

Wiley Transboundary and Emerging Diseases Volume 2025, Article ID 5522451, 21 pages https://doi.org/10.1155/tbed/5522451

Review Article

Pet and Stray Dogs' Contribution to Zoonotic Transmission Pathways: A Bibliometric Review

Thibaut Langlois , ^{1,2} Sylvie Hurtrez-Boussès , ^{2,3} and Michel de Garine-Wichatitsky

¹ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, France
²MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
³Department of Biology Foology Foology (Science University of Montpellier, Montpellier, France)

³Department of Biology-Ecology, Faculty of Sciences, University of Montpellier, Montpellier, France

Correspondence should be addressed to Thibaut Langlois; thibaut.langlois@etu.umontpellier.fr

Received 17 March 2025; Accepted 4 June 2025

Academic Editor: Zhong Peng

Copyright © 2025 Thibaut Langlois et al. Transboundary and Emerging Diseases published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Based on a large-scale bibliometric dataset, domestic dogs (Canis lupus familiaris) emerge as the most frequently cited host species in the context of zoonoses, being mentioned in at least 10% of publications for nearly a quarter of the pathogens recognized as zoonotic to humans. This review examines the contributions of pet and stray dogs to various zoonotic transmission pathways, highlighting some mismatches between research focus and actual epidemiological risks. Among zoonotic agents associated with dogs, helminths are disproportionately represented in the literature compared to bacteria and viruses. Pet and stray dogs exhibit distinct zoonotic risks due to differences in exposure patterns and human interactions. Stray dogs are frequently involved in environmentally transmitted diseases, particularly soil- and water-borne parasites, due to uncontrolled defecation and opportunistic behavior. Conversely, pet dogs pose greater risks for direct transmission, particularly via bites, close contact infections, and antimicrobial-resistant bacteria. From a public health perspective, integrating dogs into One Health surveillance frameworks is crucial. Routine genomic monitoring of stray dogs could allow early detection of emerging zoonoses, while large-scale deworming programs, improved sanitation infrastructures, and responsible pet management would mitigate both environmental and direct transmission risks. Vector-borne zoonoses require differentiated control measures, including antiparasitic treatments for tick- and flea-borne infections and environmental interventions for mosquito- and sandfly-borne pathogens. This review focuses on pet and stray dogs only, due to the lack of consistent definitions and data availability for other canine categories. Future research should refine ecological and behavioral studies and dog-host interaction analyses to better quantify the zoonotic risks associated with each dog ecotype and guide targeted intervention strategies. This approach enables a more precise zoonotic risk stratification and contributes to effective disease prevention at the human-animal-environment interface.

Keywords: bibliometric analysis; canine ecotypes; one health; transmission pathways; zoonotic pathogens

1. Introduction

Zoonotic diseases, which arise from the close relationship humans have established with surrounding animal species, represent one of the primary threats to global public health [1, 2]. Domestic animals play a key role in the transmission dynamics of these zoonoses due to their abundance and global distribution. The likelihood of pathogen exchange with wild and environmental reservoirs is enhanced through domesticated species, which have central positions in interspecies

transmission networks [3]. Thus, they facilitate the gradual adaptation of infectious agents to a wide range of hosts, including humans, acting as intermediaries in the spread of numerous emerging zoonotic diseases [4–8]. This is particularly true for domestic carnivores, which share 90% of their pathogens with other hosts [9]. *Canis lupus familiaris* harbors the greatest diversity of zoonotic infectious agents among all animal species [10]. In this sense, canine populations generally do not constitute an independent reservoir, in which pathogens can persist in the long term: rather, they are part of a broader maintenance

complex [11]. As one of the animals interacting most closely with humans within multi-species maintenance communities, the domestic dog is often a major source of zoonotic infections [12, 13].

Beyond the global abundance of canine populations, the primary reason behind the high potential of dogs for transmitting zoonotic pathogens is the intimate and long-lasting relationship they maintain with humans for thousands of years [14]. As a result of this long-term co-evolution, canine pathogens have gradually adapted to humans [10, 15]. This constant proximity across diverse socio-ecological contexts has created multiple interfaces between dogs and humans [16], providing pathogens with privileged access to various zoonotic transmission pathways through a wide range of direct or indirect interactions. Dog bites, for instance, are a common source of bacterial infections [17, 18], in addition to being responsible for almost all cases of human rabies [19]. "Man's best friend" also play a significant role in the epidemiology of brucellosis [20, 21], leptospirosis [22, 23], and Q fever [24, 25], all diseases transmitted through close contact with the bodily fluids of infected animals. Moreover, dogs are recognized as maintenance hosts for numerous (re)emerging zoonotic vector-borne diseases [26, 27], including ehrlichiosis [28, 29], dirofilariasis [30, 31], and leishmaniasis [32, 33]. Finally, canine populations contribute to the spread of a wide variety of environmentally transmitted parasitic infections [34], most of which being categorized as Neglected Tropical Diseases by the World Health Organization [35], such as cystic echinococcosis [36, 37], foodborne trematodiases [38, 39], and soil-transmitted helminthiasis [40, 41]. The diversity of contamination mechanisms associated with dogs therefore highlights the numerous potential pathways through which canine populations can contribute to the emergence of zoonoses.

Although canine populations are not always able to sustain all these pathogens in the long-term, they can still serve as intermediate link for zoonotic infection, acting as epidemiological bridges [42]. By connecting the maintenance complex to the target host, dogs could then facilitate the spread of infectious agents from wildlife to human populations [43]. Far from being an homogeneous entity, the global dog population encompasses a wide range of socio-ecological profiles and lifestyles, each characterized by specific behaviors, habitat preferences, and interactions with humans and other animal species [38, 43-45], thereby influencing disease transmission mechanisms in varied ways. Excluding wild feral dogs, the spectrum of domestic dogs ranges from 'stray dog' (i.e., dogs roaming freely and exposed to wild or commensal fauna without access to a consistent food source or appropriate veterinary care) to 'pet dog' (i.e., dogs living within human households under controlled conditions regarding their displacements, nutrition, and hygiene), with intermediate profiles in terms of management, such as free-roaming owned dogs or dogs kept in shelters or kennels [46-49]. The zoonotic transmission possibilities at either end of the canine ecotypic spectrum are thus likely to vary in both frequency and transmission mode. For instance, pet dogs may be especially more prone to transmit pathogens directly to their owners through close contacts [50], whereas the free defecation of stray dogs in the environment is believed

to facilitate the completion of the life cycle of parasites that can be transmitted to humans via foodborne pathways [51]. Given the diversity and complexity of transmission patterns involving dogs, assessing the overall public health impact attributable to *C. lupus familiaris* appears neither realistic nor appropriate. It would nonetheless be conceivable and relevant to break down the continuous gradient of canine ecotypes to estimate their respective contributions to zoonotic transmission pathways.

In this context, associating socio-ecological profiles of dogs with specific zoonotic risks may support the development of effective prevention strategies. Several studies have thus recommended differentiated management of canine populations by focusing on key individuals to reduce their respective roles in zoonotic cycles [45]. For instance, targeted rabies vaccination in Africa and Asia has significantly reduced the number of human cases, particularly in urban areas where stray dogs play a predominant role in rabies transmission [52, 53]. Equipping companion dogs with insecticide-impregnated deltamethrin collars has led to a notable reduction in human visceral leishmaniasis in rural areas of Brazil [54, 55]. Screening and culling programs for infected dogs in commercial breeding kennels, combined with strict biosecurity measures, have helped to limit zoonotic infections by Brucella canis [20, 56]. Similarly to these studies, identifying specific transmission pathways of canine pathogens will enable the implementation of targeted health control measures. The aim of this review is therefore to address the diversity of mechanisms by which infectious agents can spread from dogs, focusing on the zoonotic potential of each specific dog ecotype. By synthesizing the available information from the scientific literature, this study seeks to identify overarching trends in public health risks associated with dogs and provide general recommendations for preventing the emergence of zoonoses through the canine epidemiological bridge.

2. Materials and Methods

We first compiled a structured list of zoonotic pathogens potentially transmissible by dogs worldwide. Although taxonomic inconsistencies and evolving classifications complicate this task, the resulting inventory captures a broad and representative set of infectious agents relevant to canine-mediated transmission. For each pathogen, we assessed the zoonotic potential and the degree of canine involvement based on available evidence. This step provided an initial framework for understanding transmission dynamics and identifying areas where the epidemiological role of dogs is poorly documented.

To account for potential bias linked to uneven research attention, we conducted a large-scale lexical analysis of a bibliographic database, using the pathogen as the analytical unit. Pigs were included in this analysis as a reference host species, given their established role in zoonotic transmission, their status as livestock animals—epidemiologically and symbolically distinct from dogs—and their position as the second most frequently cited mammalian species in relation to zoonotic transmissions. This approach offers a standardized, quantitative means of comparing the representation of dogs across various zoonotic cycles.

Epidemiological entity	Additional query	TS = (transmission AND zoonotic)	TS = (zoono* OR human_transmi** OR transmission_to_human OR transmitted_to_human*)
Total	_	12,682	51,957
	AND (dog* OR canin*)	2058	7622
	AND (dog* OR canin*) AND pet*	426	1194
	AND (dog* OR canin*) AND stray*	177	661
	AND (pig* OR swin*)	1993	6238
Damastia haatamasta	AND (cattle* OR bovin*)	1853	6631
Domestic host species	AND (cat OR cats OR felin*)	1202	3906
	AND (chick* OR poultry)	974	3584
	AND (sheep* OR ovin*)	733	3137
	AND (goat* OR caprin*)	537	2157
	AND (horse* OR equin*)	546	1764
	AND (rodent*)	1030	3238
Other species	AND (bat OR bats)	863	2251
	AND (NHP* OR primate*)	617	1472
	AND tick*	880	3530
Vectors	AND mosquito*	584	2005
	AND flea*	226	714

FIGURE 1: Number of publications provided per query in the Web of Science database.

While bibliometric patterns do not constitute empirical proof of transmission, they reveal how scientific discourse reflects—or overlooks—canine involvement in zoonoses. To refine interpretation, we triangulated these results with targeted literature reviews from specialized sources. This integrative method provides a multi-layered perspective on the zoonotic role of dogs, highlighting imbalances in research coverage and supporting the identification of context-specific priorities for surveillance and disease control.

2.1. Representative List of Zoonotic Pathogens Transmitted by Dogs. To assess the role of the canine species in various zoonotic transmission pathways, we seek to accurately characterize the contamination mechanisms specific to each pathogen linked to dogs. A list of 335 known zoonotic pathogens, classified by taxonomic groups, was then compiled based on various sources, including Taylor et al. [57], Acha et al. [58], Polack et al. [59], Bauerfeind et al. [60], Rahman et al. [1], the MSD Veterinary Manual [61], and the Centers for Disease Control and Prevention [62]. From these references, key information was extracted for each listed infectious agent regarding the public health impact (low, moderate, high, or priority), the primary source of human exposure (animal, environment, food, or vector) and the main zoonotic transmission pathway (accidental ingestion of plants or insects, consumption of animal products, inoculation via bites or scratches, physical or close contact, transmission by ectoparasites, transmission by flying arthropod vectors, consumption of fish or seafood, inhalation, transmission through contact with soil, waterborne transmission, or unsanitary conditions route).

Additional bibliographic searches were then conducted using the Google Scholar database to highlight recognized or strongly suspected transmission cases originating from dogs. If the ability of *C. lupus familiaris* to transmit the infectious agent to humans was confirmed, the next step would be to estimate,

through targeted bibliographic research, whether dogs primarily act as the primary source of zoonotic infection (main transmission host), as a secondary source (frequently implicated host), as an occasional source (a few confirmed cases), or as a potential source (competence demonstrated only in laboratory settings). Eco-epidemiological studies specifically exploring the roles of different types of dogs in the transmission of certain listed pathogens have also been referenced in Supporting Information 1: Table S1, where all the bibliographic information compiled with the corresponding sources is presented. To further investigate the diversity of pathogens transmitted to humans by dogs and the factors that determine this canine competency, χ^2 tests were performed to identify potential significant associations. Adjusted standardized residuals were calculated to assess the extent to which the proportion of zoonotic pathogens transmitted by dogs differed by transmission pathways (Supporting Information 2), taxonomic groups and health impact. Data processing, statistical analyses, and graphical representations were performed using R software (version 4.3.1), using the "dplyr," "tidyr," "ggplot2," and "gt" packages (Zoonotic list analysis code available in the Supporting Information 2).

2.2. Bibliometric Analysis to Assess the Pathogen/Dog Association. To evaluate numerically the overall zoonotic involvement of C. lupus familiaris based on the scientific literature, we aim to determine the extent to which canine ecotypes are associated with each listed pathogen at the scale of a bibliographic database. A bibliometric analysis was then conducted on a macroscopic scale using the Web of Science (WoS) Core Collection database as of November 15, 2024. First, we compared the number of results from a search for "dog(s)" in relation to "zoonotic transmission" to different queries searching for other host species or reservoirs of zoonotic importance (number of results for each query compiled in Figure 1). For

each of these 335 zoonotic infectious agents on the list, the number of English-language Articles or Reviews mentioning the scientific name of the pathogen (or its abbreviation with the genus shortened) in their topics (TS = titles, keywords, or abstracts) was recorded in column "Total" in Supporting Information 1: Table S1. Among these publications, those that also mentioned the words "dog(s)" and "pig(s)" were counted in the "With_dogs" and "With_pigs" columns, and those that cited the words "pet(s)" and "stray," in addition to "dog(s)," were counted in the "With_pet_dogs" and "With_stray_dogs" columns, respectively. The searches conducted using terms referring to shelter or free-roaming dogs did not yield enough results to be accounted for. The queries entered in the Web of Science database are available in Supporting Information 1: Table S1. Example to complete the "With_pet_dogs" column: $TS = (Microsporum_canis AND dog * AND pet *) AND (LA =$ English) AND (DT = (Article OR Review)). The factors "Dog's part" (="with_dogs"/"total"), "Pig's part" (="with_pigs"/"total"), "DogPig's part" (=log ("with_dogs" + 1) – log ("with_pigs" + 1)), and "Dog's partition" (=log ("with_stray_dogs" + 1) - log ("with_pet_dogs" + 1)) were then calculated to classify pathogens based on their association with dogs (or pigs). Table 1 includes only pathogens mentioned in more than 100 publications (Total > 100) for which the dog is considered competent (or suspected to be). For the full list of documented zoonotic pathogens, missing information including WOS queries, number of publications, reservoirs, geographical context, and canine competence—as well as the corresponding bibliographic sources, is available in the full version of Supporting Information 1: Table S1.

A first logistic binomial regression model was selected to evaluate the effects of pathogens' "taxonomic groups", "transmission pathways" and "health impact" on the probability of mentioning dogs in scientific publications, considering articles "with dogs" as the number of successes out of a "total" number of trials. As a potential epidemiological bridge host frequently involved in zoonotic transmissions [63], the pig was then selected as a reference control species to compare the overall involvement of the dog in the transmission of recognized pathogens to humans. A second logistic binomial regression model was then used to examine the effect of the same explanatory variables on the probability of citing "dog(s)" (coded as success) compared to "pig(s)" (coded as failure). This choice was further supported by bibliometric data, as pigs were the second most frequently cited mammalian species in the Web of Science database in the context of zoonotic transmission. The models including the interaction, selected using Akaike's Information Criterion (AIC), have a residual deviance of 47,403 and 21,316, respectively (with 245 and 229° of freedom) versus a null deviance of 137,487 (Model 1) and 61,623 (Model 2), indicating a substantial fit to the data. For these two statistical models, only the 310 pathogens cited in at least 50 publications were retained to minimize biases caused by small sample sizes. Additionally, 16 extra pathogens, for which dogs and pigs were cited in fewer than 5 articles in total, were excluded from Model 2.

Finally, a third logistic binomial regression model was used to examine the effect of the same explanatory variables on the probability of citing stray dogs (as a success) compared to pet dogs (as a failure). This time, only the 141 pathogens mentioned in at least 5 publications, citing either "pet dogs" and/or "stray dogs," were retained for this last model, which fitted the data accurately after AIC minimum selection (Model 3 residual deviance of 403 with 85 df against 1406 initially). Using the "dplyr," "emmeans", "gt," and "ggplot2" packages, model summary tables and predicted probability plots were created on R software (version 4.3.1) for the three models (Bibliometric analysis code and Model summaries available in the Supporting Information 2). To perform a cross-validation of bibliographic and bibliometric data, a Spearman correlation test was conducted to assess the relationship between the ordinal variable "Canine zoonotic potential" and the "Dog's part" index, whose distribution is shown in Figure 2.

3. Results

3.1. Representative List of Zoonotic Pathogens Transmitted by Dogs. Literature searches revealed 152 pathogens that C. lupus familiaris is able to transmit to humans, representing almost half of the zoonotic agents listed in our study. Dogs play the role of primary host for human transmission for 44 of them, while they may act as a secondary zoonotic source for 60 pathogens and are occasionally involved in the transmission of the remaining 48. To our knowledge, no documented cases of zoonotic transmission by dogs have been reported under natural conditions for the remaining 185 listed pathogens, although 117 of them appear capable of infecting dogs. Among these, dogs may pose a potential zoonotic risk for an additional 46 pathogens, as canine competence remains neither confirmed nor ruled out due to conflicting sources or studies demonstrating transmission potential only under laboratory conditions. Figures 3 and 4 show the proportion of zoonotic pathogens transmitted by dogs across the list, by taxonomic groups and by routes of transmission, respectively.

Figure 3 highlights some taxonomic groups with a higher proportion of zoonotic pathogens transmitted by dogs than others ($\chi^2 p$ -value = 2.558e-04), particularly helminths (adjusted χ^2 residuals = 1.98). Conversely, the proportion of viruses for which dogs are competent hosts is significantly lower than expected (adjusted χ^2 residuals = -2.82). Figure 4 shows that the proportion of zoonotic pathogens transmitted by dogs varies according to the mode of transmission of infectious agents ($\chi^2 p$ -value = 1.156e–06). Dogs are particularly competent for most pathogens transmitted through food consumption (especially fish or seafood: adjusted χ^2 residuals = 1.99), whereas they are generally not competent for those transmitted through direct contact with animals, except in the case of bite inoculations (adjusted χ^2 residuals = 1.28). See details of the results of χ^2 test by zoonotic potential of dogs in the Supporting Information 2 (χ^2 statistic = 97.4; df = 40; p-value = 1.098e-06).

3.2. Bibliometric Analysis to Assess the Pathogen/Dog Association. Figure 1 presents the number of publications citing domesticated host species, major wild reservoirs, and arthropod vectors. It shows that dogs are the most cited animal compartment in the context of zoonotic transmissions, in more

thed, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/thed/5522451 by Cochrane France, Wiley Online Library on [27/08/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Table 1: List of zoonotic pathogens transmissible by dogs.

Trichuris valpis Rectessal Rectess		Close contact Unsanitary conditions Ectoparasit vector Bites inoculation Bites inoculation Close contact Accidental ingestion Soil transmitted Bites inoculation Ectoparasit vector Flying vector Flying vector Flying vector Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions Unsanitary conditions Unsanitary conditions Unsanitary conditions	0.882 0.882 0.827 0.824 0.715 0.714 0.710 0.685 0.685 0.665 0.629 0.607 0.607 0.583 0.583 0.583 0.583 0.584 0.584 0.584 0.584 0.588	0.252 0.049 0.016 -0.130 -0.280 0.314 -0.28 0.088 -0.342 -0.348 -0.348 -0.348 -0.348 -0.348 -0.348 -0.348	Primary source
Nematoda Low Environment Ricketsial Moderate Vectors Bacteria Moderate Animals Cestoda Low Vectors Nematoda Moderate Animals Ricketsial Low Vectors Nematoda Moderate Environment Ricketsial Low Vectors Nematoda Moderate Environment Protozoa Moderate Environment Protozoa Moderate Environment Protozoa Moderate Environment Protozoa Moderate Environment Ricketsial Moderate Environment Nematoda High Environment Nematoda High Environment Ricketsial Moderate Environment Nematoda High Environment Nematoda High Environment Ricketsial Moderate Protoros Nematoda Moderate Protoros Nematoda Moderate Prood Nemato		Unsanitary conditions Ectoparasit vector Bites inoculation Close contact Accidental ingestion Soil transmitted Bites inoculation Ectoparasit vector Flying vector Flying vector Flying vector Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions Unsanitary conditions Unsanitary conditions	0.827 0.824 0.715 0.714 0.710 0.709 0.685 0.665 0.665 0.662 0.629 0.622 0.607 0.583 0.583 0.583 0.584 0.584 0.598	-0.049 -0.116 -1.230 -1.209 -0.280 0.314 -0.239 -0.025 0.088 -0.342 -0.248 -0.385 0.301 -0.368	Primary source
Sticketsial Moderate Vectors Fisheria Moderate Animals Finedius MR Bacteria Moderate Animals Cestoda Low Vectors Nematoda Moderate Environment Nematoda Moderate Environment Nematoda Moderate Vectors Nematoda Moderate Vectors Nematoda Moderate Environment Protozoa Moderate Environment Nematoda Moderate Vectors Nematoda High Environment Nematoda Priority Vectors Nematoda Priority Vectors Ina Priority Vectors Animals Priority Vectors Ins Moderate Environment Rickettsial Moderate Priorioment Nematoda Moderate Food Nematoda Moderate Food Nematoda Moderate Food <		Ectoparasit vector Bites inoculation Glose contact Accidental ingestion Soil transmitted Bites inoculation Ectoparasit vector Flying vector Flying vector Flying vector Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions Unsanitary conditions Unsanitary conditions	0.824 0.715 0.714 0.710 0.685 0.665 0.622 0.622 0.622 0.622 0.623 0.633 0.583 0.583 0.583 0.583 0.583	-0.116 -1.230 -1.209 -0.280 0.314 -0.239 -0.025 0.088 -0.342 -0.248 -0.885 0.301 -0.368	Primary source
roughing Bacteria Moderate Animals Racteria Moderate Animals Cestoda Low Vectors Nematoda Moderate Environment Nematoda Moderate Vectors Nematoda Moderate Vectors Nematoda Moderate Vectors Nematoda Moderate Vectors Nematoda Moderate Environment Protozoa Moderate Environment Nematoda Moderate Environment Nematoda High Environment Nematoda Priority Vectors anicola Bacteria High Environment Nematoda Priority Vectors Nematoda High Environment Nematoda High Environment Nematoda High Protoroment Nematoda Moderate Prod Nematoda Moderate Prod Nematoda Moderate		Bites inoculation Bites inoculation Close contact Accidental ingestion Soil transmitted Bites inoculation Ectoparasit vector Flying vector Flying vector Flying vector Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions Unsanitary conditions Unsanitary conditions	0.715 0.714 0.710 0.709 0.685 0.673 0.665 0.622 0.622 0.607 0.583 0.583 0.583 0.584 0.598 0.598	-1.230 -1.209 -0.280 0.314 -0.239 -0.025 0.088 -0.342 -0.348 -0.885 0.301 -0.368	Primary source
medius MR Bacteria Moderate Animals Cestoda Low Vectors Nematoda Moderate Environment Bacteria Low Vectors Nematoda Moderate Vectors Nematoda Moderate Environment Protozoa Moderate Environment Protozoa Moderate Environment Protozoa Moderate Environment Bacteria Low Vectors Nematoda Moderate Environment Bacteria Low Animals Rickettsial Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda High High Horitonment Nematoda Moderate Environment Nematoda Moderate Food Rickettsial Moderate Food Nematoda Moderate Food		Bites inoculation Close contact Accidental ingestion Soil transmitted Bites inoculation Ectoparasit vector Flying vector Flying vector Flying vector Flying vector Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions Unsanitary conditions Unsanitary conditions	0.714 0.710 0.709 0.685 0.665 0.629 0.622 0.607 0.583 0.583 0.583 0.584 0.584 0.584 0.598	-1.209 -0.280 0.314 -0.239 -0.025 0.088 -0.342 -0.248 -0.885 0.301 -0.368	Primary source
Bacteria Moderate Animals Cestoda Low Vectors Nematoda Moderate Environment Rickettsial Low Vectors Nematoda Moderate Vectors Nematoda Moderate Vectors Nematoda Moderate Environment Protozoa Moderate Environment Nematoda Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda Priority Vectors Nematoda High Environment Nematoda High Environment Nematoda Moderate Environment Nematoda Moderate Environment Nematoda Moderate Prood Nematoda Moderate Prood Protozoa Low Prood Nematoda Moderate Prood Nematoda Moderate Prood Nemato		Close contact Accidental ingestion Soil transmitted Bites inoculation Ectoparasit vector Flying vector Flying vector Flying vector Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions Unsanitary conditions	0.710 0.709 0.685 0.665 0.629 0.607 0.583 0.583 0.582 0.584 0.584 0.598	-0.280 0.314 -0.239 -0.025 0.088 -0.342 -0.342 -0.885 0.301 -0.368	Primary source
Offiti Dow Vectors Nematoda Moderate Environment Rickettsial Low Vectors Nematoda Moderate Vectors Nematoda Moderate Vectors Nematoda Low Vectors Nematoda Moderate Environment Protozoa Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda Priority Vectors Nematoda High Environment Nematoda High Environment Ricketisial Moderate Environment Nematoda High Environment Nematoda Moderate Environment Nematoda Moderate Food Protozoa Low Food Ricketisial Moderate Food Nematoda Moderate Food Nematoda Moderate Food Nematoda		Accidental ingestion Soil transmitted Bites inoculation Ectoparasit vector Flying vector Flying vector Flying vector Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions	0.709 0.685 0.665 0.665 0.629 0.607 0.583 0.582 0.584 0.598 0.598	0.314 -0.239 -0.025 0.088 -0.342 -0.248 -0.885 0.301 -0.368 -1.362	Primary source
Nematoda Moderate Environment Ricketsial Low Vectors Nematoda Moderate Vectors Nematoda Moderate Vectors Nematoda Low Vectors Nematoda Moderate Environment Bacteria Low Animals Ricketsial Moderate Environment Nematoda High Environment Nematoda Moderate Food Ricketsial Moderate Food is Bacteria Moderate Food is Bacteria Moderate Food is Bacteria Moderate Food lium Ricketsial Moderate Food Nematoda Moderate Food		Soil transmitted Bites inoculation Ectoparasit vector Flying vector Flying vector Flying vector Asoil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions Unsanitary conditions	0.685 0.673 0.665 0.629 0.607 0.583 0.582 0.582 0.598 0.598	-0.23 -0.025 0.088 -0.342 -0.248 -0.885 0.301 -0.368 -1.362	Primary source
noffiii Bacteria Low Vectors Nematoda Moderate Vectors Nematoda Moderate Vectors Nematoda Low Vectors Nematoda Moderate Environment Protozoa Moderate Environment Bacteria Low Animals Ricketsial Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda High Environment Bacteria Low Animals Nematoda High Environment Nematoda Moderate Environment Protozoa Priority Vectors Nematoda Moderate Environment Moderate Environment Nematoda Moderate Environment Nematoda High Environment Nematoda Moderate Food is Bacteria High Environment Nematoda Moderate Food Ilum Rickettsial Moderate Food Nematoda Moderate Food		Bites inoculation Ectoparasit vector Flying vector Flying vector Flying vector Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions	0.673 0.665 0.629 0.622 0.607 0.583 0.582 0.551 0.548 0.508	-0.025 0.088 -0.342 -0.248 -0.885 0.301 -0.368	Primary source
Rickettsial Low Vectors Nematoda Moderate Vectors Nematoda Low Vectors Nematoda Low Vectors Nematoda Moderate Environment Protozoa Moderate Environment Rickettsial Moderate Environment Nematoda High Environment Nematoda High Environment Protozoa Priority Vectors anicola Bacteria Moderate Environment Rickettsial Moderate Environment Rickettsial Moderate Environment Nematoda High Environment Nematoda High Environment Protozoa Low Animals Protozoa Low Food Itum Rickettsial Moderate Food Nematoda Moderate Food Nematoda Moderate Food Nematoda Moderate Food Nematoda Moderate Priority Rickettsial High Vectors Rickettsial Moderate Food Rickettsial Priority Priority		Ectoparasit vector Flying vector Flying vector Flying vector Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions	0.665 0.629 0.622 0.607 0.583 0.582 0.551 0.554 0.508	0.088 -0.342 -0.248 -0.885 0.301 -0.368 -1.362	Primary source
Nematoda Moderate Vectors Nematoda Low Vectors Nematoda Moderate Environment Protozoa Moderate Environment Bacteria Low Animals Rickettsial Moderate Environment Nematoda High Environment Rickettsial Moderate Vectors Nematoda High Environment Nematoda Moderate Environment Nematoda Moderate Food Protozoa Low Food Sacteria Moderate Food Nematoda Moderate Food Nematoda Moderate Food Nematoda Moderate Food Nematoda Moderate Food Rickettsial		Flying vector Flying vector Flying vector Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions	0.629 0.622 0.607 0.583 0.582 0.551 0.548 0.508 0.491	-0.342 -0.248 -0.885 0.301 -0.368 -1.362	Primary source Primary source Primary source Primary source Primary source
Nematoda Moderate Vectors Nematoda Low Vectors Nematoda Moderate Environment Bacteria Low Animals Rickettsial Moderate Environment Nematoda Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda High Environment Bacteria Low Animals rua Trematoda Moderate Environment Nematoda High Environment Rickettsial Moderate Environment Nematoda High Environment Nematoda High Environment Rickettsial Moderate Food Sectors Nematoda Moderate Food Ivw Food Animals Protozoa Low Food ilum Rickettsial Moderate Food Nematoda Moderate Food		Flying vector Flying vector Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions	0.622 0.607 0.583 0.582 0.551 0.548 0.508 0.491	-0.248 -0.885 0.301 -0.368 -1.362	Primary source Primary source Primary source Primary source
Nematoda Low Vectors Nematoda Moderate Environment Bacteria Low Animals Rickettsial Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda High Environment Derotozoa Moderate Environment Nematoda High Environment Derotozoa High Environment Rickettsial Moderate Environment Rickettsial Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda Moderate Environment Nomatoda High Environment Nomatoda Moderate Environment Nomatoda Moderate Environment Nomatoda Moderate Pood Nematoda Moderate Food Nematoda Roderate Food		Flying vector Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions	0.607 0.583 0.582 0.551 0.548 0.508 0.491	-0.885 0.301 -0.368 -1.362	Primary source Primary source Primary source Primary source
Nematoda Moderate Environment Protozoa Moderate Environment Bacteria Low Animals Nematoda Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda High Environment Protozoa Priority Vectors Animals Anicola Bacteria High Environment Rickettsial Moderate Environment Nematoda Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda Moderate Prood Protozoa Low Food Nematoda Moderate Food Nematoda Moderate Food Nematoda Moderate Prood Ilum Rickettsial Moderate Food Nematoda Moderate Food		Soil transmitted Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions Unsanitary conditions	0.583 0.582 0.551 0.548 0.508 0.491 0.482	0.301 -0.368 -1.362	Primary source Primary source Primary source
Protozoa Moderate Environment Bacteria Low Animals Rickettsial Moderate Vectors Nematoda High Environment Nematoda Low Environment Nematoda High Environment Bacteria Low Animals Protozoa Priority Vectors anicola Bacteria High Environment Rickettsial Moderate Vectors Nematoda Moderate Food Iss Bacteria High Animals Protozoa Low Food Iss Bacteria Moderate Food Ihum Rickettsial Moderate Vectors Nematoda Moderate Vectors Rickettsial Moderate Vectors Rickettsial Moderate Vectors Nematoda Moderate Vectors Rickettsial Moderate Food Nematoda Moderate Food Nematoda Moderate Vectors Rickettsial High Vectors Roctors Priority Vectors		Unsanitary conditions Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions	0.582 0.551 0.548 0.508 0.491 0.482	-0.368 -1.362	Primary source Primary source
Bacteria Low Animals Rickettsial Moderate Vectors Nematoda High Environment Nematoda High Environment Nematoda High Environment Bacteria Low Animals Trematoda Moderate Vectors Protozoa Priority Vectors Bacteria High Environment Nematoda Moderate Vectors Nematoda Moderate Food Ium Bacteria Moderate Food Ium Rickettsial Moderate Food Nematoda Moderate Vectors Rickettsial Moderate Vectors Rickettsial Moderate Vectors Rickettsial Moderate Vectors Rickettsial Moderate Vectors		Bites inoculation Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions	0.551 0.548 0.508 0.491 0.482	-1.362	Primary source
Rickettsial Moderate Vectors Nematoda High Environment Nematoda Low Environment Nematoda High Environment Nematoda High Environment Protozoa Priority Vectors anicola Bacteria High Environment Rickettsial Moderate Vectors Nematoda Moderate Food Ius MR Bacteria High Animals Protozoa Low Food Is Bacteria Moderate Food Nematoda Moderate Food Ium Rickettsial Moderate Vectors Rickettsial Moderate Vectors Rickettsial Moderate Vectors Rickettsial Moderate Vectors		Ectoparasit vector Soil transmitted Unsanitary conditions Unsanitary conditions Unsanitary conditions	0.548 0.508 0.491 0.482	0	•
Nematoda Moderate Environment Nematoda Low Environment Nematoda Low Environment Nematoda High Environment Bacteria Low Animals Trematoda Moderate Environment Protozoa Priority Vectors Rickettsial Moderate Protoron Nematoda High Environment Nematoda High Environment Nematoda High Environment Nematoda Moderate Prood Is Bacteria High Animals Protozoa Low Food Is Cestoda Moderate Food Nematoda Moderate Food Nematoda Moderate Food Ilum Rickettsial Moderate Food Nematoda Food Nematoda Food Nematoda Food Nematoda Food		Soil transmitted Unsanitary conditions Unsanitary conditions Unsanitary conditions	0.508 0.491 0.482	-0.4//	Primary source
Nematoda High Environment Nematoda Low Environment Nematoda High Environment Bacteria Low Animals Trematoda Moderate Environment Protozoa Priority Vectors Nematoda High Environment Rickettsial Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda High Environment Nematoda Moderate Food is Bacteria High Animals Protozoa Low Food Sectoda Moderate Food Nematoda Moderate Food		Unsanitary conditions Unsanitary conditions Unsanitary conditions	0.491	-0.054	Primary source
Nematoda Low Environment Nematoda High Environment Bacteria Low Animals Trematoda Moderate Environment Protozoa Priority Vectors Rickettsial Moderate Environment Nematoda High Environment Nematoda High Environment Nematoda Moderate Food Food Sacteria Moderate Food Nematoda Moderate Food Nematoda Moderate Food Ilum Rickettsial Moderate Food Nematoda Food Nematoda Moderate Food		Unsanitary conditions Unsanitary conditions	0.482	0.136	Occasional source
Nematoda High Environment Bacteria Low Animals Trematoda Moderate Environment Protozoa Priority Vectors anicola Bacteria High Environment Rickettsial Moderate Cectors Nematoda High Environment Nematoda High Animals Protozoa Low Food is Bacteria Moderate Food Cestoda Moderate Food Nematoda Moderate Food Ilum Rickettsial Moderate Food Nematoda High Food		Unsanitary conditions	1	-0.436	Primary source
Bacteria Low Animals na Trematoda Moderate Environment Protozoa Priority Vectors Bacteria High Environment Nematoda High Environment Nematoda Moderate Environment Nematoda Moderate Frood Protozoa Low Food Sacteria Moderate Food Nematoda Moderate Food Nematoda Moderate Vectors Rickettsial High Vectors Rickettsial High Vectors Nematoda Moderate Food			0.423	-0.104	Primary source
na Trematoda Moderate Environment Protozoa Priority Vectors anicola Bacteria High Environment Rickettsial Moderate Vectors Nematoda High Environment Nematoda High Environment Nematoda High Animals Protozoa Low Food is Bacteria Moderate Food Nomatoda Moderate Food Nomatoda Moderate Food ilum Rickettsial Moderate Vectors Rickettsial High Vectors Nematoda Moderate Food Nomatoda Food Nomatoda High Food Nematoda High Food		Close contact	0.403	-0.357	Potential source
anicola Bacteria High Environment Rickettsial Moderate Vectors Nematoda High Environment Nematoda High Environment Nematoda Moderate Environment High Animals Protozoa Low Food is Bacteria Moderate Food Nematoda Moderate Food Nematoda High Coctors Rickettsial Moderate Food Nematoda Moderate Food Nematoda Moderate Food Nematoda High Vectors Neichettsial High Vectors Nematoda Moderate Food		Soil transmitted	0.381	0.000	Primary source
anicola Bacteria High Environment Rickettsial Moderate Vectors Nematoda High Environment Nematoda Moderate Environment Ins MR Bacteria High Animals Protozoa Low Food is Bacteria Moderate Food Nematoda Moderate Food Nematoda Moderate Food Nematoda High Vectors Rickettsial High Vectors Nematoda Moderate Food Nomatoda Foode		Flying vector	0.380	-0.249	Primary source
Rickettsial Moderate Vectors Nematoda High Environment Nematoda Moderate Environment Protozoa Low Food is Bacteria Moderate Food Nematoda Moderate Food Nematoda Moderate Vectors Rickettsial Moderate Vectors Rickettsial High Vectors Rickettsial Priority Environment Nematoda Moderate Food		Close contact	0.362	0.120	Primary source
Nematoda High Environment Nematoda Moderate Environment Bacteria High Animals Protozoa Low Food is Bacteria Moderate Food Nematoda Moderate Food Nematoda High Vectors Rickettsial High Vectors Rickettsial High Nectors Nematoda Moderate Food Nematoda Food		Ectoparasit vector	0.342	-0.368	Secondary source
ius MR Bacteria High Animals Protozoa Low Food is Bacteria Moderate Food Cestoda Moderate Food Nematoda Moderate Food Nickettsial Moderate Vectors Rickettsial High Vectors Rickettsial Priority Environment Nematoda Moderate Food		Waterborne	0.333	0.301	Secondary source
BacteriaHighAnimalsProtozoaLowFoodBacteriaModerateFoodCestodaModerateFoodNematodaModerateVectorsRickettsialHighVectorsRickettsialHighVectorsRoctorsPriorityEnvironmentNematodaModerateFood		Soil transmitted	0.323	-0.058	Primary source
Protozoa Low Food Bacteria Moderate Food Cestoda Moderate Food Mematoda Moderate Food Moderate Food Moderate Food Moderate Mectors Rickettsial High Vectors Rochaemorrhagiae Bacteria Priority Environment Nematoda Moderate Food		Close contact	0.319	-1.498	Primary source
Bacteria Moderate Food Cestoda Moderate Food Nematoda Moderate Food Moderate Food Moderate Vectors Rickettsial High Vectors Priority Environment Nematoda Moderate Food		Animal product	0.311	0.183	Primary source
Cestoda Moderate Food Nematoda Moderate Food Rickettsial Moderate Vectors Rickettsial High Vectors ns Icterohaemorrhagiae Bacteria Priority Environment Nematoda Moderate Food		Animal product	0.308	-0.881	Primary source
Nematoda Moderate Food Rickettsial Moderate Vectors Rickettsial High Vectors ns Icterohaemorrhagiae Bacteria Priority Environment Nematoda Moderate Food		Animal product	0.302	0.058	Primary source
tophilum Rickettsial Moderate Vectors Rickettsial High Vectors Rickettsial Prigh Vectors Instruction Bacteria Priority Environment Nematoda Moderate Food		Animal product	0.287	0.067	Primary source
Rickettsial High Vectors ns Icterohaemorrhagiae Bacteria Priority Environment Nematoda Moderate Food		Ectoparasit vector	0.236	0.171	Secondary source
ns Icterohaemorrhagiae Bacteria Priority Environment Nematoda Moderate Food		Ectoparasit vector	0.235	-0.512	Secondary source
. Nematoda Moderate Food		Waterborne	0.234	0.131	Secondary source
		Accidental ingestion	0.227	-0.559	Potential source
Ehrlichia chaffeensis Rickettsial Moderate Vectors		Ectoparasit vector	0.226	-0.109	Secondary source
Mesocestoides spp. Cestoda Low Food		Animal product	0.220	0.084	Primary source
Echinococcus granulosus (sl) Cestoda Priority Food		Animal product	0.215	0.223	Secondary source
Sarcocystis spp. Protozoa Low Food	Food	Animal product	0.202	-0.301	Potential source

tbed, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/bed/5522451 by Cochrane France, Wiley Online Library on [27/08/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/erms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Ceativity Commons License

Table 1: Continued.

min Priority Vectors Hyling vector 0.189 0.176 min Bacteria Priority Vectors Hyling vector 0.189 0.175 Reactria Low Animals Gloss connact 0.127 -0.582 Fungl Moderate Fycod Historial incodultion 0.177 -0.180 Fungl Moderate Fycod Historial incodultion 0.142 -0.180 Bacteria Low Animals Glose contact 0.149 -0.186 Bacteria Low Animals Glose contact 0.149 -0.186 Nematoda Moderate Frond Animals Hindation 0.13 -0.176 Castoda Moderate Frod Fish consumption 0.12 -0.176 Viras Low Animals Inhalation 0.112 -0.176 Nematoda High Frod Fish consumption 0.13 -0.176 Nematoda High Frod Animal prodect 0.	Pathogen	Taxo group	Health impact	Exposure source	Pathway	Dog's part	Dog's partition	Zoonotic source potential
minale Close contact 0.180 -0.623 Racteria Priority Environment Vectors 0.173 0.255 Factoria Moderate Vectors Rise inoculation 0.173 0.255 Fungi Moderate Vectors Rise inoculation 0.173 0.030 Fungi Moderate Vectors Rise inoculation 0.132 0.036 Bacteria Low Animals Gloss contact 0.139 0.0136 Nematoch Moderate Vectors Estoparasit vector 0.139 0.0136 Cestoda Priority Animal product 0.122 0.937 Virus Low Animal product 0.122 0.937 Virus Low Vectors Estoparasit vector 0.105 0.047 Nematoch High Food Frit consumption 0.120 0.043 Nematoch Low Vectors Estoparasit vector 0.106 0.047 Nematoch Low Vectors	Leishmania chagasi	Protozoa	Priority	Vectors	Flying vector	0.189	0.176	Secondary source
mile Bacteria Priority Environment Waterborne 0.123 0.255 Gesoch Moderate Vectors Bites inocalation 0.117 -0.180 Vurss Moderate Fronty Animals Gless contact 0.147 -0.0180 Vurss Moderate Vectors Extoparasit vector 0.137 -0.186 Bacteria Moderate Vectors Extoparasit vector 0.138 -0.186 Cassoda Moderate Frod Animal product 0.122 -0.167 Virus Moderate Frod Animal product 0.123 -0.167 Virus Moderate Frod Animal product 0.122 -0.167 Virus Low Vectors Extoparasit vector 0.102 -0.156 Nemanoda Moderate Environment Vectors Extoparasit vector 0.103 -0.156 Nemanoda Jow Environment Nonderate Frod Fribito avector 0.000 -0.156	Malassezia spp.	Fungi	Low	Animals	Close contact	0.180	-0.632	Secondary source
Bacteria Moderate Vectors Bites inoculation 0.172 -0.180 Fungd Moderate Animals Bites inoculation 0.147 0.039 Fung Priority Animals Bites inoculation 0.149 0.019 Virus Profestive Vectors Excaparatist vector 0.139 -0.786 Bacteria Low Animals Oliverate 0.132 -0.186 Cestoda Moderate Food Animal product 0.132 -0.935 Cestoda Moderate Food Animal product 0.122 -0.937 Nematoda High Evotos Fixed main product 0.105 -0.167 Nematoda Moderate Frood Fixed consumption 0.105 -0.437 Nematoda Low Frood Fixed consumption 0.105 -0.437 Nematoda Moderate Frood Fixed consumption 0.007 -0.437 Nematoda Low Frood Frood Fixed parasitive conto	Leptospira interrogans Copenhageni	Bacteria	Priority	Environment	Waterborne	0.173	0.255	Secondary source
Castoda Moderate Food Fish consumption 0.117 0.030 Virus Priority Animals Close contact 0.142 -0.745 Virus Priority Animals Bless procession 0.139 -0.186 Bacteria Low Animals Electrogravity vector 0.139 -0.186 Castoda Moderate Food Animal product 0.123 -0.176 Castoda Priority Food Animal product 0.123 -0.176 Castoda Priority Food Animal product 0.120 -0.156 Virus Low Animal product 0.120 -0.157 Virus Low Animal product 0.100 -0.157 Nematoda Moderate Food Animal product 0.110 -0.21 Nematoda Low Vectors Ectoparsati vector 0.105 -0.125 Nematoda Low Food Animal product 0.004 -0.21 Nematoda	Bartonella henselae	Bacteria	Moderate	Vectors	Bites inoculation	0.172	-0.180	Secondary source
Fing Modente Animals Close contact 0.142 -0.745 Bacteria Modente Animals Biste incodudition 0.140 0.019 Bacteria Low Animals Ecoparati vector 0.138 -0.035 Nematoda Modente Food Animal 1.12 -0.745 Nematoda Modente Food Animal product 0.122 -0.035 Cestoda Modente Food Animal product 0.122 -0.176 Viras Low Animal product 0.109 -0.757 Nematoda Modente Food Fish consumption 0.109 -0.757 Nematoda Modente Food Fish consumption 0.109 -0.257 Nematoda Low Vectors Ecoparasti vector 0.105 -0.257 Nematoda Low Vectors Ecoparasti vector 0.106 -0.021 Nematoda Low Vectors Ecoparasti vector 0.106 -0.253	Spirometra spp.	Cestoda	Moderate	Food	Fish consumption	0.157	0.030	Secondary source
Virus Priority Animals Bites inoculation 0.140 0.0019 Bacteria Moderate Vectors Ecoparasit vector 0.138 -0.186 Bacteria Low Animals Inhalation 0.132 -0.176 Reactria Low Animals Inhalation 0.123 -0.937 Cestoda Priority Food Animal product 0.120 -0.157 Virus Low Animal product 0.120 -0.167 Nematoda High Food Animal product 0.100 -0.477 Nematoda Moderate Enciparasit vector 0.100 -0.477 Nematoda High Food Fixing conditions 0.09 -0.425 Nematoda Low Vectors Ecoparasit vector 0.08 -0.477 Nematoda Low Vectors Ecoparasit vector 0.08 -0.477 Nematoda Low Vectors Ecoparasit vector 0.08 -0.477 Reketsisi	Microsporum canis	Fungi	Moderate	Animals	Close contact	0.142	-0.745	Primary source
Bacteria Moderate Vectors Ecoparasti vector 0.139 -0.186 Bacteria Low Animals Close contact 0.138 -0.903 Bacteria Low Animals Inhalation 0.132 -0.475 Castoda Moderate Food Fish consumption 0.112 -0.167 Castoda Provint Animal product 0.112 -0.167 Nematoda Provint Food Animal product 0.112 -0.769 Nematoda High Food Animal product 0.110 -0.769 Nematoda Moderate Frood Animal product 0.109 -0.126 Nematoda Low Vectors Ectoparasit vector 0.089 -0.126 Nematoda Low Vectors Ectoparasit vector 0.089 -0.136 Rectatisal Moderate Prood Fish consumption 0.010 -0.022 Nematoda Low Vectors Ectoparasit vector 0.089 -0.136	Rabies virus	Virus	Priority	Animals	Bites inoculation	0.140	0.019	Primary source
Bacteria Low Animals Close contact 0.138 -0.903 Nemardoa Moderne Frood Animals 1.176 -0.176 Cestoda Moderne Frood Animal product 0.120 -0.477 Cestoda Moderne Frood Animal product 0.120 -0.167 Virus Low Vectors Ecoparasi vector 0.105 -0.167 Nematoda Moderne Frood Frish consumption 0.105 -0.125 Nematoda Moderne Environment Unsumption 0.009 -0.125 Nematoda Low Frood Frish consumption 0.009 -0.125 Nematoda Low Frood Frish consumption 0.009 -0.126 Rickettisal Moderne Frood Frish consumption 0.073 -0.136 Rickettisal Moderne Vectors Ectoparasit vector 0.077 -0.234 Protoza Priority Vectors Ectoparasit vector 0.077	Bartonella spp.	Bacteria	Moderate	Vectors	Ectoparasit vector	0.139	-0.186	Occasional source
Bacteria Low Animals Inhilation 0.112 -1.176 Cestoda Moderate Food Animal product 0.123 0.477 Cestoda Moderate Food Animal product 0.120 -0.167 Virus Low Animals Fish consumption 0.112 -0.169 Nematoda High Food Fish consumption 0.109 -0.1769 Nematoda Moderate Environment Unsaminary conditions 0.097 -0.157 Nematoda Low Vectors Ectoparasit vector 0.097 -0.053 Nematoda Low Vectors Ectoparasit vector 0.097 -0.043 Nematoda Low Evictors Ectoparasit vector 0.097 -0.043 Rickettsial Moderate Vectors Ectoparasit vector 0.089 -0.154 Procoza High Food Fish consumption 0.077 -0.289 Rickettsial Moderate Vectors Ectoparasit vector	Corynebacterium ulcerans	Bacteria	Low	Animals	Close contact	0.138	-0.903	Secondary source
Nematoda Moderate Food Finimal product 0.123 0.477 Cestoda Priodry Food Fish consumption 0.122 0.022 Virus Low Animals Inhalation 0.101 -0.769 Nematoda High Food Fish consumption 0.109 -0.775 Nematoda Moderate Frod Fish consumption 0.109 -0.053 Nematoda High Environment Usanimal youdiforms 0.097 -0.053 Nematoda Low Vectors Flying vector 0.085 0.477 Nematoda Low Vectors Ecoparasit vector 0.085 0.222 Nematoda Low Food Fish consumption 0.073 -0.93 Récértisal Moderate Vectors Ecoparasit vector 0.085 -0.156 Récértisal Moderate Vectors Ecoparasit vector 0.097 -0.023 Récértisal Moderate Vectors Eroparasit vector 0.097	Bordetella bronchiseptica	Bacteria	Low	Animals	Inhalation	0.132	-1.176	Secondary source
Cestoda Moderate Food Fish consumption 0.122 0.022 Cestoda Diority Food Animal product 0.120 -0.167 Verturs Low Animal product 0.112 -0.769 Nematoda High Food Animal product 0.109 -0.125 Trematoda Moderate Food Fish consumption 0.107 -0.653 Nematoda High Environment Unsanitary conditions 0.097 -0.653 Nematoda Low Vectors Fish consumption 0.094 -0.921 Nematoda Low Food Animal product 0.089 -0.176 Nematoda Low Vectors Ectoparasit vector 0.081 -0.176 Rickettsial Moderate Vectors Ectoparasit vector 0.081 -0.158 Trematoda High Food Fish consumption 0.077 -0.377 Trematoda High Food Fiying vector 0.081 -0.146	Trichinella nativa	Nematoda	Moderate	Food	Animal product	0.123	0.477	Occasional source
Cestoda Priority Food Animals Inhalation 0.120 -0.167 Nematic Low Animals Inhalation 0.112 -0.769 Nematic High Food Animal product 0.109 0.477 Ricketisal Low Vectors Ectoparast vector 0.105 -0.125 Nematoda Moderate Environment Usansmitted 0.0094 -0.653 Nematoda Low Vectors Flying vector 0.099 -0.475 Nematoda Low Vectors Flying vector 0.083 -0.176 Nematoda Low Vectors Ectoparasit vector 0.083 -0.176 Ricketrisial Moderate Vectors Ectoparasit vector 0.073 -0.439 Trematoda High Food Fish consumption 0.070 -0.164 Protozoa Priority Vectors Ectoparasit vector 0.069 -0.164 Trematoda High Food Fish consumption 0.070	Dibothriocephalus latus	Cestoda	Moderate	Food	Fish consumption	0.122	0.222	Secondary source
Vytrus Low Animals Inhalation 0.112 -0.759 Nematoda High Food Animal product 0.105 -0.247 Rickettsia Low Vectors Ectoparasit vector 0.105 -0.053 Nematoda Moderate Environment Ussaintary conditions 0.097 -0.653 Nematoda Low Vectors Food Animal product 0.097 -0.653 Nematoda Low Vectors Ectoparasit vector 0.089 0.222 Nematoda Low Vectors Ectoparasit vector 0.083 -0.176 Ricketsial Moderate Vectors Ectoparasit vector 0.03 -0.439 Trematoda High Food Fish consumption 0.077 -0.439 Protozo Priority Vectors Ectoparasit vector 0.069 -0.164 Ricketsial Moderate Vectors Ectoparasit vector 0.073 -0.439 Protozoa Priority Vectors Ect	Echinococcus multilocularis	Cestoda	Priority	Food	Animal product	0.120	-0.167	Secondary source
Rickettsial Low Vectors Ecoparativector 0.109 0.477 Rickettsial Low Vectors Ecoparativector 0.105 -0.125 Nematoda Moderate Food Fish consumption 0.097 -0.653 Nematoda Low Pertors Fijnig vector 0.089 -0.921 Acanthocephal Low Food Animal product 0.089 -0.477 Nematoda Low Environment Usanintary conditions 0.083 -0.176 Nematoda Low Food Fish consumption 0.077 -0.358 Ricketsial Moderate Vectors Ectoparasit vector 0.081 -0.376 Trematoda High Food Fish consumption 0.077 -0.349 Protozo High Food Fish consumption 0.077 -0.349 Protozo Priority Vectors Ectoparasit vector 0.067 -0.164 Protozoa Priority Vectors Frish consumption	Canine Influenza	Virus	Low	Animals	Inhalation	0.112	-0.769	Primary source
Rickettsial Low Vectors Ectoparasit vector 0.105 -0.1125 Trematoda Moderate Food Fish consumption 0.100 0.000 Nematoda High Environment Unsamitary conditions 0.094 -0.921 Nematoda Low Vectors Fjying vector 0.085 0.477 Nematoda Low Vectors Animal product 0.085 -0.176 Nematoda Low Vectors Ectoparasit vector 0.073 -0.136 Rickettsial Moderate Vectors Ectoparasit vector 0.077 -0.439 Trematoda High Food Fish consumption 0.077 -0.439 Trematoda High Food Fish consumption 0.077 -0.439 Rickettsial Moderate Vectors Ectoparasit vector 0.069 -0.149 Protozoa Priority Vectors Ectoparasit vector 0.069 -0.149 Rickettsial Moderate Vectors Ectoparasit	Trichinella britovi	Nematoda	High	Food	Animal product	0.109	0.477	Potential source
Trematoda Moderate Food Fish consumption 0.100 0.000 Nematoda Moderate Environment Unsanitaty conditions 0.097 -0.053 Nematoda Low Vectors Flying vector 0.089 0.477 Acanthocephala Low Vectors Flying vector 0.083 -0.176 Nematoda Low Prodors Flying vector 0.083 -0.176 Ricketsial Moderate Vectors Ectoparasit vector 0.083 -0.176 Trematoda High Food Fish consumption 0.077 -0.377 Trematoda High Food Fish consumption 0.077 -0.136 Rickettsial Moderate Vectors Ectoparasit vector 0.069 -0.000 Protozoa Priority Vectors Fish consumption 0.077 -0.146 Virus Low Vectors Fish consumption 0.065 -0.146 Protozoa Priority Environment Vectors	Anaplasma ovis	Rickettsial	Low	Vectors	Ectoparasit vector	0.105	-0.125	Potential source
Nematoda Moderate Environment Unsanitary conditions 0.097 -0.653 Nematoda High Environment Vectors Flying vector 0.089 -0.521 Nematoda Low Vectors Flying vector 0.083 -0.176 Nematoda Low Exciparasit vector 0.083 -0.176 Rickettsial Moderate Vectors Ectoparasit vector 0.081 -0.357 Trematoda High Food Fish consumption 0.077 -0.439 Trematoda High Food Fish consumption 0.073 -0.439 Trematoda High Food Fish consumption 0.077 -0.439 Trematoda High Food Fish consumption 0.073 -0.439 Rickettsial Moderate Vectors Ectoparasit vector 0.069 -0.164 Protozoa Priority Evetors Ectoparasit vector 0.069 -0.164 Virus Low Vectors Ectoparasit vector	Metagonimus spp.	Trematoda	Moderate	Food	Fish consumption	0.100	0.000	Secondary source
Nematoda High Environment Soil transmitted 0.094 -0.921 Nematoda Low Vectors Hying vector 0.089 0.477 Acanthocephala Low Environment Unantial product 0.083 -0.176 Nematoda Low Environment Unantial vector 0.081 -0.176 Rickettsial Moderate Vectors Ectoparasit vector 0.073 -0.439 Trematoda High Food Fish consumption 0.077 -0.377 Trematoda High Food Fish consumption 0.072 -0.439 Protozoa Priority Vectors Ectoparasit vector 0.069 -0.164 Ricketisal Moderate Vectors Ectoparasit vector 0.069 -0.164 Protozoa Priority Environment Vateror 0.069 -0.164 Kicketisal Moderate Food Animal product 0.065 -0.148 Protozoa Low Priority Environment	Baylisascaris spp.	Nematoda	Moderate	Environment	Unsanitary conditions	0.097	-0.653	Occasional source
Nematoda Low Vectors Hying vector 0.089 0.477 Acanthocephala Low Food Animal product 0.085 0.222 Rickettsial Low Encryamative conditions 0.083 -0.176 Bacteria Priority Vectors Ectoparasit vector 0.073 -0.439 Trematoda High Food Fish consumption 0.072 -0.439 Trematoda High Food Fish consumption 0.072 -0.439 Trematoda High Food Fish consumption 0.072 -0.439 Rickettsial Moderate Vectors Ectoparasit vector 0.069 -0.164 Protozoa Priority Vectors Ectoparasit vector 0.069 -0.164 Protozoa Priority Vectors Ectoparasit vector 0.069 -0.164 Virus Low Vectors Ectoparasit vector 0.069 -0.164 Virus Low Vectors Ectoparasit vector 0.069	Necator americanus	Nematoda	High	Environment	Soil transmitted	0.094	-0.921	Potential source
Acanthocephala Low Food Animal product 0.085 0.222 Nematoda Low Environment Unsanitary conditions 0.083 -0.176 Rickettsial Moderate Vectors Ectoparasit vector 0.081 -0.358 Trematoda High Food Fish consumption 0.077 -0.439 Trematoda High Food Fish consumption 0.070 0.000 Rickettsial Moderate Vectors Ectoparasit vector 0.069 -0.164 Protozoa Priority Vectors Ectoparasit vector 0.069 -0.164 Rickettsial Moderate Vectors Ectoparasit vector 0.069 -0.164 Virus Low Vectors Ectoparasit vector 0.069 -0.146 Virus Low Vectors Hying vector 0.069 -0.146 Virus Low Vectors Hying vector 0.069 -0.146 Vertors Low Vectors Hying vector 0.	Brugia pahangi	Nematoda	Low	Vectors	Flying vector	0.089	0.477	Secondary source
Nematoda Low Environment Unsanitary conditions 0.083 -0.176 Rickettsial Moderate Vectors Ectoparasit vector 0.081 -0.358 Bacteria Priority Vectors Ectoparasit vector 0.077 -0.439 Trematoda High Food Fish consumption 0.072 -0.000 Trematoda High Food Fish consumption 0.072 -0.000 Rickettsial Moderate Vectors Ectoparasit vector 0.069 -0.164 Protozoa Priority Vectors Ectoparasit vector 0.069 -0.164 Virus Low Vectors Etoparasit vector 0.069 -0.146 Virus Low Vectors Ectoparasit vector 0.069 -0.146 Virus Low Vectors Ectoparasit vector 0.069 -0.146 Virus Low Vectors Ectoparasit vector 0.069 -0.146 Protozoa Low Vectors Evolarity	Macracanthorhynchus spp.	Acanthocephala	Low	Food	Animal product	0.085	0.222	Potential source
Ricketsial Moderate Vectors Ectoparasit vector 0.081 -0.368 Bacteria Priority Vectors Ectoparasit vector 0.077 -0.377 Trematoda High Food Fish consumption 0.072 -0.439 Trematoda High Food Fish consumption 0.072 -0.049 Ricketsial Moderate Vectors Flying vector 0.069 -0.164 Protozoa Priority Environment Vectors Hying vector 0.065 -0.289 Ricketisal Moderate Vectors Hying vector 0.065 -0.146 Virus Low Vectors Hying vector 0.065 -0.039 Protozoa Low Vectors Hying vector 0.065 -0.039 Nematoda High Environment Visanitary conditions 0.064 -0.031 Protozoa Moderate Food Fish consumption 0.069 -0.176 Nematoda High Food Fish cons	Calodium hepaticum	Nematoda	Low	Environment	Unsanitary conditions	0.083	-0.176	Occasional source
Bacteria Priority Vectors Ectoparasit vector 0.077 -0.377 Trematoda Low Food Fish consumption 0.072 -0.439 Trematoda High Food Fish consumption 0.072 0.000 Trematoda High Food Fish consumption 0.072 0.000 Ricketisial Moderate Vectors Flying vector 0.069 -0.164 Protozoa Priority Euriconnent Vectors Ecroparasit vector 0.065 -0.146 Virus Low Vectors Ectoparasit vector 0.065 -0.146 Virus Low Vectors Flying vector 0.065 -0.146 Virus Low Vectors Flying vector 0.065 -0.146 Virus Low Vectors Food Animal product 0.065 -0.234 Protozoa Priority Food Animal product 0.065 -0.234 Protozoa Moderate Frood Fish consu	Rickettsia typhi	Rickettsial	Moderate	Vectors	Ectoparasit vector	0.081	-0.368	Potential source
Trematoda Low Food Fish consumption 0.073 -0.439 Trematoda High Food Fish consumption 0.070 0.000 Trematoda High Food Fish consumption 0.070 0.000 Protozoa Priority Vectors Ectoparasit vector 0.069 -0.164 Protozoa Priority Vectors Estoparasit vector 0.069 -0.146 Ricketisial Moderate Vectors Ectoparasit vector 0.067 -0.289 Ricketisial Moderate Vectors Edoparasit vector 0.065 -0.146 Virus Low Vectors Elyping vector 0.065 -0.289 Protozoa Priority Food Animal product 0.065 -0.602 Nematoda High Environment Unsanitary conditions 0.064 -0.602 Protozoa High Food Fish consumption 0.056 -0.301 Racteria Moderate Animals Close contact	Borrelia burgdorferi (sl)	Bacteria	Priority	Vectors	Ectoparasit vector	0.077	-0.377	Secondary source
Trematoda High Food Fish consumption 0.072 0.000 Trematoda High Food Fish consumption 0.070 0.301 Rickettsial Moderate Vectors Ectoparasit vector 0.069 -0.164 Protozoa Priority Environment Waterborne 0.067 -0.289 Rickettsial Moderate Vectors Etoparasit vector 0.065 -0.146 Virus Low Vectors Flying vector 0.065 -0.289 Protozoa Priority Food Animal product 0.065 -0.146 Nematoda High Environment Unsanitated 0.065 -0.334 Protozoa Moderate Environment Unsanitated 0.066 -0.176 Protozoa High Frod Fish consumption 0.053 -0.176 Nematoda High Food Fish consumption 0.056 -0.176 Nematoda High Food Fish consumption 0.056	Alaria spp.	Trematoda	Low	Food	Fish consumption	0.073	-0.439	Secondary source
Trematoda High Food Fish consumption 0.070 0.301 Rickettsial Moderate Vectors Ectoparasit vector 0.069 -0.164 Protozoa Priority Vectors Hying vector 0.069 -0.069 Rickettsial Moderate Vectors Ectoparasit vector 0.065 -0.146 Virus Low Vectors Hying vector 0.065 -0.049 Protozoa Priority Food Animal product 0.065 -0.338 Nematoda High Environment Vols accordance 0.064 -0.072 Protozoa Moderate Environment Unsanitary conditions 0.069 -0.176 Protozoa Moderate Animals Close contact 0.060 -0.176 Nematoda High Food Fish consumption 0.057 -0.993 Nematoda High Food Fish consumption 0.056 -0.993 Nematoda High Food Fish consumption <td< td=""><td>Paragonimus spp.</td><td>Trematoda</td><td>High</td><td>Food</td><td>Fish consumption</td><td>0.072</td><td>0.000</td><td>Secondary source</td></td<>	Paragonimus spp.	Trematoda	High	Food	Fish consumption	0.072	0.000	Secondary source
Rickettsial Moderate Vectors Ectoparasit vector 0.069 -0.164 Protozoa Priority Vectors Flying vector 0.069 0.000 Rickettsial Moderate Vectors Ectoparasit vector 0.065 -0.146 Virus Low Vectors Flying vector 0.065 -0.052 Cestoda Low Food Animal product 0.065 -0.398 Protozoa Priority Food Animal product 0.065 -0.334 Nematoda High Environment Unsanitary conditions 0.060 -0.331 Bacteria Moderate Animals Close contact 0.060 -0.176 Nematoda High Food Fish consumption 0.057 0.301 Nematoda High Food Fish consumption 0.056 -0.993 Nematoda High Food Fish consumption 0.056 -0.993 Nematoda High Food Fish consumption 0.056	Opistorchis spp.	Trematoda	High	Food	Fish consumption	0.070	0.301	Secondary source
ProtozoaPriorityVectorsFlying vector0.0690.000ProtozoaPriorityEnvironmentWaterborne0.067-0.289RickettsialModerateVectorsEtoparasit vector0.065-0.146VirusLowVectorsFlying vector0.065-0.602CestodaLowFoodAnimal product0.065-0.398ProtozoaPriorityEnvironmentSoil transmitted0.064-0.034ProtozoaModerateEnvironmentUrsanitary conditions0.060-0.234ProtozoaModerateFoodFish consumption0.050-0.176NematodaHighFoodFish consumption0.0570.301BacteriaModerateAnimalsClose contact0.056-0.993NematodaHighFoodFish consumption0.056-0.993NematodaHighFoodFish consumption0.055-0.993BacteriaModerateAnimalsClose contact0.055-0.993	Rickettsia spp.	Rickettsial	Moderate	Vectors	Ectoparasit vector	0.069	-0.164	Secondary source
ProtozoaPriorityEnvironmentWaterborne0.067-0.289RickettsialModerateVectorsEctoparasit vector0.065-0.146VirusLowFoodAnimal product0.065-0.602ProtozoaPriorityFoodAnimal product0.065-0.398ProtozoaHighEnvironmentVirasnitated0.064-0.234ProtozoaModerateEnvironmentUnsanitary conditions0.060-0.176TrematodaModerateFoodFish consumption0.0580.000NematodaHighFoodFish consumption0.056-0.993NematodaHighFoodFish consumption0.056-0.993NematodaHighFoodFish consumption0.056-0.993BacteriaModerateAnimalsClose contact0.055-0.477	Leishmania braziliensis	Protozoa	Priority	Vectors	Flying vector	0.069	0.000	Secondary source
Rickettsial Moderate Vectors Ectoparasit vector 0.065 -0.146 Virus Low Vectors Flying vector 0.065 -0.602 Cestoda Low Food Animal product 0.065 -0.398 Protozoa Priority Food Animal product 0.064 -0.072 Nematoda High Environment Unsanitary conditions 0.060 -0.234 Protozoa Moderate Food Fish consumption 0.060 -0.176 Nematoda High Food Fish consumption 0.058 0.301 Nematoda High Food Fish consumption 0.056 -0.993 Nematoda High Food Fish consumption 0.056 -0.993 Nematoda High Food Fish consumption 0.056 -0.993 Bacteria Moderate Animals Close contact 0.055 -0.993	Giardia duodenalis	Protozoa	Priority	Environment	Waterborne	0.067	-0.289	Secondary source
Virus Low Vectors Flying vector 0.065 -0.602 Cestoda Low Food Animal product 0.065 -0.398 Protozoa Priority Food Animal product 0.064 -0.072 Nematoda High Environment Unsanitary conditions 0.063 -0.234 Protozoa Moderate Food Fish consumption 0.060 -0.176 Nematoda High Food Fish consumption 0.058 0.301 Nematoda High Food Fish consumption 0.056 -0.993 Nematoda High Food Fish consumption 0.056 -0.993 Nematoda High Food Fish consumption 0.056 -0.993 Bacteria Moderate Animals Close contact 0.055 -0.993	Rickettsia conorii	Rickettsial	Moderate	Vectors	Ectoparasit vector	0.065	-0.146	Secondary source
Cestoda Low Food Animal product 0.065 -0.398 Protozoa Priority Food Animal product 0.064 -0.072 Nematoda High Environment Unsanitary conditions 0.063 -0.234 Protozoa Moderate Environment Unsanitary conditions 0.060 -0.176 Trematoda Moderate Food Fish consumption 0.058 0.000 Nematoda High Food Fish consumption 0.057 0.301 Nematoda High Food Fish consumption 0.056 -0.993 Nematoda High Food Fish consumption 0.056 -0.993 Bacteria Moderate Animals Close contact 0.055 -0.993	Barmah Forest virus	Virus	Low	Vectors	Flying vector	0.065	-0.602	Secondary source
Protozoa Priority Food Animal product 0.064 -0.072 Nematoda High Environment Soil transmitted 0.063 -0.334 Protozoa Moderate Environment Unsanitary conditions 0.060 -0.301 Trematoda Moderate Food Fish consumption 0.058 0.000 Nematoda High Food Fish consumption 0.057 0.301 Nematoda High Food Fish consumption 0.056 -0.993 Nematoda High Food Fish consumption 0.056 0.301 Bacteria Moderate Animals Close contact 0.055 -0.993	Taenia crassiceps	Cestoda	Low	Food	Animal product	0.065	-0.398	Secondary source
Nematoda High Environment Soil transmitted 0.063 -0.234 Protozoa Moderate Environment Unsanitary conditions 0.060 -0.301 Trematoda Moderate Food Fish consumption 0.058 0.000 Nematoda High Food Fish consumption 0.057 0.301 Nematoda High Food Fish consumption 0.056 -0.993 Nematoda High Food Fish consumption 0.056 0.301 Bacteria Moderate Animals Close contact 0.055 -0.477	Toxoplasma gondii	Protozoa	Priority	Food	Animal product	0.064	-0.072	Occasional source
Protozoa Moderate Environment Unsanitary conditions 0.060 -0.301 Bacteria Moderate Animals Close contact 0.060 -0.176 Trematoda High Food Fish consumption 0.057 0.301 Nematoda High Food Fish consumption 0.056 -0.993 Nematoda High Food Fish consumption 0.056 0.301 Bacteria Moderate Animals Close contact 0.055 -0.477	Strongyloides stercoralis	Nematoda	High	Environment	Soil transmitted	0.063	-0.234	Secondary source
Bacteria Moderate Animals Close contact 0.060 -0.176 Trematoda Moderate Food Fish consumption 0.057 0.301 Nematoda High Food Fish consumption 0.056 -0.993 Nematoda High Food Fish consumption 0.056 0.301 Bacteria Moderate Animals Close contact 0.055 -0.477	Cryptosporidium spp.	Protozoa	Moderate	Environment	Unsanitary conditions	0.060	-0.301	Occasional source
TrematodaModerateFoodFish consumption0.0580.000NematodaHighFoodFish consumption0.0570.301BacteriaModerateAnimalsBites inoculation0.056-0.993NematodaHighFoodFish consumption0.0560.301BacteriaModerateAnimalsClose contact0.055-0.477	Brucella suis	Bacteria	Moderate	Animals	Close contact	0.060	-0.176	Occasional source
Nematoda High Food Fish consumption 0.057 0.301 Bacteria Moderate Animals Bites inoculation 0.056 -0.993 Nematoda High Food Fish consumption 0.056 0.301 Bacteria Moderate Animals Close contact 0.055 -0.477	Haplorchis spp.	Trematoda	Moderate	Food	Fish consumption	0.058	0.000	Secondary source
BacteriaModerateAnimalsBites inoculation0.056-0.993NematodaHighFoodFish consumption0.0560.301BacteriaModerateAnimalsClose contact0.055-0.477	Gnathostoma spinigerum	Nematoda	High	Food	Fish consumption	0.057	0.301	Secondary source
Nematoda High Food Fish consumption 0.056 0.301 Bacteria Moderate Animals Close contact 0.055 -0.477	Pasteurella multocida	Bacteria	Moderate	Animals	Bites inoculation	0.056	-0.993	Secondary source
Bacteria Moderate Animals Close contact 0.055 -0.477	Gnathostoma spp.	Nematoda	High	Food	Fish consumption	0.056	0.301	Potential source
	Streptococcus equi zooepidemicus	Bacteria	Moderate	Animals	Close contact	0.055	-0.477	Occasional source

tbed, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/bed/5522451 by Cochrane France, Wiley Online Library on [27/08/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/erms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Ceativity Commons License

Table 1: Continued.

Description Principle Vectors Expensive vector (10.5) -10.92 Swonding some of the control	Pathogen	Taxo group	Health impact	Exposure source	Pathway	Dog's part	Dog's partition	Zoonotic source potential
Bacteria Priority Vectors Ecoparasis vector 0.655 -0.845 rulia Bacteria Moderate Vectors Ecoparasis vector 0.046 -0.062 Fung High Animals Ecoparasis vector 0.040 -0.517 Restria Priority Animals Close contact 0.040 -0.517 Restria Low Vectors Ecoparasis vector 0.040 -0.517 Restria Low Vectors Ecoparasis vector 0.040 -0.517 Feorogram Low Vectors Ecoparasis vector 0.040 -0.517 Feorogram Moderate Frommod Accidental ingestion 0.034 -0.042 Nematoda High Vectors Ecoparasis vector 0.033 -0.042 Nematoda High Vectors Ecoparasis vector 0.034 -0.062 Nematoda High Frod Accidental ingestion 0.033 -0.042 Frematoda Low Nectors Ecopar	Leishmania mexicana, tropica	Protozoa	Priority	Vectors	Flying vector	0.054	-0.092	Secondary source
Racteria Priority Vectors Ecoparasti vector 0.049 -0.662 Fung Moderate Vectors Ecoparasti vector 0.040 -0.093 Fung High Aximals Glose contact 0.040 -0.093 Fung Moderate Aximals Close contact 0.040 -0.031 Protozoa Low Aximals Close contact 0.040 -0.031 Protozoa Low Aximals Close contact 0.040 -0.031 Fung Moderate Aximals Soil transmitted 0.043 -0.042 Virus High Devictors Ecoparasti vector 0.033 -0.047 Virus High Periorin Vectors Ecoparasti vector 0.031 -0.047 Virus Petority Aximals Glosa Accidental ingestion 0.043 -0.047 Protozoa Low Aximals Close contact 0.032 -0.047 Protozoa Low Aximals Close contac	Yersinia pestis	Bacteria	Priority	Vectors	Ectoparasit vector	0.053	-0.845	Secondary source
ring Bacteria Holdente Vectors Ecopassist vector 0.045 -0.903 Fungi Moderate Animals Bites incordation 0.040 0.000 Réclexisal Privaty Animals Inhalation 0.049 -0.301 Réclexisal Privaty Animals Close contact 0.040 -0.531 Réclexisal Protors Academe Fond Accidental ingestion 0.033 -0.013 Fung Moderate Food Accidental ingestion 0.033 -0.003 Virus High Environment Unsactivativativativation 0.033 -0.003 Nematoda Moderate Food Accidental ingestion 0.033 -0.003 Privatiy Vectors Ecopassativator 0.033 -0.003 Privatiy Vectors Ecopassativator 0.033 -0.003 Privatiy Vectors Ecopassativator 0.033 -0.003 Privati Vectors Ecopassativator 0.023 -0.047<	Borrelia garinii	Bacteria	Priority	Vectors	Ectoparasit vector	0.049	-0.602	Occasional source
Fung High Animals Biles incodulation 0.040 0.000 Virus Low Véctors Ecopanais vector 0.040 -0.517 Virus Low Véctors Ecopanais vector 0.040 -0.517 Producta Inmals Infladition 0.034 -0.103 Producta Animals Soil transmitted 0.034 -0.013 Castoda Moderate Animals Soil transmitted 0.034 -0.003 Virus High Environment Viretore 0.033 0.000 Virus Priority Véctors Ecopansist vector 0.033 0.000 Virus Priority Véctors Ecopansist vector 0.035 -0.477 Product Food Fish consumption 0.023 -0.477 -0.93 Product Food Fish consumption 0.022 -0.477 -0.477 Bacteria Low Animals Biles incodulitors 0.023 -0.477 Bacteria	Tick-borne relapsing fever Borrelia	Bacteria	Moderate	Vectors	Ectoparasit vector	0.045	-0.903	Occasional source
Fung Moderate Animals Close contact 0.040 -0.517 Virtus Low Vectors Eveporative vector 0.040 -0.301 Ricketisal Drow Environment Unsanitary conditions 0.038 -0.103 Founda Moderate Animals Sold transmitted 0.034 -0.002 Virtus High Environment Watchorne 0.033 0.000 Virtus High Evolomative vector 0.033 0.000 Virtus Priority Vectors Ecoparative vector 0.033 0.000 Tematoda Low Priority Prood Fish consumption <t< td=""><td>Sporothrix brasiliensis</td><td>Fungi</td><td>High</td><td>Animals</td><td>Bites inoculation</td><td>0.040</td><td>0.000</td><td>Occasional source</td></t<>	Sporothrix brasiliensis	Fungi	High	Animals	Bites inoculation	0.040	0.000	Occasional source
Virtus Low Vectors Eroparasist vector 0.000 -0.301 Rocketsial Priority Animals Inhalation 0.038 -0.103 Protozoa Moderate Animals Soil transmitted 0.034 -0.602 Cestoda Moderate Frood Accideral ingestion 0.033 -0.000 Virus High Evroparasi vector 0.033 0.000 Virus Priority Vectors Ecoparasi vector 0.033 -0.000 Virus Priority Vectors Ecoparasi vector 0.033 -0.366 Virus Priority Vectors Ecoparasi vector 0.033 -0.366 Protory Vectors Ecoparasi vector 0.033 -0.036 Protory Vectors Ecoparasi vector 0.033 -0.036 Virus Moderate Food Fish consumption 0.023 -0.036 Bacteria Moderate Animals Bris consumption 0.023 -0.0477 Bacteria	Trichophyton mentagrophytes	Fungi	Moderate	Animals	Close contact	0.040	-0.517	Secondary source
Ricketsial Priority Animals Inhalation 0.038 -0.12 Fung Moderate Frod Accidental ingestion 0.034 -0.013 Fung Moderate Frod Accidental ingestion 0.034 -0.000 Virus High Environment Variethome 0.033 -0.000 Virus Moderate Frod Accidental ingestion 0.033 -0.000 Virus Moderate Frod Accidental ingestion 0.032 -0.477 Protoza Priority Vectors Ectoparasit vector 0.032 -0.477 Protoza Low Evolution and vector 0.032 -0.477 Fund Low Frod Fish consumption 0.029 -0.000 Trematoda Low Frod Fish consumption 0.023 -0.477 Bacteria Moderate Frod Fish consumption 0.023 -0.032 Internated Low Animals Bites inoculation 0.023 -0.032	Louping-ill virus	Virus	Low	Vectors	Ectoparasit vector	0.040	-0.301	Potential source
Protozoa Low Environment Unsanitary conditions 0.038 -0.103 Castuda Moderate Animals Soil transmitted 0.034 -0.003 Castuda Moderate Food Accidental ingestion 0.034 -0.000 Virus High Vectors Ectoparasit vector 0.033 -0.477 Protozoa Priority Vectors Ectoparasit vector 0.031 -0.336 Protozoa Priority Vectors Ectoparasit vector 0.032 -0.477 Protozoa Low Frontinoment Unsanitary conditions 0.039 -0.000 Fung Low Animals Ectoparasit vector 0.023 -0.353 Trematoda Low Animals Ectoparasit vector 0.023 -0.365 Fung Moderate Food Fish consumption 0.028 -0.365 Bacteria High Frood Fish consumption 0.027 -0.954 Bacteria Priority Animal product 0.021 </td <td>Coxiella burnetii</td> <td>Rickettsial</td> <td>Priority</td> <td>Animals</td> <td>Inhalation</td> <td>0.038</td> <td>-0.412</td> <td>Occasional source</td>	Coxiella burnetii	Rickettsial	Priority	Animals	Inhalation	0.038	-0.412	Occasional source
Fung Moderate Animals Soil transmitted 0.034 —0.602 Cestoda Moderate Frond Accidental ingestion 0.034 0.000 Virus High Vectors Ectoparasit vector 0.033 0.000 Priority Vectors Ectoparasit vector 0.033 0.000 Priority Vectors Ectoparasit vector 0.039 0.000 Priority Vectors Ectoparasit vector 0.039 0.000 Funds I.ow Environment Unsatinated 0.029 0.000 Trematoda Low Food Fish consumption 0.023 0.000 Trematoda Low Food Fish consumption 0.023 0.000 Trematoda Low Food Fish consumption 0.023 0.000 Bacteria High Food Animals Bits incentant 0.023 0.000 Virus Moderate Animals Bits incentant 0.023 0.000 Virus <td>Blastocystis spp.</td> <td>Protozoa</td> <td>Low</td> <td>Environment</td> <td>Unsanitary conditions</td> <td>0.038</td> <td>-0.103</td> <td>Occasional source</td>	Blastocystis spp.	Protozoa	Low	Environment	Unsanitary conditions	0.038	-0.103	Occasional source
Cestoda Moderate Food Accidental ingestion 0.034 0.000 Virus High Environment Waterborne 0.033 0.000 Virus High Evotors Ectoparasit vector 0.031 -0.477 Poroza Priority Vectors Ectoparasit vector 0.031 -0.437 Priority Vectors Ectoparasit vector 0.039 -0.933 Priority Vectors Ectoparasit vector 0.039 -0.903 Priority Animals Ectoparasit vector 0.029 -0.903 Trematoda Low Animals Ectoparasit vector 0.029 -0.093 Trematoda High Food Fish consumption 0.022 -0.093 Bacteria Moderate Animals Bites inoculation 0.022 -0.477 Bacteria Priority Animals Animal product 0.023 -0.477 Bacteria Priority Animal product 0.023 -0.477 Bacteria <	Sporothrix schenckii	Fungi	Moderate	Animals	Soil transmitted	0.034	-0.602	Occasional source
Trematoda High Environment Waterborne 0.033 0.000 Virus High Vectors Ectoparasit vector 0.033 0.000 Protozoa Priority Vectors Ectoparasit vector 0.039 -0.437 Virus Priority Vectors Ectoparasit vector 0.039 -0.933 Protozoa Low Antimals Close contact 0.029 -0.933 Fung Low Food Fish consumption 0.029 -0.936 Trematoda Low Food Fish consumption 0.028 -0.936 Bacteria Moderate Food Fish consumption 0.027 -0.632 Bacteria Priority Animals Bits inoculation 0.025 -0.437 Bacteria Low Animals Bits inoculation 0.025 -0.437 Bacteria High Food Animal product 0.023 -0.437 Virus Moderate Vectors Etoparasit vector 0.029 <t< td=""><td>Hymenolepis nana</td><td>Cestoda</td><td>Moderate</td><td>Food</td><td>Accidental ingestion</td><td>0.034</td><td>0.000</td><td>Occasional source</td></t<>	Hymenolepis nana	Cestoda	Moderate	Food	Accidental ingestion	0.034	0.000	Occasional source
Virus High A vectors Ectoparasit vector 0.033 0.047 Pototozoa Priority Vectors Ectoparasit vector 0.032 -0.477 Protozoa Priority Vectors Ectoparasit vector 0.039 -0.903 Protozoa Low Antimals Cloos contact 0.029 -0.903 Termatoda Low Food Fish consumption 0.028 -0.903 Trematoda Low Food Fish consumption 0.028 -0.908 Trematoda Low Food Fish consumption 0.028 -0.908 Bacteria Moderate Food Animals 0.027 -0.938 Bacteria Priority Animals Bites inoculation 0.025 -0.954 Virus Priority Animals Bites inoculation 0.024 -0.447 Virus Priority Animals Bites inoculation 0.024 -0.954 Virus Priority Animals Bites inoculation 0.024 -0.	Schistosoma mekongi	Trematoda	High	Environment	Waterborne	0.033	0.000	Occasional source
Nematoda Moderate Food Accidental ingestion 0.032 -0.477 Protozoa Priority Vectors Ectoparisti vector 0.023 -0.336 Virus Priority Vectors Ectoparisti vector 0.023 -0.903 Protozoa Low Animals Close contact 0.028 -0.368 Trematoda Low Food Fish consumption 0.028 0.000 Trematoda Low Food Fish consumption 0.028 0.000 Trematoda High Food Fish consumption 0.023 0.000 Bacteria High Food Fish consumption 0.027 -0.437 Bacteria Moderate Animals Bites inoculation 0.025 -0.652 Nematoda High Frood Animal product 0.023 -0.437 Virus Priority Vectors Ectoparasit vector 0.023 -0.437 Bacteria Priority Vectors Hying vector 0.023	Omsk hemorrhagic fever virus	Virus	High	Vectors	Ectoparasit vector	0.033	0.000	Potential source
Protozoa Priority Vectors Ecoparasit vector 0.031 -0.336 Viras Priority Vectors Ecoparasit vector 0.029 -0.903 Protozoa Low Animals Close contact 0.029 -0.903 Trematoda Low Food Fish consumption 0.028 -0.506 Trematoda Low Food Fish consumption 0.028 0.000 Trematoda High Food Fish consumption 0.028 0.000 Bacteria Moderate Food Animal product 0.027 -0.652 Bacteria Low Animals Bites inoculation 0.025 -0.477 Bacteria High Food Animal product 0.023 -0.554 Viras Priority Animals Animal product 0.023 -0.505 Viras Moderate Vectors Ecoparasit vector 0.023 -0.505 Viras Moderate Food Animal product 0.027 -0.535	Angiostrongylus costaricensis	Nematoda	Moderate	Food	Accidental ingestion	0.032	-0.477	Occasional source
Virtus Priority Vectors Ectoparasit vector 0.029 -0.993 Fundad Low Animals Codes contact 0.029 0.000 Fundad Low Food Fish consumption 0.028 0.000 Trematoda Low Food Fish consumption 0.028 0.000 Trematoda Low Food Fish consumption 0.028 0.000 Bacteria Moderate Food Fish consumption 0.027 -0.532 Bacteria Priority Animals Close contact 0.025 -0.477 Bacteria Priority Animals Bites inoculation 0.025 -0.554 Nomatoda High Food Animal product 0.023 -0.554 Nomatoda High Evotparasit vector 0.023 -0.554 Nomatoda High Food Animal product 0.023 -0.554 Nomatoda High Food Animal product 0.023 -0.075	Trypanosoma cruzi	Protozoa	Priority	Vectors	Ectoparasit vector	0.031	-0.336	Secondary source
Funging Low Environment Unsanitary conditions 0.029 0.000 Funging Low Animals Close contact 0.028 0.000 Trematoda Low Food Fish consumption 0.028 0.000 Trematoda High Food Fish consumption 0.027 0.000 Trematoda High Food Animals 0.027 0.000 Bacteria Moderate Animals Bites incoulation 0.025 0.053 Bacteria Low Animals Bites incoulation 0.025 0.0477 Nematoda High Evodos Animal product 0.023 0.000 Virus Moderate Vectors Ecoparasit vector 0.021 0.000 Virus Priority Animals Animal product 0.021 0.000 Virus Priority Animals Animal product 0.021 0.000 Virus Priority Animals Animal product 0.021 0.015	Tick-borne encephalitis virus	Virus	Priority	Vectors	Ectoparasit vector	0.029	-0.903	Occasional source
Fungi Low Animals Close contact 0.038 -0.368 Trematoda Low Food Fish consumption 0.028 0.000 Trematoda Low Food Fish consumption 0.027 0.000 Trematoda High Food Animal product 0.027 -0.632 Bacteria Moderate Animals Bites inoculation 0.027 -0.647 Bacteria High Food Animal product 0.024 -0.477 Nematoda High Evolusing vector 0.024 -0.477 Nurus Moderate Vectors Exceparasit vector 0.023 0.000 Bacteria Priority Vectors Exceparasit vector 0.021 0.000 Bacteria Priority Food Animal product 0.021 0.000 Bacteria Moderate Food Animal product 0.021 0.000 Bacteria Moderate Food Animal product 0.021 0.007	Balantidium coli	Protozoa	Low	Environment	Unsanitary conditions	0.029	0.000	Occasional source
Trematoda Low Food Fish consumption 0.028 0.000 Trematoda Low Food Fish consumption 0.027 0.000 Trematoda High Food Fish consumption 0.027 0.000 Bacteria Moderate Food Animal product 0.025 -0.477 Bacteria Priority Animals Bites inoculation 0.025 -0.477 Bacteria High Frod Animal product 0.024 -0.477 Nomatoda High Evorison Animal product 0.023 -0.477 Virus Priority Vectors Ectoparisti vector 0.023 -0.505 Virus Moderate Vectors Ectoparisti vector 0.021 -0.125 Nurs Moderate Food Animal product 0.021 -0.125 Racteria Priority Food Animal product 0.021 -0.079 Bacteria Moderate Food Animal product 0.021 -0.1	Microsporum spp.	Fungi	Low	Animals	Close contact	0.028	-0.368	Secondary source
Trematoda Low Food Fish consumption 0.028 0.000 Trematoda High Food Fish consumption 0.027 0.000 Bacteria Moderate Animal product 0.027 -0.653 Bacteria Moderate Animals Bites inoculation 0.025 -0.477 Bacteria Low Animals Bites inoculation 0.024 -0.477 Bacteria High Food Animal product 0.024 -0.477 Virus Moderate Vectors Extoparasit vector 0.023 -0.505 Virus Moderate Vectors Extoparasit vector 0.023 -0.055 Nematoda High Food Animal product 0.023 -0.055 Nematoda High Food Animal product 0.021 -0.125 Nematoda High Food Animal product 0.021 -0.125 Protriy Food Animal product 0.021 -0.437 Bacteria	Cryptocotyle lingua	Trematoda	Low	Food	Fish consumption	0.028	0.000	Occasional source
Trematoda High Food Fish consumption 0.027 0.000 Bacteria Moderate Food Animal product 0.027 -0.652 Bacteria Moderate Animals Bits incoulation 0.024 -0.954 Bacteria Low Animals Bites incoulation 0.024 -0.954 Bacteria High Frood Animal product 0.024 -0.477 Virus Priority Vectors Extoparasit vector 0.023 -0.505 Virus Priority Vectors Extoparasit vector 0.021 -0.125 Nematoda High Food Animal product 0.021 -0.125 Nematoda High Food Animal product 0.021 -0.125 Racteria Priority Animals Animal product 0.021 -0.079 Cestoda Priority Food Animal product 0.021 -0.477 Protozoa Priority Food Animal product 0.021 <td< td=""><td>Centrocestus spp.</td><td>Trematoda</td><td>Low</td><td>Food</td><td>Fish consumption</td><td>0.028</td><td>0.000</td><td>Occasional source</td></td<>	Centrocestus spp.	Trematoda	Low	Food	Fish consumption	0.028	0.000	Occasional source
Bacteria Moderate Food Animal product 0.026 -0.632 Bacteria Moderate Animals Close contact 0.026 -0.477 Bacteria Low Animals Bites inoculation 0.025 -0.554 Bacteria High Food Animals Bites inoculation 0.024 -0.477 Nematoda High Frootneet Virus 0.024 -0.1161 Virus Moderate Vectors Ectoparasit vector 0.023 0.000 Bacteria Priority Animals Animal product 0.021 -0.125 Nematoda High Food Animal product 0.021 -0.125 Nematoda Priority Animals Animal product 0.021 -0.079 Bacteria Priority Food Animal product 0.021 -0.477 Protozoa Priority Environment Unsanitary conditions 0.019 -0.437 Acathocophala Priority Priority Priority<	Opistorchis viverrini	Trematoda	High	Food	Fish consumption	0.027	0.000	Secondary source
Bacteria Moderate Animals Close contact 0.026 -0.477 Bacteria Low Animals Bites inoculation 0.025 -0.954 Bacteria Low Animals Bites inoculation 0.025 -0.954 Nematoda High Evod Animal product 0.023 -0.505 Virus Moderate Vectors Ectoparasit vector 0.023 0.000 Nematoda High Food Animal product 0.021 0.015 Nematoda Priority Animal product 0.021 0.015 Bacteria Priority Animal product 0.021 0.015 Bacteria Moderate Food Animal product 0.021 0.015 Fungis Moderate Food Animal product 0.021 0.047 Bacteria Priority Environment Unsanitary conditions 0.015 0.047 Bacteria Low Animals Close contact 0.017 0.087 Ba	Campylobacter coli	Bacteria	Moderate	Food	Animal product	0.027	-0.632	Secondary source
Bacteria Priority Animals Bites inoculation 0.025 -0.954 Bacteria Low Animals Bites inoculation 0.024 -0.477 Bacteria High Environment Unsanitary conditions 0.023 -0.0505 Virus Priority Vectors Ectoparasit vector 0.023 -0.0505 Virus Moderate Vectors Ectoparasit vector 0.023 -0.0505 Nematoda High Food Animal product 0.021 -0.125 Nematoda High Food Animal product 0.021 -0.079 Cestoda Priority Animals Animal product 0.021 -0.079 Cestoda Priority Food Animal product 0.021 -0.073 Protozoa Priority Environment Unsanitary conditions 0.019 -0.477 Pung Moderate Animals Alimal product 0.019 -0.477 Pung Protozoa Priority Vectors <t< td=""><td>Erysipelothrix rhusiopathiae</td><td>Bacteria</td><td>Moderate</td><td>Animals</td><td>Close contact</td><td>0.026</td><td>-0.477</td><td>Potential source</td></t<>	Erysipelothrix rhusiopathiae	Bacteria	Moderate	Animals	Close contact	0.026	-0.477	Potential source
Bacteria Low Animals Bites inoculation 0.024 -0.477 Bacteria High Food Animal product 0.023 -0.505 Virus Priority Vectors Hying vector 0.023 -0.505 Virus Moderate Vectors Ectoparasit vector 0.023 0.000 Priority Animals Animal product 0.021 -0.125 Nematoda High Food Animal product 0.021 -0.125 Cestoda Priority Animal product 0.021 -0.77 Bacteria Priority Animal product 0.021 -0.679 Protozoa Priority Food Animal product 0.021 -0.477 Bacteria Priority Food Animal product 0.014 -0.437 Protozoa Priority Food Animal product 0.015 -0.477 Bacteria Priority Food Animal product 0.014 -0.230 Acanthocephala Lo	Francisella tularensis	Bacteria	Priority	Animals	Bites inoculation	0.025	-0.954	Occasional source
Bacteria High Food Animal product 0.024 -1.161 Nematoda High Environment Unsanitary conditions 0.023 -0.505 Virus Priority Vectors Ectoparasit vector 0.023 0.000 Nematoda High Food Animals Animal product 0.021 -0.125 Nematoda High Food Animal product 0.021 -0.079 Cestoda Priority Animal product 0.021 -0.079 Bacteria Moderate Food Animal product 0.021 -0.079 Protozoa Priority Environment Unsanitary conditions 0.019 -0.477 Acanthocephala Low Animals Close contact 0.015 -0.437 Acanthocephala Low Food Accidental ingestion 0.014 -0.233 Acanthocephala Low Food Accidental ingestion 0.014 -0.233 Acanthocephala Low Food Food	Streptobacillus moniliformis	Bacteria	Low	Animals	Bites inoculation	0.024	-0.477	Secondary source
Nematoda High Environment Unsanitary conditions 0.023 -0.505 Virus Priority Vectors Ectoparasit vector 0.022 0.000 Virus Moderate Vectors Ectoparasit vector 0.022 0.000 Bacteria Priority Animals Animal product 0.021 -0.125 Nematoda High Food Animal product 0.021 -0.079 Cestoda Priority Animal product 0.021 -0.079 Bacteria Moderate Food Animal product 0.021 -0.079 Protozoa Priority Environment Unsanitary conditions 0.017 -0.477 Bacteria Low Animals Close contact 0.017 -0.897 Acanthocephala Low Animals Close contact 0.016 -0.253 Acanthocephala Low Food Accidental ingestion 0.014 -0.176 Bacteria High Environment Unsanitary conditions 0.	Clostridium perfringens	Bacteria	High	Food	Animal product	0.024	-1.161	Occasional source
Virus Priority Vectors Extoparasit vector 0.003 0.000 Virus Moderate Vectors Extoparasit vector 0.022 0.000 Bacteria Priority Animals Animal product 0.021 -0.125 Nematoda High Food Animal product 0.021 -0.079 Cestoda Priority Food Animal product 0.021 -0.079 Bacteria Priority Environment Unsanitary conditions 0.019 -0.477 Protozoa Priority Food Animal product 0.017 -0.477 Sacteria Priority Vectors Hijnig vector 0.016 -0.380 Acanthocephala Low Animals Close contact 0.016 -0.380 Acanthocephala Low Animals Close contact 0.016 -0.380 Acanthocephala Low Food Accidental ingestion 0.014 -0.153 Bacteria High Environment Unsanitary conditions	Ascaris lumbricoides	Nematoda	High	Environment	Unsanitary conditions	0.023	-0.505	Occasional source
Virus Moderate Vectors Ectoparasit vector 0.022 0.000 Bacteria Priority Animals Animal product 0.021 -0.125 Nematoda High Food Animal product 0.021 -0.079 Bacteria Priority Food Animal product 0.021 -0.079 Bacteria Moderate Food Animal product 0.021 -0.079 Protozoa Priority Environment Unsanitary conditions 0.019 -0.477 Ovani Protozoa Priority Vectors Flying vector 0.017 -0.477 Ovani Low Animals Close contact 0.017 -0.253 Acanthocephala Low Food Accidental ingestion 0.014 -0.253 Acanthocephala Low Food Fish consumption 0.013 -0.147	EEE virus	Virus	Priority	Vectors	Flying vector	0.023	0.000	Potential source
BacteriaPriorityAnimalsAnimals product0.021-0.125NematodaHighFoodAnimal product0.0210.047BacteriaPriorityFoodAnimal product0.021-0.079CestodaPriorityFoodAnimal product0.021-0.079ProtozoaPriorityEnvironmentUnsanitary conditions0.019-0.477PungiModerateAnimalsClose contact0.017-0.477ProtozoaPriorityVectorsFlying vector0.017-0.897OvaniDacteriaLowAnimalsClose contact0.014-0.253AcanthocephalaLowFoodAccidental ingestion0.014-0.176AcanthocephalaLowFoodFish consumption0.013-1.447	Powassan virus	Virus	Moderate	Vectors	Ectoparasit vector	0.022	0.000	Potential source
Nematoda High Food Animal product 0.021 0.477 Bacteria Priority Animals Animal product 0.021 -0.079 Cestoda Priority Food Animal product 0.021 -0.079 Protozoa Priority Environment Unsanitary conditions 0.019 -0.477 Pungi Moderate Animals Close contact 0.017 -0.477 Avani Protozoa Priority Vectors Hying vector 0.016 -0.477 Acanthocephala Low Animals Close contact 0.016 -0.380 Acanthocephala Low Food Accidental ingestion 0.014 -0.253 Acanthocephala Low Food Fish consumption 0.013 -1.447	Brucella abortus	Bacteria	Priority	Animals	Animal product	0.021	-0.125	Occasional source
BacteriaPriorityAnimalsAnimals product0.021-0.079CestodaPriorityFoodAnimal product0.0210.000BacteriaModerateFoodAnimal product0.019-0.477ProtozoaPriorityEnvironmentUnsanitary conditions0.019-0.477PasteriaPriorityFoodAnimals product0.017-0.897OvaniProtozoaPriorityVectorsHying vector0.016-0.897PasteriaLowAnimalsClose contact0.014-0.253AcanthocephalaLowFoodAccidental ingestion0.014-0.176AcanthocephalaLowFoodFish consumption0.013-1.447	Trichinella spiralis	Nematoda	High	Food	Animal product	0.021	0.477	Occasional source
Cestoda Priority Food Animal product 0.021 0.000 Bacteria Moderate Food Animal product 0.020 -0.813 Protozoa Priority Environment Unsanitary conditions 0.019 -0.477 Davioria Animals Close contact 0.017 -0.477 Davioria Vectors Flying vector 0.016 -0.897 Davioria Vectors Flying vector 0.016 -0.380 Acanthocephala Low Animals Close contact 0.014 -0.253 Acanthocephala Low Food Accidental ingestion 0.014 -0.176 Acanthocephala Low Food Fish consumption 0.013 -1.447	Brucella melitensis	Bacteria	Priority	Animals	Animal product	0.021	-0.079	Occasional source
Bacteria Moderate Food Animal product 0.020 -0.813 Protozoa Priority Environment Unsanitary conditions 0.019 -0.477 Pacteria Priority Food Animals Close contact 0.017 -0.897 Ovani Protozoa Priority Vectors Flying vector 0.016 -0.897 Protozoa Priority Vectors Food Accidental ingestion 0.014 -0.253 Acanthocephala Low Food Accidental ingestion 0.014 -0.176 Acanthocephala Low Food Fish consumption 0.013 -1.447	Taenia solium	Cestoda	Priority	Food	Animal product	0.021	0.000	Occasional source
Protozoa Priority Environment Unsanitary conditions 0.019 -0.477 Pungi Moderate Animals Close contact 0.017 -0.897 Ovani Protozoa Priority Vectors Flying vector 0.016 -0.897 Protozoa Priority Vectors Flying vector 0.016 -0.897 Acanthocephala Low Animals Close contact 0.014 -0.253 Acanthocephala Low Food Accidental ingestion 0.014 -0.176 Acanthocephala Low Food Fish consumption 0.013 -1.447	Arcobacter spp.	Bacteria	Moderate	Food	Animal product	0.020	-0.813	Occasional source
Fungi Moderate Animals Close contact 0.017 -0.477 Bacteria Priority Food Animal product 0.017 -0.897 ovani Protozoa Priority Vectors Hying vector 0.016 -0.380 Acanthocephala Low Animals Close contact 0.014 -0.253 Acanthocephala Low Food Accidental ingestion 0.014 -0.176 Acanthocephala Low Food Fish consumption 0.013 -1.447	Cryptosporidium parvum	Protozoa	Priority	Environment	Unsanitary conditions	0.019	-0.477	Occasional source
Bacteria Priority Food Animal product 0.017 -0.897 ovani Protozoa Priority Vectors Flying vector 0.016 -0.380 Acanthocephala Low Animals Close contact 0.014 -0.253 Acanthocephala Low Food Accidental ingestion 0.014 -0.176 Acanthocephala Low Food Fish consumption 0.013 -1.447	Trichophyton spp.	Fungi	Moderate	Animals	Close contact	0.017	-0.477	Occasional source
ovaniProtozoaPriorityVectorsFlying vector0.016-0.380AcarthocephalaLowAnimalsClose contact0.014-0.253AcanthocephalaLowFoodAccidental ingestion0.014-0.176BacteriaHighEnvironmentUnsanitary conditions0.013-1.447AcanthocephalaLowFoodFish consumption0.0130.058	Campylobacter jejuni	Bacteria	Priority	Food	Animal product	0.017	-0.897	Secondary source
BacteriaLowAnimalsClose contact0.014-0.253AcanthocephalaLowFoodAccidental ingestion0.014-0.176BacteriaHighEnvironmentUnsanitary conditions0.013-1.447AcanthocephalaLowFoodFish consumption0.0130.058	Leishmania donovani donovani	Protozoa	Priority	Vectors	Flying vector	0.016	-0.380	Potential source
AcanthocephalaLowFoodAccidental ingestion0.014-0.176BacteriaHighEnvironmentUnsanitary conditions0.013-1.447AcanthocephalaLowFoodFish consumption0.0130.058	Mycoplasma spp.	Bacteria	Low	Animals	Close contact	0.014	-0.253	Occasional source
Bacteria High Environment Unsanitary conditions 0.013 -1.447 Acanthocephala Low Food Fish consumption 0.013 0.058	Moniliformis moniliformis	Acanthocephala	Low	Food	Accidental ingestion	0.014	-0.176	Potential source
Acanthocephala Low Food Fish consumption 0.013 0.058	Clostridioides difficile	Bacteria	High	Environment	Unsanitary conditions	0.013	-1.447	Occasional source
	Acanthocephalus spp.	Acanthocephala	Low	Food	Fish consumption	0.013	0.058	Potential source

tbed, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/bed/5522451 by Cochrane France, Wiley Online Library on [27/08/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/erms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Ceativity Commons License

TABLE 1: Continued.

Secritation of Particular Miles High Procedure Environment Program Wester of Neutral Program Wester of Neutral Program Wester of Neutral Program High Procedural Program Evolution Program Wester of Playing vector 0.012 0.008 Colourchies siteratis Trematoda Moderate Food Fish consumption 0.011 0.015 Ross River virus Virusa Moderate Food Fish consumption 0.011 0.015 Ross River virus Virusa Moderate Food Animal product 0.010 0.017 Versitia culterrochikica Bacteria Moderate Food Animal product 0.009 0.192 Versitia culterrochikica Bacteria Moderate Frod Animal product 0.009 0.192 Versitia culterrochikica Bacteria Moderate Environment Waterborne 0.009 0.192 Schistosone cerearlate Bacteria Moderate Frod Animal product 0.007 0.012 Schistosone Bacteria Moderate Envinor Animal produc	Pathogen	Taxo group	Health impact	Exposure source	Pathway	Dog's part	Dog's partition	Zoonotic source potential
s virus Moderate Vectors Flying vector 0.012 Trematoda Hority Vectors Flying vector 0.012 Termatoda Moderate Food Fish consumption 0.011 Virus Moderate Food Fish consumption 0.011 Virus Moderate Food Animal product 0.000 Protozoa Hiph Environment Unasuntator conditions 0.000 Virus Priority Vectors Flying vector 0.007 Virus Moderate Food Animal product 0.007 Virus High Environment Unsanitary conditions 0.007 Virus Priority Animal product 0.007 Virus High Environment Unsanitary conditions 0.006 Virus Priority Animal product 0.006 Virus High Environment Unsanitaty conditions 0.006 Virus High Environment Unimal product 0.006	Schistosoma japonicum	Trematoda	High	Environment	Waterborne	0.013	0.000	Occasional source
Virus Priority Vectors Hyling vector 0.012 Trematoda Moderate Food Fish consumption 0.011 Virus Moderate Food Fish consumption 0.011 Bacteria Low Food Animal product 0.010 Protozza High Environment Unantalacy conditions 0.009 Virus Priority Vectors Hyling vector 0.007 Bacteria Moderate Food Animal product 0.007 Virus High Environment Unsanitary conditions 0.007 Virus High Environment Unsanitary conditions 0.007 Virus Priority Animal product 0.007 Virus High Environment Unsanitary conditions 0.006 Virus Priority Environment Unsanitary conditions 0.006 Virus Priority Environment Waterborne 0.006 Bacteria Priority Environment Waterb	Murray Valley encephalitis virus	Virus	Moderate	Vectors	Flying vector	0.012	0.000	Occasional source
Trematoda High Food Fish consumption 0.011 Trematoda Moderate Vectors Fish consumption 0.011 Bacteria Low Food Animal product 0.010 Protozoa High Environment Unsanitary conditions 0.009 Bacteria Moderate Food Animal product 0.007 Trematoda Moderate Environment Waterborne 0.007 Bacteria Moderate Environment Waterborne 0.007 Bacteria Moderate Environment Waterborne 0.007 Bacteria Moderate Environment Unsanitary conditions 0.007 Bacteria Moderate Environment On-minal product 0.007 Bacteria Moderate Environment Unsanitary conditions 0.007 Virus Priority Animals Close contact 0.007 Bacteria Priority Animals 0.008 Virus Priority Food Animal product 0.006 Virus Priority Vectors Flying vector 0.005 Bacteria Moderate Environment Unsanitary conditions 0.006 Bacteria Moderate Environment On-minal product 0.004 Fungi High Animals 0.008 Bacteria Priority Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria High Animals 0.008 Animal product 0.004 Fungi High Animals 0.008 contact 0.004 Bacteria High Environment 0.008 Animal product 0.004 Fungi High Animals 0.008 Close contact 0.007 Bacteria High Environment 0.008 Animal product 0.004 Fungi High Animals 0.008 contact 0.008 Bacteria High Environment 0.008 Animal Bacteria High Environment 0.008 Animal Bacteria Priority Animals 0.008 Close contact 0.007 Bacteria Moderate Environment 0.008 Animal Bacteria Moderate Environment 0.008 Animal Bacteria Moderate Environment 0.008 Animal Product 0.009 Bacteria High Environment 0.008 Animal Product 0.009 Bacteria High Environment 0.008 Animal Product 0.009 Bacteria Moderate 0.008 Bacteria Moderat	West Nile virus	Virus	Priority	Vectors	Flying vector	0.012	-0.681	Potential source
Trematoda Moderate Food Fish consumption 0.011 Virus Moderate Vectors Hyling vector 0.010 Bacteria Hood Animal product 0.009 Inventora Hyling Environment Unsanitary conditions 0.009 Virus Phority Vectors Hyling vector 0.007 s Bacteria Moderate Food Animal product 0.007 s Bacteria Moderate Food Animal product 0.007 lyrus Priority Animals Ones contact 0.007 lyrus Priority Animals Ones contact 0.006 Virus Priority Environment Unsanitary conditions 0.006 Virus Priority Environment Animal product 0.006 Virus Priority Environment Waterborne 0.005 Bacteria Priority Priority Priority 0.004 Bacteria Priority Priority	Clonorchis sinensis	Trematoda	High	Food	Fish consumption	0.011	-0.125	Occasional source
Virus Moderate Vectors Hying vector 0.010 Bacteria Low Food Animal product 0.010 Protoza High Environment Animal product 0.009 Virus Priority Vectors Hying vector 0.007 s Bacteria Moderate Environment Waterborne 0.007 Virus High Environment Unsanitary conditions 0.007 Virus High Environment Unsanitary conditions 0.007 Virus Priority Animals product 0.007 Virus High Environment Unsanitary conditions 0.006 Virus High Environment Onseconact 0.006 Virus Priority Vectors Hying vector 0.005 Bacteria Moderate Environment Variatebrore 0.005 Bacteria High Environment Soil transmitted 0.004 Bacteria Priority Food Animal pr	Echinostoma spp.	Trematoda	Moderate	Food	Fish consumption	0.011	0.176	Occasional source
Bacteria Low Food Animal product 0.00 Protozoa High Environment Unantiany conditions 0.009 Bacteria Moderate Food Animal product 0.007 Sacteria Moderate Environment Waterborne 0.007 Sacteria Moderate Food Animal product 0.007 Virus High Environment Unsantiary conditions 0.007 Bacteria Priority Animal product 0.007 Virus High Environment Unsantiary conditions 0.006 Virus Priority Animal product 0.006 Virus Priority Vectors Priority 0.006 Virus High Environment Waterborne 0.006 Bacteria Priority Food Animal product 0.004 Bacteria High Food Animal product 0.004 Bacteria Priority Food Animal product 0.004	Ross River virus	Virus	Moderate	Vectors	Flying vector	0.010	0.000	Potential source
Protozoa High Environment Unsanitary conditions 0.009 Bacteria Moderate Food Animal product 0.009 Pacteria Moderate Frod Animal product 0.007 Bacteria Moderate Food Animal product 0.007 Bacteria Moderate Food Animal product 0.007 Bacteria Priority Animal product 0.007 Virus Priority Animal product 0.007 Virus Priority Environment Unsanitary conditions 0.006 Virus Priority Environment Unsanitary conditions 0.006 Virus Priority Environment Unsanitary conditions 0.006 Virus Priority Vectors Hying vector 0.006 Bacteria Moderate Environment Soil transmitted 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Food Animal product	Campylobacter fetus	Bacteria	Low	Food	Animal product	0.010	-0.301	Potential source
Bacteria Moderate Food Animal product 0.007 Virus Priority Vectors Hying vector 0.007 Sacteria Moderate Environment Waterborne 0.007 Pacteria Moderate Food Animal product 0.007 Virus High Environment Unsanitary conditions 0.007 Priority Animals Animal product 0.007 Virus Priority Animals 0.006 Virus Priority Environment Unsanitary conditions 0.006 Virus Priority Environment Unsanitary conditions 0.006 Virus Priority Vectors Hying vector 0.006 Virus Moderate Animals 0.006 Bacteria Priority Food Animal product 0.006 Bacteria Priority Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria </td <td>Entamoeba histolytica</td> <td>Protozoa</td> <td>High</td> <td>Environment</td> <td>Unsanitary conditions</td> <td>0.009</td> <td>-0.192</td> <td>Occasional source</td>	Entamoeba histolytica	Protozoa	High	Environment	Unsanitary conditions	0.009	-0.192	Occasional source
virus Priority Vectors Flying vector 0.007 s Bacteria Moderate Evod Animal product 0.007 Virus High Environment Unsanitary conditions 0.007 Bacteria Priority Animals 0.007 Virus Priority Animals 0.006 Virus Priority Environment Unsanitary conditions 0.006 Virus Priority Environment Unsanitary conditions 0.006 Virus Priority Vectors Flying vector 0.006 Virus Priority Vectors 0.006 Bacteria Moderate Environment 0.004 Bacteria High Animals 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Environment 0.004 0.004 Fungi High Animala	Yersinia enterocolitica	Bacteria	Moderate	Food	Animal product	0.009	-1.041	Occasional source
s Moderate Environment Waterborne 0.007 Bacteria Moderate Food Animal product 0.007 Virus High Environment Unsanitary conditions 0.007 Bacteria Priority Animals Animal product 0.006 Bacteria Priority Environment Unsanitary conditions 0.006 Virus High Food Animal product 0.006 Virus Priority Environment Unsanitary conditions 0.006 Virus Priority Vectors Hiying vector 0.006 Virus Moderate Environment Soil transmitted 0.005 Bacteria High Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Environment Unsanitary conditions 0.004 Bacteria High Animals	Japanese encephalitis virus	Virus	Priority	Vectors	Flying vector	0.007	-0.176	Potential source
s Bacteria Moderate Food Animal product 0.007 Virus High Environment Unsanitary conditions 0.007 Bacteria Priority Animals Animal product 0.007 Bacteria Priority Animals 0.006 0.007 Virus Priority Environment Unsanitary conditions 0.006 Virus Priority Vectors Priority 0.006 Bacteria Priority Vectors Priority 0.006 Bacteria High Environment Waterborne 0.005 Bacteria Priority Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Environment Vainal product 0.004 Bacteria Priority Environment Vainal product 0.004 Burichia Priority Environme	Schistosome cercariae	Trematoda	Moderate	Environment	Waterborne	0.007	0.000	Occasional source
Bacteria Moderate Food Animal product 0.007 Bacteria Priority Animals Animal product 0.007 Bacteria Priority Animals Close contact 0.006 Virus High Environment Unsanitary conditions 0.006 Virus High Environment Unsanitary conditions 0.006 Virus Priority Vectors Piying vector 0.006 Virus Moderate Animals Close contact 0.005 Bacteria High Environment Waterborne 0.005 Bacteria Priority Food Animal product 0.004 Bacteria High Animals Close contact 0.004 Bacteria Priority Food Animal product 0.004 Bacteria High Animals Close contact 0.004 Bacteria High Environment Waterborne 0.002 Bacteria High Animals Close contact </td <td>Yersinia pseudotuberculosis</td> <td>Bacteria</td> <td>Moderate</td> <td>Food</td> <td>Animal product</td> <td>0.007</td> <td>-0.602</td> <td>Potential source</td>	Yersinia pseudotuberculosis	Bacteria	Moderate	Food	Animal product	0.007	-0.602	Potential source
Virus High Environment Unsanitary conditions 0.007 Bacteria Priority Animals Animal product 0.006 Virus Priority Environment Unbalation 0.006 Virus Priority Environment Unsanitary conditions 0.006 Bacteria Priority Environment Vasinatary conditions 0.006 Bacteria Priority Vectors Flying vector 0.006 Bacteria High Environment Vasinatary conditions 0.006 Bacteria High Environment O.004 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria High Animal product 0.004 Bacteria High Environment Onse contact 0.004 Bacteria High Environment Onse c	Salmonella bongori	Bacteria	Moderate	Food	Animal product	0.007	0.000	Potential source
BacteriaPriorityAnimalsAnimal product0.007VirusPriorityEnvironmentInhalation0.006VirusHighFoodAnimal product0.006VirusPriorityEnvironmentUnsanitary conditions0.006VirusPriorityVectorsFlying vector0.005BacteriaModerateEnvironmentVaterborne0.005BacteriaModerateEnvironmentSoil transmitted0.004BacteriaPriorityFoodAnimal product0.004BacteriaPriorityFoodAnimal product0.004BacteriaPriorityEnvironmentSoil transmitted0.004BacteriaHighAnimalsClose contact0.004BacteriaHighEnvironmentUnsanitary conditions0.002VirusPriorityEnvironmentUnsanitary conditions0.002VirusPriorityEnvironmentVaterborne0.001BacteriaHighEnvironmentVaterborne0.001BacteriaPriorityEnvironmentVaterborne0.001	Rotavirus	Virus	High	Environment	Unsanitary conditions	0.007	-0.301	Potential source
BacteriaPriorityAnimalsClose contact0.006VirusHighFoodAnimal product0.006BacteriaPriorityEnvironmentUnsanitary conditions0.006VirusPriorityVectorsHying vector0.005BacteriaModerateAnimalsClose contact0.005BacteriaModerateEnvironmentWaterborne0.005BacteriaModerateEnvironmentSoil transmitted0.004BacteriaHighAnimalsInhalation0.004BacteriaPriorityFoodAnimal product0.004BacteriaPriorityEnvironmentSoil transmitted0.004BacteriaPriorityEnvironmentClose contact0.003BacteriaHighEnvironmentUnsanitary conditions0.002VirusPriorityAnimalsClose contact0.002BacteriaModerateEnvironmentWaterborne0.001BacteriaPriorityEnvironmentSoil transmitted0.001BacteriaPriorityEnvironmentSoil transmitted0.001	Mycobacterium bovis	Bacteria	Priority	Animals	Animal product	0.007	-0.845	Occasional source
Virus Priority Environment Inhalation 0.006 Virus High Food Animal product 0.006 Bacteria Priority Vectors Flying vector 0.005 Virus Priority Vectors Flying vector 0.005 Virus Priority Vectors Flying vector 0.005 Trematoda High Environment Close contact 0.005 Bacteria Priority Food Animal product 0.004 Bacteria High Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Environment Usoa contact 0.004 Pungi High Animals Close contact 0.003 Virus Priority Animals Close contact 0.003 Virus Priority Animals 0.002	Staphylococcus aureus MR	Bacteria	Priority	Animals	Close contact	900.0	-1.439	Secondary source
Virus High Food Animal product 0.006 Bacteria Priority Environment Unsanitary conditions 0.005 Virus Priority Vectors Flying vector 0.005 Trematoda High Environment Waterborne 0.005 Bacteria Moderate Environment Naterborne 0.004 Fungi High Animals 0.004 Hangi High Animal product 0.004 Hangi High Animal product 0.004 Hangi Frood Animal product 0.004 Bacteria Priority Environment Unsanitaty conditions 0.004 Fungi High Environment Unsanitaty conditions 0.002 Virus Priority Environment Waterborne 0.001 Bacteria Moderate Environment Soil transmitted 0.001 Ici Bacteria Priority Environment Vaterborne 0.001	Hantavirus	Virus	Priority	Environment	Inhalation	0.006	-0.301	Potential source
Bacteria Priority Environment Unsanitary conditions 0.006 Virus Priority Vectors Hying vector 0.005 Trematoda High Environment Waterborne 0.005 Bacteria Moderate Environment Soil transmitted 0.004 Hugh High Animal Product 0.004 Bacteria High Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria High Animals Close contact 0.003 Bacteria High Environment Unsanitary conditions 0.002 Virus Priority Animals Close contact 0.002 Bacteria Priority Environment Waterborne 0.001 Bacteria Priority Environment Soil transmitted 0.001	Hepatitis E virus	Virus	High	Food	Animal product	0.006	-0.410	Occasional source
Virus Priority Vectors Flying vector 0.005 Bacteria Moderate Animals Close contact 0.005 Bacteria Moderate Environment Vaterborne 0.004 Bacteria Priority Food Animal product 0.004 Hugi High Animal product 0.004 Bacteria High Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Environment Viose contact 0.002 Virus Priority Animals Close contact 0.002 Virus Priority Animals Close contact 0.002 Virus Priority Environment Waterborne 0.001 Iei Bacteria Priority Environment Soil transmitted 0.001	Escherichia coli	Bacteria	Priority	Environment	Unsanitary conditions	900.0	-1.010	Secondary source
Bacteria Moderate Animals Close contact 0.005 Trematoda High Environment Waterborne 0.005 Bacteria Moderate Environment Soil transmitted 0.004 Fungi High Animal Inhalation 0.004 Hugi High Animal 0.004 Pacteria Priority Food Animal product 0.004 Bacteria Priority Environment Soil transmitted 0.004 Particity Animals Close contact 0.002 Virus Priority Animals Close contact 0.002 Virus Moderate Environment Waterborne 0.001 Iei Bacteria Priority Environment Soil transmitted 0.001	Rift Valley fever virus	Virus	Priority	Vectors	Flying vector	0.005	-0.602	Occasional source
Trematoda High Environment Waterborne 0.005 Bacteria Moderate Environment Soil transmitted 0.004 Bacteria Priority Food Animal product 0.004 Bacteria High Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Bacteria Priority Environment Soil transmitted 0.004 Fungi High Animals Close contact 0.003 Waterborne 0.001 Bacteria High Environment Unsanitary conditions 0.002 Virus Priority Animals Close contact 0.002 Bacteria Moderate Environment Waterborne 0.001 Bacteria Priority Environment Olose contact 0.002	Pseudomonas aeruginosa	Bacteria	Moderate	Animals	Close contact	0.005	-0.916	Secondary source
Bacteria Moderate Environment Soil transmitted 0.004 Bacteria Priority Food Animal product 0.004 High Animals Inhalation 0.004 Bacteria High Food Animal product 0.004 Bacteria Priority Food Animal product 0.004 Fungi Priority Environment Close contact 0.003 Virus Priority Animals Close contact 0.002 Bacteria Moderate Environment Waterborne 0.001 Bacteria Priority Environment Soil transmitted 0.001	Schistosoma mansoni	Trematoda	High	Environment	Waterborne	0.005	0.000	Potential source
terica Bacteria Priority Food Animal product 0.004 phimurium Fungi High Animals Inhalation 0.004 cytogenes Bacteria High Food Animal product 0.004 acis Bacteria Priority Environment Soil transmitted 0.004 re Bacteria High Animals Close contact 0.003 vdrophila Bacteria Priority Animals Close contact 0.002 vdrophila Bacteria Moderate Environment Waterborne 0.001 pseudomallei Bacteria Priority Environment Soil transmitted 0.001	Mycobacterium ulcerans	Bacteria	Moderate	Environment	Soil transmitted	0.004	0.000	Potential source
jirovecii Fungi High Animals Inhalation 0.004 phimurium Bacteria High Food Animal product 0.004 cytogenes Bacteria Priority Food Animal product 0.004 acis Bacteria Priority Environment Close contact 0.003 vdrophila Bacteria High Environment Unsanitary conditions 0.002 vdrophila Bacteria Moderate Environment Waterborne 0.001 pseudomallei Bacteria Priority Environment Soil transmitted 0.001	Salmonella enterica	Bacteria	Priority	Food	Animal product	0.004	-0.778	Secondary source
phinurium Bacteria High Food Animal product 0.004 acis Bacteria Priority Food Animal product 0.004 acis Bacteria Priority Environment Close contact 0.004 ne Bacteria High Animals Close contact 0.002 vdrophila Bacteria Moderate Environment Waterborne 0.001 pseudomallei Bacteria Priority Environment Soil transmitted 0.001	Pneumocystis jirovecii	Fungi	High	Animals	Inhalation	0.004	-0.301	Potential source
cytogenes Bacteria Priority Food Animal product 0.004 acis Bacteria Priority Environment Soil transmitted 0.004 te Fungi High Animals Close contact 0.003 vdrophila Bacteria Priority Animals Close contact 0.002 vdrophila Bacteria Moderate Environment Waterborne 0.001 pseudomallei Bacteria Priority Environment Soil transmitted 0.001	Salmonella typhimurium	Bacteria	High	Food	Animal product	0.004	-1.190	Potential source
acis Bacteria Priority Environment Soil transmitted 0.004 te Fungi High Animals Close contact 0.003 te Bacteria High Environment Unsanitary conditions 0.002 vdrophila Bacteria Moderate Environment Waterborne 0.001 pseudomallei Bacteria Priority Environment Soil transmitted 0.001	Listeria monocytogenes	Bacteria	Priority	Food	Animal product	0.004	-0.970	Potential source
Fungi High Animals Close contact 0.003 Bacteria High Environment Unsanitary conditions 0.002 Virus Priority Animals Close contact 0.002 pseudophila Bacteria Moderate Environment Waterborne 0.001 pseudomallei Bacteria Priority Environment Soil transmitted 0.001	Bacillus anthracis	Bacteria	Priority	Environment	Soil transmitted	0.004	-0.301	Potential source
Bacteria High Environment Unsanitary conditions 0.002 Virus Priority Animals Close contact 0.002 Bacteria Moderate Environment Vaterborne 0.001 Bacteria Priority Environment Soil transmitted 0.001	Candida spp.	Fungi	High	Animals	Close contact	0.003	669.0-	Potential source
Virus Priority Animals Close contact 0.002 Bacteria Moderate Environment Waterborne 0.001 Bacteria Priority Environment Soil transmitted 0.001	Vibrio cholerae	Bacteria	High	Environment	Unsanitary conditions	0.002	0.000	Potential source
Bacteria Moderate Environment Waterborne 0.001 Bacteria Priority Environment Soil transmitted 0.001	Lassa virus	Virus	Priority	Animals	Close contact	0.002	0.000	Potential source
Bacteria Priority Environment Soil transmitted 0.001	Aeromonas hydrophila	Bacteria	Moderate	Environment	Waterborne	0.001	0.000	Potential source
	Burkholderia pseudomallei	Bacteria	Priority	Environment	Soil transmitted	0.001	-0.301	Potential source
Burkholderia mallei Bacteria Priority Animals Close contact 0.000 0.000	Burkholderia mallei	Bacteria	Priority	Animals	Close contact	0.000	0.000	Potential source

tbed, 2025, 1, Downloaded from https://onlinelibrary.inley.com/doi/10.1.155/tbed/5524241 by Cockman France, Wiley Online Library on [27/08/2025]. See the Terms and Conditions (https://onlinelibrary.inley.com/erms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons. Licensed the Commons Licensed Conditions on Wiley Online Library.

FIGURE 2: Distribution of "Dog's part" mean by zoonotic potential of dogs.

FIGURE 3: Number of zoonotic pathogens by taxonomic groups.

than one in seven publications, ahead of pigs, cattle and cats. Pigs, reported at levels comparable to those of dogs, will later be used as a control for comparison with livestock species.

The bibliometric analysis conducted on the WoS Core Collection database measured the proportion of publications mentioning the term "dog" for each of the listed pathogens, thereby identifying the zoonotic agents most associated with *C. lupus familiaris* in the scientific literature. At the top of the ranked list, as shown in Table 1, are *Helicobacter canis*, *Trichuris vulpis*,

Ehrlichia canis, Capnocytophaga canimorsus, Staphylococcus pseudintermedius, B. canis, Dipylidium caninum, Uncinaria stenocephala, Bartonella vinsonii berkhoffii, and Anaplasma platys. In addition to this top 10, dogs are mentioned in at least one out of every two publications (Dog's Part Index > 0.5) for 15 other pathogens, compared to only three pathogens for pigs. Among the pathogens cited in at least 50 publications, 77 had a Dog's Part Index exceeding 0.1, whereas pigs were mentioned in more than one in 10 articles for only 42 listed pathogens.

FIGURE 4: Number of zoonotic pathogens by transmission pathways.

Comparatively, the dog index is twice as high as the pig index when averaged across all listed zoonotic pathogens (mean Dog's part = 0.105; mean Pig's part = 0.053). Most pathogens listed have more mentions of pigs than dogs (DogPig_part's > 0 for 139 zoonotic agents compared to 165). However, dogs are cited at least 10 times more than pigs for 56 pathogens, while pigs are cited 10 times more than dogs for half as many (DogPig_part's < 1 for 24 pathogens). Compared to pigs, these results suggest that dogs hold a relatively important place in the epidemiological dynamics of the pathogens they are associated with.

As a cross-validation of the classification established in the previous section, the Spearman's correlation test indicates a very significant positive relationship between "Dogs part" index and Zoonotic potential of dogs (p-value $< 2.2 \times 10^{-16}$; rho = 0.668). Thus, we observe in Figure 2 that pathogens for which dogs serve as the primary source of zoonotic infections have a relatively high Dog's part mean of 0.495, although the index exhibits considerable variability (standard deviation (sd) = 0.222). This value progressively decreases depending on the role of dogs in pathogen transmission: 0.117 when dogs act as secondary transmission hosts (sd = 0.105), 0.056 for pathogens that dogs occasionally transmit to humans (sd = 0.089), 0.044 for potential but unconfirmed zoonotic sources (sd = 0.076), and finally, 0.022 for pathogens that dogs do not transmit to humans (sd = 0.031).

Binomial logistic regression Models 1 and 2 demonstrated a significant effect (p-value $< 2.2 \times 10^{-16}$) of taxonomic groups, transmission routes, health impact, and their interactions, on the probability of mentioning dogs, respectively, on total

publications or compared to pigs. Dogs were three times more likely to be cited in publications referencing pathogens with low (p = 0.059) or moderate (p = 0.043) public health impacts than in those concerning pathogens of high (p = 0.015) or priority (p = 0.016) importance. It is worth noting that this trend is not as pronounced for pigs, even though Model 2 does not indicate significant differences between the two host species in terms of probabilities. Additionally, rickettsial organisms, cestodes, and nematodes were frequently associated with dogs in the scientific literature, exhibiting significantly higher predicted probabilities of mentions (p =0.183, p = 0.124, and p = 0.098, respectively in Model 1) compared to other pathogen groups, notably viruses (p = 0.011) or bacteria (p = 0.019). Comparatively, rickettsial species, protozoa, and helminths are more likely to be cited alongside dogs than pigs (p > 0.5 in Model 2).

The results of the Model 1 indicate that pathogens transmitted through bites (p=0.150), via ectoparasites (p=0.084) or contact with soil (p=0.078), are associated with the highest frequencies of dog mentions (Figure and summary in Supporting Information 2). Moreover, Model 2 shows that dogs are significantly more frequently cited than pigs (p>0.5) for these three transmission modes, as well as for fish or seafood consumption, flying vector borne and accidental ingestion (Figure 5). Conversely, pathogens transmitted through inhalation (p=0.009) in Model 1) and close contact (p=0.0015) in Model 1, as well as those associated with animal products and poor hygiene, are more frequently linked to pigs (p<0.5) in Model 2, Figure 5). This suggests that dogs are less commonly cited in these contexts than livestock species. On a broader scale, the frequency of dog

Figure 5: Probability of citing "dogs" against "pigs" by transmission pathways.

citations varies significantly depending on the exposure source considered. Dogs are most frequently mentioned in cases of vector-borne transmission (p=0.042 [0.028; 0.062]), followed by foodborne transmission (p=0.033 [0.027; 0.041]), environmental transmission (p=0.027 [0.018; 0.038]), and finally, direct transmission (p=0.021 [0.017; 0.025]). Model 2 indeed indicates that only vectorial exposure is more strongly associated with dogs than with pigs (p=0.744), whereas environmental and animal exposure sources are primarily linked to pigs (p<0.5), as can be seen in Figure 5, which compares the "dog" and "pig" citations by transmission pathways.

In a second step, by comparing the number of publications citing the terms "stray dogs" and "pet dogs," we aim to assess the extent to which each zoonotic pathogen is associated with one or the other canine lifestyle in the scientific literature. The 10 infectious agents with the highest Dog's Partition Index, and thus most frequently associated with stray dogs compared to pet dogs, are as follows: Heterophyes spp., Dioctophyme renale, Toxascaris leonina, D. caninum, Ancylostoma braziliense, Leptospira interrogans Copenhageni, H. canis, Echinococcus granulosus, Dibothriocephalus latus, and Macracanthorhynchus spp. Conversely, the 10 pathogens most frequently associated with pet dogs compared to stray dogs are: Staphylococcus intermedius, Clostridioides difficile, Staphylococcus aureus, Streptococcus canis, C. canimorsus, S. pseudintermedius, Salmonella typhimurium, Bordetella bronchiseptica, Clostridium perfringens, and Yersinia enterocolitica.

The results of the binomial logistic regression Model 3 assessing the probability of citing "stray dogs" compared to "pet dogs" in publications mentioning pathogens transmitted by dogs are summarized in the Supporting Information 2 across different taxonomic groups, health impacts, and transmission pathways. The deviance analysis indicated significant contributions of the three factors, especially Pathway and Taxonomic group, and their interaction (*p*-value $< 2.2 \times 10^{-16}$). Zoonoses caused by cestodes (p = 0.557), trematodes (p =0.465), nematodes (p = 0.428), rickettsiae (p = 0409), and protozoa (p = 0347) appear to be more frequently associated with stray dogs in the literature, whereas bacteria (p = 0.175), fungi (p = 0.127), and viruses (p = 0.005) are significantly linked to companion dogs. Additionally, no significant differences were found in the predicted probabilities across different levels of public health impact, although companion dogs appear to be associated with more concerning pathogens than stray dogs.

Furthermore, when pathogens are grouped by exposure source, diseases related to direct exposure to "Animals" are significantly less frequently cited in the context of stray dogs compared to other type of exposure (p=0.156 [0.119; 0.202]). Specifically, pathogens transmitted through direct interactions with animals, such as inhalation (p=0.089), close contact (p=0.053) or bite inoculation (p=0.204), demonstrated significantly lower predicted probabilities at the 95% confidence level and were therefore more frequently associated with pet dogs (Figure 6). Conversely, publications reporting pathogens

FIGURE 6: Probability of citing "stray dogs" against "pet dogs" by transmission pathways.

transmitted through fish consumption showed the highest predicted probability of mentioning stray dogs compared to pet dogs (p = 0.533), followed by water contamination (p = 0.512) and soil-borne pathogens (p = 0.464).

4. Discussion

4.1. Functional Roles, Host Status, and Scientific Representations of Dogs in Zoonotic Transmission. This review highlights the epidemiological significance of *C. lupus familiaris* as the most frequently cited host species in the context of animal-tohuman transmission. This prominence is primarily explained by the species' ecological versatility and ubiquity in domestic environments, where dogs are involved in a wide range of interspecific transmission pathways [43, 63]. In accordance with Morand et al. [10], the proportion of infectious agents shared between dogs and humans is likely the highest in the animal kingdom, largely reflecting the long evolutionary history shared by both species. Despite this apparent centrality, 20% of documented zoonotic pathogens have never been detected in dogs. Moreover, they often act as zoonotic deadend hosts for nearly half of the listed pathogens, with little or no confirmed human transmission. Nevertheless, our bibliographic analysis indicates that dogs still play a significant role in the infectious dynamics of more than a 100 zoonotic agents, even when they are not essential to pathogen persistence. Indeed, their role in pathogen maintenance clearly

extends beyond the 20 zoonotic agents for which they are identified as primary reservoirs.

Even when they do not serve as core maintenance hosts, dogs can facilitate the circulation of numerous generalist pathogens within multi-host communities. Through their interactions with humans, wildlife, and other domestic animals, they contribute to the formation of maintenance complexes, as described by Haydon et al. [11]. In such systems, dogs often act as relay hosts, spatial vectors, or mechanical carriers, rather than as reservoirs per se. Their pivotal function as an intermediary compartment bridging sylvatic and domestic transmission cycles thus appears to be crucial [64-66]. This intermediary role aligns with the definition of "bridge hosts" proposed by Caron et al. [42], which describes species that sustain continuous epidemiological connections between maintenance reservoirs and final hosts—namely humans. The high density, ecological diversity, and social connectivity of dog populations contribute to this bridging function, enabling sustained spillover potential across ecological and social boundaries.

While lexical counts do not allow for precise estimation of the infectious burden attributable to dogs, bibliometric analysis provides a valuable framework to explore how different transmission pathways are associated with canine populations in the scientific literature. This approach allows for a synthesis of the representations attached to the zoonotic role of dogs and offers interpretative tools to anticipate potential emergence risks. Moreover, it facilitates interspecies comparisons of zoonotic potential, supporting the prioritization of health threats based on their perceived weight and visibility. The comparative analysis between pets and livestock, for instance, lays the groundwork for a functional typology of host species—one based not only on biological traits and lifestyles but also on the scientific representations that shape surveillance strategies. Despite a similar publication volume on zoonotic agents when compared to pigs or cattle, dogs appear to be associated with a broader spectrum of pathogens and transmission mechanisms, suggesting a particularly extensive involvement in infectious dynamics. This overrepresentation is especially marked for certain taxonomic groups, such as cestodes, nematodes, and rickettsiae, and for specific transmission routes. While dogs are often implicated in vector-borne, environmental, and bite-related zoonoses, livestock—primarily represented by pigs—tend to be more frequently involved in foodborne, hygiene-related, and close-contact transmissions, reflecting the exposure contexts typical of farming systems.

4.2. Canine Ecotypes and Their Epidemiological Roles in Zoonotic Transmission. The global dog population displays considerable ecological heterogeneity, with individuals variably connected to both pathogen maintenance complexes and human populations, depending on their lifestyle and level of integration [44, 45]. This diversity is rarely reflected in review studies, which often rely on simplified classifications. For methodological consistency, our analysis focused on the two most frequently cited terms in the corpus: pet dog and stray dog, used as proxies for the two ends of the ecotypic gradient. Other categories commonly employed in field studies-such as freeroaming, community, owned, or unrestrained—were too inconsistently cited to support robust comparisons. This limited lexical scope reveals a pronounced polarization in scientific representations of zoonotic risk. Pathogens associated with environmental or parasitic transmission are more frequently linked to stray dogs, often portrayed as diffuse sources of contamination outside human control structures. In contrast, pet dogs are more commonly associated with bacterial infections transmitted through close contact, such as bites or licking. These distinctions help shape contrasting epidemiological profiles: stray dogs are perceived as external, unregulated threats, while pet dogs are seen as intimate companions, potentially facilitating pathogen adaptation within household environments.

Ecological evidence supports this dichotomy. Stray dogs, due to frequent exposure to contaminated environments and the lack of routine veterinary care, are prone to accumulating and disseminating resilient pathogens through their interactions with multi-host systems [51, 67]. Conversely, companion dogs, although generally less exposed to environmental reservoirs, remain deeply embedded in human social spaces. Their proximity to humans creates repeated opportunities for direct transmission and may promote the gradual adaptation of pathogens to human hosts [14, 68, 69]. As the final interface before human infection, the role of pet dogs as potential zoonotic amplifiers should not be underestimated. These findings highlight the importance of integrating ecotype-specific characteristics into zoonotic risk assessment. From a public health

perspective, tailored interventions are needed to address the distinct functions of each ecotype within transmission networks. Stray dogs could be prioritized in deworming campaigns aimed at reducing environmental parasitic loads, while in contexts of viral emergence, restrictions on close human—pet interactions may be necessary. More broadly, acknowledging the functional diversity of dogs is essential to developing health management strategies within an ecosystemic framework.

Bibliometric analyses remain heavily dependent on the explicit use of keywords such as dog, stray, and pet, which may reflect editorial conventions rather than precise epidemiological distinctions. The lack of standardized terminology for intermediate profiles makes them difficult to identify automatically and restricts analysis to a binary model. While such lexical simplification is operationally useful, it hampers the classification of ecotypes and limits the ability to accurately represent the complexity of canine populations in real-world contexts, particularly in rural and peri-urban settings, where ownership, mobility, and control are often ambiguous. Despite being underrepresented in the literature, intermediate canine profiles such as free-roaming owned dogs likely play a key epidemiological role. These dogs are omnipresent across rural, peri-urban, and urban environments and often maintain interactions with both confined pets and unregulated stray populations. Acting as epidemiological connectors, they may facilitate the movement of pathogens across ecological and social boundaries [38, 44, 70, 71]. As such, interconnected and sympatric canine subpopulations could contribute to each stage of the species barrier crossing [72], progressively bringing wildlife-origin pathogens closer to human settlements [38, 43] and amplifying the risk of spillover.

4.3. Fecal Contamination and Environmental Transmission. Dogs frequently serve as definitive hosts for a wide diversity of helminth species, shedding infective stages (e.g., eggs or larvae) into the environment [51, 59], where they can persist for extended periods and further infect humans through soil, water, or food contamination [34, 73]. These parasites have prolonged life cycles and exceptional environmental resilience. This allows them to persist in human habitats, facilitates continuous transmission, even in the absence of direct host-to-host contact [74]. For instance, *Toxocara canis*, *Trichuris vulpis*, and several Ancylostomatidae—nematode species highly specialized for canine hosts—can survive in the soil for months to years, creating long-lasting sources of exposure [75, 76].

Moreover, stray dogs are more frequently mentioned in the literature for environmentally transmitted helminths, which supports their role in maintaining resistant parasites through open defecation in domestic habitats, public spaces and cultivated agricultural areas [77–81]. The risks of contamination of water sources, other domestic animals and crops, then appear to be particularly high. Beyond passive fecal—oral transmission, stray dog populations actively contribute to the completion of heteroxenous parasitic cycles through their predatory and opportunistic behavior towards intermediate hosts (e.g., aquatic prey, rodents, and livestock carcasses) [38]. The spread of pathogens such as *Echinococcus* spp. and Fish-borne

Zoonotic Trematodes [82–84] is therefore facilitated. In the absence of deworming treatments, roaming dogs, which are more frequently exposed to contaminated environments, could then serve as key local reservoirs, supporting the transmission of neglected tropical diseases by significantly increasing the parasitic load in favorable wetland ecosystems [51, 67, 85].

To mitigate the role of stray and free-roaming dogs in the persistence and transmission of environmental parasites, targeted control strategies must be implemented. Large-scale deworming campaigns should be prioritized for these highrisk canine populations to reduce the environmental burden of helminths and limit parasite dissemination [86]. Improving sanitation infrastructures, including proper waste disposal and the management of dog feces in urban and peri-urban areas, appears to be essential to curbing soil and water contamination [78, 87]. Finally, community awareness programs can encourage responsible pet ownership by promoting movement control and appropriate veterinary monitoring and avoiding abandonment [88, 89].

4.4. Direct Exposure to Animals and Close Contact Transmission. Our bibliographic research indicates that dogs are highly competent hosts for most zoonotic pathogens transmitted via bites or scratches. Dogs indeed play a major epidemiological role in the transmission of rabies [90], as well as in numerous bacterial superinfections resulting from bite wounds (Capnocytophaga spp., Staphylococcus spp., Pasteurella spp., and Streptococcus spp.) [17, 18]. As a result, they are frequently mentioned in scientific publications focusing on these biological agents, particularly in comparison with domesticated artiodactyls, such as pigs, cattle, and small ruminants.

However, the overall epidemiological involvement of dogs in other forms of direct animal-to-human transmission seems limited. Apart from a few canine-adapted bacteria with which they have co-evolved, such as H. canis, B. canis, and Corynebacterium auriscanis, dogs rarely act as efficient vectors for airborne or close-contact zoonotic infections. This explains their overall weak association with viruses (and, to a lesser extent, bacteria, and fungi) in the scientific literature, in accordance with the data presented by Olival et al. [91] and Han et al. [92]. Indeed, pathogens with low environmental persistence generally rely on frequent host-to-host interactions for transmission [93, 94]. For this reason, their favored hosts are species that form dense populations in the wild, such as bats [95], or those raised in large numbers in intensive farming systems [96]—two conditions that typically do not apply to canine populations. While dogs remain competent hosts for many of these pathogens, they are less frequently implicated in epidemiological cycles requiring high infectious pressure for zoonotic transmission. In contexts of poor hygiene conditions or contamination of animal products, the role of dogs appears secondary to that of the livestock species, as represented by pigs in our study. This is particularly the case for bacteria with broad host spectra (e.g., Salmonella spp., Clostridium spp., Campylobacter spp., EHEC, and antibiotic-resistant strains), whose transmission is primarily facilitated in highdensity farming environments [97]. Comparative studies should thus refine species-specific intervention strategies according to

the associated risks, such as deworming programs for dogs and biosecurity measures for zoonotic bacteria in livestock farming.

Viruses and bacteria are also significantly less frequently reported in association with stray dogs, whereas companion dogs appear more often in publications related to airborne pathogens, close contact infections, and bites. Enclosed settings and the intimate pet/owner interactions could then promote prolonged and repeated exposure to animals, facilitating the sustained spread of directly communicable pathogens [98–100]. In contrast, while stray dogs may harbor many zoonotic pathogens, they interact less frequently and closely with humans, which reduces direct transmission risks [51]. This pattern supports the broader observation that zoonotic diseases requiring direct contact are more prevalent in domestic environments where livestock and pets represent an increased risk. Meanwhile, stray animals are more frequently associated with environmentally mediated infections due to their higher exposure to persistent sources of contamination.

In high-risk settings, health awareness programs contribute to educating pet owners on bite prevention and wound management [101]. In order to mitigate the risks of canine-origin zoonotic transmission through direct contact, routine veterinary monitoring of companion animals must be put in place, including regular health check-ups [68, 69]. A rational management of antimicrobials administered to dogs will also help preventing the development of antibiotic-resistant bacterial strains [102]. In kennels and shelters, strict hygiene protocols, including disinfection, isolation of symptomatic animals, proper ventilation, and routine veterinary care, are essential to limiting pathogen transmission and ensuring animal health [103].

4.5. Vector-Borne Transmission Pathways. Although dogs appear to transmit only a small proportion of all vector-borne pathogens, they are frequently cited in the scientific literature [27, 104, 105], suggesting a high degree of host specificity for many of these zoonotic agents. This specialization imply that dogs often play a crucial role in the vector-borne transmission cycles in which they are involved, especially for rickettsia species that are well adapted to their main host (e.g., Anaplasma platys or E. canis) [29, 106]. This is indeed particularly true for pathogens transmitted by ticks or fleas, as dogs are significantly less frequently associated with pathogens carried by flying blood-feeding insects. This distinction likely reflects the feeding preferences and ecological niches of different arthropod vectors [107, 108]. Although canine populations contribute to the maintenance of pathogens transmitted by mosquitoes, sandflies, and other biting flies, these vectors generally transmit infections to humans without direct involvement of dogs, as observed with Brugia spp. [109] and Leishmania spp. [110]. Indeed, flying insects opportunistically feed on various mammals, a pattern confirmed by comparisons with pigs, where both species serve at equivalent levels.

No significant differences are also observed at a finer scale between canine ecotypes regarding flying vector-borne pathogens. In contrast, transmission via fleas and ticks appears to be particularly specific to dogs compared to pigs, with pets cited more often than stray dogs in transmission cycles involving ectoparasites. Although this last distinction is not statistically significant, it suggests that companion dogs may play an essential role in transporting and sustaining infected vectors within human households [111, 112]. To mitigate vector-borne zoonotic risks associated with companion dogs, regular antiparasitic treatments, including acaricides and insecticidal collars, are crucial, particularly in endemic areas, to curb the proliferation of ticks and fleas within human settings [113, 114].

Although bibliometric analyses generally align with the actual zoonotic potential of dogs across transmission pathways, their involvement in ectoparasite-borne infections may be somewhat overrepresented relative to their confirmed biological competence. This trend could reflect a persistent symbolic association between dogs and external parasites such as fleas and ticks, shaped by their frequent infestation and reinforced in both scientific and public discourse. In the literature, dogs are on average cited more frequently in connection with tick- and flea-borne zoonoses than with other pathogen groups, despite being competent hosts for only a limited subset of these agents. By cross-referencing bibliometric data with empirical assessments of host competence, this integrative approach makes it possible to identify potential overestimations and gaps in current biological knowledge. It also helps to reveal how sociogeographic representations and taxonomic proximity may influence the visibility of certain host-pathogen associations, highlighting the importance of a critical perspective when interpreting bibliometric signals.

4.6. Evaluation and Relevance of the Bibliometric Approach. Our review demonstrates the value of bibliometric methods in identifying broad epidemiological patterns and host involvement in zoonotic transmission [115, 116]. The publication counts presented in this study primarily reflect the scientific discourse more than confirmed host-pathogen associations. However, targeted literature searches on the role of dogs in the transmission of each pathogen to humans have supported the validity of the results. The strong correlation between the "Dog"s part' index and the degree of zoonotic involvement attributed to dogs (Figure 2) suggests that bibliometric indicators closely mirror the epidemiological patterns described in specialized literature. When paired with a critical assessment of host competence, this dual-review approach helps to identify research gaps with clear implications for public health. Crossreferencing bibliometric data with empirical evidence reveals mismatches between scientific attention and actual epidemiological relevance. In some cases, dogs appear overrepresented in the literature without confirmed zoonotic competence—as illustrated by Toxocara cati or Bartonella henselae, which are primarily associated with cats but occasionally co-cited with dogs. Conversely, well-established associations between dogs and certain pathogens may be underrepresented in publication databases, such as for Ancylostoma ceylanicum or Microsporum canis, where additional transmission cycles exist despite a clearly documented canine role.

These discrepancies underscore the limitations of bibliometric approaches and the importance of integrating ecoepidemiological expertise to avoid interpretative biases. Despite these limitations, bibliometric tools remain valuable for

analyzing how host species are represented in the scientific literature. They support the identification of dominant transmission pathways and help anticipate potential emergence risks. Integrating machine learning techniques, such as cooccurrence pattern detection or AI-based text mining, could improve the resolution of host-pathogen association mapping across large bibliographic datasets [117-119]. These tools may help identify overlooked associations or novel risks and refine our understanding of the direct and indirect roles dogs may play in disease transmission cycles. Although lexical counts cannot precisely quantify the infectious burden attributable to dogs, they provide a useful framework for classifying transmission pathways based on host association frequency. This method enables interspecies comparisons and helps prioritize health risks according to both ecological significance and visibility in scientific discourse.

5. Conclusion

This study provides a comprehensive assessment of the zoonotic role of C. lupus familiaris, revealing the diverse transmission pathways through which dogs contribute to disease emergence. By combining a structured pathogen inventory, bibliometric analysis, and epidemiological review, our study identifies key transmission dynamics, underscores research gaps, and informs targeted public health interventions. Our findings demonstrate that canine involvement in pathogen transmission to humans varies significantly depending on the transmission pathways and the socio-ecological contexts in which dogs evolve. They can act as primary, secondary, or occasional transmission hosts for nearly half of the recognized zoonotic agents. Among these pathogens, a great diversity of nematodes, cestodes, and rickettsiae stands out in our study, these taxonomic groups being more frequently associated with dogs in the literature than bacteria and viruses. These significant differences between taxa can be largely explained by the ecological characteristics of pathogens, as dogs are more frequently mentioned in relation to soil-contact transmission, tick, or flea-borne pathways, and bite inoculations.

To mitigate the zoonotic risks associated with different canine ecotypes, targeted public health interventions must be adapted to their specific epidemiological roles. Stray dogs, due to their exposure to wildlife reservoirs and contaminated environments, contribute significantly to the persistence of environmentally transmitted parasites [51, 120] and may act as entry points for emerging pathogens [43, 64]. Integrating them into genomic surveillance networks could enhance early detection of zoonotic threats, particularly in high-risk transmission zones such as squares and urban parks [121-123], livestock farming areas [124, 125], and wetland ecosystems [126]. To control their impact on public health, large-scale deworming campaigns should be implemented [86, 127], alongside waste management and sanitation improvements to reduce fecal-oral transmission and limit soil and water contamination [76, 128]. Conversely, companion dogs, while generally benefiting from better veterinary care, pose higher risks for direct-contact transmission of zoonotic pathogens through bites [129] and close contact [98]. Their prolonged and repeated interactions with humans in

enclosed settings favor the transmission of directly communicable pathogens within households [18]. Routine veterinary monitoring of pets, including antimicrobial-resistant bacteria surveillance, and responsible pet ownership practices are essential to reduce these risks [68, 69, 130]. Moreover, their close cohabitation with their owners makes them ideal epidemiological sentinels [131–133]—targeted serological surveillance of pet dogs could provide valuable insights into human exposure risks and help detect pathogens with a high potential for zoonotic spillover, including viruses [50]. By tailoring health strategies to different canine ecotypes, zoonotic risks can be effectively controlled, reducing the global burden of dog-mediated zoonoses.

More broadly, the findings of this review indicate that the figure of the "zoonotic dog" constructed in scientific literature aligns most closely with the profile of stray dogs, suggesting a dominant perception of dogs as exogenous threats. This polarization of representations is not without consequence: it structures societal relationships with different categories of dogs, influences perceived dangerousness, and justifies often asymmetrical management policies. Yet, this binary vision—though operationally convenient—tends to obscure intermediate profiles whose epidemiological contributions may be equally significant. It also reflects deep-rooted cognitive and cultural biases that steer surveillance and public health efforts toward certain types of dogs at the expense of a more nuanced, context-sensitive understanding of zoonotic risks. These results thus call for a deconstruction of the homogeneous image of "the Dog" as a zoonotic host. They call for a recontextualization of ecotypic representations within their specific social, territorial, and biological settings, in order to refine prevention strategies and better capture the complexity of the canine epidemiological interface.

This review introduces the concept of a canine epidemiological gateway, emphasizing the role of dogs in facilitating the transmission of environmental pathogens to humans. Each dog ecotype—defined by its lifestyle, mobility, social integration, and access to veterinary care—contributes differently to the emergence and spread of zoonotic agents. A refined classification of these ecotypes, incorporating key behavioral and ecological traits, would improve our ability to identify their specific roles in pathogen transmission [46, 47, 134]. To support this effort, scientific publications should adopt a precise and consistent terminology that allows for clearer attribution of dog categories to distinct zoonotic pathways. A better understanding of these ecotype-specific dynamics is essential for improving zoonotic risk assessments and guiding targeted disease control strategies. For example, free-roaming owned dogs may serve as key epidemiological links between wild and domestic settings [135]. Their high mobility increases their exposure to contaminated environments, while regular human contact enhances their potential as direct transmission vectors [85]. These characteristics make them potential facilitators of pathogen adaptation and dissemination across multispecies networks, underscoring the need for further investigation [136].

Advancing this framework requires a combination of modeling and field-based approaches. Spatial models should be strengthened to identify geographic hotspots where dogs contribute to pathogen spillover [137–139], while GPS tracking

can help quantify contact patterns between dogs, wildlife, livestock, and humans, thus informing intervention strategies [140, 141]. In parallel, behavioral and socioeconomic studies are needed to examine how hygiene practices, access to veterinary care, and human-dog relationships influence zoonotic transmission risks. Coupling these empirical approaches with bibliometric data could enhance the predictive value of literaturebased tools and support more targeted health measures [142-144]. This integrated strategy helps bridge the gap between large-scale bibliometric evidence and operational zoonotic risk assessment. It supports the development of ecotypespecific interventions that reflect the diversity of epidemiological roles across dog populations. A coordinated, evidence-based approach—combining surveillance, prevention, and targeted responses—is critical to reduce the global burden of dogmediated zoonoses. To this end, canine populations should be systematically included in One Health biosurveillance frameworks, leveraging their epidemiological significance to improve outbreak detection, prevent disease emergence, and inform control strategies at the human-animal-environment interface.

Data Availability Statement

All data used in this study are publicly available through the Web of Science Core Collection bibliographic database (Clarivate). The list of publications included in the bibliometric analysis is compiled and referenced in Table 1 of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Funding

Thibaut Langlois and Michel de Garine-Wichatitsky were supported by a research grant from the French National Research Agency (ANR-19-ASIE-0002, Project SEAdog-SEA), and Thibaut Langlois, employed by the University of Montpellier, was supported by dP GREASE network (Gestion des Risques Emergents en Asie du Sud-Est) coordinated by the CIRAD/Kasetsart University (https://www.grease-network.org). Sylvie Hurtrez-Boussès is employed by University of Montpellier, and part of this work has been also supported by CNRS and IRD.

Supporting Information

Additional supporting information can be found online in the Supporting Information section.

Supporting Information 1. Table S1: List of zoonotic pathogens.

Supporting Information 2. χ^2 adjusted standardized residuals. Probability graph of citing "dogs" and "pigs" on the total by transmission pathways. Summary, Results, Analysis of deviance, and Predicted probabilities of Model 1. Summary, Results, Analysis of deviance, and Predicted probabilities of Model 2. Summary, Results, Analysis of deviance, and

Predicted probabilities of Model 3. Zoonotic pathogens list analysis code. Bibliometric analysis code.

References

- [1] M. T. Rahman, M. A. Sobur, M. S. Islam, et al., "Zoonotic Diseases: Etiology, Impact, and Control," *Microorganisms* 8, no. 9 (2020): 1405.
- [2] C. Di Bari, N. Venkateswaran, C. Fastl, et al., "The Global Burden of Neglected Zoonotic Diseases: Current State of Evidence," *One Health* 17 (2023): 100595.
- [3] C. K. Johnson, P. L. Hitchens, P. S. Pandit, et al., "Global Shifts in Mammalian Population Trends Reveal Key Predictors of Virus Spillover Risk," *Proceedings of the Royal Society B: Biological Sciences* 287, no. 1924 (2020): 20192736.
- [4] B. B. Chomel, "Emerging and Re-Emerging Zoonoses of Dogs and Cats," *Animals* 4, no. 3 (2014): 434–445.
- [5] J. Jacob, B. Lorber, and D. Schlossberg, "Diseases Transmitted by Man's Best Friend: The Dog," *Microbiology Spectrum* 3, no. 4 (2015): IOL5-0002-2015.
- [6] T. Jose and A. Joseph, "Domestic Animals and Zoonosis: A Review," *Pharma Innovation* 9, no. 8S (2020): 27–29.
- [7] Y. Whitfield and A. Smith, "Household Pets and Zoonoses," Environmental Health Review 57, no. 2 (2014): 41–49.
- [8] O. Tomori and D. O. Oluwayelu, "Domestic Animals as Potential Reservoirs of Zoonotic Viral Diseases," *Annual Review of Animal Biosciences* 11, no. 1 (2023): 33–55.
- [9] S. Cleaveland, M. K. Laurenson, and L. H. Taylor, "Diseases of Humans and Their Domestic Mammals: Pathogen Characteristics, Host Range and the Risk of Emergence," *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences* 356, no. 1411 (2001): 991–999.
- [10] S. Morand, K. M. McIntyre, and M. Baylis, "Domesticated Animals and Human Infectious Diseases of Zoonotic Origins: Domestication Time Matters," *Infection, Genetics and Evolution* 24 (2014): 76–81.
- [11] D. T. Haydon, S. Cleaveland, L. H. Taylor, and M. K. Laurenson, "Identifying Reservoirs of Infection: A Conceptual and Practical Challenge," *Emerging Infectious Diseases* 8, no. 12 (2002): 1468– 1473.
- [12] C. Macpherson, "Dogs, Zoonoses and Human Health: A Global Perspective," *CABI* (2012).
- [13] C. M. Bryce, "Dogs as Pets and Pests: Global Patterns of Canine Abundance, Activity, and Health," *Integrative and Comparative Biology* 61, no. 1 (2021): 154–165.
- [14] P. A. M. Overgaauw, C. M. Vinke, M. A. E. van Hagen, and L. J. A. Lipman, "A One Health Perspective on the Human–Companion Animal Relationship With Emphasis on Zoonotic Aspects," *International Journal of Environmental* Research and Public Health 17, no. 11 (2020): 3789.
- [15] J. M. C. Pearce-Duvet, "The Origin of Human Pathogens: Evaluating the Role of Agriculture and Domestic Animals in the Evolution of Human Disease," *Biological Reviews* 81, no. 3 (2006): 369–382.
- [16] P. Cunningham-Smith and K. Emery, "Dogs and People: Exploring the Human-Dog Connection," *Journal of Ethnobiology* 40, no. 4 (2020): 409–413.
- [17] F. M. Abrahamian and E. J. C. Goldstein, "Microbiology of Animal Bite Wound Infections," *Clinical Microbiology Reviews* 24, no. 2 (2011): 231–246.
- [18] I. Ghasemzadeh and S. H. Namazi, "Review of Bacterial and Viral Zoonotic Infections Transmitted by Dogs," *Journal of Medicine and Life* c, no. 4 (2015): 1–5.

- [19] K. Hampson, L. Coudeville, T. Lembo, et al., "Estimating the Global Burden of Endemic Canine Rabies," PLOS Neglected Tropical Diseases 9, no. 4 (2015): e0003709.
- [20] M. E. Hensel, M. Negron, and A. M. Arenas-Gamboa, "Brucellosis in Dogs and Public Health Risk," *Emerging Infectious Diseases* 24, no. 8 (2018): 1401–1406.
- [21] R. L. Santos, T. D. Souza, J. P. S. Mol, C. Eckstein, and T. A. Paíxão, "Canine Brucellosis: An Update," Frontiers in Veterinary Science 8 (2021): 594291.
- [22] P. Rojas, A. M. Monahan, S. Schuller, I. S. Miller, B. K. Markey, and J. E. Nally, "Detection and Quantification of Leptospires in Urine of Dogs: A Maintenance Host for the Zoonotic Disease Leptospirosis," *European Journal of Clinical Microbiology & Infectious Diseases* 29, no. 10 (2010): 1305–1309.
- [23] K. Altheimer, P. Jongwattanapisan, S. Luengyosluechakul, et al., "Leptospira Infection and Shedding in Dogs in Thailand," BMC Veterinary Research 16, no. 1 (2020): 89.
- [24] S. S. Celina and J. D. Cerný, "Coxiella Burnetii in Ticks, Livestock, Pets and Wildlife: A Mini-Review," Frontiers in Veterinary Science 9 (2022): 1068129.
- [25] G. Ferrara, G. Flores-Ramirez, K. Palkovicova, et al., "Serological and Molecular Survey of Q Fever in the Dog Population of the Campania Region, Southern Italy," *Acta Tropica* 257 (2024): 107299.
- [26] V.-L. Nguyen, F. Dantas-Torres, and D. Otranto, "Canine and Feline Vector-Borne Diseases of Zoonotic Concern in Southeast Asia," Current Research in Parasitology & Vector-Borne Diseases 1 (2021): 100001.
- [27] L. O. de Macedo, M. A. Bezerra-Santos, C. R. C. U. Filho, et al., "Vector-Borne Pathogens of Zoonotic Concern in Dogs From a Quilombola Community in Northeastern Brazil," *Parasitology Research* 121, no. 11 (2022): 3305–3311.
- [28] B. Marshet and D. Dessie, "A Review on Canine Ehrlichiosis and Its Zoonotic Implications," *International Journal of Veterinary Sciences and Animal Husbandry* 5, no. 3 (2020): 36–42.
- [29] M. U. Aziz, S. Hussain, B. Song, H. N. Ghauri, J. Zeb, and O. A. Sparagano, "Ehrlichiosis in Dogs: A Comprehensive Review About the Pathogen and Its Vectors With Emphasis on South and East Asian Countries," *Veterinary Sciences* 10, no. 1 (2023): 21.
- [30] D. Anvari, E. Narouei, A. Daryani, et al., "The Global Status of Dirofilaria Immitis in Dogs: A Systematic Review and Meta-Analysis Based on Published Articles," *Research in Veterinary Science* 131 (2020): 104–116.
- [31] U. Atapattu, A. V. Koehler, L. G. Huggins, A. Wiethoelter, R. J. Traub, and V. Colella, "Dogs are Reservoir Hosts of the Zoonotic Dirofilaria sp. 'Hongkongensis' and Potentially of Brugia sp. Sri Lanka Genotype in Sri Lanka," One Health 17 (2023): 100625.
- [32] M'awia M. Hassan, O. F. Osman, F. M. A. El-Raba'a, H. D. F. H. Schallig, and D.-E. A. Elnaiem, "Role of the Domestic Dog as a Reservoir Host of Leishmania Donovani in Eastern Sudan," *Parasites & Vectors* 2, no. 1 (2009): 26.
- [33] D. F. Vilas-Boas, E. K. N. Nakasone, A. A. M. Gonçalves, et al., "Global Distribution of Canine Visceral Leishmaniasis and the Role of the Dog in the Epidemiology of the Disease," *Pathogens* 13, no. 6 (2024): 455.
- [34] M. Pal and D. Tolawak, "A Comprehensive Review on Major Zoonotic Parasites From Dogs and Cats," *International Journal* of Medical Parasitology and Epidemiology Sciences 4, no. 1 (2023): 3–11.
- [35] World Health Organization, Global Report on Neglected Tropical Diseases 2024 (World Health Organization, 2024).

tbed, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/tbed/5522451 by Cochrane France, Wiley Online Library on [27/08/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/erms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

- [36] E. Toews, M. Musiani, S. Checkley, D. Visscher, and A. Massolo, "A Global Assessment of Echinococcus Multilocularis Infections in Domestic Dogs: Proposing a Framework to Overcome Past Methodological Heterogeneity," *International Journal for Parasitology* 51, no. 5 (2021): 379–392.
- [37] M. A. Alvi and A. F. Alsayeqh, "Food-Borne Zoonotic Echinococcosis: A Review With Special Focus on Epidemiology," Frontiers in Veterinary Science 9 (2022): 1072730.
- [38] J. A. M. Roldan and D. Otranto, "Zoonotic Parasites Associated With Predation by Dogs and Cats," *Parasites & Vectors* 16, no. 1 (2023): 55.
- [39] N. Hung, H. Madsen, and B. Fried, "Global Status of Fish-Borne Zoonotic Trematodiasis in Humans," *Acta Parasitologica* 58, no. 3 (2013): 231–258.
- [40] R. J. Traub, P. A. Zendejas-Heredia, L. Massetti, and V. Colella, "Zoonotic Hookworms of Dogs and Cats – Lessons From the Past to Inform Current Knowledge and Future Directions of Research," *International Journal for Parasitology* 51, no. 13-14 (2021): 1233–1241.
- [41] J. C. B. Tenorio, I. K. B. Tabios, T. Inpankaew, et al., "Ancylostoma Ceylanicum and Other Zoonotic Canine Hookworms: Neglected Public and Animal Health Risks in the Asia-Pacific Region," *Animal Diseases* 4, no. 1 (2024): 11.
- [42] A. Caron, J. Cappelle, G. S. Cumming, M. de Garine-Wichatitsky, and N. Gaidet, "Bridge Hosts, A Missing Link for Disease Ecology in Multi-Host Systems," *Veterinary Research* 46, no. 1 (2015): 83.
- [43] A. Gamble, X. A. Olarte-Castillo, and G. R. Whittaker, "Backyard Zoonoses: The Roles of Companion Animals and Peri-Domestic Wildlife," Science Translational Medicine 15, no. 718 (2023): eadj0037.
- [44] J. Hughes and D. W. Macdonald, "A Review of the Interactions Between Free-Roaming Domestic Dogs and Wildlife," *Biological Conservation* 157 (2013): 341–351.
- [45] L. M. Smith, S. Hartmann, A. M. Munteanu, P. D. Villa, R. J. Quinnell, and L. M. Collins, "The Effectiveness of Dog Population Management: A Systematic Review," *Animals* 9, no. 12 (2019): 1020.
- [46] T. Dorji, T. Tenzin, K. Rinzin, W. Phimpraphai, and M. De Garine-Wichatitsky, "Community Perceptions of Free-Roaming Dogs and Management Practices in Villages at the Periphery of a Protected Area in Bhutan," *Chiang Mai University Journal of Natural Sciences* 19, no. 2 (2020): 293–313.
- [47] T. Dorji, T. Tenzin, K. Rinzin, H. Mahat, W. Phimpraphai, and M. de Garine-Wichatitsky, "A Preliminary Survey of Pet Dogs Roaming Behaviour in the Periphery of Protected Area in Bhutan: A Case Study in Haa District," Bhutan Journal of Natural Resources and Development 9, no. 2 (2022): 13–26.
- [48] P. Jensen, The Behavioural Biology of Dogs (CABI, 2007).
- [49] M. R. Slater, A. Di Nardo, O. Pediconi, et al., "Free-Roaming Dogs and Cats in Central Italy: Public Perceptions of the Problem," *Preventive Veterinary Medicine* 84, no. 1-2 (2008): 27–47
- [50] I. D. Robertson, P. J. Irwin, A. J. Lymbery, and R. C. A. Thompson, "The Role of Companion Animals in the Emergence of Parasitic Zoonoses," *International Journal for Parasitology* 30, no. 12-13 (2000): 1369–1377.
- [51] D. Otranto, F. Dantas-Torres, A. D. Mihalca, R. J. Traub, M. Lappin, and G. Baneth, "Zoonotic Parasites of Sheltered and Stray Dogs in the Era of the Global Economic and Political Crisis," *Trends in Parasitology* 33, no. 10 (2017): 813–825.
- [52] T. Lembo, K. Hampson, M. T. Kaare, et al., "The Feasibility of Canine Rabies Elimination in Africa: Dispelling Doubts With Data," PLoS Neglected Tropical Diseases 4, no. 2 (2010): e626.

- [53] S. Cleaveland, M. Kaare, P. Tiringa, T. Mlengeya, and J. Barrat, "A Dog Rabies Vaccination Campaign in Rural Africa: Impact on the Incidence of Dog Rabies and Human Dog-Bite Injuries," *Vaccine* 21, no. 17-18 (2003): 1965–1973.
- [54] D. Otranto and F. Dantas-Torres, "The Prevention of Canine Leishmaniasis and Its Impact on Public Health," *Trends in Parasitology* 29, no. 7 (2013): 339–345.
- [55] E. B. Alves, F. B. Figueiredo, M. F. Rocha, M. C. Castro, and G. L. Werneck, "Effectiveness of Insecticide-Impregnated Collars for the Control of Canine Visceral Leishmaniasis," *Preventive Veterinary Medicine* 182 (2020): 105104.
- [56] V. Djokic, L. Freddi, F. de Massis, et al., "The Emergence of Brucella canis as a Public Health Threat in Europe: What We Know and What We Need to Learn," Emerging Microbes & Infections 12, no. 2 (2023): 2249126.
- [57] L. H. Taylor, S. M. Latham, and M. E. Woolhouse, "Risk Factors for Human Disease Emergence," *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences* 356, no. 1411 (2001): 983–989.
- [58] P. N. Acha, B. Szyfres, and P. N. Acha, *Zoonoses and Communicable Diseases Common to Man and Animals* (Pan American Health Organization, Washington, DC, 2001).
- [59] B. Polack, H.-J. Boulouis, J. Guillot, and R. Chermette, "Les Zoonoses (Tableaux Synthétiques: Animaux Réservoirs de Pathogènes et Modes de Transmission)," Revue Francophone des Laboratoires 2015, no. 477 (2015): 67–79.
- [60] R. Bauerfeind, A. Von Graevenitz, P. Kimmig, et al., Zoonoses: Infectious Diseases Transmissible Between Animals and Humans (ASM Press, Washington, DC, USA, 2015).
- [61] Zoonotic Diseases Public Health, "MSD Veterinary Manual," https://www.msdvetmanual.com/public-health/zoonoses/ zoonotic-diseases, (accessed 2025-03-04).
- [62] CDC, "Facts About Diseases that Can Spread Between Animals and People. Healthy Pets, Healthy People," (accessed 2025-03-04) https://www.cdc.gov/healthy-pets/diseases/index.html.
- [63] A. Desvars-Larrive, A. E. Vogl, G. A. Puspitarani, L. Yang, A. Joachim, and A. Käsbohrer, "A One Health Framework for Exploring Zoonotic Interactions Demonstrated through a Case Study," *Nature Communications* 15, no. 1 (2024): 5650.
- [64] J. H. Ellwanger and J. A. B. Chies, "The Triad, Dogs, Conservation and Zoonotic Diseases, – An Old and Still Neglected Problem in Brazil," *Perspectives in Ecology and Conservation* 17, no. 3 (2019): 157–161.
- [65] F. A. Hernández, J. Manqui, C. Mejías, and G. Acosta-Jamett, "Domestic Dogs and Wild Foxes Interactions in a Wildlife-Domestic Interface of North-Central Chile: Implications for Multi-Host Pathogen Transmission," Frontiers in Veterinary Science 8 (2021): 631788.
- [66] J. Durães-Oliveira, J. Palma-Marques, C. Moreno, et al., "Chagas Disease: A Silent Threat for Dogs and Humans," *International Journal of Molecular Sciences* 25, no. 7 (2024): 3840.
- [67] M. Jimenez-Coello, A. Ortega-Pacheco, E. Guzman-Marin, D. M. Guiris-Andrade, L. Martinez-Figueroa, and K. Y. Acosta-Viana, "Stray Dogs as Reservoirs of the Zoonotic Agents Leptospira interrogans, Trypanosoma cruzi, and Aspergillus spp. in an Urban Area of Chiapas in Southern Mexico," Vector-Borne and Zoonotic Diseases 10, no. 2 (2010): 135–141.
- [68] M. J. Day, E. Breitschwerdt, S. Cleaveland, et al., "Surveillance of Zoonotic Infectious Disease Transmitted by Small Companion Animals," *Emerging Infectious Diseases* 18, no. 12 (2012): 120664.
- [69] J. W. Stull, J. Brophy, and J. S. Weese, "Reducing the Risk of Pet-Associated Zoonotic Infections," *Canadian Medical Association Journal* 187, no. 10 (2015): 736–743.

bed, 2025, I, Downloaded from https://onlinelibrary.wiely.com/doi/10.1.155/bed5522451 by Cochraen France, Wiley Online Library on [27/08/2025]. See the Terms and Conditions (https://onlinelibrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

- [70] M. K. Morters, T. J. McKinley, O. Restif, et al., "The Demography of Free-Roaming Dog Populations and Applications to Disease and Population Control," *Journal of Applied Ecology* 51, no. 4 (2014): 1096–1106.
- [71] E. A. Silva-Rodríguez, E. I. Cortés, B. Zambrano, L. Naughton-Treves, and A. A. Farías, "On the Causes and Consequences of the Free-Roaming Dog Problem in Southern Chile," *Science of the Total Environment* 891 (2023): 164324.
- [72] R. K. Plowright, C. R. Parrish, H. McCallum, et al., "Pathways to Zoonotic Spillover," *Nature Reviews Microbiology* 15, no. 8 (2017): 502–510.
- [73] A. A. Majewska, T. Huang, B. Han, and J. M. Drake, "Predictors of Zoonotic Potential in Helminths," *Philosophical Transactions* of the Royal Society B: Biological Sciences 376, no. 1837 (2021): 20200356.
- [74] S. R. Hopkins, I. J. Jones, J. C. Buck, et al., "Environmental Persistence of the World's Most Burdensome Infectious and Parasitic Diseases," Frontiers in Public Health 10 (2022): 892366.
- [75] R. Nijsse, P. Overgaauw, H. Ploeger, and L. Mughini-Gras, "Sources of Environmental Contamination With, *Toxocara*, Spp.: An Omnipresent Parasite," in *Advances in Parasitology*, 109, (Academic Press, 2020): 585–614.
- [76] A. Tylkowska, N. Mocha, M. M. Kołnierzak, and M. Szenejko, "Risk Factors Associated With Soil-Transmitted Helminths in Dog Feces That Contaminate Public Areas of Warsaw, Poland," *Animals* 14, no. 3 (2024): 450.
- [77] D. Traversa, A. Frangipane di Regalbono, A. Di Cesare, F. La Torre, J. Drake, and M. Pietrobelli, "Environmental Contamination by Canine Geohelminths," *Parasites & Vectors* 7, no. 1 (2014): 67.
- [78] G. Penakalapati, J. Swarthout, M. J. Delahoy, et al., "Exposure to Animal Feces and Human Health: A Systematic Review and Proposed Research Priorities," *Environmental Science & Technology* 51, no. 20 (2017): 11537–11552.
- [79] J. Kamani, L. Massetti, T. Olubade, et al., "Canine Gastrointestinal Parasites as a Potential Source of Zoonotic Infections in Nigeria: A Nationwide Survey," *Preventive Veterinary Medicine* 192 (2021): 105385.
- [80] P. R. Sukupayo and S. Tamang, "Prevalence of Zoonotic Gastrointestinal Helminth Parasite Among Dogs in Suryabinayak, Nepal," *Veterinary Medicine International* 2023 (2023): 3624593.
- [81] M. M. Khalifa, E. A. Fouad, N. O. Kamel, H. M. Auda, M. M. El-Bahy, and R. M. Ramadan, "Dogs as a Source for the Spreading of Enteric Parasites Including Zoonotic Ones in Giza Province, Egypt," Research in Veterinary Science 161 (2023): 122–131.
- [82] T. L. A. Nguyen, T. P. Nguyen, M. V. Johansen, et al., "Prevalence and Risks for Fishborne Zoonotic Trematode Infections in Domestic Animals in a Highly Endemic Area of North Vietnam," Acta Tropica 112, no. 2 (2009): 198–203.
- [83] A. Vaniscotte, F. Raoul, M. L. Poulle, et al., "Role of Dog Behaviour and Environmental Fecal Contamination in Transmission of *Echinococcus multilocularis* in Tibetan Communities," *Parasitology* 138, no. 10 (2011): 1316–1329.
- [84] N. M. Hung, D. T. Dung, N. T. Lan Anh, et al., "Current Status of Fish-Borne Zoonotic Trematode Infections in Gia Vien District, Ninh Binh Province, Vietnam," *Parasites & Vectors* 8, no. 1 (2015): 21.
- [85] E. Garde, G. Acosta-Jamett, and B. M. Bronsvoort, "Review of the Risks of Some Canine Zoonoses From Free-Roaming Dogs in the Post-Disaster Setting of Latin America," *Animals* 3, no. 3 (2013): 855–865.

- [86] M. Nocerino, P. Pepe, A. Bosco, et al., "An Innovative Strategy for Deworming Dogs in Mediterranean Areas Highly Endemic for Cystic Echinococcosis," *Parasites & Vectors* 17, no. 1 (2024): 86.
- [87] V. Cinquepalmi, R. Monno, L. Fumarola, et al., "Environmental Contamination by Dog's Faeces: A Public Health Problem?" International Journal of Environmental Research and Public Health 10, no. 1 (2013): 72–84.
- [88] D. Rubel and A. Carbajo, "Dogs in Public Spaces of Buenos Aires, Argentina: Exploring Patterns of the Abundance of Dogs, the Canine Faecal Contamination, the Behaviour of People With Dogs, and Its Relationships With Demographic/Economic Variables," Preventive Veterinary Medicine 170 (2019): 104713.
- [89] K. Lezama-García, A. Domínguez-Oliva, J. Buenhombre, et al., "Exploring the Stray Dog Crisis: When the Human-Canine Relationships Breakdown," *Journal of Animal Behaviour and Biometeorology* 13, no. 1 (2025): 2025003.
- [90] R. Singh, K. P. Singh, S. Cherian, et al., "Rabies—Epidemiology, Pathogenesis, Public Health Concerns and Advances in Diagnosis and Control: A Comprehensive Review," *Veterinary Quarterly* 37, no. 1 (2017): 212–251.
- [91] K. J. Olival, P. R. Hosseini, C. Zambrana-Torrelio, N. Ross, T. L. Bogich, and P. Daszak, "Host and Viral Traits Predict Zoonotic Spillover from Mammals," *Nature* 546, no. 7660 (2017): 646–650.
- [92] B. A. Han, A. A. Castellanos, J. P. Schmidt, I. R. Fischhoff, and J. M. Drake, "The Ecology of Zoonotic Parasites in the Carnivora," *Trends in Parasitology* 37, no. 12 (2021): 1096–1110.
- [93] J. J. Ryder, M. R. Miller, A. White, R. J. Knell, and M. Boots, "Host-Parasite Population Dynamics Under Combined Frequency- and Density-Dependent Transmission," *Oikos* 116, no. 12 (2007): 2017–2026.
- [94] L. M. Espira, A. F. Brouwer, B. A. Han, J. Foufopoulos, and J. N. S. Eisenberg, "Dilution of Epidemic Potential of Environmentally Transmitted Infectious Diseases for Species With Partially Overlapping Habitats," *The American Naturalist* 199, no. 2 (2022): E43–E56.
- [95] J. S. Mackenzie, J. E. Childs, H. E. Field, L.-F. Wang, and A. C. Breed, "The Role of Bats as Reservoir Hosts of Emerging Neuroviruses," *Neurotropic Viral Infections* (2016): 403–454.
- [96] A. Mennerat, F. Nilsen, D. Ebert, and A. Skorping, "Intensive Farming: Evolutionary Implications for Parasites and Pathogens," *Evolutionary Biology* 37, no. 2-3 (2010): 59–67.
- [97] T. Zhang, R. Nickerson, W. Zhang, et al., "The Impacts of Animal Agriculture on One Health—Bacterial Zoonosis, Antimicrobial Resistance, and Beyond," *One Health* 18 (2024): 100748.
- [98] P. Damborg, E. M. Broens, B. B. Chomel, et al., "Bacterial Zoonoses Transmitted by Household Pets: State-of-the-Art and Future Perspectives for Targeted Research and Policy Actions," *Journal of Comparative Pathology* 155, no. 1 (2016): S27–S40.
- [99] G. Klous, A. Huss, D. J. J. Heederik, and R. A. Coutinho, "Human-Livestock Contacts and Their Relationship to Transmission of Zoonotic Pathogens, a Systematic Review of Literature," One Health 2 (2016): 65–76.
- [100] L. A. Zanen, J. G. Kusters, and P. A. M. Overgaauw, "Zoonotic Risks of Sleeping With Pets," *Pathogens* 11, no. 10 (2022): 1149.
- [101] J. L. C. González, S. Poveda, A. L. Sosa, et al., "Dog Bites as a Zoonotic Risk in Ecuador: Need for the Implementation of a One Health Approach," One Health 16 (2023): 100544.
- [102] K. Beaulac, C. L. Fellman, A. S. Wayne, L. A. McDermott, D. R. Snydman, and S. Doron, "Impact of Antimicrobial Use in Dogs on Antimicrobial Resistance and Shared Flora With

- Human Owners," *Antimicrobial Stewardship & Healthcare Epidemiology* 3, no. 1 (2023): e1.
- [103] J. W. Stull, A. S. Peregrine, J. M. Sargeant, and J. S. Weese, "Pet Husbandry and Infection Control Practices Related to Zoonotic Disease Risks in Ontario, Canada," *BMC Public Health* 13, no. 1 (2013): 520.
- [104] D. A. Julien, J. M. Sargeant, C. Filejski, A. M. Versluis, V. Waind, and S. L. Harper, "Unleashing the Literature: A Scoping Review of Canine Zoonotic and Vectorborne Disease Research in Canis Familiaris in North America," *Animal Health Research Reviews* 22, no. 1 (2021): 26–39.
- [105] D. Otranto, J. A. Mendoza-Roldan, F. Beugnet, G. Baneth, and F. Dantas-Torres, "New Paradigms in the Prevention of Canine Vector-Borne Diseases," *Trends in Parasitology* 40, no. 6 (2024): 500–510.
- [106] A. D. S. Nair, C. Cheng, C. K. Ganta, et al., "Comparative Experimental Infection Study in Dogs With Ehrlichia canis, E. chaffeensis, Anaplasma platys and A. phagocytophilum," PLoS ONE 11, no. 2 (2016): e0148239.
- [107] J. E. Simpson, P. J. Hurtado, J. Medlock, et al., "Vector Host-Feeding Preferences Drive Transmission of Multi-Host Pathogens: West Nile Virus as a Model System," *Proceedings of the Royal Society B: Biological Sciences* 279, no. 1730 (2012): 925–933.
- [108] K. D. McCoy, E. Léger, and M. Dietrich, "Host Specialization in Ticks and Transmission of Tick-Borne Diseases: A Review," Frontiers in Cellular and Infection Microbiology 3 (2013): 57.
- [109] W. Jitsamai, P. Piromkij, P. Kamkong, S. Chungpivat, and P. Taweethavonsawat, "Seasonal Distribution and Environmental Parameters Associated With Brugia Pahangi and Dirofilaria Immitis in Naturally Infected Dogs in Bangkok and Vicinity, Thailand," *Scientific Reports* 11, no. 1 (2021): 4594.
- [110] G. D. Ghouse Peer, A. Priyadarshini, A. Gupta, et al., "A Systematic Assessment of Leishmania Donovani Infection in Domestic and Wild Animal Reservoir Hosts of Zoonotic Visceral Leishmaniasis in India," *Microbiology Research* 15, no. 3 (2024): 1645–1654.
- [111] R. G. Maggi and F. Krämer, "A Review on the Occurrence of Companion Vector-Borne Diseases in Pet Animals in Latin America." Parasites & Vectors 12, no. 1 (2019): 145.
- [112] N. H. Luong, K. Kamyingkird, N. Thammasonthijarern, et al., "Companion Vector-Borne Pathogens and Associated Risk Factors in Apparently Healthy Pet Animals (Dogs and Cats) in Khukhot City Municipality, Pathum Thani Province, Thailand," Pathogens 12, no. 3 (2023): 391.
- [113] V. Colella, V. L. Nguyen, D. Y. Tan, et al., "Zoonotic Vectorborne Pathogens and Ectoparasites of Dogs and Cats in Eastern and Southeast Asia," *Emerging Infectious Diseases* 26, no. 6 (2020): 1221–1233.
- [114] A. Diakou, D. Sofroniou, B. Paoletti, et al., "Ticks, Fleas, and Harboured Pathogens from Dogs and Cats in Cyprus," *Pathogens* 11, no. 12 (2022): 1403.
- [115] T. Ahmad, M. Imran, K. Ahmad, et al., "A Bibliometric Analysis and Global Trends in Fascioliasis Research: A Neglected Tropical Disease," *Animals* 11, no. 12 (2021): 3385.
- [116] L. Miao, H. Li, W. Ding, et al., "Research Priorities on One Health: A Bibliometric Analysis," Frontiers in Public Health 10 (2022): 889854.
- [117] O. Baclic, M. Tunis, K. Young, C. Doan, H. Swerdfeger, and J. Schonfeld, "Challenges and Opportunities for Public Health Made Possible by Advances in Natural Language Processing," *Canada Communicable Disease Report* 46, no. 6 (2020): 161–168.

- [118] S. Raza, D. J. Reji, F. Shajan, and S. R. Bashir, "Large-Scale Application of Named Entity Recognition to Biomedicine and Epidemiology," *PLoS Digital Health* 1, no. 12 (2022): e0000152.
- [119] Y. Song, B. Yoon, and S. Elbassuoni, "Prediction of Infectious Diseases Using Sentiment Analysis on Social Media Data," PLoS One 19, no. 9 (2024): e0309842.
- [120] K. Szwabe and J. Blaszkowska, "Stray Dogs and Cats as Potential Sources of Soil Contamination With Zoonotic Parasites," Annals of Agricultural and Environmental Medicine 24, no. 1 (2017): 39–43
- [121] A. Ferreira, A. M. Alho, D. Otero, et al., "Urban Dog Parks as Sources of Canine Parasites: Contamination Rates and Pet Owner Behaviours in Lisbon, Portugal," *Journal of Environmental and Public Health* 2017 (2017): 5984086.
- [122] R. Alegría-Morán, Á. Pastenes, G. Cabrera, F. Fredes, and G. Ramírez-Toloza, "Urban Public Squares as Potential Hotspots of Dog-Human Contact: A Spatial Analysis of Zoonotic Parasites Detection in Gran Santiago, Chile," *Veterinary Parasitology:* Regional Studies and Reports 24 (2021): 100579.
- [123] K. Mori, M. Rock, G. McCormack, et al., "Fecal Contamination of Urban Parks by Domestic Dogs and Tragedy of the Commons," *Scientific Reports* 13, no. 1 (2023): 3462.
- [124] E. Trasviña-Muñoz, G. López-Valencia, F. J. Monge-Navarro, et al., "Detection of Intestinal Parasites in Stray Dogs From a Farming and Cattle Region of Northwestern Mexico," *Pathogens* 9, no. 7 (2020): 516.
- [125] J. Regidor-Cerrillo, D. Arranz-Solís, J. Moreno-Gonzalo, et al., "Prevalence of Intestinal Parasite Infections in Stray and Farm Dogs from Spain," *Revista Brasileira de Parasitologia Veterinária* 29, no. 3 (2020): e014920.
- [126] N. T. L. Anh, N. T. Phuong, K. D. Murrell, et al., "Animal Reservoir Hosts and Fish-Borne Zoonotic Trematode Infections on Fish Farms," *Emerging Infectious Diseases* 15, no. 4 (2009): 540–546.
- [127] Q. Yu, N. Xiao, S.-J. Yang, and S. Han, "Deworming of Stray Dogs and Wild Canines With Praziquantel-Laced Baits Delivered by an Unmanned Aerial Vehicle in Areas Highly Endemic for Echinococcosis in China," *Infectious Diseases of Poverty* 6, no. 1 (2017): 117.
- [128] N. Wright, D. Subedi, S. Pantha, K. P. Acharya, and L. H. Nel, "The Role of Waste Management in Control of Rabies: A Neglected Issue," *Viruses* 13, no. 2 (2021): 225.
- [129] M. B. Fulford, "Pet Bites," in Companion Animal Zoonoses, (John Wiley & Sons, Ltd., 2011): 311–315.
- [130] L. Sikana, T. Lembo, K. Hampson, et al., "Dog Ownership Practices and Responsibilities for Children's Health in Terms of Rabies Control and Prevention in Rural Communities in Tanzania," PLoS Neglected Tropical Diseases 15, no. 3 (2021): e0009220.
- [131] S. Cleaveland, F. X. Meslin, and R. Breiman, "Dogs Can Play Useful Role as Sentinel Hosts for Disease," *Nature* 440, no. 7084 (2006): 605–605.
- [132] J. M. Schurer, J. E. Hill, C. Fernando, and E. J. Jenkins, "Sentinel Surveillance for Zoonotic Parasites in Companion Animals in Indigenous Communities of Saskatchewan," *The American Society of Tropical Medicine and Hygiene* 87, no. 3 (2012): 495–498.
- [133] N. H. Bowser and N. E. Anderson, "Dogs (Canis Familiaris) as Sentinels for Human Infectious Disease and Application to Canadian Populations: A Systematic Review," *Veterinary Sciences* 5, no. 4 (2018): 83.

thed, 2025, I. Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/thed/5522451 by Cochrane France, Wiley Online Library on [27/08/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

- [134] H. Capellà Miternique and F. Gaunet, "Coexistence of Diversified Dog Socialities and Territorialities in the City of Concepción, Chile," *Animals* 10, no. 2 (2020): 298.
- [135] H. E. Marshall, M. L. Gore, D. Ngoprasert, and T. Savini, "Free-Ranging Dogs and Their Owners: Evaluating Demographics, Husbandry Practices and Local Attitudes Towards Canine Management and Dog-Wildlife Conflict," *Integrative Conservation* 2, no. 4 (2023): 255–270.
- [136] N. E. Moran, A. K. Ferketich, T. E. Wittum, and J. W. Stull, "Dogs on Livestock Farms: A Cross-Sectional Study Investigating Potential Roles in Zoonotic Pathogen Transmission," *Zoonoses and Public Health* 65, no. 1 (2018): 80–87.
- [137] J. K. Wilson-Aggarwal, L. Ozella, M. Tizzoni, et al., "High-Resolution Contact Networks of Free-Ranging Domestic Dogs Canis Familiaris and Implications for Transmission of Infection," PLoS Neglected Tropical Diseases 13, no. 7 (2019): e0007565.
- [138] A. Belsare and A. T. Vanak, "Modelling the Challenges of Managing Free-Ranging Dog Populations," Scientific Reports 10, no. 1 (2020): 18874.
- [139] L. A. Espejo, S. Costard, and F. J. Zagmutt, "Modelling Canine Leishmaniasis Spread to Non-Endemic Areas of Europe," *Epidemiology and Infection* 143, no. 9 (2015): 1936–1949.
- [140] B. Raynor, M. De la Puente-León, A. Johnson, et al., "Movement Patterns of Free-Roaming Dogs on Heterogeneous Urban Landscapes: Implications for Rabies Control," *Preventive* Veterinary Medicine 178 (2020): 104978.
- [141] T. Mutwiri, A. W. T. Muigai, J. Magambo, et al., "The Potential Role of Roaming Dogs in Establishing a Geographically Novel Life Cycle of Taeniids (Echinococcus spp. and Taenia spp.) in a Non-Endemic Area," Veterinary Parasitology: Regional Studies and Reports 38 (2023): 100829.
- [142] S. Dürr, E. Wera, V. J. Brookes, C. Warembourg, S. Griss, and A. S. Fahrion, "The Role of Dog Ecology in Canine Rabies Prevention and Control in Asia: Lessons from Indonesia and the Oceanic Region," in *One Health for Dog-Mediated Rabies Elimination in Asia*, (CABI Books, 2023): 142–159.
- [143] S. Mauti, Contribution to Dog Ecology and Dog-Related Zoonoses in Bamako, Mali, (Thesis, University_of_Basel, 2015).
- [144] C. Mbilo, J.-B. Kabongo, P. P. Pyana, et al., "Bite Incidence, and Disease Awareness: A Cross-Sectional Survey Among a Rabies-Affected Community in the Democratic Republic of the Congo," *Vaccines* 7, no. 3 (2019): 98.