37 units higher 
than the control after two years of adding 4, 8, and 16 t ha−1, 
respectively (Sánchez et al 2023).

The molecular structure of biochar and the acidic aro-
matic carbon in biochar are primary factors contributing 
to soil nutrient improvement and providing agronomic 
benefits (Zhang, Wang and Feng 2021). These factors pro-
mote cation adsorption, raise CEC, improve mycorrhizae 
and bacteria abundance, enhance the availability of N and 
P, and reduce leaching and N2O soil emissions (Atkinson 
et al. 2010; Güereña et al 2013). For example, coffee husk 
biochar increased soil porosity (7.5–13.1%), soil moisture 
(6.6–12.3%), OM (16.9–21.4%), CEC (25.0–30.5%), %N 
(8.7–12.5%), available P (15.9–17.1%), and K (3.6–3.7%). 
These changes have promoted plant growth and increased 
coffee yield by 17.2–24.5 % (An, Cong and Hoa 2023). Fur-
thermore, reactive functional groups on the biochar surface 
can absorb and detoxify heavy metals (Li et al 2017; Zhao 
et al 2017), and biochar mitigates climate change by reducing 
greenhouse gas emissions (Karhu et al 2011). However, it has 
been reported that biochar application can accumulate heavy 
metal pollutants such as As, Ni, Cu, and organic pollutants 
(Jin et al 2016) if care is not taken to screen these out from 
feedstocks before pyrolysis (Xiang et al 2021). Additionally, 
many previous studies have reported the positive effects of 
biochar on soil behavior and plant growth, particularly in 
acid soils and under controlled conditions (Jones et al 2012; 
Premalatha, Poorna Bindu, Nivetha et al 2023; Khan et al 
2024). However, the impacts observed in controlled environ-
ments may differ in field conditions and need further valida-
tion (Han et al 2023).

5.1.2 � Soil biological effects

The addition of biochar has a positive impact on the 
microbial community and structure. It increases microbial 
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taxonomic and functional diversity and activities in the 
rhizosphere due to the increased pH, which provides 
optimal conditions and habitat (Jaiswal et al 2017; Sun 
et  al  2018). For example, biochar has been shown to 
increase bacterial diversity by 25% (Kim et al 2007) and to 
enhance arbuscular mycorrhizal colonization by 10–20% 
(Solaiman et al 2010). However, there are some drawbacks 
to using biochar, including a decrease in the abundance of 
beneficial fungi and an increase in bacterial nitrification 
(Gundale and Luca 2006; Rondon et al. 2007; Anderson 
et al. 2011; Nie et al. 2018).

Biochar can help manage soilborne pathogens through 
various mechanisms. It increases the abundance of beneficial 
genera, regulates the balance of the soil microbial commu-
nity and functions, and can suppress soilborne plant dis-
eases, promote plant growth, and enhance biological nitro-
gen fixation (Jaiswal et al 2017). The introduction of biochar 
led to a significant increase in the abundance of Rhizobium, 
Mesorhizobium, Brevundimonas, and Ochrobactrum of 2- to 
10-fold; Pseudomonas, Paenibacillus, Shinella, and Bacil-
lus of 10- to 20-fold; and Microvirga of 91-fold compared 
to the control. Some members of Pseudomonas, Bacillus, 
and Streptomyces are known to produce antibiotics, thereby 
increasing their abundance can help suppress soil pathogens 
(Jaiswal et al 2017). Additionally, biochar has been found 
to reduce the relative abundance of soil fungal pathogens 
(Ceratobasidium and Monosporascus) by stimulating soil 
polyphenol oxidase (Ge et al 2023). This reduction in soil-
borne pathogens is also attributed to promoting nutrient and 
space competition and the production of pathogen-inhibiting 
compounds (Joseph et al 2021).

Crucially, changes in soil properties due to biochar char-
acteristics, application rates, and soil types should be con-
sidered (Poveda et al 2021). It is important to consider the 
risks associated with biochar, such as decreased abundance 
of microorganisms and accumulation of heavy metals. Addi-
tionally, the cost of biochar incorporation may be prohibitive 
for small coffee farmers (Siedt et al 2021). Excessive use of 
biochar could have negative effects on soil microbial activi-
ties, nitrogen levels, and production costs (Gundale and Luca 
2006; Rondon et al 2007; Dai et al 2017; Cong et al 2023; 
Khan et al 2024a, b), indicating the need for further research 
to verify the benefits of biochar.

Moreover, the modification of nematode populations 
(Zhang et al 2013; Poveda et al 2021) and the decomposition 
of biochar (Rahayu and Sari 2017) contribute to the reduc-
tion of nematode densities. For example, the population of 
Pratylenchus coffeae with a 4% biochar addition was sig-
nificantly lower than the control after a three-month experi-
ment (Rahayu and Sari 2017). Similarly, biochar amendment 
led to a 61.4–73.1% decrease in Pratylenchus spp. in coffee 
roots and 23.6–32.1% in Fusarium spp. in the soil compared 
to the control (An, Cong and Hoa 2023). The increase in soil 

pH due to biochar application could reduce nematode abun-
dance and inhibit the growth and reproduction of root-knot 
nematodes (Wang et al. 2009; Nisa et al 2021).

5.2 � Potential effects of lime amendment

5.2.1 � Soil physicochemical effects

Applying lime to soil increases pH, alters soil chemical and 
biological properties, and helps control soilborne diseases 
(Deng et al 2024). Agricultural liming materials are valuable 
resources that consist of Ca and/or Mg compounds, essential 
for effectively neutralizing soil acidity and enhancing soil 
health. When these materials are applied to the soil, car-
bonate and hydroxide ions neutralize, reduce, and displace 
hydrogen ions from the soil solution (Mahmud and Chong 
2022), raising the soil’s pH value. Several studies in green-
house and field conditions have shown that applying 1.6–4.8 
t lime ha−1 in coffee cultivation increased soil pH values by 
0.4 to 1.3 units (Table 2) (Cyamweshi et al 2014; Dibaba 
2021; Parecido et al 2021; Teshale, Kufa and Regassa 2021; 
Fitria and Soemarno 2022). The addition of lime improves 
soil physical parameters such as flocculation, aggregates, 
and porosity by promoting greater particle dispersion and 
increasing mean aggregate formation (Junior et al 2020). 
Soil structure improvement results from reduced turbidity, 
indicating increased aggregate stability (Ulén and Etana 
2014; Gunnarsson et al 2022).

Furthermore, lime enhances the mobility and availability 
of essential plant nutrients through abiotic and biotic pro-
cesses and immobilizes toxic heavy metals (Li et al 2018; 
Silva et al 2019). Lime also provides Ca and Mg as nutrients 
that plants can uptake (Silva et al 2019), promoting soil fer-
tility enhancement. The application of 4.8 t lime ha−1 sig-
nificantly increased N, P, and K from 0.16 to 0.19%, 8.59 to 
16.40 ppm, and 0.49 to 0.77 meq 100 g−1 soil, respectively 
(Dibaba 2021). Lime amendment decreases Al3+, increases 
methane oxidation, and reduces greenhouse gas emissions 
by inhibiting the activity of methane oxidizers in acidic soils 
(Kunhikrishnan et al 2016).

5.2.2 � Soil biological effects

Soil pH increases, as regulated by adding lime, are key fac-
tors that directly affect the presence of soil pathogens and 
trigger plant defense against diseases (Deng et al 2024). 
Higher soil pH and nutrient levels promote the diversity of 
microbial communities and enhance the population of ben-
eficial bacteria (such as Bradyrhizobium, Rhodoplanes, Mes-
orhizobium, and Gemmatimonas), which helps in restoring 
and balancing soil microbiomes and suppressing soilborne 
pathogens (Deng et al 2024). Moreover, the abundance of 
pathogenic fungi (like Cladosporium, Pyrenochaeta, and 
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Exophiala) gradually decreases with increasing pH (Deng 
et al 2024). However, limited reports on managing soilborne 
pests and diseases through lime amendment in coffee pro-
duction exist. Additionally, the effects of lime amendment 
vary and largely depend on the rates and properties of lim-
ing materials (Álvarez et al. 2009; Li et al 2018), as well as 
the initial soil physiochemical characteristics (Bolan et al. 
2003). Excessive application of lime did not significantly 
increase soil pH, however, it led to higher production costs, 
Ca toxicity (Yan et al 2021; Norberg and Aronsson 2022), 
soil eutrophication, and damage to soil microbial communi-
ties, which in turn exacerbated soilborne diseases (Deng et al 
2024). Further research is needed to understand the potential 
impact of lime amendment on soil health and its ability to 
suppress soilborne plant diseases in coffee crops in acidic 
soils (Fig. 7).

5.3 � Potential effects of organic fertilizer 
amendment by plant and animal residues

5.3.1 � Soil physicochemical effects

Organic fertilizers are derived from plant and animal 
sources, such as plant residues and animal wastes (Michael 
2021; Badu and Abigail 2022). They offer several ben-
efits, including improving soil physiochemical properties 
and water retention capacity, reducing erosion, promoting 
beneficial microorganisms, suppressing plant pathogens, 
and decreasing reliance on mineral fertilizers (Abbott et al. 
2018; Goldan et al. 2023). Organic wastes can also allevi-
ate soil acidification (Citak and Sonmez 2011; Chen et al 
2022). For example, applying manure compost to acidic 
coffee plantation soils increased soil pH by 0.5 units after 
a three-year trial (Dzung et al. 2013). Organic amendments 
release organic compounds into the soil, reducing leaching 
and adsorbing acid cations, resulting in decreased acid avail-
ability and retained acid cations (Michael 2021). Addition-
ally, organic fertilizers contain organic anions, bicarbonates, 
and base cations that enrich in alkaline cations, promoting 
buffer and neutralizing H+ ions (Butterly et al. 2013; Abbott 
et al 2018). However, organic amendments can also decrease 
soil pH by stimulating ammonium nitrification during the 
mineralization of organic N and increasing cation replace-
ment H+ in the exchange sites (Wang et al 2013; Xiao et al 
2014; Arafat et al 2020; Lúcio et al 2020).

Organic amendment effectively increases organic matter 
(OM) from biomass waste (Adugna 2016). This process 
reduces bulk density and enhances the soil’s capacity to 
hold water and nutrients. It also improves the buffer capac-
ity, microbial activity, nutrient mineralization rates, and 
soil texture (Brown and Cotton 2011; Badu and Abigail 
2022). For instance, adding compost decreased soil erosion Ta
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by 67%, runoff by 60%, and bulk density by 8%, but it 
increased OM by 21% compared to the control (Strauss 
2003). Organic amendments also provide essential nutri-
ents through the decomposition process, serving as an 
organic multi-nutrient fertilizer supply to the plant and 
improving soil quality and productivity (Dzung et al. 2013; 
Lúcio et al 2020).

5.3.2 � Soil biological effects

Additionally, organic amendments stimulate soil biodiver-
sity and suppress disease by reducing the population of soil 
pathogens, increasing the presence of soil microbial antago-
nists, and releasing chemical compounds (Abbott et al 2018). 
Soil fungal and bacterial diversity is improved due to these 
amendments’ provision of food for microorganisms (Brown 
and Cotton 2011; Rayne and Aula 2020). For example, add-
ing compost in coffee plantations improved soil urease and 
phosphatase activities by around 96% and 30%, respectively. 
It also enriched the abundance of bacteria, fungi, and actino-
mycetes by 62.15%, 46.21%, and 68.42%, respectively (Jiang 
et al 2023).

To date, there have been limited reviews of the effects of 
organic fertilizers on the suppression of soilborne pathogens 

in coffee cultivation. The effects of organic fertilizers on 
soil properties vary depending on the types of materials, 
rate of addition, agricultural practices, soil type, and eco-
logical conditions (Citak and Sonmez 2011; Rayne and 
Aula 2020). Moreover, organic fertilizers made from plant 
and animal substances can contain pathogens that pose risks 
to humans and plants (Chen 2006), and large amounts of 
organic fertilizer are required to increase soil pH and other 
soil health indicators, which may not be readily available to 
smallholder coffee farmers and can pose a threat to surface 
and groundwater pollution (Bhatt, Labanya and Joshi 2019; 
Goldan et al 2023). The drawbacks of organic amendments 
also include the acceleration of acidification and the accu-
mulation of heavy metals. Therefore, the potential effects 
of agricultural organic amendments on acidic soil in coffee 
plantations should be further investigated.

5.4 � Potential effects of organic mulching by plant 
residues

5.4.1 � Soil physicochemical effects

Using organic mulch materials such as plant residues and agri-
cultural wastes can potentially help alleviate soil acidification 

Figure 7   Beneficial effects of some soil amendments on soil properties and soilborne diseases of coffee plantations
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(Iqbal et al. 2020; Beltagi et al. 2022). (2019) reported that 
mulches in coffee farming systems significantly raised soil pH 
by 0.56 and 0.52 units compared to the control. The decompo-
sition of mulching materials enriched exchangeable base cati-
ons and soil organic carbon, which can neutralize and absorb 
soil exchangeable acidity, thus leading to an increase in soil 
pH (Li and Johnson 2016; Awopegba, Oladele and Awodun 
2017). However, some authors have found negative influences 
of organic mulches on soil pH (Bekeko 2014; San et al 2021; 
Beltagi et al 2022) due to increased organic and carbonic acids 
produced by crop residue decomposition (Bekeko 2014; Arafat 
et al 2020), and the release of H+ from the process of minerali-
zation of organic N (Dai et al 2017).

In addition, mulching mitigates soil erosion, reduces 
water evaporation, improves soil moisture retention, regu-
lates soil temperatures, enhances available nutrients and 
plant absorption, supports soil biological activities, and 
suppresses weeds, thereby improving soil health (Ngo-
song, Okolle and Tening 2019; San et al 2021). Mulches 
also control fertilizer leaching, enrich soil nutrient avail-
ability and soil organic matter content, reduce soil Al3+ 
concentration (Nzeyimana et al 2019; Beltagi et al 2022), 
and improve soil physiochemical and biological param-
eters (Albiach et al 2000; Thy and Buntha 2005). After 
three years of mulching with Leucaena variety KX2 trees, 
total soil OM and N increased by 2.90 and 1.42 t ha−1, 
respectively (Youkhana and Idol 2015). Soil surfaces cov-
ered by organic mulches lead to soil moisture conserva-
tion and regulation of soil temperature (colder in summer 
or warmer in winter) by managing surface evaporation 
and reducing soil temperature variation (Iqbal et al 2020). 
These changes are primary factors in coordinating soil 
microbial community structure and function and enzyme 
activities (Brockett et al. 2012; Onwuka 2018; Tan et al. 
2018).

5.4.2 � Soil biological effects

The use of biomass mulches for planting can suppress pests 
and diseases and rejuvenate soils through different mecha-
nisms (Ngosong, Okolle and Tening 2019). Plant residues 
provide favorable conditions for anti-pathogenic species 
(Mochiah and Baidoo 2012), produce chemicals (Ngosong, 
Okolle and Tening 2019; Iqbal et al 2020), and enhance 
soil microbial diversity. Coffee pericarp mulch significantly 
improved bacteria diversity (2.79%) and richness (7.75%), 
as well as the abundance of Proteus (22.35%) and Chla-
mydomonas (80.04%), compared to the control (Zhao et al 
2023). Likewise, Mucuna sp. mulch promoted antimicrobial 
activities against bacterial and fungal species such as Fusar-
ium sporum, Rhizoctonia solani, and Pseudomonas syringae 
(Rayavarapu and Kaladhar 2011). Tomato root galls caused 
by Meloidogyne incognita were reduced by maple leaf mulch 

due to soil temperature increase (Petrikovszki et al 2016). 
Mulch materials reduce irrigation water, which carries and 
spreads disease spores, and support the nutrition of soil-ben-
eficial organisms that compete with pathogens (Iqbal et al 
2020). Furthermore, mulches also provide and improve soil 
nutrients so that plants become more vigorous and can toler-
ate pathogens (Ngosong, Okolle and Tening 2019).

The impact of different mulching materials on soil health 
and disease management varies greatly depending on the type 
of crop, the materials used for mulching, and the specific agri-
cultural conditions (Iqbal et al. 2020; Zhao et al. 2023). The 
use of mulches can lead to increased labor costs and invest-
ment, and the availability of mulch materials may be a chal-
lenge for farmers, particularly for smallholder coffee growers 
(Ngosong, Okolle and Tening 2019). Certain mulching mate-
rials can create conditions that promote disease occurrence 
(Iqbal et al 2020). Excessive mulch application can result in 
very high soil moisture and N levels, which can limit oxygen 
supply to the root systems and create favorable conditions for 
pathogen growth, ultimately harming plant health (Ngosong, 
Okolle and Tening 2019; Beltagi et al 2022). Therefore, when 
amending mulch in acidic coffee plantations, both the positive 
and negative effects should be taken into consideration.

5.5 � Potential effects of intercropping 
and agroforest systems

Intercropping is an effective method for improving soil pH and 
nutrients, controlling soil diseases, and enhancing the function-
ality of soil microbes (Vukicevich et al 2016; Reyes et al. 2019). 
Rigal et al. (2020) discovered that shaded coffee cultivation 
increased soil pH by 0.5 units and resulted in higher OM, N, 
and Ca soil contents and a greater abundance of soil microbial 
communities compared to open coffee cultivation. Similarly, 
intercropping coffee with papaya improves soil pH and physi-
ochemical characteristics and reduces Al and H+ levels com-
pared to full-sun coffee (Souza, Carlette Thiengo, Silva et al.). 
The decomposition of plant residues on the soil surface releases 
water-soluble organic anions that absorb H+ (Pavan et al 1999). 
Intercropping practices that enhance OM, microbial biomass, 
enzyme activities, and nutrients can help suppress disease infec-
tions (Medeiros et al 2019). For example, intercropping coffee 
with buckwheat and Sunn hemp leads to higher parasitism and 
predation of pests than in monoculture (Rosado et al 2021). 
Similarly, crotalaria species used as intercrops can potentially 
suppress plant parasitic nematodes and improve soil fertility 
(Wang, Sipes and Schmitt 2002; László 2010).

On the other hand, some studies have reported no signifi-
cant differences in soil physical attributes between agrofor-
estry coffee farming systems and conventional cultivation 
(Carmo et al 2014; Jácome et al 2020). Intercropping can 
also lead to an increase in the nematode population due to 
the presence of nematode hosts (Mazzafera et al. 2004). In 
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light of these results, intercropping shows promise as an 
approach for restoring soil quality and promoting more sus-
tainable practices in intensive coffee production. However, 
it is important to carefully consider the suitable model of the 
intercropping system and the choice of crops to intercrop 
with coffee due to some drawbacks.

6 � Conclusion and future perspectives

The intensification of coffee production in Vietnam has 
brought significant socioeconomic benefits to the country, 
improving the livelihoods and income of Central Highland 
farmers. While high yields have historically been achieved 
through intensive agricultural practices, these practices 
have led to serious consequences, such as soil acidification 
and the spread of soilborne pests and diseases, that now 
heavily reduce coffee yields. Our review found that acidi-
fication is a serious issue in Robusta coffee cultivation in 
Vietnam that is caused by excessive N fertilization. The 
links between intensive cultivation, acidification, and soil-
borne pathogens were clearly identified. A low soil pH 
significantly adversely affects soil physicochemical indi-
cators and promotes the growth of soilborne pathogens. 
Additionally, the potential effects of soil amendments on 
mitigating soil acidification, improving soil fertility, and 
controlling soil diseases were investigated.

However, the effects of various amendments on soil acid-
ification and pathogens can vary significantly due to factors 
such as the materials used, application rates, soil properties, 
agricultural practices, and ecological conditions. Several 
drawbacks include limited resource availability, time-con-
suming processes, soil acidification, heavy metal accumula-
tion, and environmental risks. Additionally, significant vol-
umes of soil amendments are needed to enhance soil health, 
which may be economically unfeasible for smallholder cof-
fee farmers and may have other negative effects. Finally, 
most research on the application of agricultural wastes and 
products has been conducted outside Vietnam, often in loca-
tions with specific but limited soil characteristics, climate 
conditions, and agronomic practices.

Implementing sustainable coffee farming systems is essen-
tial for producing high-quality green products, creating a safe 
environment, and meeting global market demands. Therefore, 
agricultural soil amendments are urgently needed to address 
soil acidification, improve soil health, and suppress soilborne 
pathogens. This will ultimately reduce the reliance on chemi-
cals and lower production costs for smallholder coffee growers. 
Disease management through soil amendments modifies soil 
characteristics, which can be a barrier compared to immediate 
chemical treatments. However, various chemicals are being pro-
hibited and restricted, resulting from their toxicity to human and 
animal health, environmental risks, soil pollution, decreased 

product quality, increased production, and inefficiency after 
long-term use. Ultimately, this research gap underscores the 
need for future studies to focus on the effects of acidification on 
plant health and pathogen growth, as well as on optimizing the 
use of biochar, lime, and organic amendments to address these 
challenges and promote sustainability.
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