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A B S T R A C T

Faidherbia albida is known to affect the yield of various crops, typically in a pattern where the impact decreases 
with increasing distance from the tree. While several studies have investigated the spatial extent of this effect, 
limited research has explored how this distance varies across different crops or its relationship with crop yield 
and the Land Equivalent Ratio. In this study, we used a geostatistical approach combined with multispectral UAV 
(Unmanned Aerial Vehicle) imagery to address these gaps in understanding. The results showed that, in contrast 
to its tripling effect on millet yield, F. albida does not have a significant impact on groundnut pod yield, it only 
improves its haulm yield under its crown by about 50 %. The geostatistical analysis showed that F. albida affects 
the groundnut crop up to 9.8-m, compared to 18-m for millet. Yield upscaling from subplots to the whole plot 
was achieved with an error of 8 % for groundnut pod yield and 13 % for haulm yield. Groundnut’s partial Land 
Equivalent Ratio (LERcp) was 1.02 for pod yield and 1.05 for haulm yield, which was lower than the LERcp for 
millet. We concluded that the distance at which agroforestry trees influence crops is a reliable predictor of their 
effect on yield and Land Equivalent Ratio. This approach offers a promising tool for future agroforestry studies, 
potentially guiding crop management strategies in agroforestry systems.
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1. Introduction

The 2023 global hunger assessment reveals that progress toward 
ending hunger remains insufficient, with Africa continuing to bear the 
brunt of this crisis (FAO et al., 2024). This highlights the urgent need for 
action in the region. In Sub-Saharan Africa, despite recent advances, 
many nations still face significant food insecurity challenges (Wudil 
et al., 2022). Since 2000, the region has achieved significant agricultural 
growth. However, this growth has primarily relied on the expansion of 
cropped areas rather than improvements in productivity (Jayne et al., 
2021). This trend raises a critical question: how can Sub-Saharan Africa 
transition to more productive and sustainable farming systems to meet 
its rising food demand? Agroforestry systems represent a potential 
pathway to address this challenge in the region.

Several authors have proposed integrating trees into cropping sys
tems and adopting agroforestry practices as a holistic approach to 
address interconnected challenges related to food security, climate 
change, energy, land management, and water resources in Sub-Saharan 
Africa (Elagib and Al-Saidi, 2020; Mbow et al., 2014). Agroforestry 
systems have actually demonstrated significant potential to enhance the 
productivity of smallholder crops, particularly in arid regions and 
nutrient-deficient soils (Clermont-Dauphin et al., 2023; Roupsard et al., 
2020). Trees can enhance soil nutrient dynamics by improving nutrient 
availability, reducing losses, and boosting soil quality, which can benefit 
crop yields (Sida et al., 2019; Yengwe et al., 2018). However, excessive 
tree density or size may lead to competition with crops for resources, 
potentially lowering yields (Karlson et al., 2023).

Effective tree-crop pairing in agroforestry requires considering spe
cies’ phenology, physiology and density to minimize competition and 
maximize benefits. In this context, Faidherbia albida (F. albida) is 
particularly well-suited for semi-arid systems due to its unique reverse 
phenology, i.e. shedding leaves during the rainy season, when crops 
grow. F. albida plays a key role in agricultural lands, contributing to 
improve microclimate, soil fertility, nutrient cycling, and crop yield 
(Dilla et al., 2018; Sida et al., 2018). Agroforestry systems with F. albida 
often outperform monocultures, as reflected by the 
land-equivalent-ratio (LER), which compares the land needed to achieve 
similar production under separate management (Mead and Willey, 
1980). While F. albida provides long-term ecosystem services (Leroux 
et al., 2022), crop yield (grain, haulm/fodder) holds greater immediate 
value for farmers, making the crop-specific LER (LERcp) particularly 
important. In areas with low tree density, a subplot far enough from any 
tree can serve as a practical reference for estimating crop LER without 
tree influence.

The distance at which trees influence the crop depends on the 
configuration of the agroforestry system (the tree species, the crop and 
the tree species density). Estimating this influence requires a method
ology that accounts for the heterogeneity introduced by trees in agro
forestry systems, while reducing labor intensity (Roupsard et al., 2020). 
The development of digital sensors, the democratization of remote 
sensing techniques (Tang and Shao, 2015), and the emergence of Un
manned Aerial Vehicles (UAVs) of different shapes, sizes and functions 
over the past decades (Colomina and Molina, 2014) have allowed new 
studies to revisit this issue (Leroux et al., 2020; Roupsard et al., 2020).

Recent studies have used remote sensing to assess the influence of 
F. albida on crop performance. Roupsard et al. (2020) combined UAV 
multispectral imagery and geostatistics to estimate F. albida influence on 
millet yield. Diack et al. (2024) and Leroux et al. (2020) extended 
similar approaches using UAV and satellite imagery to estimate millet 
fractional cover and yields at broader scales. These methods show 
promise for upscaling yield estimates and understanding tree-crop in
teractions. Moreover, the UAV multispectral imagery and 
geostatistical-based approach is scalable and practical for broader ag
roecological applications. Further development is needed to extend this 
approach to other important crops, such as groundnut, a nitrogen-fixing 
and key agricultural commodity in Senegal that plays a vital role in the 

rural economy (Noba et al., 2014). Groundnut provides both marketable 
pods and valuable fodder in the form of haulms (leaves and stems). 
Using multiple UAV images throughout the growing season, rather than 
a single image at harvest, may better capture temporal changes in 
spectral indices that reflect dynamic shifts in crop and tree phenology. 
This can improve correlations between plant functional traits and 
spectral indices, while also enabling a more accurate, spatially explicit, 
and temporally detailed assessment of plant performance and variability 
across the field (Diack et al., 2024).

In the present study, we built upon prior research study by Roupsard 
et al. (2020) to investigate how F. albida affects crops performance in 
agroforestry systems. We hypothesized that: (i) crop performance im
proves under the canopy due to a balance between positive effects and 
competition; (ii) integrating multi-temporal imagery enables more ac
curate prediction of key crop traits; and (iii) a wider zone of positive tree 
impact would correspond to higher yield and greater LER in agroforestry 
systems. To test these hypotheses, we addressed the following research 
questions: (i) How does groundnut crop perform according to its dis
tance to F. albida? (ii) Can we improve crop traits predictions using 
several MS images throughout the crop cycle? (iii) How does the dis
tance of influence of agroforestry trees correlate with crop yield and the 
Land Equivalent Ratio (LER)?

2. Materials and methods

2.1. Study area

The study area is located at the well-instrumented "Faidherbia-Flux" 
site (https://lped.info/wikiObsSN/?Faidherbia-Flux), located in the 
Niakhar/Sob region, a Serer locality within Senegal’s groundnut basin 
(coordinates: N: 14◦29′44.916″; W: 16◦27′12.851″). This site is a typical 
agroforestry park characterized by a sparse tree population (6.8 trees 
ha− 1 and a canopy cover of 5.14 %), predominantly consisting of Faid
herbia albida, and is part of the Niakhar Observatory (Observatoire 
Population Santé Environnement (OPSE): https://lped.info/ 
wikiObsSN/?HomePage) (Roupsard et al., 2020). The understorey 
consists of a crop mosaic, including groundnut, millet, watermelon, 
cowpea, and fallow land (Fig. 1A and 1B). Agriculture and livestock 
farming are central to the livelihoods of the local population. In this 
region, millet serves primarily as a staple crop and is cultivated in 
rotation with groundnut, which is grown as a cash crop.

The climate is Sudanian-Sahelian, with a unimodal rainfall pattern, 
featuring a distinct rainy season from June to October. The region ex
periences relatively stable temperatures throughout the year. Notably, 
annual rainfall varies significantly from year to year, both temporally 
and spatially (Delaunay, 2017). From 2018 to 2022, the average annual 
precipitation was 574 mm (range: 454–822 mm), and the average 
annual air temperature was 27.62 ◦C (range: 27–28 ◦C). The soils are 
sandy (0–50 cm layer: 82.1 % sand; 8.9 % clay; soil pH approx. 6.52) 
and very poor in nutrients (Siegwart et al., 2023).

2.2. In situ data collection: crop sampling, plot management, laboratory 
analyses and whole plot yield estimation

Two whole plots (> = 1 ha each) were monitored in 2019 (Fig. 1A 
and 1B), under annual crop rotation (groundnut, i.e. Arachis hypogaea 
var. 55–437 (short-cycle variety of 90 days); pearl millet, i.e. Pennisetum 
glaucum var. Souna) and located less than 300 m apart. Groundnut was 
cropped in Plot A (Fig. 1A, previously with millet in 2018 (Roupsard 
et al., 2020)) and millet in Plot B (Fig. 1B, previously with groundnut in 
2018).

Experiment 1 (exp 1) was carried out in plot A (Fig. 1A) only (on 
groundnut only), while experiment 2 (exp 2) was performed in both 
plots (Fig. 1A and 1B). In Fig. 1, the plot B appears to be greener than the 
plot A. This observation is actually due to the difference in growth stages 
on the date of the flight, as confirmed by Fig. 3. Experiments 1 and 2 are 
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described in detail in the following sections.

2.2.1. Monitoring of groundnut biomass using periodic destructive 
measurements (Exp 1)

Groundnut plants were destructively sampled twice a week 
throughout the crop cycle (from 2019/07/27 to 2019/11/09) in repli
cated subplots per collection date of 1 m2 each, randomly selected at the 
edge of the “Plot A” to minimize impact on the whole plot estimations. 
Groundnut plant height was measured first, then pod, leaf, stem root and 
flower were harvested separately on each subplot. The different plant 
organs were wrapped in kraft envelopes in the field, then sent to the lab 
for oven drying and weighing. After drying, the biomass of each plant 
organ was calculated individually and expressed in grams per square 
meter, based on the sampled ground area. The average biomass of each 
organ across the replicated 1 m2 subplots was then reported for each 
collection date.

2.2.2. Measurement of groundnut and millet biomass under F. albida (Exp 
2)

For all measured variables, we evaluated the effect of the factor 
“Distance to tree” by establishing subplots of ca. 15 m2 each at three 
distinct positions relative to the tree crown: "U (Under the crown)": 
directly beneath the tree canopy, "E (Edge of the crown)": at the 
perimeter of the canopy, and "F (Far from the crown)": located more than 

25 m away from the tree trunk (Fig. 1C). At each of these positions, 6 
replicates were established, totaling 18 subplots per plot. This design 
was implemented in both plot A and plot B, resulting in a consistent 
spatial sampling structure. In addition to subplot-level measurements, 
we also recorded key morphological characteristics of the selected trees 
including tree height, crown diameter, and girth at breast height.

The number of crop leaves per plant and plant height were measured 
in each of the 18 subplots once a week on both plots all along the whole 
crop cycle. Before crops were harvested, fresh leaves were collected on 
two whole plants, at the outer edge of each subplot. The fresh leaves 
were scanned (Canon Lide 300), then oven dried and weighed. We 
measured the leaf area and computed the specific leaf area (SLA) for leaf 
samples. Using the average of fresh leaves biomass harvested of each 
corresponding subplot, we calculated the leaf area and leaf area index 
(LAI) for each subplot.

At the end of the season, all subplots in both plots were harvested. 
Groundnut (Plot A) was harvested on 2019/11/04, approximately one 
month after millet (Plot B), which was harvested on 2019/10/21. For 
millet, we harvested all the ears from each subplot and separated the 
vegetative biomass into leaves, stems, and roots. Roots were collected 
from a 5-m-long row within each subplot, and their biomass was sub
sequently extrapolated to the entire subplot area. For groundnut, a 1 m² 
sub-subplot was established within each 15 m² subplot. Groundnut or
gans (pods, leaves, and stems) were collected separately from both the 

Fig. 1. Experimental set up and subplot locations for Experiments 1 and 2 in plots A and B (2019). A/ Plot A (groundnut crop, image date: 2019-10-29). Subplots for 
Experiment 1 are shown as small blue cells located at the edges of the plot. Subplots for Experiment 2 are represented by larger rectangular cells labeled U, E, and F, 
distributed within the plot. B/ Plot B (millet crop, image date: 2019-10-17). Subplots for Experiment 2 on this plot are shown by rectangular cells labeled E and F. C/ 
Sampling scheme for Experiment 2 subplots relative to a F. albida tree: "U (Under)": Subplot directly beneath the tree crown (not visible in drone imagery). "E (Edge)": 
Subplot at the edge of the tree crown. "F (Far)": Subplot located more than 25 m away from the tree trunk, outside the crown area. Each distance category includes 6 replicate 
subplots (~ 15 m² each), totaling 18 subplots per plot.
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15 m² subplot and the 1 m² sub-subplot. Fresh weights for each organ 
were measured in the field, after which an excavation (1 m² surface area 
× 0.5 m depth) was made at the location of the sub-subplots to collect 
any remaining roots after pod harvesting. Roots were sampled sepa
rately at depths of 0–10 cm and 20–50 cm, weighed fresh in the field, 
then dried in an oven and weighed in the lab. Groundnut root biomass 
was calculated for both the 0–10 cm and 20–50 cm depths, and the total 
root biomass (excluding pods) was determined for all six subplots.

We assessed the whole-plot yields for both crops (plots A and B). 
After harvesting the 18 subplots, the farmer and his family harvested all 
other groundnut plants in the entire plot. The plants were gathered in 
small heaps, with each heap being counted and weighed in the field. We 
then used the ratio of the fresh weight of the heap to the dry weight of 
the pods, to estimate the total dry weight of the pods for the entire plot.

The litter (amount of crop and weeds residues left-over in the field 
after harvest) was computed for groundnut (roots, weeds) and millet 
(shoots, roots, weeds). Variables were reported on a dry matter basis and 
per unit ground area.

2.2.3. Groundnut foliar biomass
Using the dynamics of the number of leaves per groundnut plant all 

along the cropping season (Exp 1, plot A), we identified the date of the 
maximum groundnut foliar biomass (2019/10/03), before senescence 
and leaf shedding. Assuming that the number of leaves per plant was 
proportional to the leaf biomass per plant, we estimated the maximum 
leaf biomass in each subplot as the following (Eq. (1)). 

Leaf Dry Massmax =
Leaf Dry Massharvest × Leaf Numbermax

Leaf Numberharvest
(1) 

This maximum leaf biomass (Leaf Dry Massmax) corresponds to the 
peak leaf biomass observed before senescence and leaf shedding. Early 
signs of leaf spot were observed on groundnut plants prior to leaf drop. 
Estimating the maximum leaf biomass enables an assessment of the ef
fect of F. albida on the potential leaf production before losses (see 
comparison between maximum leaf biomass and leaf biomass at harvest 
in Supplementary Fig. A1).

The leaf spot observed is most likely caused by ‘black Sigatoka’ 
(Cercospora arachidicola S. Hori), a common groundnut foliar disease in 
Senegal, which typically reaches peak severity around pod maturity 
(Zongo et al., 2019). However, since we did not quantify the extent of 
leaf spotting in our subplots during the field campaign, we lacked the 
necessary data to include this variable as a confounding factor in our 
statistical analysis.

2.2.4. Soil analysis
A couple of days after sowing (July 2019), 4 soil samples were 

collected at the outer corners of each subplot at 0–10 cm and 10–30 cm 
depths using a core sampler. We made 2 composite soil samples per 
subplot. The total of 36 soil samples (N = 2 samples × 18 subplots) 
collected were air dried and analyzed in the “Laboratoire des Moyens 
Analytiques” (LAMA) at “Institut de Recherche pour le Développement” 
(IRD-Dakar) for soil properties (texture, pH, mineral content, organic 
content, cation exchange capacity (CEC)).

2.3. UAV data acquisition and processing

2.3.1. UAV characteristics, flights and main processings. The same 
equipment and process were used to acquire UAV data on both plots (A 
and B). For plot A (groundnut), we carried out three UAV flights. The 
first flight (flight 1), before mid-growth season (2019-09-05, 38 days 
after germination), the second one (flight2), three weeks before harvest 
(2019-10-17, 80 days after germination) and the last, one week before 
harvest (2019-10-29, 92 days after germination). The UAV flew at 
4.5 m s− 1 and 50 m above ground, capturing images every second with 
both RGB (Red, Green, Blue) and multispectral cameras, yielding spatial 

resolutions of 0.6 cm and 2.7 cm, respectively. Areas beneath tree 
crowns were not imaged due to flight safety limitations. However, on the 
plot A, we have also manually taken images of the subplots located 
under the trees’ crown using a camera suspended from a 2.5 m high 
pole. This allows to compute vegetation indices for the subplots that are 
under the trees’ crown and were not visible when flying the UAV over 
the whole plot. For “Plot B” (millet), we had two UAV flights, 9 and 2 
weeks before harvest, respectively. The characteristics of the UAV sys
tem, flight plan, and image processing method are identical to those 
described in Roupsard et al. (2020) and are detailed extensively in their 
paper.

2.3.2. Derived vegetation productivity proxies
We used the same method to derive vegetation indices (VIs) for both 

crops. RGB orthoimages acquired for each plot were used to segment the 
groundnut and millet under-crops, removing soil and trees in the pro
cess. To achieve this, we converted the orthoimages from RGB to HSV 
color space and performed thresholding operations on the green crops to 
generate the groundnut and millet masks. Using these masks, we 
extracted the calibrated reflectances from the NIR, Red, and Green 
bands, which were then used to calculate the vegetation indices 
following the equations provided in Table A1. The derived vegetation 
indices are: Normalized Difference Vegetation Index (NDVI), Green 
Normalized Difference Vegetation Index (GNDVI), Second Modified 
Soil-Adjusted Vegetation Index (MSAVI2) and Corrected Transformed 
Vegetation Index (CTVI).

2.3.3. Method for estimating the sole groundnut vegetation indices (VIs) 
signals from the total vegetation indices "groundnut + weeds"

Weeds’ presence heavily influenced the VI images of the last flight. 
Only groundnut VIs signals should be used ideally to compute the dis
tance of influence of F. albida on groundnut and to estimate groundnut 
pod and haulm yields. This allows for a more accurate assessment of 
their contribution to the VI signal. NDVI is sensitive to the chlorophyll 
content of plants, and its high values (close to 1) are associated with the 
highest possible green leaf area densities (Rouse et al., 1974). Therefore, 
we assumed that the total NDVI signal “groundnut + weeds” was pro
portional to the total aboveground biomass (groundnut haulm +weeds), 
and similarly for groundnut only NDVI signal being proportional to the 
groundnut haulm biomass. Based on that assumption, we simply applied 
the ratio of groundnut haulm biomass to total aboveground biomass on 
the total NDVI "groundnut + weeds" to estimate the groundnut NDVI in 
each subplot. At the whole plot level, we used the average ratio. This 
assumption is mostly valid if the relationship between NDVI and plant 
biomass is linear, which is the case in our conditions of relatively low 
LAI (refer to Fig. A2 in the Supplementary materials to observe the linear 
relationship between total aboveground biomass (groundnut haulm +
weed) collected at harvest and the NDVI index from the 3rd UAV flight 
conducted six days prior to harvest).

2.3.4. Creation of the grid of analysis
Analyses were conducted using R 3.6.1 (R Core Team, 2019) and 

QGIS 3.4 (QGIS_Development_Team, 2019). Shapefiles were created for 
whole plots, non-cultivated areas, cultivated areas, and F. albida tree 
crowns. The high-resolution UAV images were aggregated into grids 
(~5 m² for whole plots, ~1 m² for subplots), and average NDVI, GNDVI, 
MSAVI2, and CTVI were calculated for each cell. A distance matrix was 
generated between grid cells and the nearest F. albida tree (k = 1), 
including trees up to 60 m outside the plot. The final dataset, combining 
vegetation indices and tree distances, was used for geostatistical 
analysis.

2.4. Assessment of the distance-decay effect at different scales

To analyze tree effects at the subplot scale, we used one-way 
ANOVAs when data met homoscedasticity (Bartlett test) and 
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normality (Shapiro-Wilk test). Otherwise, a Kruskal-Wallis test was 
applied. Post hoc comparisons were done using Tukey’s honestly sig
nificant difference test. Statistical significance was assessed using p- 
values, with a threshold set at p < 0.05.

At plot scale, we analyzed the effect of ‘distance to tree’ (Range 
parameter) on groundnut and millet using geostatistics in R (R Core 
Team, 2019). Using attribute data from the geomatics chain and the 
gstat (Pebesma, 2004) and sp (Bivand et al., 2008) libraries, we plotted 
semi-variograms of grid cell VIs based on distance to the nearest tree 
crown centroid (up to 60 m) along four azimuths (N, S, E, W). We 
noticed that the plot cultivated with millet was anisotropic. We followed 
each azimuth separately for this plot and maintained the 90◦ azimuth 
(East) because millet performed better at the East side of the plot 
(Fig. 1B). The autofitVariogram function from the automap library 
(Hiemstra et al., 2009) was used to automatically select the optimal 
geostatistical model for the spatial data. After evaluating several 
candidate models for both crop datasets, the ’Ste’ model, a parameter
ization of the Matern model as described by Stein (2012), was found to 
be the best fit. The Matern model is widely used in spatial statistics to 
represent spatial correlation structures (Matérn, 1960). The ’Ste’ variant 
incorporates modifications by Stein (2012) to better address specific 
spatial characteristics, such as non-stationarity and anisotropy, which 
are common in environmental data.

2.5. Estimation of yield and Land Equivalent Ratio (LER) for crops

To estimate groundnut and millet yields at whole plot scale, multiple 
linear regression models were tested using groundnut and millet traits as 
target variables and the different vegetation indices over the UAV flights 
as independent variables to account for information on vegetation 
development all over the cropping season. Before building the models, a 
correlation matrix of the predictor variables was calculated using the cor 
() function from the caret R package (Kuhn, 2008). The findCorrelation() 
function from the same package was then applied to the matrix with a 
cutoff value of 0.8 to identify and select highly correlated variables 
(correlation greater than 0.8). This step helps eliminate redundant 
variables and reduce multicollinearity, improving the models’ stability 

and interpretability. We then applied stepwise selection to identify the 
best regression models and used their coefficients to generate yield maps 
for groundnut pods and haulm at the whole plot scale.

We calculated the LERcp for the groundnut crop alone (for pod and 
haulm yield) using Eq. (2): 

LERcp =
Yi

Ys
(2) 

where, Yi is the yield in agroforestry and Ys the yield in monoculture. We 
divided the yield map into three zones: (i) beneath the tree crown, (ii) 
between the tree crown and Range boundary, and (iii) beyond the 
Range. The yield beyond the Range (Ys) was calculated separately. The 
total yield (Yi) was determined by summing the weighted average yields 
for each zone, including the area within the Range. We also computed an 
alternative Yi using pixels below the Range limit. Finally, we compared 
two LERcp values based on the different Yi options for groundnut pod 
and haulm yields.

3. Results

3.1. Groundnut and millet growth

3.1.1. Dynamics of groundnut growth (destructive Exp 1)
For groundnut, the growing season lasted about 97 days between the 

date of germination (2019/07/30) and the harvest date (2019/11/04). 
Flowering occurred 18 days after germination, on August 17, 2019. The 
relative importance of organs, in decreasing order of final biomass, was 
pod, leaf, stem and root (Fig. 2). The biomass produced by the flower 
was insubstantial as compared to that produced by other organs. An 
increasing production of pod, root and stem biomass was observed in 
plants until the 2nd drone flight (2019/10/17, 79 days after germina
tion), then the biomass of these compartments remained globally stable, 
with variations depending on the subplot. Notably, a significant drop 
was observed on October 14, although this was not observed in the 
following measurement. In particular, the pod biomass remained stable 
between the last two drone flights. Noteworthy, a drastic drop in leaf 
biomass (approximately 52 %) was observed during the last three weeks 

Fig. 2. Time-course of daily precipitation and groundnut biomass per organ in destructive Experiment 1 (see Fig. 1 A), from the sowing date (0 = 2019/07/27) to 
harvest (2019/10/04, dashed red line). One vertical graduation per week. Error bars are the standard deviations. Leaf shedding (approximately 52 % of leaf biomass) 
was recorded between week 11 (2019/09/14) and the harvest date (vertical dashed red line). Dashed black lines indicate the drone flights, while vertical dashed red 
lines indicate the germination date, flowering date, and harvest date, respectively.
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before harvest. In addition, the greatest biomass for each plant organ 
was reached approximately 72 days after germination.

3.1.2. Groundnut and millet growth monitoring: number of leaves and 
plants height (Exp 2)

In plot A, for all groundnut subplots (U, E, F), leaf number and plant 
height increased up to the 65th day after germination, with maximum 
number of leaves per plant of 48 ± 21 and maximum heights of 39 
± 11 cm (in subplots U on 2019/10/03). The plants with the largest 
number of leaves (Fig. 3a) and also taller (Fig. 3b), were observed under 
the trees’ crown (U). The further from the trees, the fewer leaves plants 
produce (Fig. 3a) and the shorter the plants (Fig. 3b). Drastic leaf drops 
of about 79 %, 78 % and 62 % were observed in subplots U, E and F, 
respectively, during the last three weeks before harvest (Fig. 3a).

Similar results were found in millet (plot B), where plants under the 
trees’ crown presented the largest number of leaves (Fig. 3c) and were 
taller (Fig. 3d). Fewer leaves were observed for plants further from the 
tree, but the number of leaves at crown edge (subplots B) was not 
significantly different from the number of leaves in the subplots F (far 
from the trees) (Fig. 3c). The further away from the trees, the shorter 
millet plants become (Fig. 3d). Overall, a leaf drop was observed during 
the last four weeks before harvest (Fig. 3c) also the time when maximum 
plant height was achieved.

3.2. Groundnut performance at harvest in subplots according to distance 
from F. albida trees

The effect of the distance from the F. albida tree was not significant 
neither on the groundnut pod yield (p = 0.79) (Fig. 4a), nor on its 
haulms yield (p = 0.08) (Fig. 4b) as measured at harvest. Apart from 

stem biomass that significantly decreased at distance from F. albida trees 
(p = 0.035) (Fig. 4d), no significant difference was observed for other 
traits such as leaf biomass (p = 0.41) (Fig. 4c) and root biomass (p = 1) 
(Fig. 4e). Weed biomass was also not affected (p = 0.14) (Fig. 4f). 
However, at harvest, this lack of significant effects was highly hindered 
by leaf shedding during the last stages. Therefore, the foliar biomass 
observed at harvest was recalculated to estimate its status at the time of 
maximum leaf development. Other foliar biomass-dependent traits such 
as haulm biomass and LAI were also recalculated. Indeed, the estimated 
maximum leaf biomass (p = 0.007) (Fig. 4g) and the maximum LAI 
(p = 0.009) were significantly reduced at distance from F. albida. Twice 
as much haulm yield was then obtained under tree (S: 146.18 
± 41.49 SD g m− 2), as compared to subplots located at 25 m from 
F. albida trunk (H: 69.39 ± 20.74 SD g m− 2) (Table 1 and Fig. 4h).

The spectral indices of the first flight were not significantly affected 
by the distance to F. albida (Table 1), but during the last flight when 
weeds were present, NDVI GNDVI and MSAVI2 (groundnut & weeds) 
were significantly affected by the distance to F. albida. Increasingly 
strong signals were observed near trees (Table 1, Fig. 5a–c). The per
formance at harvest in subplots, according to distance from F. albida 
trees, was presented for all measured groundnut traits and the spectral 
indices obtained from the three UAV flights in the Supplementary ma
terial, Table A2.

3.3. Soil nutrient status in subplots according to distance from F. albida 
trees

The position relative to F. albida trees had a significant impact on soil 
properties, specifically nitrogen (%N), carbon (%C) and organic carbon 
(p < 0.05). Higher levels of %N, %C, and organic carbon were found 

Fig. 3. Time-course of the number of leaves per plant (a, c) and of plant height (b, d) of groundnut and millet in the subplots of Experiment 2 (see Fig. 1) until 
harvest. Vertical graduations represent weeks. Error bars are the standard deviations. Measurements carried out at 3 distances (U, E, F) from the tree (“U”: subplots 
under the tree crown (not visible to the drone), “E”: subplots at the edge of the tree crown and “F”: subplots far away, outside the tree crown (> 25 m from the 
trunk)), see Fig. 1C. N= 6 subplot replicates (of ca. 15 m2 each) per distance to tree. Total number of subplots per plot = 18. Vertical dashed black lines indicate the three drone flights, while vertical 

dashed red lines indicate the germination date, flowering date, and harvest date.
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under the tree crown (U) at both 0–10 cm and 10–30 cm depths, 
compared to the subplot located farther from the tree crowns (F). At the 
0–10 cm depth, the values were as follows: under the tree crown (U): % 
N = 0.03 ± 0.00, %C = 0.39 ± 0.07, compared to the far subplot (F): % 
N = 0.02 ± 0.00, %C = 0.21 ± 0.04. Similarly, at the 10–30 cm depth, 
under the tree crown (U): %N = 0.023 ± 0, %C = 0.24 ± 0, compared 
to the far subplot (F): %N = 0.020 ± 0, %C = 0.20 ± 0.02 (Tab. A3). 
The difference in soil nutrient properties in both depths was not sig
nificant for available P. However, the soil exchange capacity was 
significantly greater under tree crown (S) at 0–10 cm depth (1.60 
± 0.17 SD) (Tab. A3). The other soil properties such as: pH (H20 and 
KCl), C/N and exchangeable cations (Ca, Mg, Na and K) were not 
affected by the position to F. albida tree at both soil depths (Tab. A.3). 
The effects of the position from F. albida trees on all measured soil 
properties can be found in Table A3 of the Supplementary material.

3.4. Range (distance) of influence of the trees assessed from geostatistics

In groundnut (plot A, Fig. 6a, 3rd flight), the largest NDVI 
(groundnut & weeds) values predominated close to F. albida trees and 
beneath. The further from the trees, the lower the NDVI values (tan 
pixels revealing bare soil). The same observation was made for the other 
indices (GNDVI, CTVI and MSAVI2).

The directional semi-variograms generated based on distance from 
F. albida tree crowns showed no significant influence of azimuth on their 
shape. The system was therefore assumed to be isotropic (i.e., the spatial 
correlation of the data depends only on the distance and not on the 
azimuth). The best-fitted model obtained for the groundnut NDVI signal 
was "Ste" (Spherical) with a nugget of zero (i.e., suggests no measure
ment error), exhibiting a consistent and asymptotic pattern (Fig. 7a). 
The "Range" parameter, representing the statistical distance over which 
the F. albida tree influences the groundnut NDVI, was found to be 9.8 m 
(Fig. 7a). Similarly, the "Range" was 9.6 m for CTVI, MSAVI2, and 8.5 m 
for GNDVI (data not shown). These distances of influence were therefore 
much less than the distance (25 m) separating the subplots F (far from 
the tree) from F. albida tree.

Due to the plot’s heterogeneity, the azimuth significantly influenced 
the shape of the directional semi-variograms performed for millet 
(Fig. 7b). The system was therefore assumed to be anisotropic (i.e., the 
spatial correlation of the data depends on the azimuth). Only the semi- 
variogram at 90◦ gave a satisfactory result for the fitted models due to 
the significant East-West (90◦-270◦) disparity in millet density and 
performance observed in Plot B. In fact, we observed higher millet 
density and better performance in the eastern section of Plot B (at 90◦; 
see Fig. 1B). The best fitted semi-variogram model for that direction, for 
the millet NDVI signal was also "Ste" (Nugget = 0). The "Range" 

Fig. 4. Effect of the distance to F. albida on groundnut and weed growth traits in Experiment 2 at harvest (a–f) and before leaf senescence (g–i), i.e. at the maximum of leaf 
development (according to Experiment 1). Measurements carried out at 3 distances (U, E, F) from the tree (“U”: subplots under the tree crown (not visible to the drone), “E”: 
subplots at the edge of the tree crown and “F”: subplots far away, outside the tree crown (> 25 m from the trunk)), see Fig. 1C. N = 6 subplot replicates (of ca. 15 m2 each) per 

distance to tree. Total number of subplots per plot = 18. (ns) Not significant; (**) significant at 0.05; (**); significant at 0.01.
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Table 1 
One-way ANOVA statistics for effect of the distance to the proximal F. albida tree on the average of some groundnut (gnd) and weeds (wd) crop traits, as assessed in 18 
harvest subplots according to 3 distances to the tree: under crown "U", crown edge "E" and far from the crown "F". N = 6 replicates per distance to tree. For vegetation 
indices, only the subplots visible by the drone (crown edge "E" and far from the crown "F"; N = 12) have been taken into account. Harvest was on 2019/11/04; 
Maximum groundnut LAI and height was achieved on 2019/10/10. The values within the parentheses represent the standard deviations. Significance of tests: (.) 
significant at 0.1; (*) significant at 0.05; (**); significant at 0.01; (***) significant at 0.001.

Variables Under 
crown (U)

Edge 
crown (E)

Far from 
crown (F)

Variances 
homogeneity 
(Bartlett)

Normality of the 
residues (Shapiro)

Test F- 
value

p-value

Plant variables ​ a a a ​ ​ ​
at harvest 

(2019/11/ 
04)

Pod Dry Mass_harvest 
(g m− 2)

80.88 
(15.08)

76.19 
(22.12)

73.37 
(18.75)

0.72 0.36 ANOVA 0.242 0.788

​ ​ a a a ​ ​ ​
​ Leaf Dry Mass_harvest 

(g m− 2)
20.97 
(7.02)

16.68 
(6.45)

16.65 
(5.07)

0.78 0.63 ANOVA 0.96 0.405

​ ​ a ab b ​ ​ ​
​ Stem Dry Mass_harvest 

(g m− 2)
43.12 
(9.71)

33.84 
(13.19)

25.5 (7.9) 0.54 0.84 ANOVA 4.23 0.035 *

​ ​ a a a ​ ​ ​
​ Haulm Dry Mass_harvest 

(g m− 2)
64.08 
(15.24)

50.52 
(18.59)

42.15 
(12.65)

0.71 0.54 ANOVA 2.99 0.080

​ ​ a a a ​ ​ ​
​ Root Dry Mass_harvest 

(g m− 2)
9.49 
(1.84)

9.52 
(2.97)

9.62 (2.44) 0.6 0.99 ANOVA 0.004 0.996

​ ​ a a a ​ ​ ​
​ Whole-plant Dry 

Mass_harvest (g m− 2)
154.45 
(29.36)

136.23 
(42.5)

125.14 
(33.47)

0.72 0.61 ANOVA 1.04 0.377

​ ​ a a a ​ ​ ​
​ Weeds aerial Dry 

Mass_harvest (g m− 2)
92.17 
(33.65)

78.12 
(40.11)

52.01 
(23.44)

0.53 0.78 ANOVA 2.27 0.138

​ ​ a a a ​ ​ ​
​ Litter Dry Mass (gnd root 

+wd) _harvest (g m− 2)
101.66 
(32.33)

87.64 
(38.25)

61.63 
(22.68)

0.55 0.82 ANOVA 2.46 0.120

​ ​ a a a ​ ​ ​
​ SLA_gnd_harvest 

(mleaf_gnd
2 kgDM− 1)

13.86 
(1.35)

13.3 (0.6) 13.16 (0.8) 0.21 0.36 ANOVA 0.86 0.443

​ ​ a a a ​ ​ ​
​ LAI_gnd_harvest 

(mleaf_gnd
2 msoil

− 2 )
0.30 
(0.11)

0.22 
(0.10)

0.22 (0.06) 0.5 0.5 ANOVA 1.4 0.280

​ ​ a ab b ​ ​ ​
​ LAI_harvest gnd + wd 

(mleaf_gnd_wd
2 msoil

− 2 )
1.56 
(0.42)

1.25 
(0.42)

0.91 (0.32) 0.79 0.59 ANOVA 4.16 0.036 *

​ ​ a ab b ​ ​ ​
​ Maximum number of 

leaves per gnd plant (-)
48.18 
(13.15)

41.08 
(5.18)

34.15 
(4.44)

0.04 0.02 Kruskal- 
Wallis

- 0.030 *

​ ​ a ab b ​ ​ ​
​ Maximum gnd height (cm) 39.24 

(8.59)
31.83 
(5.84)

24.13 
(3.98)

0.27 0.29 ANOVA 8.3 0.004 **

Plant ​ a ab b ​ ​ ​
variables at 

maximum
Maximum Gnd Leaf Dry 
Mass (g m− 2)

103.06 
(34.49)

77.56 
(29.74)

43.88 
(13.36)

0.15 0.32 ANOVA 7.04 0.006 **

(2019/10/10) ​ a ab b ​ ​ ​
​ Maximum Gnd Haulm Dry 

Mass (g m− 2)
146.18 
(41.49)

111.41 
(40.83)

69.39 
(20.74)

0.78 0.13 ANOVA 6.97 0.007 **

​ ​ a ab b ​ ​ ​
​ Maximum Gnd LAI (mleaf

2 

msoil
− 2 )

1.44 
(0.53)

1.04 
(0.44)

0.57 (0.17) 0.5 0.5 ANOVA 6.61 0.009 **

Vegetation ​ - a a ​ ​ ​
indices NDVI of Gnd & Wd 2019/ 

09/05 (1st flight)
- 0.36 

(0.02)
0.37 (0.01) 0.21 0.1 ANOVA 2.04 0.21

​ ​ ​ a a ​ ​ ​
​ MSAVI2 of Gnd & Wd 

2019/09/05 (1st flight)
- 0.28 

(0.06)
0.26 (0.05) 0.49 0.89 ANOVA 0.28 0.610

​ ​ a b c ​ ​ ​
​ NDVI of Gnd & Wd 2019/ 

10/29 (3rd flight)
0.43 
(0.00)

0.35 
(0.03)

0.27 (0.03) 0.93 0.90 ANOVA 28.81 < 0.001 
***

​ ​ a b b ​ ​ ​
​ MSAVI2 of Gnd & Wd 

2019/10/29 (3rd flight)
0.46 
(0.02)

0.16 
(0.02)

0.13 (0.03) 0.26 0.71 ANOVA 265.40 < 0.001 
***

​ ​ a b c ​ ​ ​
​ GNDVI of Gnd & Wd 

2019/10/29 (3rd flight)
0.48 
(0.02)

0.35 
(0.03)

0.27 (0.03) 0.39 0.93 ANOVA 74.30 < 0.001 
***

​ ​ a a a ​ ​ ​
​ Gnd NDVI 2019/10/29 

(3rd flight)
0.18 
(0.05)

0.14 
(0.06)

0.11 (0.04) 1.34 0.95 ANOVA 3.2 0.06

​ ​ a a a ​ ​ ​

(continued on next page)
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Table 1 (continued )

Variables Under 
crown (U) 

Edge 
crown (E) 

Far from 
crown (F) 

Variances 
homogeneity 
(Bartlett) 

Normality of the 
residues (Shapiro) 

Test F- 
value 

p-value

​ Gnd MSAVI2 2019/10/29 
(3rd flight)

0.08 
(0.02)

0.07 
(0.03)

0.06 (0.02) 1.66 0.95 ANOVA 1.32 0.26

Fig. 5. Effect of the distance to F. albida on groundnut plot vegetation indices (NDVI, GNDVI and MSAVI2). (a)–(c), vegetation indices for “groundnut + weeds” 
(measured via camera suspended from a 2.5 m high pole during the third flight, close to harvest on 2019/10/29). (ns) Not significant; (**) significant at 0.05; 
(**); significant at 0.01; (***) significant at 0.001.

Fig. 6. NDVI of "groundnut + weed" sensed by UAV above the agroforestry plot A (see Fig. 1A), five days before the groundnut harvest (2019/10/29, 3rd flight). The 
greener the color, the higher the NDVI. a/ NDVI of “groundnut þ weed” image of the whole-plot, with tree crows in red; b/ zoom on one tree, showing 
greener pixels (more groundnut þ weed foliage) in the vicinity of the tree (which is defoliated during the crop season); c/ zoom showing the groundnut 
rows in green and inter-rows in tan at maximum resolution (one pixel ¼ 5.4 cm2).
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parameter was 18 m (Fig. 7b), i.e. twice as long as for groundnut. 3.5. Upscaling yield, from sub to whole-plot

3.5.1. Whole plot yield estimated from UAV and geostatistics
In Section 2.3.3, we estimated the sole groundnut vegetation indices 

signals (referred to as groundnut-only signal below) from the overall 

Fig. 7. a/ Geostatistics to estimate the distance of influence of the F. albida tree on crops (groundnut or millet) NDVI close to harvest (third flight). Semi- 
variograms between NDVI of all grid cells in the whole-plot cultivated with crops and the distance to the proximal Faidherbia tree crown. The “Range” 
parameter or distance of influence was computed with ‘Ste’ model (vertical red dotted line). The semi-variograms obtained by other models were very similar to 
’Ste’. a/ Groundnut, the "Range" or distance of influence is 9.8 m; b/ Millet: the "Range” is 18 m.

Table 2 
Statistical correlations between some groundnut or millet traits and vegetation indices (NDVI, GNDVI and MSAVI2) and between the corrected groundnut LAI and the 
pod yield. Significance of tests: (.) significant at 0.1; (*) significant at 0.05; (**); significant at 0.01; (***) significant at 0.001. 1st flight, 2nd flight, and 3rd flight were 
carried out on 2019/09/05, 2019/10/17, and 2019/10/29 respectively.

Fig. 8 Y Variable X Variable Z Variable W Variable Equation Normality of the 
residues 
(Shapiro)

r2 RMSE p-value

Groundnut a Groundnut pod 
yield (g m-2)

Groundnut 
MSAVI2 «3rd 
flight »

Groundnut NDVI 
«3rd flight »

- Y = 1206.59X - 
330.19Z + 40.12

0.59 0.73 9.8 0.003 **

b Groundnut 
haulm yield (g 
m-2)

Groundnut 
MSAVI2 «3rd 
flight »

- - Y = 541.22X 
+ 12.24

0.98 0.85 5.81 < 0.001 
***

c Groundnut total 
dry mass (g m-2)

Groundnut 
MSAVI2 «3rd 
flight »

- - Y = 1212.49X 
+ 54.30

0.4 0.78 16.56 < 0.001 
***

d Groundnut LAI 
(mlea

2 msoil
− 2 )

Groundnut 
MSAVI2 «3rd 
flight »

MSAVI2 «1st 
flight »

GNDVI 
«3rd flight »

Y = 3.06X - 0.38Z 
- 0.21 W + 0.20

0.19 0.98 0.01 < 0.001 
***

​ Litter biomass (g 
m-2)

MSAVI2 «3rd 
flight »

NDVI «1st flight » - Y = 803.7X 
+ 649.4Z - 279.2

0.59 0.62 19.47 0.01 *

​ Groundnut pod 
yield (g m-2)

Groundnut LAI Cor 
(mleaf

2 msoil
− 2 )

- - Y = 17.43X 
+ 59.06

0.16 0.26 3.74 0.029 *

Millet - Millet grains 
yield (g m-2)

NDVI MSAVI2 - Y = 1467.89X 
+ 2069.85Z - 
16.21

0.36 0.74 20.48 0.002 **

- Millet leaves 
biomass (g m-2)

NDVI MSAVI2 - Y = 594.46X - 
911.01Z + 26.25

0.54 0.61 13.3 0.01 *

- Millet stems 
biomass (g m-2)

GNDVI MSAVI - Y = 1577.4X - 
1159.3Z - 349

0.26 0.72 28.34 0.003 **

- Millet total 
biomass (g m-2)

NDVI MSAVI2 - Y = 4670.5X - 
6775Z - 47.2

0.06 0.66 85.87 0.008 **

- Millet LAI (mlea
2 

msoil
− 2 )

NDVI MSAVI2 - Y = 5.59X - 8.24Z 
- 0.17

0.65 0.50 0.15 0.05 *

- Litter biomass (g 
m-2)

GNDVI MSAVI - Y = 2679.7X - 
2065.6Z - 557.1

0.42 0.70 51.78 0.004 **
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vegetation indices (which include signals from both groundnut and 
weeds, referred to as groundnut + weeds signal below). Table 2 presents 
the statistical correlations between various groundnut traits and vege
tation indices (groundnut-only signal and groundnut + weeds signal for 
NDVI, GNDVI, and MSAVI2). Fig. 8 presents scatter plots comparing the 
estimated groundnut traits derived from the correlations listed in 
Table 2 with the actual groundnut traits measured from the same 
subplots.

The results reveal significant positive correlations between 
groundnut traits and vegetation indices (Table 2). These correlations 
were established by analyzing consecutive images of vegetation indices 
through multiple linear regressions (stepwise regression). Specifically, 
pod yield was strongly correlated with MSAVI2 (groundnut-only signal) 
and NDVI (groundnut-only signal) of the 3rd flight (Table 2 & Fig. 8a; r2 

= 0.73; RMSE = 9.8 g m− 2). Similarly, both groundnut haulm yield and 
total groundnut biomass showed strong correlations with MSAVI2 
(groundnut–only signal) of the 3rd flight (haulm yield vs MSAVI2: 
Table 2 & Fig. 8b; r2 = 0.85; RMSE = 5.81 g m− 2 and total groundnut 
biomass vs MSAVI2: Table 2 & Fig. 8c; r2 = 0.78; RMSE = 16.56 g m− 2). 
Furthermore, a strong positive correlation was found between the LAI 
and the MSAVI2 signal from the 1st flight, as well as the GNDVI 
(groundnut + weeds signal) and MSAVI2 (groundnut-only signal) from 
the 3rd flight (Table 2 & Fig. 8d; r2 = 0.98; RMSE = 0.01 mleaf

2 msoil
− 2 ). The 

litter biomass also exhibited strong correlations with MSAVI2 

(groundnut + weeds signal) of the 3rd flight and NDVI of the 1st flight 
(Table 2; r2 = 0.62; RMSE = 19.47 g m− 2).

We also looked for correlations between groundnut traits by simple 
linear regression. Thus, a significant but weak positive correlation was 
found between the pod yield and the groundnut maximum LAI (Table 2; 
r2 = 0.26; RMSE = 3.74 g m− 2). In Table A4 of the Supplementary 
material we also show results for correlations between groundnut traits 
and each vegetation index by simple linear regression. Overall, 
combining sequential images of vegetation indices in multiple linear 
regressions significantly improves predictions (Tab. A4).

Using the equations derived from the correlations between pod yield 
and vegetation indices, as well as between haulm yield and vegetation 
indices (Table 2), we could finally estimate the pod and haulm yields for 
the whole-plot. On the yield maps (Fig. 9) produced from these re
lationships, we can see more haulm yield and litter biomass close to 
F. albida trees (Fig. 9b and c). The estimated pod yield for the whole plot 
was 0.81 h− 1 (Table 3), the estimated haulm yield was 0.52 h− 1 (Tab. 
A5).

In Table 2, we also looked for correlations between millet traits and 
vegetation indices (NDVI, GNDVI, MSAVI and MSAVI2) of the drone 
flight carried out a couple of days before millet harvest (2019/10/17). 
We found that the multiple linear regression model explains 74 % of the 
variability in millet yield (RMSE=20.48 g m− 2) when using the MSAVI2 
and NDVI signals for millet and weeds (Table 2). Both millet total 

Fig. 8. a–d/ Scatter plots comparing estimated groundnut traits, derived from the correlation (referenced in Table 2) between vegetation indices and 
groundnut traits in the subplots visible by the drone (E and F only; N = 12), with measured groundnut traits collected from the same subplots. Each dot represents one 
subplot from experiment number 2 (Fig. 1A). Thick black lines represent the respective linear regressions, while dashed black lines indicate the 1:1 lines.
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biomass and LAI were positively correlated with NDVI and MSAVI2 
(Table 2; millet total biomass vs NDVI+MSAVI2: r2 = 0.66; RMSE =
85.87 g m− 2 and millet LAI vs NDVI+MSAVI2: r2 = 0.50; RMSE =
0.15 mleaf

2 msoil
− 2 ). A positive and significant correlation was found be

tween millet stem biomass, GNDVI and MSAVI signals (Table 2; r2 =

0.72; RMSE = 28.34 g m− 2). The litters biomass was also correlated with 
GNDVI and MSAVI2 signals (Table2; r2 = 0.70; RMSE = 51.78 g m− 2).

3.5.2. Actual groundnut whole-plot yields of pods and haulms
At harvest, small heaps of groundnuts were put together by the 

farmers. Of the 988 heaps made for the whole-plot A, 104 heaps were 
weighed in the field. On average, each heap weighed 2.61 ± 0.69 SD kg. 
From the ratio of conversion from fresh heap (leaf + stem + pod) to dry 
pod obtained in the subplots (0.37 ± 0.05 SD), we computed a harvest 
of 954.33 kgpod at which the 22.28 kgpod obtained in the subplots were 
added, making a total of 976.61 kgpod for the whole-plot (Table 3). On 
an area of 11,080 m2, we thus had a yield of 0.88 tpod ha− 1. With the 
same method, the total haulm biomass for the whole-plot was estimated 
at 645.29 kghaulm. The haulm yield was 0.58 thaulm ha− 1 (Tab. A5).

3.6. Groundnut LERcp

Table 3 and A5 present the LERcp for pod and haulm yields, 
respectively. For pod yield, LERcp was calculated as 1.02, which was the 
same whether the whole-plot yield or the yield from the area beneath the 
Range was used (Table 3). In contrast, haulm yield showed a LERcp of 
1.05 when based on the whole-plot yield, whereas the LERcp increased 
to 1.11 when the yield from the Range area was considered (Table A5).

4. Discussion

4.1. Dynamics of groundnut growth and leaf shedding

Groundnut growth is largely influenced by environmental and sea
sonal conditions. However, it generally follows four phases, namely: (i) 
the lag phase at the beginning of growth; (ii) the exponential weight 
increase, from the vegetative to the flowering stage; (iii) linear growth 
until maximum, between the end of the vegetative stage and the 
beginning of pod filling; and (iv) the maturation during the late pod 
filling phase (Singh, 2003). The first three phases were observed in the 
first 9 weeks after sowing. In the last three weeks before harvest, during 
the pod filling stage, a drop of about 52 % in leaf biomass was observed. 

Assuming that groundnut leaves become less effective with age (Singh, 
2003), we could attribute this drop to the fact that in this period the 
plant prioritizes and invests much more in pod formation and filling, 
retranslocating the reserves from the leaves to the pods, which causes 
senescence and then leaf drop. Henning et al. (1979) reported a reduc
tion in the photosynthetic capacity of the leaves in this period due to 
their contributions to pod formation. We also observed early leaf spots 
on the groundnut plants before the leaf drop. According to Olatinwo and 
Hoogenboom (2014) this is generally caused by the ‘black Sigatoka’ 
(Cercospora arachidicola S. Hori), a significant fungal pathogen respon
sible for a severe foliar disease in groundnuts, which can lead to the 
complete defoliation of susceptible cultivars. This foliar disease is 
rampant in Senegal with a level of maximum severity towards the 
maturity of the pods (Zongo et al., 2019).

In the agro-silvo-pastoral systems of the groundnut basin, groundnut 
haulm is one of the fodder resources used to feed livestock during the dry 
season. This drop in leaf could therefore contribute to a reduction in the 
amount of haulm that farmers should have had after harvest. Never
theless, leaves that will not be exported, could contribute to the storage 
of carbon in the soil, and therefore the enrichment of the soil through 
their degradation if they are not carried away from the plot by wind. 
There would therefore be an important trade-off, agronomically 
speaking, between harvesting the haulms a little earlier to maximize the 
forage resource, but this to the detriment of pod filling, or alternatively 
prioritizing pod filling and restitution to the soil via the supply of dead 
leaves and other crop residues to the soil after harvest. A second trade- 
off is between exporting the haulms or incorporating them into the soil 
to promote the next crop or even free grazing in the field to ingest the 
haulms and return them to the field via their faeces. However, if the leaf 
drop is linked to the severity of the black Sigatoka, this reasoning above 
should be mitigated. Let’s also point out that dropping leaves would also 
recharge the soil with the fungus spore.

4.2. Groundnut performance relative to distance from F. albida trees

Numerous authors reported a positive impact of F. albida on crops 
like maize (Dilla et al., 2018; FAO, 2016), millet (Leroux et al., 2020; 
Roupsard et al., 2020) and several other cereals (Hadgu et al., 2009; Sida 
et al., 2018), through studies in Central and West Africa. In the litera
ture, this positive impact of F. albida on agroforestry crops is frequently 
ascribed to a set of biological processes (Kho et al., 2001), changes in 
physical and chemical conditions of the soil (Poschen, 1986) and 

Fig. 9. Maps of groundnut productivity (biomass of yield, haulm and litter) at the whole-plot scale (ca. 1 ha), obtained using the correlations from Table 2 between 
subplot harvest and vegetation indices. Gaps are for the position of the F. albida trees. Grey dots represent the centroids of F. albida canopies, while areas with grey borders 
indicate the zones of influence of F. albida on groundnut, as computed through geostatistics.
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changes in environmental conditions caused by F. albida in the system 
(Barnes and Fagg, 2003). In our study, groundnut pod yield was not 
significantly affected by distance to F. albida (Fig. 4a). This result is new 
as compared to previous studies where authors often reported a 
depressive effect of F. albida on groundnut pod yield. In fact, a similar 
study in Senegal reported a significant depressive effect (loss of 24 % of 
pod yield) in the first three meters around the trunk of F. albida (Louppe 

et al., 1996). These authors hypothesized that it was due to excess ni
trogen in the soil or shade at the time of flowering, caused by the woody 
parts then since F. albida is defoliated during the wet season. In northern 
Cameroon, another study demonstrated a decrease in groundnut pod 
yields by 34 % when grown under young plants of F. albida (Harmand 
and Njiti, 1992). In the latter study, the negative impact of F. albida was 
linked to the high planting density, which obstructed plowing opera
tions and reduced the available arable area. Additionally, the small 
crown size and low foliar biomass production of the young F. albida 
plants (5-years old) resulted in no discernable positive effects on soil 
fertility or crop yields. Overall, this confirms that unlike cereals, 
groundnuts do not perform better in terms of pod yield when associated 
with F. albida. The absence of a negative effect of F. albida on groundnut 
pod yield observed in this study was rather unexpected, especially given 
the higher incidence of the black Sigatoka infestation under the trees. 
The haulm yield estimated before leaf fall was clearly and significantly 
higher (multiplied by 1.5) closer to F. albida (Table 1). But, probably 
because of the higher incidence of black Sigatoka under the trees at 
senescence phase, groundnut haulm yield at harvest was no more 
significantly affected by distance to F. albida at the harvest time 
(p = 0.08) (Fig. 4b and Table 1). Louppe et al. (1996) also reported a 
significant improvement in the groundnut haulm yield by trees of 
F. albida in the groundnut basin of Senegal (a gain of about 23 % of 
haulm yield under tree, compared to the control outside F. albida in
fluence). This could be attributed to the availability of water and ni
trogen under the tree crown during the vegetative phase of the crop. We 
have not seen any effect on SLA, although it is often reported in the 
literature to decrease in shaded conditions (Matos et al., 2009).

F. albida significantly affected the vegetation indices of “groundnut 
+ weeds” tested during the last UAV flight (2019/10/29) (Fig. 5). 
However, the large values of the indices obtained near the trees could be 
due, on one hand, to the fact that fresh litter continues to contribute to 
the vegetation indices (Van Leeuwen and Huete, 1996), and on the other 
hand, to the presence of weeds. The vegetation indices estimated solely 
for groundnut were unaffected by proximity to F. albida (Table 1), likely 
due to the decline in groundnut leaf cover prior to the final drone flight.

4.3. Soil nutrient status according to distance from F. albida trees

For this study, no fertilizer was applied to the plots. The greater ni
trogen (%N), carbon (%C) and organic carbon contents found under 
F. albida crowns as compared to subplots that are far from the tree 
corroborate the results of many studies (Dilla et al., 2018; Umar et al., 
2013). However, we found no significant impact of F. albida on the soil 
properties such as: available P, pH (H2O and KCl), C/N and exchange
able cations (Ca, Mg, Na and K), although several studies have high
lighted an increase in available P (Kho et al., 2001; Umar et al., 2013), 
pH and exchangeable cations (Ca (100 %), Mg (48 %), K and Na 
(30–40 %)) under F. albida trees compared to open fields located far 
away from trees (CTFT, 1988). Charreau and Vidal (1965) found that the 
rate of nitrogen under the tree doubles, unlike carbon, which implies 
that the C/N ratio decreases the closer to the tree and there is a rapid 
mineralization of organic matter under the tree. Authors often attributed 
this soil fertility under F. albida to the quantity of leaves and pods which 
fall under the tree crowns as well as the bark and the wood which are 
detached each season providing important minerals to the soil (Jung, 
1970). The input of these nutrients (e.g., organic carbon) is also favored 
by the phenological inversion of F. albida. Indeed, this input is made at 
the end of the dry season, at the peak of agricultural activity, and is 
promptly integrated into the soil when the microbiological activity is at 
its highest (CTFT, 1988). The influence of livestock through feaces 
droppings is also mentioned to explain this fertility but it remains 
marginal according to Charreau and Vidal (1965) who showed at 
Bambey (Senegal) strong enrichments under trees, independently of the 
livestock.

Table 3 
Scaling-up of groundnut yields (pod) and crop Land Equivalent Ratio (LERcp) 
from subplots to the whole-plot scale and comparison (error) between mea
surements (in subplots and at the whole-plot scale) and estimations through 
UAVs NDVI & MSAVI2 product.

Method Variable of interest Value Unit

Area QGIS Whole plot area 11,144 m2

​ QGIS Shelter area 62 m2

​ QGIS Trunk basal area 2.4 m2

​ QGIS Whole plot effective 
area

11,080 m2

​ Measured Subplots area 
(Experiment 2)

290.58 m2

​ QGIS F. albida canopy 
projected area

982.50 m2

​ QGIS F albida canopy cover 8.8 %
​ QGIS Area (dist > Range) 8182.5 m2

​ QGIS Area (Crown < dist <
Range)

2088.9 m2

Pod Measured Subplots harvest 
(Experiment 2)

22.28 kgDM 
pod

Harvest Measured Number of the whole- 
plot heap harvest 
(without subplots)

998 # heap

​ Measured Weight of the whole- 
plot heap harvest 
(without subplots)

2604.9 kgDM 
heap

​ Measured Rate of conversion 
heap-to-pod

0.37 /

​ Measured Whole-plot pod harvest 
(without subplots)

954.33 kgDM 
pod

​ Measured Whole-plot harvest 976.61 kgDM 
pod

​ UAV- 
MSAVI2&NDVI 
(Estimated)

Estimated Whole-plot 
harvest

902.83 kgDM 
pod

Pod Measured Groundnut yield below 
Faidherbia crown (U)

0.81 tDM 
pod 
ha− 1

Yield Measured Groundnut yield at the 
edge of Faidherbia 
crown (E)

0.76 tDM 
pod 
ha− 1

​ Measured Groundnut yield as sole 
crop (F)

0.73 tDM 
pod 
ha− 1

​ Measured Whole-Plot Yield 0.88 tDM 
pod 
ha− 1

​ UAV- 
MSAVI2&NDVI 
(Estimated)

Estimated Groundnut 
yield sole crop (dist >
Range)

0.80 tDM 
pod 
ha− 1

​ UAV- 
MSAVI2&NDVI 
(Estimated)

Estimated Groundnut 
yield agroforestry 
(Crown < dist <
Range)

0.81 tDM 
pod 
ha− 1

​ UAV- 
MSAVI2&NDVI 
(Estimated)

Estimated Groundnut 
yield agroforestry (dist 
< Crown)

0.82 tDM 
pod 
ha− 1

​ UAV- 
MSAVI2&NDVI 
(Estimated)

Estimated Whole-plot 
Yield

0.81 tDM 
pod 
ha− 1

​ Error Yield Error 8.17 %
LER for UAV- 

MSAVI2&NDVI 
(Estimated)

LERcp with Yi = actual 
whole plot yield

1.02 /

pod UAV- 
MSAVI2&NDVI 
(Estimated)

LERcp with Yi = whole 
plot yield for Crown 
< dist < Range

1.02 /
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4.4. Improving crop traits estimation with UAV; using several MS images 
along crops cycle

Roupsard et al. (2020) used one single UAV MS image to explain 
47 % of millet variability using millet+weeds MSAVI2 in the same plot A 
than for our study, cultivated with millet during the year 2018. Here, we 
aimed to improve their correlation by using multiple MS images 
throughout the crop cycle. In fact, in agro-silvo-pastoral systems, even at 
plot scale, spatial patterns may emerge during the season, especially due 
to the varying impact of the tree on the crop all along the cropping 
season, the influence of weeds and of crop leaf senescence, for instance. 
To take advantage of several UAV MS images along the crop cycle was 
expected to properly capture these temporal aspects in the observed 
spatial patterns, and consequently to strengthen correlations between 
crop traits and vegetation indices.

Indeed, for millet in 2019, the multiple linear regression model ex
plains 74 % of the variability in millet yield (RMSE = 20.48 g m− 2) 
using millet and weeds MSAVI2 and NDVI signals, which is a large 
improvement, as compared to 47 % obtained by Roupsard et al. (2020). 
Considering groundnut now, where no equivalent is available in the 
literature, we obtained positive correlations between groundnut pod 
and haulm yields and vegetation indices. Whatever the crop (millet or 
groundnut), combining the sequential images of vegetation indices into 
multiple linear regressions significantly improves the relationships. 
Leroux et al. (2020) proposed a remote-sensing based model in the 
groundnut basin of Senegal that explained 48–70 % of millet yield 
variability, depending on the vegetation proxy used. They found that 
incorporating proxies of parkland structure enhanced the model’s ac
curacy, although capturing yield variability in small plots (e.g., 1 ha) 
using satellite images can be challenging. UAV-based models are more 
suitable to fully capture intra-plot variability, as also reported by Diene 
et al. (2024) for millet. We estimated groundnut pod yields of the 
whole-plot with only 8 % error with comparison to the whole-plot 
harvest reference, which is also a large improvement as compared to 
Roupsard et al., (2020) (20 % error). In spite of potential errors inherent 
to the reference method itself, this good match between measured and 
estimated yield is probably due to the strength of our correlations be
tween groundnut yields (pod and haulm) and VIs (NDVI and MSAVI2).

4.5. Groundnut LERcp estimation for pod and haulm yields

The groundnut LERcp of 1.02 for pod yield and 1.05 for haulm yield 
sounds rather marginal. Using a more classical way to assess the F. albida 
effect on groundnut, Louppe et al. (1996) found an overall depressive 
effect of F. albida on groundnut pod yield up to at least 10 m from the 
tree’s trunk and predicted a pod yield loss between 2.4 % and 2.8 % in a 
parkland of 5 trees ha− 1. For millet grain yield, Roupsard et al. (2020)
found on the same plot a year before, a LERcp of 1.10. Apart from the 
tree and crop species, the annual variability, the parkland configuration, 
especially the tree density, affects the ability of the system to outperform 
monoculture systems in terms of crop yield (Leroux et al., 2020). Several 
parkland configurations (e.g., different tree densities) could be tested in 
association with different crops through modeling to determine which 
parkland configuration gives the best outputs in terms of benefits such as 
LERcp (or crop yields improvement).

4.6. Current limitations of the method and options for improvements

Roupsard et al. (2020) stated that the ‘Range’ is valid only for the 
crop spectral index measured by the UAV and traits strongly correlated 
with it. The better the correlation between the spectral index and the 
crop trait, the more accurately the Range represents the limit of influ
ence. Thus, the relationship between the spectral index and crop trait is 
key in determining the distance of influence. Here, the relationship 
between crop traits and NDVI are linear, simplifying the estimation of 
the distance of tree’s influence. However, if the relationship were 

non-linear or saturating, estimating the distance of tree’s influence 
would become more complex.

This work build on the study by Roupsard et al. (2020) on millet by 
applying their approach to groundnut crops, introducing methodolog
ical improvements (e.g., use of multiple MS images throughout the crop 
cycle), and validating the findings for millet one year later. We com
bined the sequential images of vegetation indices into multiple linear 
regressions to strengthen correlations between crops traits and vegeta
tion indices. Further improvements of this approach could be: (i) UAV 
flights at key times of the groundnut and millet phenological cycle and 
(ii) weeds removal before the last UAV flight to only have the crop VIs 
signals on the last UAV image. Incorporating machine learning models 
can also offer the potential to propose a unique model of yield prediction 
for crops under agroforestry (Diene et al., 2024).

Additionally, we acknowledge the absence of Black Sigatoka 
assessment as a potential confounding factor. Since we did not quantify 
the extent of leaf spotting within our subplots during the field campaign, 
we lacked the necessary data to incorporate this variable into our sta
tistical analysis. Future studies could address this limitation by sys
tematically evaluating disease severity (if present) to better isolate its 
potential effects. Although maximum leaf biomass was computed to 
assess the influence of tree proximity on leaf development, these esti
mates were not used in the remote sensing calibration for yield predic
tion. We recognize that uncertainties are associated with these values, as 
destructive sampling could not be conducted at that stage due to the 
need to allow the crop to reach full maturity. This constraint limited our 
ability to directly validate the maximum biomass values but did not 
affect the core remote sensing analysis. A further limitation might relate 
to tree density. In our study site, trees were sparsely distributed, which 
allowed us to position subplots sufficiently far from tree influence, 
enabling the calculation of LERcp. However, in denser agroforestry 
systems, where trees may be spaced 10 m apart or less, it would be 
difficult, if not impossible, to find areas without tree influence. This 
constraint could limit the applicability of our method in such settings.

4.7. The distance of tree influence on crops can serve as a reliable proxy 
for its impact on crop performance

The assessment of agroforestry tree impacts on crops and on LER are 
of paramount importance for supporting and restoring agroforestry 
practices, however, they remained challenging for long, especially due 
to the heterogeneity introduced by trees in agroforestry parklands and 
the cost of the different methodologies used by researchers to evaluate 
it. For example, most past studies used complex, time-consuming and 
costly field experiments (Louppe et al., 1996; Tomlinson et al., 1998). 
Taking into account the heterogeneity induced by trees and to alleviate 
the work of experimentation in the field, Bayala et al. (2015) suggested 
to combine yield mapping and geostatistics to assess the impact of trees 
on crop performance.

The flexibility and advantages of the use of UAVs (e.g., low price and 
high-resolution images) offers the opportunity to develop this approach. 
In a previous study, Roupsard et al. (2020) reported that F. albida affects 
millet yield up to 17 m. In this study, we found a Range of 9.8 m 
(Fig. 7a), i.e. twice as low as for millet, indicating that the groundnut 
NDVI was influenced by trees only up to that specific distance. Indeed, 
we also confirmed the Range results of Roupsard et al. (2020) on millet, 
on the same cropping system (same soil, same farmer, same practices, 
relatively same tree density) but on another plot and for a subsequent 
year. This confirmation suggests that the method seems to be robust 
enough to develop other spatial and temporal comparisons.

Even if we do acknowledge the influence of interannual and inter- 
plot variability in the estimation of the Range (no data for confirma
tion yet), we report here both a higher Range and a higher effect on yield 
for the cereal (not N-fixing) than for the groundnut (N-fixing). With a 
new UAV and geostatistics method, we confirm previous studies 
reporting that overall, the effect of F. albida on groundnut is lower (can 
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be negative) than on millet (usually positive).
The new finding here is that a lower effect on the crop is accompa

nied by a shorter distance of influence and a lower LERcp (Fig. 10). This 
simple observation suggests an opportunity in estimating the impor
tance of the tree effect through a proxy, namely the ‘Range’, or distance 
of influence. We stress that the distance of influence is easy to measure 
and statistically sound (with a very high number of pixel replicates in a 
single plot), whereas the importance of the tree effect was so tedious to 
measure and to replicate in the past. Therefore, the distance of influence 
(the geostatistical ‘Range’), is worth testing in various conditions and 
could be promoted as a proxy of the strength of the effect and of the LER, 
averaged at the scale of a whole plot.

If confirmed, such a proxy could even be useful at the intra-plot scale, 
for any given tree inside the plot. For a single F. albida tree taken 
randomly on a plot, the distance of influence might depend also on the 
importance of the tree crown or of whether or not the tree has been 
pruned for instance. In this case, this approach could be applied to every 
single tree and the standard deviation of the Range, more than its 
average, could be useful too. In a study carried out in Ethiopia, Dilla 
et al. (2018) found that maize yield was higher under pruned F. albida 
compared to yield under unpruned trees. They partially attributed this 
result to reduced PAR (Photosynthetically active radiation) available to 
crops under unpruned trees. In such a situation, the distance of influence 
might be greater for pruned trees. There might be a relationship between 
pruning, the distance of influence and the importance of the tree effect 
on the crop. However, we appeal for more experiments to confirm this 
assumption for any agroforestry situation.

5. Conclusions

In this study, we demonstrated that F. albida influences groundnut 
crops but over a shorter distance compared to millet, approximately half 
the distance, with an estimated distance of influence of 9.8 m for 
groundnut and 18 m for millet. Notably, the LERcp for groundnut was 
marginal, 1.02 for pod yield and 1.05 for haulm yield. This reduced 
positive effect observed on groundnut may be partially explained by the 
early onset of leaf spot disease, which likely limited the crop’s ability to 
benefit fully from the presence of F. albida. However, these results 
highlight that F. albida’s influence is crop-dependent, reinforcing the 
need for species- and crop-specific assessments in agroforestry systems. 
We saw that F. albida has a less substantial impact on groundnut, both in 
terms of the distance of influence and its effect on groundnut yield, 
which is reflected in a lower LERcp for groundnut yield. More broadly, 
we argue that the distance of influence, the “Range”, assessed through 
UAV imagery and geostatistics, can serve as a powerful and efficient 
proxy to easily assess and rank the influence of agroforestry trees on 
various crops and estimate the LERcp at the plot scale or even for 

individual trees, offering a valuable tool for agroforestry system 
management.
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