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Based on a large-scale bibliometric dataset, domestic dogs (Canis lupus familiaris) emerge as the most frequently cited host species
in the context of zoonoses, being mentioned in at least 10% of publications for nearly a quarter of the pathogens recognized as
zoonotic to humans. This review examines the contributions of pet and stray dogs to various zoonotic transmission pathways,
highlighting some mismatches between research focus and actual epidemiological risks. Among zoonotic agents associated with
dogs, helminths are disproportionately represented in the literature compared to bacteria and viruses. Pet and stray dogs exhibit
distinct zoonotic risks due to differences in exposure patterns and human interactions. Stray dogs are frequently involved in
environmentally transmitted diseases, particularly soil- and water-borne parasites, due to uncontrolled defecation and opportu-
nistic behavior. Conversely, pet dogs pose greater risks for direct transmission, particularly via bites, close contact infections, and
antimicrobial-resistant bacteria. From a public health perspective, integrating dogs into One Health surveillance frameworks is
crucial. Routine genomic monitoring of stray dogs could allow early detection of emerging zoonoses, while large-scale deworming
programs, improved sanitation infrastructures, and responsible pet management would mitigate both environmental and direct
transmission risks. Vector-borne zoonoses require differentiated control measures, including antiparasitic treatments for tick- and
flea-borne infections and environmental interventions for mosquito- and sandfly-borne pathogens. This review focuses on pet and
stray dogs only, due to the lack of consistent definitions and data availability for other canine categories. Future research should
refine ecological and behavioral studies and dog-host interaction analyses to better quantify the zoonotic risks associated with each
dog ecotype and guide targeted intervention strategies. This approach enables a more precise zoonotic risk stratification and
contributes to effective disease prevention at the human—animal-environment interface.
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1. Introduction

Zoonotic diseases, which arise from the close relationship
humans have established with surrounding animal species,
represent one of the primary threats to global public health
[1, 2]. Domestic animals play a key role in the transmission
dynamics of these zoonoses due to their abundance and global
distribution. The likelihood of pathogen exchange with wild
and environmental reservoirs is enhanced through domesti-
cated species, which have central positions in interspecies

transmission networks [3]. Thus, they facilitate the gradual
adaptation of infectious agents to a wide range of hosts, includ-
ing humans, acting as intermediaries in the spread of numerous
emerging zoonotic diseases [4-8]. This is particularly true for
domestic carnivores, which share 90% of their pathogens with
other hosts [9]. Canis lupus familiaris harbors the greatest
diversity of zoonotic infectious agents among all animal species
[10]. In this sense, canine populations generally do not consti-
tute an independent reservoir, in which pathogens can persist
in the long term: rather, they are part of a broader maintenance
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complex [11]. As one of the animals interacting most closely
with humans within multi-species maintenance communities,
the domestic dog is often a major source of zoonotic infections
(12, 13].

Beyond the global abundance of canine populations, the
primary reason behind the high potential of dogs for transmit-
ting zoonotic pathogens is the intimate and long-lasting rela-
tionship they maintain with humans for thousands of years
[14]. As a result of this long-term co-evolution, canine patho-
gens have gradually adapted to humans [10, 15]. This constant
proximity across diverse socio-ecological contexts has created
multiple interfaces between dogs and humans [16], providing
pathogens with privileged access to various zoonotic transmis-
sion pathways through a wide range of direct or indirect inter-
actions. Dog bites, for instance, are a common source of
bacterial infections [17, 18], in addition to being responsible
for almost all cases of human rabies [19]. “Man’s best friend”
also play a significant role in the epidemiology of brucellosis
[20, 21], leptospirosis [22, 23], and Q fever [24, 25], all diseases
transmitted through close contact with the bodily fluids of
infected animals. Moreover, dogs are recognized as mainte-
nance hosts for numerous (re)emerging zoonotic vector-borne
diseases [26, 27], including ehrlichiosis [28, 29], dirofilariasis
[30, 31], and leishmaniasis [32, 33]. Finally, canine populations
contribute to the spread of a wide variety of environmentally
transmitted parasitic infections [34], most of which being cate-
gorized as Neglected Tropical Diseases by the World Health
Organization [35], such as cystic echinococcosis [36, 37], food-
borne trematodiases [38, 39], and soil-transmitted helminthia-
sis [40, 41]. The diversity of contamination mechanisms
associated with dogs therefore highlights the numerous poten-
tial pathways through which canine populations can contribute
to the emergence of zoonoses.

Although canine populations are not always able to sustain
all these pathogens in the long-term, they can still serve as
intermediate link for zoonotic infection, acting as epidemiolog-
ical bridges [42]. By connecting the maintenance complex to
the target host, dogs could then facilitate the spread of infec-
tious agents from wildlife to human populations [43]. Far from
being an homogeneous entity, the global dog population
encompasses a wide range of socio-ecological profiles and life-
styles, each characterized by specific behaviors, habitat prefer-
ences, and interactions with humans and other animal species
[38, 43—45], thereby influencing disease transmission mechan-
isms in varied ways. Excluding wild feral dogs, the spectrum of
domestic dogs ranges from ’stray dog’ (i.e., dogs roaming freely
and exposed to wild or commensal fauna without access to a
consistent food source or appropriate veterinary care) to "pet
dog’ (i.e., dogs living within human households under con-
trolled conditions regarding their displacements, nutrition,
and hygiene), with intermediate profiles in terms of manage-
ment, such as free-roaming owned dogs or dogs kept in shelters
or kennels [46-49]. The zoonotic transmission possibilities at
either end of the canine ecotypic spectrum are thus likely to
vary in both frequency and transmission mode. For instance,
pet dogs may be especially more prone to transmit pathogens
directly to their owners through close contacts [50], whereas
the free defecation of stray dogs in the environment is believed
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to facilitate the completion of the life cycle of parasites that can
be transmitted to humans via foodborne pathways [51]. Given
the diversity and complexity of transmission patterns involving
dogs, assessing the overall public health impact attributable to
C. lupus familiaris appears neither realistic nor appropriate. It
would nonetheless be conceivable and relevant to break down
the continuous gradient of canine ecotypes to estimate their
respective contributions to zoonotic transmission pathways.

In this context, associating socio-ecological profiles of dogs
with specific zoonotic risks may support the development of
effective prevention strategies. Several studies have thus recom-
mended differentiated management of canine populations by
focusing on key individuals to reduce their respective roles in
zoonotic cycles [45]. For instance, targeted rabies vaccination
in Africa and Asia has significantly reduced the number of
human cases, particularly in urban areas where stray dogs
play a predominant role in rabies transmission [52, 53]. Equip-
ping companion dogs with insecticide-impregnated deltame-
thrin collars has led to a notable reduction in human visceral
leishmaniasis in rural areas of Brazil [54, 55]. Screening and
culling programs for infected dogs in commercial breeding
kennels, combined with strict biosecurity measures, have
helped to limit zoonotic infections by Brucella canis [20, 56].
Similarly to these studies, identifying specific transmission
pathways of canine pathogens will enable the implementation
of targeted health control measures. The aim of this review is
therefore to address the diversity of mechanisms by which
infectious agents can spread from dogs, focusing on the zoo-
notic potential of each specific dog ecotype. By synthesizing the
available information from the scientific literature, this study
seeks to identify overarching trends in public health risks asso-
ciated with dogs and provide general recommendations for
preventing the emergence of zoonoses through the canine epi-
demiological bridge.

2. Materials and Methods

We first compiled a structured list of zoonotic pathogens
potentially transmissible by dogs worldwide. Although taxo-
nomic inconsistencies and evolving classifications complicate
this task, the resulting inventory captures a broad and repre-
sentative set of infectious agents relevant to canine-mediated
transmission. For each pathogen, we assessed the zoonotic
potential and the degree of canine involvement based on avail-
able evidence. This step provided an initial framework for
understanding transmission dynamics and identifying areas
where the epidemiological role of dogs is poorly documented.

To account for potential bias linked to uneven research
attention, we conducted a large-scale lexical analysis of a bib-
liographic database, using the pathogen as the analytical unit.
Pigs were included in this analysis as a reference host species,
given their established role in zoonotic transmission, their sta-
tus as livestock animals—epidemiologically and symbolically
distinct from dogs—and their position as the second most
frequently cited mammalian species in relation to zoonotic
transmissions. This approach offers a standardized, quantita-
tive means of comparing the representation of dogs across
various zoonotic cycles.
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— * 2%k
TS = (transmission TS = (zoono™ OR human_transmi

Epidemiological entity Additional query AND zoonotic) OR transmission_to_human
OR transmitted_to_human™)

Total — 12,682 51,957
AND (dog* OR canin®) 2058 7622
AND (dog* OR canin*) AND pet* 426 1194
AND (dog® OR canin®) AND stray* 177 661
AND (pig* OR swin™) 1993 6238
. . AND (cattle* OR bovin*) 1853 6631

Domestic host species .

AND (cat OR cats OR felin*) 1202 3906
AND (chick* OR poultry) 974 3584
AND (sheep” OR ovin*) 733 3137
AND (goat* OR caprin®) 537 2157
AND (horse* OR equin®) 546 1764
AND (rodent™) 1030 3238
Other species AND (bat OR bats) 863 2251
AND (NHP* OR primate™) 617 1472
AND tick* 880 3530
Vectors AND mosquito* 584 2005
AND flea* 226 714

FIGURE 1: Number of publications provided per query in the Web of Science database.

While bibliometric patterns do not constitute empirical
proof of transmission, they reveal how scientific discourse
reflects—or overlooks—canine involvement in zoonoses. To
refine interpretation, we triangulated these results with targeted
literature reviews from specialized sources. This integrative
method provides a multi-layered perspective on the zoonotic
role of dogs, highlighting imbalances in research coverage and
supporting the identification of context-specific priorities for
surveillance and disease control.

2.1. Representative List of Zoonotic Pathogens Transmitted by
Dogs. To assess the role of the canine species in various zoo-
notic transmission pathways, we seek to accurately characterize
the contamination mechanisms specific to each pathogen
linked to dogs. A list of 335 known zoonotic pathogens, classi-
fied by taxonomic groups, was then compiled based on various
sources, including Taylor et al. [57], Acha et al. [58], Polack
et al. [59], Bauerfeind et al. [60], Rahman et al. [1], the MSD
Veterinary Manual [61], and the Centers for Disease Control
and Prevention [62]. From these references, key information
was extracted for each listed infectious agent regarding the
public health impact (low, moderate, high, or priority), the
primary source of human exposure (animal, environment,
food, or vector) and the main zoonotic transmission pathway
(accidental ingestion of plants or insects, consumption of ani-
mal products, inoculation via bites or scratches, physical or
close contact, transmission by ectoparasites, transmission by
flying arthropod vectors, consumption of fish or seafood, inha-
lation, transmission through contact with soil, waterborne
transmission, or unsanitary conditions route).

Additional bibliographic searches were then conducted
using the Google Scholar database to highlight recognized or
strongly suspected transmission cases originating from dogs. If
the ability of C. lupus familiaris to transmit the infectious agent
to humans was confirmed, the next step would be to estimate,

through targeted bibliographic research, whether dogs primar-
ily act as the primary source of zoonotic infection (main trans-
mission host), as a secondary source (frequently implicated
host), as an occasional source (a few confirmed cases), or as a
potential source (competence demonstrated only in laboratory
settings). Eco-epidemiological studies specifically exploring the
roles of different types of dogs in the transmission of certain
listed pathogens have also been referenced in Supporting Infor-
mation 1: Table S1, where all the bibliographic information
compiled with the corresponding sources is presented. To fur-
ther investigate the diversity of pathogens transmitted to
humans by dogs and the factors that determine this canine
competency, y° tests were performed to identify potential sig-
nificant associations. Adjusted standardized residuals were cal-
culated to assess the extent to which the proportion of zoonotic
pathogens transmitted by dogs differed by transmission path-
ways (Supporting Information 2), taxonomic groups and
health impact. Data processing, statistical analyses, and graphi-
cal representations were performed using R software (version
4.3.1), using the “dplyr,” “tidyr,” “ggplot2,” and “gt” packages
(Zoonotic list analysis code available in the Supporting Infor-
mation 2).

2.2. Bibliometric Analysis to Assess the Pathogen/Dog
Association. To evaluate numerically the overall zoonotic
involvement of C. lupus familiaris based on the scientific liter-
ature, we aim to determine the extent to which canine ecotypes
are associated with each listed pathogen at the scale of a biblio-
graphic database. A bibliometric analysis was then conducted
on a macroscopic scale using the Web of Science (WoS) Core
Collection database as of November 15, 2024. First, we com-
pared the number of results from a search for “dog(s)” in rela-
tion to “zoonotic transmission” to different queries searching
for other host species or reservoirs of zoonotic importance
(number of results for each query compiled in Figure 1). For

85US017 SUOLULIOD SISO 3|qe! dde 8Ly Aq pousenob ae o e YO ‘38N JO Sajnu o} Afeig 1 8UIIUO A1 UO (SUOIPLIOD-PUR-SWBH WD A8 | 1w Afelq U1 |UO//SdNY) SUOIPUOD Pue SIS 13U} 39S *[G202/80/.2] U0 ArigT aulluO AS|IMW ‘SoueId 8URIUY0D AQ TSK2ZSS/PRgYSSTT OT/I0PALIOY A3 |IMAReig1jpul U0/ Sd)y WOy papeojumod ‘T ‘5e0e ‘Pad



each of these 335 zoonotic infectious agents on the list, the
number of English-language Articles or Reviews mentioning
the scientific name of the pathogen (or its abbreviation with the
genus shortened) in their topics (TS =titles, keywords, or
abstracts) was recorded in column “Total” in Supporting Infor-
mation 1: Table S1. Among these publications, those that also
mentioned the words “dog(s)” and “pig(s)” were counted in the
“With_dogs” and “With_pigs” columns, and those that cited
the words “pet(s)” and “stray,” in addition to “dog(s),” were
counted in the “With_pet_dogs” and “With_stray_dogs” col-
umns, respectively. The searches conducted using terms refer-
ring to shelter or free-roaming dogs did not yield enough
results to be accounted for. The queries entered in the Web
of Science database are available in Supporting Information 1:
Table S1. Example to complete the “With_pet_dogs” column:
TS = (Microsporum_canis AND dog* AND pet*) AND (LA =
English) AND (DT = (Article OR Review)). The factors
“Dog’s part” (=“with_dogs”/“total”), “Pig’s part”
(=“with_pigs”/“total”), “DogPig’s part” (=log (“with_dogs”
+ 1) — log (“with_pigs” + 1)), and “Dog’s partition” (=log
(“with_stray_dogs” + 1) — log (“with_pet_dogs” + 1)) were
then calculated to classify pathogens based on their association
with dogs (or pigs). Table 1 includes only pathogens mentioned
in more than 100 publications (Total > 100) for which the dog
is considered competent (or suspected to be). For the full list of
documented zoonotic pathogens, missing information—
including WOS queries, number of publications, reservoirs,
geographical context, and canine competence—as well as the
corresponding bibliographic sources, is available in the full
version of Supporting Information 1: Table S1.

A first logistic binomial regression model was selected to
evaluate the effects of pathogens’ “taxonomic groups”, “trans-
mission pathways” and “health impact” on the probability of
mentioning dogs in scientific publications, considering articles
“with dogs” as the number of successes out of a “total” number
of trials. As a potential epidemiological bridge host frequently
involved in zoonotic transmissions [63], the pig was then
selected as a reference control species to compare the overall
involvement of the dog in the transmission of recognized
pathogens to humans. A second logistic binomial regression
model was then used to examine the effect of the same explan-
atory variables on the probability of citing “dog(s)” (coded as
success) compared to “pig(s)” (coded as failure). This choice
was further supported by bibliometric data, as pigs were the
second most frequently cited mammalian species in the Web of
Science database in the context of zoonotic transmission. The
models including the interaction, selected using Akaike’s Infor-
mation Criterion (AIC), have a residual deviance of 47,403 and
21,316, respectively (with 245 and 229° of freedom) versus a
null deviance of 137,487 (Model 1) and 61,623 (Model 2),
indicating a substantial fit to the data. For these two statistical
models, only the 310 pathogens cited in at least 50 publications
were retained to minimize biases caused by small sample sizes.
Additionally, 16 extra pathogens, for which dogs and pigs were
cited in fewer than 5 articles in total, were excluded from
Model 2.

Finally, a third logistic binomial regression model was used
to examine the effect of the same explanatory variables on the
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probability of citing stray dogs (as a success) compared to pet
dogs (as a failure). This time, only the 141 pathogens men-
tioned in at least 5 publications, citing either “pet dogs”
and/or “stray dogs,” were retained for this last model, which
fitted the data accurately after AIC minimum selection (Model
3 residual deviance of 403 with 85 df against 1406 initially).
Using the “dplyr,” “emmeans”, “gt,” and “ggplot2” packages,
model summary tables and predicted probability plots were
created on R software (version 4.3.1) for the three models
(Bibliometric analysis code and Model summaries available
in the Supporting Information 2). To perform a cross-
validation of bibliographic and bibliometric data, a Spearman
correlation test was conducted to assess the relationship
between the ordinal variable “Canine zoonotic potential” and
the “Dog’s part” index, whose distribution is shown in Figure 2.

3. Results

3.1. Representative List of Zoonotic Pathogens Transmitted by
Dogs. Literature searches revealed 152 pathogens that C. lupus
familiaris is able to transmit to humans, representing almost
half of the zoonotic agents listed in our study. Dogs play the
role of primary host for human transmission for 44 of them,
while they may act as a secondary zoonotic source for 60
pathogens and are occasionally involved in the transmission
of the remaining 48. To our knowledge, no documented cases
of zoonotic transmission by dogs have been reported under
natural conditions for the remaining 185 listed pathogens,
although 117 of them appear capable of infecting dogs. Among
these, dogs may pose a potential zoonotic risk for an additional
46 pathogens, as canine competence remains neither con-
firmed nor ruled out due to conflicting sources or studies dem-
onstrating transmission potential only under laboratory
conditions. Figures 3 and 4 show the proportion of zoonotic
pathogens transmitted by dogs across the list, by taxonomic
groups and by routes of transmission, respectively.

Figure 3 highlights some taxonomic groups with a higher
proportion of zoonotic pathogens transmitted by dogs than
others (y’p-value=2.558e—04), particularly helminths
(adjusted y* residuals = 1.98). Conversely, the proportion of
viruses for which dogs are competent hosts is significantly
lower than expected (adjusted y° residuals = —2.82). Figure 4
shows that the proportion of zoonotic pathogens transmitted
by dogs varies according to the mode of transmission of infec-
tious agents (y°p-value=1.156e—06). Dogs are particularly
competent for most pathogens transmitted through food con-
sumption (especially fish or seafood: adjusted y* residuals =
1.99), whereas they are generally not competent for those trans-
mitted through direct contact with animals, except in the case
of bite inoculations (adjusted 4 residuals = 1.28). See details of
the results of y* test by zoonotic potential of dogs in the
Supporting Information 2 (3 statistic = 97.4; df = 40; p-value =
1.098e—06).

3.2. Bibliometric Analysis to Assess the Pathogen/Dog
Association. Figure 1 presents the number of publications cit-
ing domesticated host species, major wild reservoirs, and
arthropod vectors. It shows that dogs are the most cited animal
compartment in the context of zoonotic transmissions, in more
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FiGURE 2: Distribution of “Dog’s part” mean by zoonotic potential of dogs.
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FiGure 3: Number of zoonotic pathogens by taxonomic groups.

than one in seven publications, ahead of pigs, cattle and cats.
Pigs, reported at levels comparable to those of dogs, will later be
used as a control for comparison with livestock species.

The bibliometric analysis conducted on the WoS Core Col-
lection database measured the proportion of publications men-
tioning the term “dog” for each of the listed pathogens, thereby
identifying the zoonotic agents most associated with C. lupus
familiaris in the scientific literature. At the top of the ranked
list, as shown in Table 1, are Helicobacter canis, Trichuris vulpis,

Ehrlichia canis, Capnocytophaga canimorsus, Staphylococcus
pseudintermedius, B. canis, Dipylidium caninum, Uncinaria
stenocephala, Bartonella vinsonii berkhoffii, and Anaplasma
platys. In addition to this top 10, dogs are mentioned in at least
one out of every two publications (Dog’s Part Index > 0.5) for
15 other pathogens, compared to only three pathogens for pigs.
Among the pathogens cited in at least 50 publications, 77 had a
Dog’s Part Index exceeding 0.1, whereas pigs were mentioned
in more than one in 10 articles for only 42 listed pathogens.
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FIGURE 4: Number of zoonotic pathogens by transmission pathways.

Comparatively, the dog index is twice as high as the pig index
when averaged across all listed zoonotic pathogens (mean
Dog’s part=0.105; mean Pig’s part=0.053). Most pathogens
listed have more mentions of pigs than dogs (DogPig_part’s >
0 for 139 zoonotic agents compared to 165). However, dogs are
cited at least 10 times more than pigs for 56 pathogens, while
pigs are cited 10 times more than dogs for half as many
(DogPig _part’s < 1 for 24 pathogens). Compared to pigs, these
results suggest that dogs hold a relatively important place in the
epidemiological dynamics of the pathogens they are associ-
ated with.

As a cross-validation of the classification established in the
previous section, the Spearman’s correlation test indicates a
very significant positive relationship between “Dogs part” index
and Zoonotic potential of dogs (p-value < 2.2 x 10~'% rho =
0.668). Thus, we observe in Figure 2 that pathogens for which
dogs serve as the primary source of zoonotic infections have a
relatively high Dog’s part mean of 0.495, although the index
exhibits considerable variability (standard deviation (sd) =
0.222). This value progressively decreases depending on the
role of dogs in pathogen transmission: 0.117 when dogs act
as secondary transmission hosts (sd =0.105), 0.056 for patho-
gens that dogs occasionally transmit to humans (sd =0.089),
0.044 for potential but unconfirmed zoonotic sources (sd =
0.076), and finally, 0.022 for pathogens that dogs do not trans-
mit to humans (sd =0.031).

Binomial logistic regression Models 1 and 2 demonstrated
a significant effect (p-value < 2.2 x 10~'°) of taxonomic groups,
transmission routes, health impact, and their interactions, on
the probability of mentioning dogs, respectively, on total

publications or compared to pigs. Dogs were three times
more likely to be cited in publications referencing pathogens
with low (p=0.059) or moderate (p=0.043) public health
impacts than in those concerning pathogens of high (p=
0.015) or priority (p=0.016) importance. It is worth noting
that this trend is not as pronounced for pigs, even though
Model 2 does not indicate significant differences between the
two host species in terms of probabilities. Additionally, rickett-
sial organisms, cestodes, and nematodes were frequently asso-
ciated with dogs in the scientific literature, exhibiting
significantly higher predicted probabilities of mentions (p =
0.183, p=0.124, and p = 0.098, respectively in Model 1) com-
pared to other pathogen groups, notably viruses (p = 0.011) or
bacteria (p = 0.019). Comparatively, rickettsial species, proto-
zoa, and helminths are more likely to be cited alongside dogs
than pigs (p >0.5 in Model 2).

The results of the Model 1 indicate that pathogens transmit-
ted through bites (p = 0.150), via ectoparasites (p =0.084) or
contact with soil (p=0.078), are associated with the highest
frequencies of dog mentions (Figure and summary in Supporting
Information 2). Moreover, Model 2 shows that dogs are signifi-
cantly more frequently cited than pigs (p >0.5) for these three
transmission modes, as well as for fish or seafood consumption,
flying vector borne and accidental ingestion (Figure 5). Con-
versely, pathogens transmitted through inhalation (p=0.009
in Model 1) and close contact (p =0.0015 in Model 1), as well
as those associated with animal products and poor hygiene, are
more frequently linked to pigs (p <0.5 in Model 2, Figure 5).
This suggests that dogs are less commonly cited in these contexts
than livestock species. On a broader scale, the frequency of dog
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FIGURE 5: Probability of citing “dogs” against “pigs” by transmission pathways.

citations varies significantly depending on the exposure source
considered. Dogs are most frequently mentioned in cases of
vector-borne transmission (p = 0.042 [0.028; 0.062]), followed
by foodborne transmission (p = 0.033 [0.027; 0.041]), environ-
mental transmission (p = 0.027 [0.018; 0.038]), and finally, direct
transmission (p = 0.021 [0.017; 0.025]). Model 2 indeed indicates
that only vectorial exposure is more strongly associated with dogs
than with pigs (p = 0.744), whereas environmental and animal
exposure sources are primarily linked to pigs (p <0.5), as can be
seen in Figure 5, which compares the “dog” and “pig” citations by
transmission pathways.

In a second step, by comparing the number of publications
citing the terms “stray dogs” and “pet dogs,” we aim to assess
the extent to which each zoonotic pathogen is associated with
one or the other canine lifestyle in the scientific literature. The
10 infectious agents with the highest Dog’s Partition Index, and
thus most frequently associated with stray dogs compared to
pet dogs, are as follows: Heterophyes spp., Dioctophyme renale,
Toxascaris leonina, D. caninum, Ancylostoma braziliense, Lep-
tospira interrogans Copenhageni, H. canis, Echinococcus gran-
ulosus, Dibothriocephalus latus, and Macracanthorhynchus
spp. Conversely, the 10 pathogens most frequently associated
with pet dogs compared to stray dogs are: Staphylococcus inter-
medius, Clostridioides difficile, Staphylococcus aureus, Strepto-
coccus canis, C. canimorsus, S. pseudintermedius, Salmonella
typhimurium, Bordetella bronchiseptica, Clostridium perfrin-
gens, and Yersinia enterocolitica.

The results of the binomial logistic regression Model 3
assessing the probability of citing “stray dogs” compared to
“pet dogs” in publications mentioning pathogens transmitted
by dogs are summarized in the Supporting Information 2
across different taxonomic groups, health impacts, and trans-
mission pathways. The deviance analysis indicated significant
contributions of the three factors, especially Pathway and Tax-
onomic group, and their interaction (p-value <2.2x107').
Zoonoses caused by cestodes (p=0.557), trematodes (p=
0.465), nematodes (p = 0.428), rickettsiae (p = 0409), and pro-
tozoa (p = 0347) appear to be more frequently associated with
stray dogs in the literature, whereas bacteria (p = 0.175), fungi
(p=10.127), and viruses (p = 0.005) are significantly linked to
companion dogs. Additionally, no significant differences were
found in the predicted probabilities across different levels of
public health impact, although companion dogs appear to be
associated with more concerning pathogens than stray dogs.

Furthermore, when pathogens are grouped by exposure
source, diseases related to direct exposure to “Animals” are
significantly less frequently cited in the context of stray dogs
compared to other type of exposure (p =0.156 [0.119; 0.202]).
Specifically, pathogens transmitted through direct interactions
with animals, such as inhalation (p=0.089), close contact
(p=0.053) or bite inoculation (p = 0.204), demonstrated sig-
nificantly lower predicted probabilities at the 95% confidence
level and were therefore more frequently associated with pet
dogs (Figure 6). Conversely, publications reporting pathogens
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FIGURE 6: Probability of citing “stray dogs” against “pet dogs” by transmission pathways.

transmitted through fish consumption showed the highest pre-
dicted probability of mentioning stray dogs compared to pet
dogs (p = 0.533), followed by water contamination (p = 0.512)
and soil-borne pathogens (p = 0.464).

4. Discussion

4.1. Functional Roles, Host Status, and Scientific Representations
of Dogs in Zoonotic Transmission. This review highlights the
epidemiological significance of C. lupus familiaris as the most
frequently cited host species in the context of animal-to-
human transmission. This prominence is primarily explained
by the species’ ecological versatility and ubiquity in domestic
environments, where dogs are involved in a wide range of
interspecific transmission pathways [43, 63]. In accordance
with Morand et al. [10], the proportion of infectious agents
shared between dogs and humans is likely the highest in the
animal kingdom, largely reflecting the long evolutionary his-
tory shared by both species. Despite this apparent centrality,
20% of documented zoonotic pathogens have never been
detected in dogs. Moreover, they often act as zoonotic dead-
end hosts for nearly half of the listed pathogens, with little or
no confirmed human transmission. Nevertheless, our biblio-
graphic analysis indicates that dogs still play a significant role
in the infectious dynamics of more than a 100 zoonotic
agents, even when they are not essential to pathogen persis-
tence. Indeed, their role in pathogen maintenance clearly

extends beyond the 20 zoonotic agents for which they are
identified as primary reservoirs.

Even when they do not serve as core maintenance hosts,
dogs can facilitate the circulation of numerous generalist patho-
gens within multi-host communities. Through their interac-
tions with humans, wildlife, and other domestic animals, they
contribute to the formation of maintenance complexes, as
described by Haydon et al. [11]. In such systems, dogs often
act as relay hosts, spatial vectors, or mechanical carriers, rather
than as reservoirs per se. Their pivotal function as an interme-
diary compartment bridging sylvatic and domestic transmis-
sion cycles thus appears to be crucial [64-66]. This
intermediary role aligns with the definition of “bridge hosts”
proposed by Caron et al. [42], which describes species that
sustain continuous epidemiological connections between
maintenance reservoirs and final hosts—namely humans.
The high density, ecological diversity, and social connectivity
of dog populations contribute to this bridging function,
enabling sustained spillover potential across ecological and
social boundaries.

While lexical counts do not allow for precise estimation of
the infectious burden attributable to dogs, bibliometric analysis
provides a valuable framework to explore how different trans-
mission pathways are associated with canine populations in the
scientific literature. This approach allows for a synthesis of the
representations attached to the zoonotic role of dogs and offers
interpretative tools to anticipate potential emergence risks.
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Moreover, it facilitates interspecies comparisons of zoonotic
potential, supporting the prioritization of health threats based
on their perceived weight and visibility. The comparative anal-
ysis between pets and livestock, for instance, lays the ground-
work for a functional typology of host species—one based not
only on biological traits and lifestyles but also on the scientific
representations that shape surveillance strategies. Despite a
similar publication volume on zoonotic agents when compared
to pigs or cattle, dogs appear to be associated with a broader
spectrum of pathogens and transmission mechanisms, suggest-
ing a particularly extensive involvement in infectious dynamics.
This overrepresentation is especially marked for certain taxo-
nomic groups, such as cestodes, nematodes, and rickettsiae,
and for specific transmission routes. While dogs are often
implicated in vector-borne, environmental, and bite-related
zoonoses, livestock—primarily represented by pigs—tend to
be more frequently involved in foodborne, hygiene-related,
and close-contact transmissions, reflecting the exposure con-
texts typical of farming systems.

4.2. Canine Ecotypes and Their Epidemiological Roles in
Zoonotic Transmission. The global dog population displays
considerable ecological heterogeneity, with individuals variably
connected to both pathogen maintenance complexes and
human populations, depending on their lifestyle and level of
integration [44, 45]. This diversity is rarely reflected in review
studies, which often rely on simplified classifications. For meth-
odological consistency, our analysis focused on the two most
frequently cited terms in the corpus: pet dog and stray dog,
used as proxies for the two ends of the ecotypic gradient. Other
categories commonly employed in field studies—such as free-
roaming, community, owned, or unrestrained—were too incon-
sistently cited to support robust comparisons. This limited lexical
scope reveals a pronounced polarization in scientific representa-
tions of zoonotic risk. Pathogens associated with environmental
or parasitic transmission are more frequently linked to stray
dogs, often portrayed as diffuse sources of contamination outside
human control structures. In contrast, pet dogs are more com-
monly associated with bacterial infections transmitted through
close contact, such as bites or licking. These distinctions help
shape contrasting epidemiological profiles: stray dogs are per-
ceived as external, unregulated threats, while pet dogs are seen as
intimate companions, potentially facilitating pathogen adapta-
tion within household environments.

Ecological evidence supports this dichotomy. Stray dogs,
due to frequent exposure to contaminated environments and
the lack of routine veterinary care, are prone to accumulating
and disseminating resilient pathogens through their interac-
tions with multi-host systems [51, 67]. Conversely, companion
dogs, although generally less exposed to environmental reser-
voirs, remain deeply embedded in human social spaces. Their
proximity to humans creates repeated opportunities for direct
transmission and may promote the gradual adaptation of
pathogens to human hosts [14, 68, 69]. As the final interface
before human infection, the role of pet dogs as potential zoo-
notic amplifiers should not be underestimated. These findings
highlight the importance of integrating ecotype-specific char-
acteristics into zoonotic risk assessment. From a public health
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perspective, tailored interventions are needed to address the
distinct functions of each ecotype within transmission net-
works. Stray dogs could be prioritized in deworming cam-
paigns aimed at reducing environmental parasitic loads,
while in contexts of viral emergence, restrictions on close
human—pet interactions may be necessary. More broadly,
acknowledging the functional diversity of dogs is essential to
developing health management strategies within an ecosyste-
mic framework.

Bibliometric analyses remain heavily dependent on the
explicit use of keywords such as dog, stray, and pet, which
may reflect editorial conventions rather than precise epidemi-
ological distinctions. The lack of standardized terminology for
intermediate profiles makes them difficult to identify automat-
ically and restricts analysis to a binary model. While such lexi-
cal simplification is operationally useful, it hampers the
classification of ecotypes and limits the ability to accurately
represent the complexity of canine populations in real-world
contexts, particularly in rural and peri-urban settings, where
ownership, mobility, and control are often ambiguous. Despite
being underrepresented in the literature, intermediate canine
profiles such as free-roaming owned dogs likely play a key
epidemiological role. These dogs are omnipresent across rural,
peri-urban, and urban environments and often maintain inter-
actions with both confined pets and unregulated stray popula-
tions. Acting as epidemiological connectors, they may facilitate
the movement of pathogens across ecological and social
boundaries [38, 44, 70, 71]. As such, interconnected and sym-
patric canine subpopulations could contribute to each stage of
the species barrier crossing [72], progressively bringing
wildlife-origin pathogens closer to human settlements
[38, 43] and amplifying the risk of spillover.

4.3. Fecal Contamination and Environmental Transmission.
Dogs frequently serve as definitive hosts for a wide diversity of
helminth species, shedding infective stages (e.g., eggs or larvae)
into the environment [51, 59], where they can persist for
extended periods and further infect humans through soil,
water, or food contamination [34, 73]. These parasites have
prolonged life cycles and exceptional environmental resilience.
This allows them to persist in human habitats, facilitates con-
tinuous transmission, even in the absence of direct host-to-host
contact [74]. For instance, Toxocara canis, Trichuris vulpis, and
several Ancylostomatidae—nematode species highly special-
ized for canine hosts—can survive in the soil for months to
years, creating long-lasting sources of exposure [75, 76].
Moreover, stray dogs are more frequently mentioned in the
literature for environmentally transmitted helminths, which
supports their role in maintaining resistant parasites through
open defecation in domestic habitats, public spaces and culti-
vated agricultural areas [77-81]. The risks of contamination of
water sources, other domestic animals and crops, then appear
to be particularly high. Beyond passive fecal-oral transmission,
stray dog populations actively contribute to the completion
of heteroxenous parasitic cycles through their predatory
and opportunistic behavior towards intermediate hosts
(e.g., aquatic prey, rodents, and livestock carcasses) [38]. The
spread of pathogens such as Echinococcus spp. and Fish-borne
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Zoonotic Trematodes [82—84] is therefore facilitated. In the
absence of deworming treatments, roaming dogs, which are
more frequently exposed to contaminated environments, could
then serve as key local reservoirs, supporting the transmission
of neglected tropical diseases by significantly increasing the
parasitic load in favorable wetland ecosystems [51, 67, 85].

To mitigate the role of stray and free-roaming dogs in the
persistence and transmission of environmental parasites, tar-
geted control strategies must be implemented. Large-scale
deworming campaigns should be prioritized for these high-
risk canine populations to reduce the environmental burden
of helminths and limit parasite dissemination [86]. Improving
sanitation infrastructures, including proper waste disposal and
the management of dog feces in urban and peri-urban areas,
appears to be essential to curbing soil and water contamination
[78, 87]. Finally, community awareness programs can encour-
age responsible pet ownership by promoting movement con-
trol and appropriate veterinary monitoring and avoiding
abandonment [88, 89].

4.4. Direct Exposure to Animals and Close Contact Transmission.
Our bibliographic research indicates that dogs are highly com-
petent hosts for most zoonotic pathogens transmitted via bites
or scratches. Dogs indeed play a major epidemiological role in
the transmission of rabies [90], as well as in numerous bacterial
superinfections resulting from bite wounds (Capnocytophaga
spp., Staphylococcus spp., Pasteurella spp., and Streptococcus
spp.) [17, 18]. As a result, they are frequently mentioned in
scientific publications focusing on these biological agents, par-
ticularly in comparison with domesticated artiodactyls, such as
pigs, cattle, and small ruminants.

However, the overall epidemiological involvement of dogs in
other forms of direct animal-to-human transmission seems lim-
ited. Apart from a few canine-adapted bacteria with which they
have co-evolved, such as H. canis, B. canis, and Corynebacterium
auriscanis, dogs rarely act as efficient vectors for airborne or
close-contact zoonotic infections. This explains their overall
weak association with viruses (and, to a lesser extent, bacteria,
and fungi) in the scientific literature, in accordance with the data
presented by Olival et al. [91] and Han et al. [92]. Indeed, patho-
gens with low environmental persistence generally rely on fre-
quent host-to-host interactions for transmission [93, 94]. For
this reason, their favored hosts are species that form dense popu-
lations in the wild, such as bats [95], or those raised in large
numbers in intensive farming systems [96]—two conditions that
typically do not apply to canine populations. While dogs remain
competent hosts for many of these pathogens, they are less
frequently implicated in epidemiological cycles requiring high
infectious pressure for zoonotic transmission. In contexts of poor
hygiene conditions or contamination of animal products, the
role of dogs appears secondary to that of the livestock species,
as represented by pigs in our study. This is particularly the case
for bacteria with broad host spectra (e.g., Salmonella spp., Clos-
tridium spp., Campylobacter spp., EHEC, and antibiotic-resistant
strains), whose transmission is primarily facilitated in high-
density farming environments [97]. Comparative studies should
thus refine species-specific intervention strategies according to
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the associated risks, such as deworming programs for dogs and
biosecurity measures for zoonotic bacteria in livestock farming.

Viruses and bacteria are also significantly less frequently
reported in association with stray dogs, whereas companion
dogs appear more often in publications related to airborne
pathogens, close contact infections, and bites. Enclosed settings
and the intimate pet/owner interactions could then promote
prolonged and repeated exposure to animals, facilitating the
sustained spread of directly communicable pathogens
[98-100]. In contrast, while stray dogs may harbor many zoo-
notic pathogens, they interact less frequently and closely with
humans, which reduces direct transmission risks [51]. This
pattern supports the broader observation that zoonotic diseases
requiring direct contact are more prevalent in domestic envir-
onments where livestock and pets represent an increased risk.
Meanwhile, stray animals are more frequently associated with
environmentally mediated infections due to their higher expo-
sure to persistent sources of contamination.

In high-risk settings, health awareness programs contribute
to educating pet owners on bite prevention and wound man-
agement [101]. In order to mitigate the risks of canine-origin
zoonotic transmission through direct contact, routine veteri-
nary monitoring of companion animals must be put in place,
including regular health check-ups [68, 69]. A rational man-
agement of antimicrobials administered to dogs will also help
preventing the development of antibiotic-resistant bacterial
strains [102]. In kennels and shelters, strict hygiene protocols,
including disinfection, isolation of symptomatic animals,
proper ventilation, and routine veterinary care, are essential
to limiting pathogen transmission and ensuring animal health
[103].

4.5. Vector-Borne Transmission Pathways. Although dogs
appear to transmit only a small proportion of all vector-borne
pathogens, they are frequently cited in the scientific literature
[27, 104, 105], suggesting a high degree of host specificity for
many of these zoonotic agents. This specialization imply that
dogs often play a crucial role in the vector-borne transmission
cycles in which they are involved, especially for rickettsia spe-
cies that are well adapted to their main host (e.g., Anaplasma
platys or E. canis) [29, 106]. This is indeed particularly true for
pathogens transmitted by ticks or fleas, as dogs are significantly
less frequently associated with pathogens carried by flying
blood-feeding insects. This distinction likely reflects the feeding
preferences and ecological niches of different arthropod vectors
[107, 108]. Although canine populations contribute to the
maintenance of pathogens transmitted by mosquitoes, sand-
flies, and other biting flies, these vectors generally transmit
infections to humans without direct involvement of dogs, as
observed with Brugia spp. [109] and Leishmania spp. [110].
Indeed, flying insects opportunistically feed on various mam-
mals, a pattern confirmed by comparisons with pigs, where
both species serve at equivalent levels.

No significant differences are also observed at a finer scale
between canine ecotypes regarding flying vector-borne patho-
gens. In contrast, transmission via fleas and ticks appears to be
particularly specific to dogs compared to pigs, with pets cited
more often than stray dogs in transmission cycles involving
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ectoparasites. Although this last distinction is not statistically
significant, it suggests that companion dogs may play an essen-
tial role in transporting and sustaining infected vectors within
human households [111, 112]. To mitigate vector-borne zoo-
notic risks associated with companion dogs, regular antipara-
sitic treatments, including acaricides and insecticidal collars,
are crucial, particularly in endemic areas, to curb the prolifera-
tion of ticks and fleas within human settings [113, 114].

Although bibliometric analyses generally align with the
actual zoonotic potential of dogs across transmission pathways,
their involvement in ectoparasite-borne infections may be
somewhat overrepresented relative to their confirmed biologi-
cal competence. This trend could reflect a persistent symbolic
association between dogs and external parasites such as fleas
and ticks, shaped by their frequent infestation and reinforced in
both scientific and public discourse. In the literature, dogs are
on average cited more frequently in connection with tick- and
flea-borne zoonoses than with other pathogen groups, despite
being competent hosts for only a limited subset of these agents.
By cross-referencing bibliometric data with empirical assess-
ments of host competence, this integrative approach makes it
possible to identify potential overestimations and gaps in cur-
rent biological knowledge. It also helps to reveal how socio-
geographic representations and taxonomic proximity may
influence the visibility of certain host—pathogen associations,
highlighting the importance of a critical perspective when
interpreting bibliometric signals.

4.6. Evaluation and Relevance of the Bibliometric Approach.
Our review demonstrates the value of bibliometric methods in
identifying broad epidemiological patterns and host involve-
ment in zoonotic transmission [115, 116]. The publication
counts presented in this study primarily reflect the scientific
discourse more than confirmed host—pathogen associations.
However, targeted literature searches on the role of dogs in
the transmission of each pathogen to humans have supported
the validity of the results. The strong correlation between the
“Dog”s part’ index and the degree of zoonotic involvement
attributed to dogs (Figure 2) suggests that bibliometric indica-
tors closely mirror the epidemiological patterns described in
specialized literature. When paired with a critical assessment of
host competence, this dual-review approach helps to identify
research gaps with clear implications for public health. Cross-
referencing bibliometric data with empirical evidence reveals
mismatches between scientific attention and actual epidemio-
logical relevance. In some cases, dogs appear overrepresented
in the literature without confirmed zoonotic competence—as
illustrated by Toxocara cati or Bartonella henselae, which are
primarily associated with cats but occasionally co-cited with
dogs. Conversely, well-established associations between dogs
and certain pathogens may be underrepresented in publication
databases, such as for Ancylostoma ceylanicum or Microsporum
canis, where additional transmission cycles exist despite a
clearly documented canine role.

These discrepancies underscore the limitations of biblio-
metric approaches and the importance of integrating eco-
epidemiological expertise to avoid interpretative biases. Despite
these limitations, bibliometric tools remain valuable for
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analyzing how host species are represented in the scientific
literature. They support the identification of dominant trans-
mission pathways and help anticipate potential emergence
risks. Integrating machine learning techniques, such as co-
occurrence pattern detection or Al-based text mining, could
improve the resolution of host—pathogen association mapping
across large bibliographic datasets [117—119]. These tools may
help identify overlooked associations or novel risks and refine
our understanding of the direct and indirect roles dogs may
play in disease transmission cycles. Although lexical counts
cannot precisely quantify the infectious burden attributable
to dogs, they provide a useful framework for classifying trans-
mission pathways based on host association frequency. This
method enables interspecies comparisons and helps prioritize
health risks according to both ecological significance and visi-
bility in scientific discourse.

5. Conclusion

This study provides a comprehensive assessment of the zoo-
notic role of C. lupus familiaris, revealing the diverse transmis-
sion pathways through which dogs contribute to disease
emergence. By combining a structured pathogen inventory,
bibliometric analysis, and epidemiological review, our study
identifies key transmission dynamics, underscores research
gaps, and informs targeted public health interventions. Our
findings demonstrate that canine involvement in pathogen
transmission to humans varies significantly depending on the
transmission pathways and the socio-ecological contexts in
which dogs evolve. They can act as primary, secondary, or
occasional transmission hosts for nearly half of the recognized
zoonotic agents. Among these pathogens, a great diversity of
nematodes, cestodes, and rickettsiae stands out in our study,
these taxonomic groups being more frequently associated with
dogs in the literature than bacteria and viruses. These signifi-
cant differences between taxa can be largely explained by the
ecological characteristics of pathogens, as dogs are more fre-
quently mentioned in relation to soil-contact transmission,
tick, or flea-borne pathways, and bite inoculations.

To mitigate the zoonotic risks associated with different
canine ecotypes, targeted public health interventions must be
adapted to their specific epidemiological roles. Stray dogs, due
to their exposure to wildlife reservoirs and contaminated envir-
onments, contribute significantly to the persistence of environ-
mentally transmitted parasites [51, 120] and may act as entry
points for emerging pathogens [43, 64]. Integrating them into
genomic surveillance networks could enhance early detection of
zoonotic threats, particularly in high-risk transmission zones
such as squares and urban parks [121-123], livestock farming
areas [124, 125], and wetland ecosystems [126]. To control their
impact on public health, large-scale deworming campaigns
should be implemented [86, 127], alongside waste management
and sanitation improvements to reduce fecal-oral transmission
and limit soil and water contamination [76, 128]. Conversely,
companion dogs, while generally benefiting from better veteri-
nary care, pose higher risks for direct-contact transmission of
zoonotic pathogens through bites [129] and close contact [98].
Their prolonged and repeated interactions with humans in
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enclosed settings favor the transmission of directly communica-
ble pathogens within households [18]. Routine veterinary moni-
toring of pets, including antimicrobial-resistant bacteria
surveillance, and responsible pet ownership practices are essen-
tial to reduce these risks [68, 69, 130]. Moreover, their close
cohabitation with their owners makes them ideal epidemiologi-
cal sentinels [131-133]—targeted serological surveillance of pet
dogs could provide valuable insights into human exposure risks
and help detect pathogens with a high potential for zoonotic
spillover, including viruses [50]. By tailoring health strategies
to different canine ecotypes, zoonotic risks can be effectively
controlled, reducing the global burden of dog-mediated
ZOONOSes.

More broadly, the findings of this review indicate that the
figure of the “zoonotic dog” constructed in scientific literature
aligns most closely with the profile of stray dogs, suggesting a
dominant perception of dogs as exogenous threats. This polari-
zation of representations is not without consequence: it struc-
tures societal relationships with different categories of dogs,
influences perceived dangerousness, and justifies often asym-
metrical management policies. Yet, this binary vision—though
operationally convenient—tends to obscure intermediate pro-
files whose epidemiological contributions may be equally signifi-
cant. It also reflects deep-rooted cognitive and cultural biases that
steer surveillance and public health efforts toward certain types
of dogs at the expense of a more nuanced, context-sensitive
understanding of zoonotic risks. These results thus call for a
deconstruction of the homogeneous image of “the Dog” as a
zoonotic host. They call for a recontextualization of ecotypic
representations within their specific social, territorial, and bio-
logical settings, in order to refine prevention strategies and better
capture the complexity of the canine epidemiological interface.

This review introduces the concept of a canine epidemiolog-
ical gateway, emphasizing the role of dogs in facilitating the
transmission of environmental pathogens to humans. Each
dog ecotype—defined by its lifestyle, mobility, social integration,
and access to veterinary care—contributes differently to the
emergence and spread of zoonotic agents. A refined classification
of these ecotypes, incorporating key behavioral and ecological
traits, would improve our ability to identify their specific roles in
pathogen transmission [46, 47, 134]. To support this effort, sci-
entific publications should adopt a precise and consistent termi-
nology that allows for clearer attribution of dog categories to
distinct zoonotic pathways. A better understanding of these
ecotype-specific dynamics is essential for improving zoonotic
risk assessments and guiding targeted disease control strategies.
For example, free-roaming owned dogs may serve as key epide-
miological links between wild and domestic settings [135]. Their
high mobility increases their exposure to contaminated environ-
ments, while regular human contact enhances their potential as
direct transmission vectors [85]. These characteristics make
them potential facilitators of pathogen adaptation and dissemi-
nation across multispecies networks, underscoring the need for
further investigation [136].

Advancing this framework requires a combination of
modeling and field-based approaches. Spatial models should
be strengthened to identify geographic hotspots where dogs
contribute to pathogen spillover [137-139], while GPS tracking
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can help quantify contact patterns between dogs, wildlife, live-
stock, and humans, thus informing intervention strategies [140,
141]. In parallel, behavioral and socioeconomic studies are
needed to examine how hygiene practices, access to veterinary
care, and human—dog relationships influence zoonotic trans-
mission risks. Coupling these empirical approaches with bib-
liometric data could enhance the predictive value of literature-
based tools and support more targeted health measures
[142-144]. This integrated strategy helps bridge the gap
between large-scale bibliometric evidence and operational zoo-
notic risk assessment. It supports the development of ecotype-
specific interventions that reflect the diversity of epidemiologi-
cal roles across dog populations. A coordinated, evidence-based
approach—combining surveillance, prevention, and targeted
responses—is critical to reduce the global burden of dog-
mediated zoonoses. To this end, canine populations should
be systematically included in One Health biosurveillance fra-
meworks, leveraging their epidemiological significance to
improve outbreak detection, prevent disease emergence, and
inform control strategies at the human—animal-environment
interface.
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