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A B S T R A C T

LiDAR makes it possible to describe the 3D structure of the forest, from which species habitats can be accurately 
estimated, over large areas at fine resolution. However, standard airborne laser scanning (ALS) fails to describe 
the lower canopy in sufficient detail due to occlusion by the upper canopy. The understory is important to 
characterise as it harbours the majority of the forest community and is the place where regeneration takes place. 
Here we explored the potential of low altitude high power ALS with enhanced penetration, and denser UAV 
LiDAR (Unmanned Aerial Vehicle) to describe the structure of the understory. We used the recorded laser pulse 
extinction to build a 3D model of light transmission through the canopy. We evaluated the capacity of the light 
transmission model to estimate the spatial and angular variation of light in the tropical understory, considering 
different leaf inclination distribution functions (LIDF), compared with measurements from two different field 
sensors. We found that (i) LiDAR can be used to estimate the light environment in the understory in a spatially 
and angularly consistent way; (ii) high pulse density does not guarantee an accurate characterization of the forest 
structure, and penetration rate is an important characteristic to accurately describe the forest structure, espe
cially the understory; (iii) taking into account the anisotropic nature of light transmittance improved the esti
mation of absolute light levels by radiative transfer.

1. Introduction

Light is required for the development of all photosynthetic plants, 
and light level influences plant growth (Nicotra et al., 1999; Scanga, 
2014; Shirley, 1929) and survival (Nicotra et al., 1999; Osunkoya, 
1992). In a forest, the opening of a gap creates a sudden increase in the 
light level reaching the ground and triggers a new cycle of plant suc
cession (Clements, 1916; Finegan, 1996). This drives the recruitment of 
plant species and recolonisation by fauna (Denslow and Gomez Diaz, 
1990; Fortunel et al., 2016; Shirley, 1929). The strong vertical gradient 
in light availability in closed canopy forest fosters species coexistence 
through differentiation of niches (Laurans et al., 2014), contributing to 

maintaining high species diversity (Terborgh, 1985). The availability of 
light therefore drives the spatial distribution of plant species according 
to their tolerance to shade (Poorter and Arets, 2003) and also through 
the influence of light on plant-fungi interactions (Nagata et al., 2015) 
and on litter decomposition (Wang et al., 2021). Light also influences the 
distribution of animal species according to their light needs for vision, 
communication, hunting, reproduction, defence and camouflage, and so 
the effectiveness of plant-animal interactions (Théry, 2001); review in 
(Endler, 1993). Light also strongly influences forests’ temperature and 
humidity (Baraloto and Couteron, 2010; Thom et al., 2020; Tymen et al., 
2017). As a result, light also influences the distribution of organisms 
sensitive to those atmospheric characteristics, such as amphibians and 
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reptiles (Berezowski et al., 2015; Halverson et al., 2003). For foresters, 
characterising light can guide management practices, such as thinning 
or planting, aimed at optimising tree growth conditions according to the 
management objectives (conservation, production, etc.) (Aussenac, 
2000).

Different methods have been used to characterise the light environ
ment in the forest. Light availability below the canopy can be estimated 
by (i) a visual description of the tree’s exposition such as the Dawkins’ 
crown illumination index (Collinet, 1997), (ii) using sensors like PAR 
sensors, solarimeters or lux metres (Laurans, 2013; Nicotra et al., 1999), 
hemispherical photographs (Chazdon and Field, 1987) or other de
tectors (Engelbrecht and Herz, 2001; Ferment et al., 2001; Yoda, 1974). 
Such measurements need to be repeated across the study area to char
acterise its spatial heterogeneity. The development of automatic sensors 
able to independently collect and store measurements in the field has 
greatly improved the characterisation of the micro-environment by 
allowing its continuous and long term monitoring (Bramer et al., 2018; 
Engelbrecht and Herz, 2001). The disadvantage of fixed sensors remains 
the number of sensors needed to cover the study area when studying the 
spatial variability of light (see SI Table S1 for the review of different light 
measurement methods).

The emergence of LiDAR technology in the late 1990s made it 
possible to capture important features of the 3D forest structure, which 
have been used to develop statistical models of the microclimate over 
extensive areas at fine resolution (Bramer et al., 2018; Jucker et al., 
2018; Lenoir et al., 2017; Zellweger et al., 2019b).

From the LiDAR data describing the 3D structure of the forest, one 
can derive various features to characterise the variation in the light 
environment at different spatial and temporal scales. The Canopy Height 
Model (CHM) provides information about the forest canopy height 
which can be assumed to be inversely related to available light at ground 
level (Zellweger et al., 2019b). Other elements of the forest structure are 
used as proxies of the available light, such as the size and distribution of 
gaps and the distance to the gap (Gaquière, 2024; Goulamoussène et al., 
2017), or canopy structural complexity indices (Atkins et al., 2018). 
Synthetic hemispherical images (Moeser et al., 2014; Zellweger et al., 
2019a) derived from LiDAR allow to compute the global and diffuse site 
factor (Becker et al., 1989) to characterise local light availability (see SI 
Table S2 for a review of the LiDAR products used to estimate light 
environment). However, while synthetic hemispherical photos may be 
simulated at any height in the canopy (as opposed to real hemispherical 
photos taken close to the ground), they remain point measurements and 
do not provide a 3D spatially continuous representation of light 
availability.

Various models relying on LiDAR-derived data have been developed 
to study light extinction through the forest canopy (Hovi et al., 2024; 
Nyman et al., 2017; Peng et al., 2014; Van der Zande et al., 2011; Vin
cent et al., 2023; Witzmann et al., 2024; Xue et al., 2022). Most of those 
models integrate the sun’s changing position over daily and yearly time, 
the vertical forest structure and the direct and diffuse light to compute 
light environment. They are briefly reviewed here.

Van der Zande et al. (2011) use simulated terrestrial LiDAR mea
surements of virtual monospecific forest stands of three tree species ((a) 
Fagus sylvatica, (b) Platanus × acerifolia, and (c) Populus nigra). They 
simulate light absorption using a physically based ray tracing model, 
setting average leaf level transmittance and reflectance values, both on 
detailed mock-ups and the simplified voxelized scenes derived from the 
LiDAR data. The main difference between the two scenes lies in the 
representation of leaves: in the voxelized scene, leaves are modelled as 
discs, each with a fixed area of 0.01 m², a random azimuth angle, and a 
zenith angle that corresponds to the average zenith angle for the tree 
species simulated. They report a high level of consistency between 
detailed and simplified mock-ups with an overestimation of the mean 
transmittance profile ranging from 3 to 12 % depending on the species 
and the simulated LAI level (which varied from 2 to 6). Peng et al. 
(2014) use the LiDAR-derived canopy height model to calculate the path 

length of sun rays through a real forest dominated by Picea crassifolia. 
The input data of the model are the CHM, the under-branch height layer 
measured from the ground (the combination of which provides the local 
canopy depth), the Digital Elevation Model (DEM), and solar position 
file (azimuth and altitude angles). They adjust the mean canopy 
extinction coefficient to match pyranometer readings taken above and 
below the canopy approximating the leafy canopy to a turbid medium 
(Beer Lambert approximation). Nyman et al. (2017) test different radi
ation models in Eucalyptus forests, two of which use LiDAR and 
explicitly include path length of the transmitted light (i) The path length 
model (PL model) defines transmission as a function of the path length of 
a directional beam through the canopy. Trees height is acquired by 
LiDAR and the extinction coefficient is calibrated with field measure
ments of radiation, much like in the Peng et al. (2014) model. (ii) The 
Light Penetration Index (LPI) model is based on the LPI, obtained 
directly from airborne LiDAR point clouds as the ratio of ground returns 
to the total number of returns. LPI is used as an estimate of canopy 
transmittance. The LPI model was found to be biased in dense forest 
whereas the PL model demonstrated better accuracy, but the latter 
required the calibration of an extinction coefficient. Witzmann et al. 
(2024) also use the Beer-Lambert approach to compute light reaching 
the forest floor. The path length through the canopy is derived from 
beam direction and the canopy height model. They use a light extinction 
coefficient derived from the literature based on the dominant plot spe
cies composition. Xue et al. (2022) derive from an airborne LiDAR scan 
of regularly aligned trees in small stands, a meshed geometric repre
sentation of the 3D canopy structure and use it to simulate transmission 
and reflection of shortwave radiation inside the forest canopy. Individ
ual tree crowns are modelled as semi-ellipsoids for broadleaves and 
cones for conifers. The optical properties, including reflectance and 
transmittance, derived from the literature are applied to the triangulated 
crown surfaces to simulate radiation within the forest canopy. More 
complex light transmission models such as the 3D Discrete Anisotropic 
Radiative Transfer (DART) (Gastellu-Etchegorry et al., 2016) model or 
PARAS (Hovi et al., 2024) were tested to compute canopy transmittance 
per spectral range. The modelling strategy presented in Hovi et al. 
(2024) requires abundant data collection and is not easily applicable 
beyond plot scale. Terrestrial laser scanning (TLS) is used to describe 
individual tree crowns in 3D, hemispherical photographs are used to 
estimate plot level PAI (i.e. plant area index), and reflectance of the 
foliage of the different species and of woody elements and the forest 
floor, have to be made using a field spectrometer. All these models 
(except the DART parameterisation used in (Hovi et al., 2024)), assume 
isotropy (i.e. property of being independent on direction) of light 
transmittance within the canopy. Yet various studies have shown that 
the angular distribution of leaves is an important parameter for light 
transmission and reflection through the forest canopy (Myneni and Ross, 
1989; Pisek et al., 2013) and that the plagiophile distribution (i.e. leaves 
are predominantly oriented at oblique angles to the horizontal plane) is 
probably more relevant than the spherical distribution (i.e. leaves have 
no preferred orientation) for most deciduous species (Pisek et al., 2013). 
The angular distribution of leaves is indeed not random, as plants 
orientate their leaves to reduce self-shading and maximise light inter
ception and hence reduce light competition (Yang et al., 2023).

In the present study we use the AMAPVox software which was first 
introduced in (Vincent et al. 2017) to compute PAI from Airborne Laser 
Scanning (ALS) data. AMAPVox calculates the light attenuation by 
tracing each transmitted pulse through a 3D grid and allows for the 
specification of different Leaf Inclination Distribution Functions (LIDF). 
Leaf inclination is then used to compute light transmittance from various 
angles of incident light. AMAPVox is highly scalable and can be used to 
process TLS or ALS data, and applicable to single or multiple return 
systems. No calibration data is required, nor does the species specific 
information about foliage density or optical properties - which remains 
unavailable for highly diverse tropical forests. It does not require prior 
segmentation of the forest canopy into individual tree crowns which is 
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still a very challenging task in tall dense forests (Aubry-Kientz et al., 
2019). However, it does rely on sufficiently dense LiDAR sampling 
throughout the entire canopy to characterise the LiDAR signal extinction 
pattern down to the forest floor.

A general characteristic of aerial LiDAR is the gradual extinction of 
the signal along the different forest layers traversed. This leads to a low 
sampling intensity of the lower canopy (Brede et al., 2022). To 
circumvent this limitation, terrestrial LiDAR (TLS) can be used, but TLS 
cannot easily cover large areas. Scanning one ha of dense tropical forest 
typically requires a week or two of intensive fieldwork as the scanner has 
to be moved from one scan location to the next (Tao et al., 2021). The 
Mobile Laser Scanner (MLS) which can be carried along by a person 
walking in the forest, is much faster to operate and has the additional 
advantage to reduce occlusion by multiplying viewpoints (Bauwens 
et al., 2016). However, to our knowledge the MLS systems currently on 
the market do not provide all the scanning geometrical characteristics 
needed to reconstruct the optical paths of all the emitted pulses. Light
weight LiDAR scanners on board Unmanned Aerial Vehicles (UAV) are 
also commonly used to scan areas up to a few tens of ha. They are more 
affordable than using a plane or a helicopter, and better suited to high 
frequency acquisitions (Anderson and Gaston, 2013).

Various aerial LiDAR acquisition parameters need to be considered 
to improve the effective sampling of the understory when scanning from 
above the canopy. A lower flight height reduces the footprint size and 
increases the detection rate by increasing irradiance. Those character
istics improve the signal penetration rate (proportion of returns reaching 
the ground) (Lee and Wang, 2013; Vincent et al., 2023). Increasing the 
optical power will also increase the penetration but this comes at the 
expense of a lower pulse repetition rate (PPR) as they are inversely 
related.

In this study, we test if lower flights, more penetrating (LiDAR 
operated on a plane) or denser (LiDAR operated on a UAV) airborne 
LiDAR can more effectively describe the light levels of the understory in 
dense tropical forest compared to high altitude ALS. The produced 3D 
light availability maps are then used to analyse the largely unexplored 
vertical structure of light in a dense tropical forest canopy. We address 
the following questions: (I) How precise (i.e. capable of detecting small 
changes in incident light across space) and how accurate (i.e. capable of 
predicting unbiased light penetration per incident angle) are light maps 
derived from airborne LiDAR? (II) Does taking into account the anisot
ropy of light transmittance improve the estimation of light? (III) To what 
extent do acquisition parameters such as pulse density and LiDAR 
penetration affect prediction accuracy (precision and bias) and what are 
recommended best practices? (IV) How variable is light availability 
vertically? Can ground based sensors inform on light availability higher 
up in the canopy?

2. Materials and methods

We use field-based measurements of light conditions as a ground- 
truthing to compare different LiDAR acquisitions, a more penetrating 
ALS or denser UAV, acquired at the same time.

2.1. Study site

This study was conducted at the Paracou field station (Latitude: 5.25 
′N, Longitude: 52.93′W), near Sinnamary, French Guiana.

The site is a lowland tropical rain forest with mean annual precipi
tation of 3041 mm. The forest in the area is dense (4730 stems bigger 
than 1 cm of diameter at breast height per ha) and its botanical 
composition highly diversified. The mean canopy height (computed by 
taking the highest point per m2) is about 31 m and the basal area 31 m2/ 
ha (Huertas et al., 2022).

The study area where the different LiDAR sensors are compared is a 
4-ha subplot located within a 25-ha permanent sample plot (P16). 
Topography is gentle as can be seen on the Digital Terrain Model (DTM) 

derived from LiDAR of the study area (SI Fig. S3).

2.2. Data acquisition

2.2.1. ALS aircraft laser scanning
ALS LiDAR data were acquired by the private company ALTOA 

(http://www.altoa.fr/) on the 26th of October 2023 around noon. The 
LiDAR sensor used was a RIEGL VQ 780 II mounted on a BN-2 Islander. 
ALS sensor specifications are given in Table 1. Point cloud classification 
(vegetation, ground, noise) was also performed by ALTOA.

We compared two ALS acquisition scenarios. Either flying at high 
altitude (1000 m AGL (Above Ground Level)) and using a high Pulse 
Repetition Rate (PPR), or flying lower (500 m AGL) and selecting a 
lower PPR which allows the transmission of higher energy pulses. The 
combination of lower flight height and higher power increased the laser 
pulse penetration rate (Table 1).

2.2.2. UAV unmanned aerial vehicle laser scanning
UAV LiDAR data were acquired on the 19th of October 2023. The 

scanner used was a Hovermap ST-X (Emesent Pty Ltd, Queensland, 
Australia) mounted on the Matrice 300 DJI drone. The UAV LiDAR 
produced extremely dense point clouds, but had a lower penetration 
than ALS. Details of the characteristics of the Hovermap ST-X are 
described in Table 1.

The Hovermap ST-X does not use a GPS but relies on the Simulta
neous Localization and Mapping (SLAM) technology to determine its 
position relative to the take-off point. The flight plan consisted of par
allel flight lines 10 m apart at 85 m AGL. We restricted the analysis to 
data points with scanning angles within ± 45◦ of vertical for the 
comparative analysis between sensors. However, we also used a larger 
swath angle (±70◦) to demonstrate transmittance anisotropy taking 
advantage of the 360◦ x 40◦Field Of View of the UAV LiDAR (See SI 
section Anisotropy test).

The 4-hectares study area was scanned in two successive flights, each 
completed in 20 min. The two flight plans had a 20 m overlap (see SI Fig. 
S1 for UAV flight plan). Flight and sensor specifications are described in 
Table 1.

The UAV point cloud classification (ground, noise vegetation) was 
conducted using lastools (ver. 231025).

Table 1 
Characteristics of LiDAR acquisitions. AGL: Above Ground Level.

High altitude 
(standard)

Low 
altitude

UAV

Scanner Riegl VQ 780 II Hovermap ST-X
Sensor Hesai XT32M2X
Flight altitude AGL (m) 1000 500 85
Pulse frequency 1MHz 150kHz 340kHz
Flight speed 170km/h (47m/s) 5m/s
Beam divergence (mrad) 0.25 (measured at the 1/e2 

point)
1.7 × 1.9

Footprint diameter at ground 
level (cm) at vertical

25 12.5 15

Density (±30◦) (points/m²) 344 46 2606 (±45◦)
Density (±30◦) (pulses/m²) 222 25 4391 (±45◦)
Average number of echoes per 

shot
2.3 3.2 1.5

Max number of echoes 11 14 3 
(1st, last and 

strongest; fixed 
maximum 

number of returns)
Range (m) (10 % reflectivity 

of target, standard clear 
visibility (23 km)

1435 3115 80

Penetration rate ( % of ground 
points in last echoes)

10 19 4 (±30◦)

Average height (m) of the last 
echo

31.2 26.1 35.2
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2.2.3. Light sensors (validation data)
Two types of light measurements were made in order to validate the 

light level predicted from the LiDAR data. Instantaneous recordings of 
blue light transmittance (to avoid multiple reflections) were made along 
two transects with an LAI2200C sensor (see below). In addition, 
continuous recordings of the luminous flux (lux) were made using 20 
MX2022 HOBO sensors along one of the transects.

2.2.3.1. HOBO. The 20 HOBO Pendant MX2202 sensors were placed 
every 10 m along a transect line covering a topographic gradient (in the 
north - south direction). They were positioned horizontally one metre 
aboveground and fixed on plastic tubes. Sensor readings were taken 
every 15 min and individual records were summed per day and averaged 
over one year (from 01/04/2023 00:00:00 to 31/03/2024 24:00:00). 
The MX2202′s light sensor has a spectral response that closely matches 
the photopic response of the human eye. The response of this light metre 
is only roughly proportional to the cosine of the angle at which the light 
is incident. Angles beyond ± 20◦ from vertical show a marked decrease 
in sensitivity compared to the expected cosine response (https://www. 
onsetcomp.com/products/data-loggers/mx2202).

The data from HOBO No. 7 were excluded because it stopped col
lecting data before the end of the monitoring period.

2.2.3.2. LAI2200. We measured blue light (320–490 nm) at a height of 
1 m above the ground, using two coupled mobile field sensors 
(LAI2200C, (LI-COR, Inc. 4647 Superior Street Lincoln, NE 68504-0425) 
(www.licor.com/lai)): one sensor was moved around to take measure
ments at 1 m aboveground below the canopy while another sensor was 
set-up in a large clearing (3000 m2) located 1.5 km away from the centre 
of our region of interest. This reference sensor was mounted on a tripod 
and recorded light every 15 s. The measurements below the canopy were 
taken along two transects of different resolution for a total of 46 mea
surement positions: (i) 20 along the transect of the HOBO sensors which 
were placed every 10 m along a 190 m long line (HOBO transect) and (ii) 
26 every 2 m along a 50 m long line on a footpath, including one position 
common to both transects. The second transect showed higher variation 
in the degree of canopy opening (LAY transect) (see SI Figs. S2 and S3 for 
the experimental design of LAI2200 sensors). Between two and four 
replicated LAI2200 measurements were taken in diffuse sunlight con
ditions, close to sunset (5:15–6:20 pm), within a week of the LiDAR 
acquisitions (October 2023) (21, 22 and 25/10/2023). Sensors were 
inter-calibrated before use by taking thirty-three measurements over a 
wide canopy opening gradient, during 30 min just after sunset (no direct 
sunlight) on the same day. A total of 765 LAI2200 measurements were 
taken below the canopy.

We computed transmittance values from the LAI2200 readings by 
dividing the measurements taken below the forest canopy by the mea
surements taken in the open at five incident angles, called rings (148◦

field-of-view) (Table 2).

2.2.3.3. Georeferencing. Under dense tree canopy, differential GPS sys
tems do not allow submeter precision (Næsset and Jonmeister, 2002) 
and autonomous surveyor grade GPS do not even reach metre precision 

(Purfürst, 2022). The HOBO transect was laid out according to existing 
stakes and spatialized using a tape metre and a magnetic compass 
relative to the footpaths. The LAY transect is located on a footpath, 
begins at the intersection of two footpaths, and the distance between the 
sensors was measured with a tape metre. We therefore geolocated the 
field sensors based on the existing footpaths (visible on the LiDAR 
derived terrain model) and subplot corners (which had been geolocated 
previously using a total station).

2.3. Analyses

2.3.1. UAV LiDAR data processing

2.3.1.1. UAV point clouds correction and completion. Both UAV LiDAR 
point clouds were first processed using Aura proprietary software 
implementing a SLAM algorithm (Milton, QLD, Australia) into a 
geometrically consistent point cloud and exported in las format. As the 
las files format produced by the AURA software does not comply with 
ASPRS las standards, we recomputed the NumberOfReturns, Return
Number, ScanAngle and gpstime from the available data in the point cloud 
and the trajectory file. This post-processing of the las file was conducted 
in R using the lidR package (Roussel et al., 2020; 2024).

2.3.1.2. UAV point clouds alignment. Since the UAV point clouds were 
not georeferenced, we aligned them on the high density ALS point cloud. 
To do so, we thinned the point cloud (by the lasthin method in LAStools 
software (http://rapidlasso.com/LAStools)) by taking the highest return 
in each 10 cm grid cell. We applied the same thinning procedure to the 
high density ALS point cloud). The two UAV point clouds were first 
roughly aligned by hand on the high density ALS point cloud. We then 
used the Iterative Closest Point (ICP) algorithm in CloudCompare 
(https://www.cloudcompare.org) to finely match UAV top of canopy 
points with the ALS top of canopy. We later controlled the quality of the 
alignment by comparing the Digital Terrain Model at 1 m resolution 
derived from point clouds acquired by the two LiDAR sensors (the dif
ference between the two DTMs in the 4 ha area is on average 0.03 m and 
the RMSE is 0.09 m). We applied the same transformation to the tra
jectories. UAV points clouds were then filtered by range excluding points 
closer than 2 m to remove points belonging to the drone and excluding 
scanning angles > 45◦ from vertical.

2.3.2. Light calculations
To map light availability in the forest we used the open source 

AMAPVox software v 2.3.1 ((Vincent et al., 2017); www.amapvox.org) 
following a two steps procedure. First the LiDAR pulse trajectories are 
analysed to estimate the light attenuation in each 1 m3 cell of the 3D grid 
(voxel) (See SI Fig. S4 for an illustration of the voxel space generated by 
AMAPVox). Ray tracing is subsequently used to compute light avail
ability at any location in the scene. Unless a particular LIDF is specified, 
the LIDF is assumed to be spherical (and to apply to all vegetation ele
ments). In which case the transmittance is isotropic. Conversely, if a 
non-spherical LIDF is provided, the light attenuation will depend on the 
direction of the incoming light.

2.3.2.1. Pre-processing. We applied a 100 m buffer around the 4 hect
ares of the study, extending the study area to 16 ha, centred on the 
location of the microclimate sensors. This was done to avoid border 
effects and ensure that canopy conditions around the perimeter of each 
plot were captured, as forest gaps can modify understory microclimatic 
conditions tens of metres from the forest edge (Camargo and Kapos, 
1995; Ewers and Banks-Leite, 2013). In the case of the UAV data, we 
used the ALS data as a buffer because the area scanned in UAV did not 
cover more than the 4 ha of interest.

Table 2 
Angles of the five rings of the LAI2200C sensor.

Ring Nominal Angular Coverage Plane angle (θ) Solid angle (Ω)

1 0.0 - 12.3◦ 12.3◦ 0.14 sr
2 16.7 - 28.6◦ 11.9◦ 0.50 sr
3 32.4 - 43.4◦ 11◦ 0.74 sr
4 47.3 - 58.1◦ 10.8◦ 0.94 sr
5 62.3 - 74.1◦ 11.8◦ 1.20 sr
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2.3.2.2. Voxelization. In order to compute light extinction from multi
ple return pulses, we need to quantify individual return contributions to 
the extinction. Such information is not directly contained in the LiDAR 
data, but AMAPVox offers different alternatives to weight individual 
returns. A weight is given to each return to capture the unequal 
contribution of successive returns to the gradual extinction of a trans
mitted pulse. We used the apparent reflectance (i.e. reflected energy 
corrected for the distance dependent decay but not for unknown target 
reflectivity and orientation) as a proxy of this contribution (Yin et al., 
2020). Because ground and vegetation reflectivity can differ signifi
cantly (Vincent et al., 2023), we first corrected ground reflectivity to 
match vegetation reflectivity by multiplying ground points’ apparent 
reflectance by the ratio of the mean apparent reflectance of vegetation 
single returns to the mean apparent reflectance of ground single return.

In AMAPVox this apparent reflectance associated to each return is 
further normalised by dividing it by the sum of the apparent reflectance 
values of all returns from a given transmitted pulse.

The local attenuation of the laser light signal by the vegetation is 
then estimated from the optical path lengths - and return weights - of all 
incoming laser pulses in a 1 m3 voxel. Various estimators of light 
attenuation are implemented in AMAPVox. They all make some regu
larity assumptions and notably assume random spatial distribution of 
leaves and branches within a voxel (no clumping). In the present study, 
we used the so-called Free Path Length estimator initially developed for 
single return scanners (Pimont et al., 2019) and later extended to mul
tiple returns as described in Vincent et al. (2021). To study directional 
transmittance incoming pulses can be filtered by scanning angle range. 
By default, all incoming pulses are used, implicitly assuming that 
transmittance is isotropic.

In order to test the assumption of isotropic transmittance we also 
voxelized the drone data by angle sectors of 10◦ in size, ranging from 
0◦ to 70◦ and tested if transmittance was dependent on lighting direction 
(See SI section Anisotropy test). The data used for this test were acquired 
on a one ha plot located in the same site with the same scanner and flight 
plan, but outside the 4-ha region of interest.

2.3.2.3. Dealing with locally low sampling. Thinning analyses showed 
that light attenuation estimation of voxels with less than 20 incoming 
pulses was positively biased. A small fraction of voxels (see SI Fig. S7 for 
the percentage of voxels poorly sampled along the canopy height 
gradient for the three LiDAR acquisitions) were not sufficiently sampled 
(or not sampled at all as could also occur due to occlusion). In that case 
light attenuation was estimated from a larger canopy volume centred on 
the target voxel. The target voxel was merged with the 26 nearest 
neighbouring voxels. In the rare case where the extended volume would 
still be sampled by too few pulses to get a reliable estimate, the median 
attenuation of the well-sampled voxels of the whole canopy was applied.

2.3.2.4. LAI2200 transmittance simulation from LiDAR. Based on the 
local light extinction rates estimated in a first step, AMAPVox can 
simulate LAI2200 acquisitions at the same X, Y, Z coordinates as the 
LAI2200 placed in the study area (described in section LAI2200). A ray- 
tracing algorithm is used to sample the same five angular sectors as the 
LAI2200. AMAPVox computes directional transmittance (default: 136 
directions), then aggregates these values per ring, weighting each di
rection by its associated solid angle. No sky illumination model is 
applied.

The clearing in which the LAI2200 reference measurements were 
taken was not large enough to provide a field of view completely 
unobscured by vegetation. Indeed, the simulated transmittances ob
tained for rings 4 and 5 at the centre of the clearing were lower than 1 
(resp. 0.96 and 0.23). Therefore, the average measured light level of the 
LAI2200 for rings 4 and 5 of the mobile LAI2200 unit was corrected by a 

multiplicative factor of 0.96 and 0.23 respectively prior to computing 
the ratio of below to above light level yielding the transmittance per 
ring.

2.3.2.5. Light maps (hemispherical transmittance with illumination model: 
Global Site Factor). AMAPVox also includes an option to generate light 
maps based on an insolation model. In this mode, it computes the Global 
Site Factor (GSF) on a grid — that is, the proportion of total (direct and 
diffuse) solar radiation received at a given location relative to the 
amount it would receive under open-sky conditions. Ray-tracing is used 
to predict light availability at any location in the scene. Individual rays 
reaching the location of interest from the hemisphere are weighted ac
cording to an insolation model which takes as input the plot location and 
orientation, the time period and the associated clearness index to inte
grate the direct and diffuse solar irradiance over time. Here the light is 
simulated at a latitude of 5◦ (French Guiana) for one year with an 
average clearness index (0.52) for the study period (from 01/04/2023 
00:01 to 31/03/2024 23:59). The clearness index was computed from 
data of the Paracou flux tower as: global solar irradiance/extraterrestrial 
radiation (Liu and Jordan, 1960). The hemisphere was sampled in 136 
directions. Multiple reflections are not considered in this simple model 
(see SI Fig. S5 right for an output transmittance map of the AMAPVox 
model).

2.3.3. Cross-validation of sensors data
We first controlled the coherence between the data acquired by the 

two field sensors (LAI2200 and HOBO) along the HOBO transect. For 
that we computed the Pearson’s correlation between LAI2200 trans
mittances measures for the five rings and integrated over the rings, with 
the averaged light in lux measured over one year by the HOBO sensors. 
We also controlled the coherence of the spatial distribution of the light 
measured by the two field sensors, by plotting the light profiles in lux 
and transmittance on the HOBO transect, where the measurements were 
taken by the two sensors.

2.3.4. Comparison of LiDAR data to field validation data

2.3.4.1. Per individual sensor location. To compare transmittance esti
mated from different LiDAR acquisitions with transmittance measured 
by the LAI2200 sensor, for each point of measurement we averaged 
repeated readings and we computed Pearson’s correlation coefficients 
and used multiple line plots.

2.3.4.2. Per inclination angle. To check the angular correctness of the 
estimated transmittance values, we compared the transmittance per ring 
simulated using the different LiDAR acquisitions with the values 
measured using the LAI2200 device.

2.3.4.3. Anisotropy effect in transmittance levels estimation. To test the 
effect of the angular distribution of leaves on the angular pattern of 
transmittance, we compared the Mean Relative Error (MRE) of the mean 
transmittance for both transects across the five rings (Eq. (1)) estimated 
with two different Leaf Inclination Distribution Functions (LIDF): 
spherical and plagiophile. Mean absolute error (MAE) (Eq. (2)) was also 
computed for each LIDF. Mean relative error provides a measure of the 
magnitude of the overall bias in transmittance (average error across all 
angular sectors). Mean absolute error provides a measure of the 
magnitude of the error per ring. Both errors are expressed relative to the 
mean measured transmittance. 

MRE =
1
5
∑

r

1
n
∑

s Est. transmittancer,s − 1
n
∑

s Obs. transmittancer,s
1
n
∑

s Obs. transmittancer,s
(1) 
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1
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r
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⃒
⃒
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1
n
∑

s Est. transmittancer,s − 1
n
∑

s Obs. transmittancer,s

⃒
⃒
⃒
⃒
⃒

1
n
∑

s Obs. transmittancer,s
(2) 

With r = ring number (1 to 5), s = sensor number (1 to n, with n =
number of measurement locations per transect).

2.3.5. Vertical forest structure heterogeneity
To check how variable is light availability vertically, and if ground- 

based sensors provide information about light availability further up in 
the canopy, we computed the Pearson’s correlation of the hemispherical 
transmittances (light maps) between the lowest stratum and those above 
it. To check the spatial autocorrelation of vertical forest structure, we 
computed the Pearson’s correlation between two consecutive forest 
strata over the whole vertical gradient.

3. Results

3.1. Cross-validation of sensors data

The Pearson’s correlation values between the data acquired by the 
two field sensors (LAI2200 and HOBO) are reported in Fig. 1. LAI2200 
light values are given as the transmittance (ratio between the mea
surement taken by the sensor placed below the forest canopy over the 
one taken in the reference open area). The HOBO sensor takes mea
surements in lux every 15 min, which are then averaged over one year 
for each sensor. The LAI2200 sensor measures light at five zenith solid 
angles, called rings, from 1 (most vertical) to 5 (most horizontal), at 20 
measurement positions, with 4 replicates, for a total of 400 measure
ments. LAI2200_integrated is the weighted sum of the transmittances of 
the 5 rings measured by the LAI2200 sensors weighted by the solid 
angle of each ring. Readings are averaged over the four measurements 
repetitions, for each location. The HOBO annual light is strongly 
correlated with the LAI2200 light data integrated over the five rings 
(r = 0.98), which mainly represents the first three rings (ring 1: 
r = 0.93; ring 2: 0.95; ring 3: 0.79; ring 4: 0.53; ring 5: 0.52). 
Consistently, the first and the second rings of the LAI2200 light data 

(expressed as transmittance) are highly correlated with the HOBO 
annual light data (in lux) (r = 0.94 and 0.95 respectively). The corre
lation is strong but less important for the third ring (r = 0.74), and 
moderate and barely significant for the last two rings (r = 0.44 and 0.5 
respectively) (Fig. 1). The HOBO annual light is more correlated with 
the LAI2200 light data integrated over the five rings, than with the first 
three rings of the LAI2200 data taken separately (integrated: 0.98; ring 
1: r = 0.94; ring 2: 0.95; ring 3: 0.74) (Fig. 1). A comparison of the 
spatial distribution of the light measured by the two field sensors shows 
that the HOBO spatial light profile is very close to the LAI2200 trans
mittance profiles of the second ring (Fig. 2).

3.2. Validation of LiDAR-derived LAI2200 light estimate

3.2.1. Per individual sensor location
The Pearson’s correlation coefficients between the simulated 

LAI2200 values derived from the LiDAR acquisitions with the validation 
data (measured LAI2200 transmittances and average annual light in lux 
measured by HOBO) show a strong spatial consistency (r between 0.89 
and 0.99 between LiDAR and LAI2200 for rings 1 and 2, between 0.92 
and 0.98 between LiDAR and HOBO) (Table 3). For the two first rings, 

Fig. 1. Pearson’s correlation matrix between LAI2200 and HOBO light mea
surements. The crosses indicate p-value > 0.05.

Fig. 2. Average annual light (in lux) acquired by the HOBO sensors and 
transmittance acquired in October (dry season) by LAI2200 sensor for ring 2 
(the ring for which LAI2200 measurements were the most correlated with the 
HOBO measurements), on the HOBO transect. Note the different Y axes.

Table 3 
Pearson’s correlations between light estimated from LiDAR (ALS high (1000 m) 
and low (500 m) altitude, and UAV) (in row) and light measured by field sensors 
(LAI2200, HOBO, in column) on HOBO transect only. Light is transmittance at 
the first and second ring (i.e. most vertical incident angles) in case of LAI2200 
and LiDAR and is in lux averaged over the year in case of HOBO. LiDAR trans
mittance is estimated at 1 m resolution. All the p-values are < 0.0001. See SI 
Table S3 for all the Pearson’s correlations.

HOBO annual LAI2200 ring 1 LAI2200 ring 2

ALS low altitude ring 1 0.94 0.99 –
ALS low altitude ring 2 0.98 – 0.94
UAV ring 1 0.92 0.99 –
UAV ring 2 0.97 – 0.92
ALS high altitude ring 1 0.92 0.98 –
ALS high altitude ring 2 0.95 – 0.89
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the spatial transmittance profiles of the LiDAR follow the spatial trans
mittance profile of the LAI2200 well, except for sensor 11 on the LAY 
transect (Fig. 3). The HOBO data are more correlated with the trans
mittances of the second ring of the LiDAR than with the first ring, as was 
the case with the LAI2200 rings (Table 3; Fig. 1). We can also see that the 
HOBO spatial light profile is very close to the LAI2200 and LiDAR 
transmittance profiles of the second ring (Figs. 2, 3 bottom right). On the 
HOBO transect, the HOBO and the LAI2200 data have the highest cor
relations with the low altitude ALS (r = 0.98 and 0.99 respectively), 
followed by the UAV (r = 0.97 and 0.99 respectively) and the high 
altitude ALS (r = 0.95 and 0.98 respectively) (Table 3). Considering both 
transects, for the first ring the low altitude ALS has the highest 

Fig. 3. Average transmittances of the first (top) and the second ring (bottom) measured by LAI2200 and estimated from each LiDAR acquisition at each sensor location of 
the LAY (left) and HOBO transects (right). LiDAR transmittance is estimated at 1 m resolution. Note the y-axis differences in scale. See SI Fig. S6 for the other rings.

Table 4 
Pearson’s correlations between light (transmittance) estimated from LiDAR (ALS 
high (1000 m) and low (500 m) altitude, and UAV) and measured by field 
sensors (LAI2200) on both transects (LAY and HOBO) at the first and second ring 
(i.e. incident angle). LiDAR transmittance is estimated at 1 m resolution. All the 
p-values are < 0.001. See SI Table S4 for all the Pearson’s correlations.

LAI2200 ring 1 LAI2200 ring 2

ALS low altitude ring 1 0.99 –
ALS low altitude ring 2 – 0.92
ALS high altitude ring 1 0.98 –
ALS high altitude ring 2 – 0.93
UAV ring 1 0.97 –
UAV ring 2 – 0.94

Fig. 4. Average transmittances measured by LAI2200 and estimated from each LiDAR acquisition of the two transects (left), and of the LAY (centre) and HOBO transects 
(right), at five incident angles (rings). Mean Relative Error (MRE) in percent is given for each LiDAR acquisition. LiDAR transmittance is estimated at 1 m resolution.
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correlations with the LAI2200 data (r = 0.99), followed by the high 
altitude ALS (r = 0.98) and the UAV (r = 0.97) (Table 4). On the spatial 
light profiles of the first ring, the values of the low altitude ALS are closer 
to the LAI2200 values than the high altitude ALS and the UAV (Fig. 3).

3.2.2. Per inclination angle
To assess the ability to estimate the angular distribution of light, we 

compared light estimated by radiative transfer from LiDAR data and that 
measured by LAI2200, averaged over all locations of a transect for the 
different solid angles (rings). The average angular transmittance profiles 
of the LiDAR follow well the average angular transmittance profile of the 
LAI2200 (Fig. 4). The smallest relative error is 11 % recorded by the low 
altitude ALS, the largest is 29 % recorded by the UAV. For all rings, the 
values of the low altitude ALS are closer to the LAI2200 values followed 
by the high altitude ALS and the UAV (Fig. 4).

Consideration of a plagiophile function of leaf inclination compared 
to a spherical function halves the normalised mean absolute error of the 
transmittance estimation from the low altitude ALS (MEplagiophile = 6 %, 
MEspherical = 12 %) and strongly reduces the relative mean error 
(REplagiophile = 0.1 %, REspherical = − 11.7 %) (Fig. 5).

3.3. Vertical forest structure heterogeneity

We studied the variation of light levels as hemispherical trans
mittances along the vertical gradient of the canopy, and its spatial 
autocorrelation along the vertical axis. The correlation between the 
horizontal spatial distribution of the hemispherical transmittances of the 
lowest stratum and that of a stratum above steadily decreases when the 
distance between the above stratum and the first stratum increases 
(Fig. 6 left). The horizontal spatial distribution of the hemispherical 
transmittances of the first and the last strata of the forest are not 
correlated (r = 0.02) (Fig. 6 left). Consecutive forest strata are less and 
less correlated with each other as they are located higher in the canopy 
(r = 0.8 between the two first strata, r = 0.6 between the two last strata 
from the ground) (Fig. 6 right).

Fig. 5. Average transmittance for both transects, measured by LAI2200 and 
estimated from low altitude ALS with two different Leaf Inclination Distribution 
Functions (LIDF): spherical and plagiophile, at five viewing angles (rings). 
Mean absolute error (MAE) and mean relative error (MRE) in percent are given 
for each LIDF.

Fig. 6. Pearson’s correlation of the horizontal spatial distribution of the hemispherical transmittances (light maps) between the lowest stratum and those above it 
(left) and between two consecutive forest strata (right), for each LiDAR acquisition. The transmittance is computed on a grid, every 10 m horizontally and every 5 
m vertically.
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4. Discussion

We used field-based measurements of environmental conditions as 
ground-truthing to compare three different methods of LiDAR acquisi
tion. These were a high density ALS, a more penetrating ALS, and a 
denser UAV, and we compared their ability to characterise the under
story light environment in a dense tropical rainforest. To this aim we 
tested LiDAR ability to estimate the spatial and angular variation of light 
in a tropical forest understory. Finally, we studied the vertical variability 
of light to determine to what extent ground-based sensors may inform on 
light higher up in the canopy. Our results show that the vertical structure 
of the forest is very heterogeneous, and the light level in the upper 
canopy is not indicative of the light level of the understory. This means 
that sensors placed in the understory cannot be used to describe the light 
at the top of the canopy. LiDAR was shown to be very effective to 
characterise the forest light environment, including the understory, in a 
spatially and angularly consistent way. Among the LiDARs used in this 
study, (i) a low altitude ALS (500 m) can better describe the understory 
canopy structure and thus the understory microenvironment, thanks to 
its higher penetration; (ii) Despite its very high sampling intensity, UAV 
LiDAR is the acquisition that most underestimates light levels. We 
demonstrated that taking into account the anisotropic nature of light 
transmittance improved the estimation of absolute light levels by radi
ative transfer.

4.1. Cross-validation of sensors data

Measurements of both field sensors show good agreement for the two 
innermost rings recorded by the LAI2200 sensor. In contrast trans
mittance measurements at outer zenith angles (rings 4 and 5) are 
generally less informative and more prone to noise than those at lower 
angles. This limitation is reflected in our data: the variability in HOBO 
light sensor readings appears to be primarily influenced by incoming 
light at inner zenith angles (rings 1 and 2). These rings show the highest 
correlation with HOBO measurements, as illustrated in Fig. 1. In 
contrast, rings 4 and 5 show much lower and barely significant corre
lations. Modelled transmittance per ring from LiDAR data, also shows 
lower correlation with LAI2200 measurements for outer rings, further 
indicating a degradation of signal-to-noise ratio (SNR) as shown in Fig. 
S6. This likely results from both a reduction in the absolute light levels 
reaching the sensor under dense canopy (due to longer optical paths 
inside the canopy at lower elevation angles) and a reduced relative 
variability, as outer rings integrate light over increasingly large sectors 
of the sky (see Table 1).

4.2. Comparison of the performance of different LiDAR acquisitions

The LAI2200 data simulated by LiDAR are highly coherent with the 
validation data for rings 1 and 2, and the spatial distribution of trans
mittance described by LiDAR is consistent with that measured by 
LAI2200 for the most vertical rings (Table 3; Fig. 3; See SI Fig. S6 for 
results of the other rings). The angular light distribution estimated from 
LiDAR is less consistent, showing a tendency to underestimate light 
levels measured by LAI2200 at low inclination angles, which never
theless contribute little to total transmittance (Fig. 4). Considering both 
transects, the low altitude ALS is the acquisition that better describes the 
light environment at 1 m height, followed by the high altitude ALS and 
then the UAV (Table 4). Transmittances per incident angle estimated 
from LiDAR data are closer to the measured data when acquired with 
low altitude ALS, followed by high altitude ALS and then UAV (Fig. 4). 
That can be explained by the limited sensitivity of the UAV LiDAR sensor 
which leads to an overestimation of the absorbance: some of the laser 
light is reflected with an intensity too low to be detectable, leading to 
underestimating the transmittance.

UAV and high altitude ALS have a higher sampling intensity than low 
altitude ALS. The density of the point cloud acquired is greatest for UAV 

acquisition (2600 points/m²), and ALS high altitude acquisition is also 
denser (350 points/m²) than ALS low altitude acquisition (50 points/m²) 
(Table 1: Characteristics of LiDAR acquisitions; See SI Fig. S7 for the 
percentage of voxels poorly sampled along the canopy height gradient, 
for the three LiDAR acquisitions). On the other hand, low altitude ALS 
has a higher penetration rate (19 % of shots reach the ground) than the 
high altitude ALS (10 %), and the UAV has the lowest (4 %). Thanks to 
its higher penetration rate compared to the high altitude ALS and the 
UAV, low altitude ALS can better describe the entire canopy profile, 
explaining the relative performance of these three acquisitions. These 
results show that high pulse density does not guarantee an accurate 
characterization of the forest structure through the entire profile, 
including the understory, and that penetration rate is of major impor
tance. This result is consistent with Vincent et al. (2023) which reported 
that irradiance at canopy level and sensitivity of the laser system 
strongly affected the detectability of vegetation elements and 
completeness of the vertical profile.

4.3. Importance of light transmittance anisotropy

The major source of discrepancy between modelled and measured 
light levels occurs at low light incident angles (Fig. 4; SI Fig. S6). This is 
likely due to our assumption of light transmittance being independent of 
light incidence angle (isotropic). This is a hypothesis often made for 
simplicity (see section reviewing existing forest light models in Intro
duction) but probably rarely met. We specifically tested that assumption 
by voxelizing the UAV data which has a much larger swath angle than 
standard ALS scanners, by angular sectors of 10◦ in size, ranging from 
0◦ to 70◦. We found a highly significant dependency of light attenuation 
on light incidence angle, which decreased as incident angle was less 
vertical (See SI section Anisotropy test). As a consequence, considering a 
plagiophile leaf inclination angle when computing transmittance pro
vided a better fit of simulated transmittance level across LAI2200 rings, 
compared to a spherical function (Fig. 5). For a more accurate estimate 
of absolute light levels, a more detailed study of the variation in the 
angular distribution of leaves in space is required.

4.4. Limits

Slight variation in the position of sensors have been reported to result 
in large changes in recorded light or temperature (Bramer et al., 2018; 
Zellweger et al., 2019b). Geolocation inaccuracies of sensors may 
explain local discrepancies between modelled and measured light levels 
(such as for sensor 11 of the LAY transect, Fig. 3 top). By optimising the 
sensor coordinates to reduce the difference between the transmittance 
measured and predicted by LiDAR (see SI section Sensors coordinates 
optimisation, Fig. S8) the error was reduced by up to 0.03 (95 % quantile) 
and the median displacement was − 0.5 m in x (range: − 1.0; 1.0), 0 m in 
y (range: − 1.0; 1.0). Optimized coordinates were not used in this study 
as this might have led to overfitting. Change in the local environment 
(due for instance to a fallen or displaced branch) between the mea
surement’s dates of LAI2200 and LiDAR (21, 22 and 25/10/2023 for the 
LAI2200, and 19 and 26/10/2023 for the LiDAR) may also play a role in 
the observed discrepancies.

4.5. Recommendations

To characterise the light environment at any point in a forest, we 
recommend using a LiDAR able to accurately sample the entire forest 
structure at all azimuth angles, i.e. with a high penetration rate and wide 
scan angles). None of the three LiDAR acquisitions tested in this study 
combined both characteristics. The combination of wide swath and high 
penetration may only be available in high-end UAV systems such as the 
Riegl VUX1-LR (https://www.rieglusa.com/wp-content/uploads/vu 
x-1lr-datasheet.pdf) which is also much heavier and costly than the 
ultra lightweight LiDAR used here. The choice of LiDAR and acquisition 
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characteristics will also depend on the area to study, the temporal res
olution of interest, access to calibration data and the available budget. 
With a low budget and an interest in frequent acquisitions (Anderson 
and Gaston, 2013) and studying the anisotropic nature of light, the UAV 
is the most interesting acquisition mode, but requires calibration data to 
correct for its underestimation of light levels. For a better characteri
sation of the understory by aerial LiDAR acquisition, a high power and 
low altitude ALS is more suitable as both characteristics contribute to 
increasing the penetration and to better describing the canopy profile. 
However, both characteristics will require closer flight lines and longer 
flight times to reach equivalent sampling density. This is because higher 
power implies lower Pulse Repetition Rate and lower flight height re
duces effective sampling area. Another possibility is to combine ground 
and above canopy measurements to avoid any potential occlusion 
(Schneider et al., 2019). However, there are still a number of issues to be 
dealt with before being able to effectively apply ray-tracing analysis to 
terrestrial MLS (Mobile Laser Scanning) data. First, the optical paths of 
non-intercepted pulses have to be reconstructed from the scanning 
characteristics and trajectory. This is only partially addressed in (Che 
and Olsen, 2019) and the proposed solution is not openly available. 
Second, true misses (no-hit pulses) have to be distinguished from hits 
occurring before the minimum detection range (typically between 0.5 
and 1 m). Third, as is the case for TLS, partial hits will introduce addi
tional uncertainty (Kent and Bailey, 2024) which needs further 
consideration.

4.6. Conclusion

We have shown that (i) Aerial LiDAR which provides an accurate 
description of forest structure can effectively characterise the forest light 
environment even in a highly diverse dense tall forest. It does not rely 
upon largely unavailable species-specific information. It represents an 
improvement over ground measurement with light sensors, because the 
light at ground level is not representative of the light level prevailing in 
the upper canopy; (ii) LiDAR can be used to estimate the light envi
ronment in the understory in a spatially and angularly consistent way; 
(iii) high pulse density does not guarantee an accurate characterization 
of the forest structure, and high penetration rate is critical to accurately 
describe the forest structure, including the understory; (iv) the aniso
tropic nature of light transmittance should be taken into account in the 
estimation of absolute light levels.

Using remote sensing to estimate the microenvironment improves 
our mechanistic understanding of how vegetation structure determines 
microclimate. LiDAR data can improve habitat suitability maps and 
predictions of species response to change in canopy structure (Zellweger 
et al., 2019a; De Frenne, 2024). Using detailed micro-environment data 
in species distribution models will allow more individual-centred ap
proaches to determine species range limits and their evolution related to 
climate change (Zellweger et al., 2020; Lembrechts et al., 2019). For 
forest managers and nature conservationists micro-environment moni
toring and mapping help to manage natural resources efficiently as it 
allows to (i) optimise regeneration or planting in accordance to tree 
species-specific light resource needs (Aussenac, 2000), (ii) adapt har
vesting choices (selective logging, liberation thinning, gaps size) (Hai 
et al., 2023), (iii) adapt ecosystems to stand management and climate 
change in increasing structural heterogeneity by promoting tree size 
diversity (Ehbrecht et al., 2019; Beugnon et al., 2024) and (iv) identify 
habitats of rare or threatened species that need protection.
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