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 I G H L I G H T S

Extending PLMs with multi-head attention improves name matching vs. original PLMs
Various corpus construction techniques have been applied
Analysis of relevance and impact of corpora constructed for matching descriptions
An efficient combination method merges name and description matching
Combination method outperforms name and description matching separately.
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 A B S T R A C T

Source variables or observable properties used to describe agroecological experiments are heterogeneous, 
nonstandardized, and multilingual, which makes them challenging to understand, explain, and use in cropping 
system modeling and multicriteria evaluations of agroecological system performance. Data annotation via 
a controlled vocabulary, known as candidate variables from the agroecological global information system 
(AEGIS), offers a solution. Text similarity measures play crucial roles in tasks such as word-sense disambigua-
tion, schema matching in databases, and data annotation. Commonly used measures include (1) string-based 
similarity, (2) corpus-based similarity, (3) knowledge-based similarity, and (4) hybrid-based similarity, which 
combine two or more of these measures. This work presents a hybrid approach called Matching Agroecological 
Experiment Variables (MAEVa), which combines well-known techniques (PLMs, multi-head attention, TF–IDF) 
tailored to the challenges of aligning source and candidate variables in agroecology. MAEVa integrates the 
following components: (1) Our key innovation, which consists of extending pretrained language models (PLMs) 
(i.e., BERT, SBERT, SimCSE) with an external multi-head attention layer for matching variable names; (2) An 
analysis of the relevance and impact of various data collection techniques (snippet extraction, scientific articles) 
and prompt-based data augmentation on TF–IDF for matching variable descriptions; (3) A linear combination of 
components (1) and (2); and (4) A voting-based method for selecting the final matching results. Experimental 
results demonstrate that extending PLMs with an external multi-head attention layer improves the matching of 
variable names. Furthermore, TF–IDF benefits consistently from the presence of an enriched corpus, regardless 
of the specific enrichment technique employed.
. Introduction

Agroecological systems are, by nature, complex: the basic elements 
f the system are the characteristics and activities of individual pro-
esses, these processes are heterogeneous, their characteristics can 
hange over time, the dynamics are non-linear or even chaotic and 

∗ Corresponding author.
E-mail address: oussama.mechhour@cirad.fr (O. Mechhour).

feedback loops modify and disrupt these processes, thus increasing non-
linearity creating a non-derivable system (Caquet et al., 2019). Agroe-
cological experiments generate databases that can be multiscale (plant, 
cropping system, farm, landscape, territory), multispecies (crops, asso-
ciated companion plants, weeds, forage plants) and multidisciplinary 
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(agronomy, weed science, entomology, economic and social sciences, 
environment). The source variables or observable properties1 used to 
describe agroecological experiments are often named and described 
using homonyms, synonyms, acronyms, multiple languages, and some-
times non-standard terms that can be difficult to interpret and explain. 
They are also measured with heterogeneous units, even for the same 
variable, and are heterogeneous from linguistic, structural, semantic, 
syntactic, and taxonomic perspectives. This complexity makes them dif-
ficult to use in cropping system modeling and multi-criteria evaluations 
of agroecological system performance. To address these challenges, 
data annotation through a common controlled vocabulary or ontology 
serves as a solution (Arnaud et al., 2020). To harmonize and standard-
ize these non standardized, heterogeneous source variables, the French 
Agricultural Research Centre for International Development (CIRAD) 
developed the Agroecological Global Information System (AEGIS) (Au-
zoux et al., 2018). AEGIS integrates a harmonized data acquisition and 
processing chain that utilizes a set of candidate variables, combining 
semantic terms from reference ontologies (Plant Ontology, Crop On-
tology, Environment Ontology, and Agronomy Ontology) and expert 
agroecological knowledge. The approach adopted in AEGIS allows re-
searchers to freely use their own source variable names, descriptions, 
and units of measurement while providing a list of candidate variables 
to harmonize and standardize the source variables. In this work, we 
utilized heterogeneous and nonstandardized source variables collected 
from sugarcane experiments associated with service plants, originat-
ing from CanecoH,2 Ecocanne,3 and AgriecoH projects conducted by 
eRcane4 in collaboration with CIRAD5 in La Réunion.

Table  1 presents samples of source variables, and Table  2 presents 
samples of candidate variables. These tables highlight a few examples 
of the complexity of these variables. For example, in Table  1, the 
first variable name is multilingual; i.e., it consists of ‘‘yield’’, which 
is in English, and ‘‘CAS’’, which is an acronym in French for ‘‘cane à 
sucre’’ (sugarcane). The second variable name is in French, and there 
are different ways of writing units of measurement. For example, the 
following two examples use different notations for division: ‘‘t.ha−1’’ 
and ‘‘kg/m2’’. In the introduction of Table  2, an additional character-
istic, ‘‘method of calculation’’, is included, which is absent in Table  1. 
Furthermore, Table  2 uses ‘‘scale’’ instead of ‘‘units of measurement’’ 
as seen in Table  1. For example, lines 2 and 3 in Table  1 refer to the 
same variable as line 3 in Table  2, despite differing descriptions.

As illustrated in Tables  1 and 2, variables are mostly expressed with 
text descriptions, making text similarity measures a suitable solution for 
matching source and candidate variables. Text similarity measurement 
is a fundamental concept in information theory and is used to evaluate 
the proportion of shared content between two texts (Lin, 1998). A 
high similarity score indicates strong closeness between the texts. Text 
similarity involves assessing the closeness between two texts, consid-
ering both lexical and semantic similarities. This means that even if 
two texts do not share the same words, the texts may still convey 
similar meanings. This concept has become central in several areas of 
natural language processing (NLP), including information retrieval (Li 
et al., 2014), automatic question answering (Jiang and de Marneffe, 
2019), machine translation (Wang et al., 2019), and document match-
ing (Pham et al., 2015). Common text similarity measures (Gomaa 
and Fahmy, 2013) can be grouped into four categories: (1) string-
based (lexical-based), (2) corpus-based, (3) knowledge-based, and (4) 
hybrid-based measures.

1 An observable property is the description of something observed or 
derived.

2 https://ecophytopic.fr/dephy/concevoir-son-systeme/projet-canecoh
3 https://umr-pvbmt.cirad.fr/recherche/principaux-projets/ecocanne
4 https://www.ercane.re/en/home/
5 https://www.cirad.fr/
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String-based similarity measures assess the resemblance between 
two texts solely on the basis of literal comparison of words or charac-
ters, without considering synonyms, context, or semantic relationships 
between words. These methods do not rely on an external semantic 
resource or corpus for calculating similarity and can be further divided 
into two subcategories:

• Character-based similarity measures evaluate similarity by 
considering exact matches, transpositions, and modifications (in-
sertions, deletions, substitutions) that are needed to transform one 
string into another. Examples include:

– Levenshtein distance (Levenshtein, 1966), which is a well-
known example that quantifies these transformations;

– Jaro similarity (Jaro, 1989), which measures matching 
characters and transpositions;

– Jaro–Winkler similarity (Winkler, 1990), which empha-
sizes matches at the beginning of strings;

– Hamming distance (Hamming, 1950), which counts the 
number of differing positions between two strings of equal 
length.

• Word-based similarity measures calculate the similarity be-
tween two sets of words by comparing the shared and distinct 
elements. Common methods include:

– Sorensen–Dice index (Sorensen and Dice, 1948), which 
calculates the similarity as twice the number of common ele-
ments divided by the total number of elements in both sets. 
This method works well for small sets but may introduce 
bias when the sets differ significantly in size;

– Overlap similarity (Manning et al., 2008), which measures 
common elements relative to the smaller set, is effective for 
asymmetric comparisons;

– Tversky index (Tversky, 1977), which generalizes the pre-
vious measures by introducing weighting parameters for 
shared and distinct elements, offering greater flexibility.

Corpus-based similarity measures use information derived from 
a corpus to calculate similarity, which can involve textual features 
or co-occurrence probabilities. These measures are divided into (1) 
frequency-based methods and (2) shallow window-based methods.

• Frequency-based methods convert texts into numerical vectors, 
where each dimension reflects a specific feature of the text, 
such as word frequency. These approaches focus mainly on the 
quantitative aspects of words in a text without considering word 
order, context, or semantic relations between them.
The most common methods in this category are as follows:

– BoW (Bag of Words) (Harris, 1954): This method repre-
sents each document as a word frequency vector without 
considering word order.

– TF–IDF (Term Frequency–Inverse Document Frequency)
(Jones, 1972): A method that weights words on the basis 
of their frequency in a document relative to their frequency 
in the entire corpus, reducing the importance of common 
words.

– BM25 (Best Match 25) (Robertson et al., 1994): An infor-
mation retrieval model that improves TF–IDF by adjusting 
term relevance on the basis of frequency and document 
length, making search results more accurate.

• Shallow window-based methods transform texts into dense 
vectors, dividing them into word-based and sentence-based rep-
resentations.

https://ecophytopic.fr/dephy/concevoir-son-systeme/projet-canecoh
https://umr-pvbmt.cirad.fr/recherche/principaux-projets/ecocanne
https://www.ercane.re/en/home/
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Table 1
Examples of source variables. Each name is a combination of the variable name and its unit of measurement, with the unit 
appearing after the final underscore.
 Names Descriptions Units of Measurement 
 Yield_CAS_t.ha−1 Cane yield (in fresh machinable stem) t.ha−1  
 Rec_globale_plein_% Full weed and service plant coverage %  
 Cov_end_CP1_% Cover plant 1 coverage at the end of the trial %  
 DM_end_weed_kg/m2 Weed aerial dry mass at the end of the trial kg/m2  
 . . . . . . . . .  
– Word-based representations: Words are transformed into 
dense vectors, which can be static or dynamic. Static vec-
tors, such as those produced by Word2Vec (Mikolov et al., 
2013), FastText (Joulin et al., 2016), and GloVe (Penning-
ton et al., 2014), are context independent. In contrast, 
dynamic vectors, such as those produced by Pretrained 
Language Models (PLMs) like BERT (Devlin et al., 2018), 
RoBERTa (Liu et al., 2019), and XLNet (Yang et al., 2019), 
consider the context of words within a given window, al-
though they may sometimes fail to capture word semantics 
in contexts requiring a broader contextual window.

– Sentence-based representations: These methods represent 
entire sentences as vectors, such as in SBERT (Reimers and 
Gurevych, 2019), USE (Cer et al., 2018) and InferSent (Con-
neau et al., 2018).

Knowledge-based similarity measures rely on structured net-
works of semantically connected concepts to evaluate word similarity 
and can be extended to sentence-level analysis. These networks are 
often domain-specific (e.g., biomedicine or legal studies) or general 
networks such as WordNet (Miller et al., 1995), which is widely used 
in measuring knowledge-based similarity (Gomaa and Fahmy, 2013).

Hybrid-based similarity measures combine two or more text sim-
ilarity measures, such as string-based, corpus-based, and knowledge-
based measures, to leverage their strengths and improve similarity 
measurement accuracy.

The originality of our work lies in the combination of well-known 
techniques (PLMs, multi-head attention, TF–IDF), tailored to the spe-
cific challenges of aligning source and candidate variables in the agroe-
cological sector. The main contributions of our proposed hybrid ap-
proach called Matching Agroecological Experiment Variables (MAEVa) 
to align source and candidate variables are as follows: (1) Our key 
innovation, which consists of extending PLMs (i.e., BERT, SBERT, 
SimCSE) with an external multi-head attention layer for matching 
variable names; (2) An analysis of the relevance and impact of various 
data collection techniques (snippet extraction, scientific articles) and 
prompt-based data augmentation on TF–IDF for matching variable 
descriptions; (3) A linear combination of components (1) and (2); (4) 
A voting-based method for selecting the final matching results; and 
(5) The generated corpora, source code, and a guide to reproduce all 
our results are available at: https://github.com/OussamaMECHHOUR/
MAEVa-v1.

The remainder of this paper is structured as follows: Section 2 pro-
vides a review of related works on text similarity measures, highlight-
ing their limitations and what we propose in this paper. In Section 3, 
we introduce our hybrid MAEVa pipeline and details its components. 
Section 4 presents the experiments and analysis related to each com-
ponent of MAEVa (i.e., matching of variable names, the matching 
of descriptions, the combination method, and the voting-based final 
evaluation). Section 5 discusses the limitations of MAEVa. Finally, 
Section 6 concludes the paper with closing remarks and an outline of 
future work.

2. Related work

In this section, we present related work for each category mentioned 
in Section 1, excluding knowledge-based similarity measures that were 
not applied in this study.
3

2.1. String-based similarity measures

String-based similarity measures have been widely applied in vari-
ous works. For example, (Akhmedovich and Sattarova, 2024) employed 
the Jaccard Index (Jaccard, 1901) to recommend books that align 
with the intellectual abilities of schoolchildren. For this purpose, a 
specialized corpus was constructed using high-level literature textbooks 
(i.e., suitable books for students), which were then compared with 
literary works (i.e., books to recommend). The books with the highest 
similarity scores were suggested for reading. This approach was suc-
cessfully applied via literature textbooks for students in grades 5 to 11, 
along with literary works in the Uzbek language. Additionally, (Susanto 
et al., 2023) employed the Levenshtein distance (Levenshtein, 1966), 
Hamming distance (Hamming, 1950), Jaro–Winkler similarity (Win-
kler, 1990), and Sorensen–Dice index (Sorensen and Dice, 1948) to 
compare each word extracted from noisy images via optical charac-
teristic recognition (OCR) with words in a database of correct terms. 
This approach aimed at correcting errors in the extracted text. The 
experiments demonstrated that the Sorensen–Dice index achieved the 
highest performance, with an F1 score, precision, and recall of 0.88, 
although it required more processing time than the other methods. 
Furthermore, (Po, 2020) proposed a system to help users retrieve rel-
evant conference papers based on title searches. The system tokenizes 
both the user’s query title and the titles in a database containing more 
than 300 previous paper titles while removing insignificant words. It 
then applies the Levenshtein distance to measure the similarity between 
the tokenized user title and each paper title in the database. The 
system ranks the results from most to least similar, providing additional 
relevant information such as similar titles, author names, conference 
names, and publication dates.

2.2. Corpus-based similarity measures

Corpus-based similarity measures have been widely applied in vari-
ous works. For example, (Patil et al., 2023) compared TF–IDF (Base-
line) (Jones, 1972), FastText (Joulin et al., 2016), doc2vec (Le and 
Mikolov, 2014), BERT (Devlin et al., 2018), and ADA (Jadon and Ku-
mar, 2023) in the task of recommending parent or unique bug reports 
for a given child bug report via the Software Defects Datasets (Jadon 
et al., 2022; Jadon and Jadon, 2023). A child bug report is recog-
nized as a duplicate of a previously submitted bug report (parent 
report), whereas unique reports are those that have not been linked 
as child or parent to any other report. The Software Defects Data 
included approximately 480,000 bug reports from EclipsePlatform, 
MozillaCore, Firefox, JDT, and Thunderbird. Patil et al. (2023) demon-
strated that BERT generally outperformed the other models in terms 
of recall, followed by ADA, doc2vec, FastText, and TF–IDF. In another 
study, (Hassan and Ahmed, 2023) compared TF–IDF, doc2vec, BERT, 
and sentence-BERT (SBERT) (Reimers and Gurevych, 2019) with co-
sine similarity to measure the similarity between academic theses and 
dissertations of graduate students. Two datasets were used: (1) the 
Duhok Polytechnic University collection, which contains 27 original 
English theses and dissertations, and (2) the ProQuest collection from 
‘‘proquest.com’’, which includes 100 original English theses and disser-
tations. After preprocessing the documents (text extraction, character 
removal, stopword elimination, stemming, and lemmatization), the 

https://github.com/OussamaMECHHOUR/MAEVa-v1
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Table 2
Examples of candidate variables. Each name is a combination of the variable name and its scale, with the scale appearing after 
the final underscore.
 Names Descriptions (Traits) Scales Methods of calculation  
 leaf_plant_dm_kg Measurement of foliar dry 

biomass at the individual 
level (plant scale)

kg Common measurement 
method

 

 abv_om_dm_content_% Organic matter 
concentration of the WAB

% Organic matter 
concentration defined 
based on dry matter 
concentration and mineral 
concentration

 

 plant_ground_cover_% Measurement of plant (or 
species) recovery by 
ceptometry

% Common measurement 
method

 

 fruit_plant_fm_kg Measurement of fresh fruit 
biomass at the individual 
level (plant scale)

kg Common measurement 
method

 

 . . . . . . . . . . . .  
 

four methods were applied separately to compute similarity within 
each collection. The results showed that TF–IDF outperformed the 
other methods in terms of accuracy, precision, recall, F1 score, and 
processing time, followed by doc2vec, BERT, and SBERT. Further-
more, (Romualdo et al., 2021) compared several methods for measuring 
e-commerce product title similarity in Brazilian Portuguese, using the 
Americanas corpus,6 which contains approximately 7.490 million prod-
ucts. The authors explored both specific-domain (Word2Vec, FastText, 
and GloVe) and general-domain (Word2Vec, FastText, GloVe, and BERT 
models) word embeddings with cosine similarity. For specific-domain 
methods, Word2Vec (CBOW and skip-gram), FastText (CBOW and skip-
gram), and GloVe were trained on the Americanas corpus. In the case 
of general-domain methods, the authors used pretrained Word2Vec 
(CBOW and skip-gram), FastText (CBOW and skip-gram), and GloVe 
models by NILC,7 and two BERT models, multilingual BERT8 and 
BERTimbau (large and base) (Souza et al., 2020), which are tailored 
for Brazilian Portuguese. The authors applied each method separately 
to measure e-commerce product title similarity in Brazilian Portuguese 
via a test corpus constructed with four different techniques (Romualdo 
et al., 2021). The results demonstrated that multilingual BERT com-
bined with cosine similarity yielded the best results for calculating 
product title similarity.

2.3. Hybrid-based similarity measures

Two or more text similarity measures, such as string-based, corpus-
based, and knowledge-based methods, are combined to harness the ad-
vantages of each and improve the accuracy of similarity measurements. 
Several studies have explored these approaches, as cited below:

• Fellah et al. (2024) proposed a hybrid approach called the ag-
gregated semantic similarity measure (ASSM) for comparing two 
words, where the semantic similarity between two words (or 
word pairs) is the maximum similarity derived from two methods: 
(1) the cosine similarity between word embeddings obtained 
from Google’s pretrained Word2Vec, which was trained on the 
Google News dataset containing approximately 100 billion words, 
and (2) a linear function combining the cosine similarity from 
Word2Vec with the WordNet Wu & Palmer similarity between the 
two words (Wu and Palmer, 1994). This approach was evaluated 
on several benchmark datasets (RG-65, WS353-all, WS353-sim, 
MC-30, and AG-203) via Spearman’s and Pearson’s correlation 

6 http://www.americanas.com.br
7 http://www.nilc.icmc.usp.br/nilc/index.php/repositorio-de-word-

embeddings-do-nilc
8 https://github.com/google-research/bert
4

coefficients to compare the similarity values computed by us-
ing Word2Vec and ASSM with the corresponding human judg-
ment scores. The experimental results demonstrated that com-
bining WordNet and Word2Vec for measuring semantic simi-
larity between words was more effective than using Word2Vec 
alone, outperforming some other approaches applied for the same 
purpose.

• Dieudonat et al. (2020) compared ELMo (Peters et al., 2018), 
knowledge base embeddings (KBs) via ComplEx (Trouillon et al., 
2016), and the concatenation of these methods in entity typing 
and relation typing tasks, both of which are multiclass classifi-
cation tasks. The authors utilized the official ELMo pretrained 
model,9 and for KB embeddings, they selected PyTorch-BigGraph10
implementation of ComplEx (Lerer et al., 2019), trained on the 
Freebase 15 K (FB15K) subset. The comparison was conducted 
on two datasets: the Freebase-NewYorkTimes dataset (‘‘FB-NYT’’) 
(Riedel et al., 2010) and Freebase 15 K (FB15K) (Bordes et al., 
2013). For the experimental tasks, they used precision@n, mean 
average precision@k (MAP@k), and mean reciprocal rank (MRR) 
as evaluation metrics. The results showed that (1) the concatena-
tion of KB embeddings and ELMo yielded the best performance 
in the entity typing task, followed by KB embeddings alone and 
ELMo alone, and (2) KB embeddings outperformed other methods 
in the relation typing task, followed by ELMo alone and the 
concatenation of KB embeddings and ELMo.

• Finally, Toshevska et al. (2020) analyzed the effectiveness of 
cosine similarity, which was applied to several word embedding 
methods, in capturing word similarity across pairs of words from 
five different human-generated datasets. The authors evaluated 
Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al., 
2014), FastText (Joulin et al., 2016), LexVec (Salle et al., 2016), 
and ConceptNetNumberbatch (a hybrid method that combines 
GloVe and Word2Vec embeddings with additional structured 
knowledge from semantic networks such as ConceptNet Speer and 
Havasi, 2012 and PPDB Ganitkevitch et al., 2013) to measure 
the similarity between word pairs on the following datasets: 
WordSim353 (Finkelstein et al., 2001), SimLex999 (Hill et al., 
2014), SimVerb3500 (Gerz et al., 2016), RG65 (Rubenstein and 
Goodenough, 1965), and RW2034 (Luong et al., 2013). The 
analysis was conducted in two parts: (1) an average similarity 
analysis, where the authors computed the average similarity be-
tween word pairs in each dataset and compared it to the average 
human ratings, and (2) a correlation analysis, where Spearman, 
Pearson, and Kendall’s tau correlation coefficients were calculated 

9 https://github.com/allenai/allennlp-models
10 https://github.com/facebookresearch/PyTorch-BigGraph
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between the ground truth similarities and the cosine similarities 
of the word embeddings. The results indicated that GloVe and 
FastText outperformed the other word embeddings on four out 
of the five datasets in terms of average similarity. However, 
ConceptNetNumberbatch achieved the highest results in terms 
of correlation analysis, despite not having the highest average 
similarity values, except for the RW2034 dataset.

2.4. Comparative overview

We have presented various existing methods and works for measur-
ing text similarity at both the lexical and semantic levels. Each method 
has its own advantages and disadvantages. String-based similarity mea-
sures are relatively simple, but they have significant limitations: they 
do not account for synonyms, context, or the semantics of words. For 
example, two synonymous words are not considered to be similar by 
these methods. For corpus-based similarity measures, we have shown 
that some of them do not correctly account for context. For example,
frequency-based or statistical approaches treat two words with similar 
meanings independently and do not take order into account. Owing 
to their purely statistical nature, they can present limitations such as 
the curse of dimensionality, where vectors become too large to manage 
efficiently, or out-of-vocabulary (OOV) issues when words in new texts 
do not appear in the corpus. Shallow window-based similarity measures
such as Word2Vec, FastText, and GloVe, which use a limited context 
window and assign a single dense vector to each word, are also limited: 
regardless of the word’s context, its vector representation remains the 
same. In contrast, methods such as BERT, RoBERTa, and XLNet consider 
context by generating multiple vectors for the same word on the 
basis of its immediate textual environment, improving semantic context 
representation. However, these methods are less effective when a broad 
context is required to fully understand the meaning of the text or word. 
To leverage the strengths of each method while overcoming their lim-
itations, hybrid-based similarity measures have been introduced. The 
hybrid approaches cited in this section typically combine established 
similarity measures without introducing significant methodological in-
novations. In contrast, this paper proposes a novel hybrid approach, 
MAEVa, designed to match source and candidate variables based on 
two key innovations: (a) extending PLMs (i.e., BERT, SBERT, SimCSE) 
with an external multi-head attention layer to enhance the matching of 
variable names, and (b) analyzing the relevance and impact of various 
data collection techniques (snippet extraction, scientific articles) and 
prompt-based data augmentation on TF–IDF for variable description 
matching.  The combination method has been used in previous studies 
and has demonstrated its effectiveness (Fellah et al., 2024). For this 
reason, we adopted it for its efficiency and proven performance. How-
ever, in our approach, the combination is not simply the use of multiple 
similarity measures. It involves integrating complex and enriched data 
together with these methods to build a coherent and complete pipeline.

3. Proposed approach

First, we provide a summary of our proposed pipeline, MAEVa, in 
the following Section 3.1. Each step of MAEVa’s pipeline is detailed in 
Sections 3.2, 3.3, 3.4, and 3.5.

3.1. MAEVa pipeline

The matching of agroecological experiment variables pipeline
(MAEVa) outlines the methodology used to match source and candidate 
variables. In this work, we utilized samples of variables selected by 
agroecological experts that illustrate different complexities to measure 
the efficiency of MAEVa. For each of the 84 source variables, we 
calculate its similarity with all 170 candidate variables based on each 
step of the MAEVa’s pipeline (Fig.  1), then we rank the results from 
highest to lowest similarity candidates for each source variable. For 
5

evaluation purposes, we rely on a manually curated reference file 
created by domain experts, which indicates the correct match for each 
source variable. Auzoux et al. (2023) and Mechhour et al. (2025) 
detailed the used approach for constructing the evaluation dataset 
based on a rigorous protocol.

As shown in Fig.  1, data preprocessing is common to the first two 
steps. We detail this process below, and in the following Subsections, 
we outline each of our four steps.

Data preprocessing  Data preprocessing plays a crucial role. It aims 
to transform the corpus, variable names and descriptions into a suitable 
form to facilitate their matching. The data preprocessing used in this 
paper includes several steps, which are applied in the order of their 
appearance:

1. clean_text(): this function is used to clean the source and 
candidate variables as well as the corpus. It removes numbers, 
parentheses, and their contents and converts the names, descrip-
tions and the corpus to lowercase, ensuring that the variable 
matching process is case-insensitive.

2. remove_stopwords(): stopwords are commonly used words 
in languages that do not carry specific meanings in the context of 
agroecology. This function removes these functional words, such 
as prepositions and conjunctions. By eliminating stopwords, the 
key terms that are more meaningful for matching variables have 
been focused upon.

3. lemmatize(): lemmatization is a linguistic technique that 
involves reducing words to their canonical form, or lemma. 
It transforms plural nouns into singular forms and verbs into 
their infinitive form. For example, it can reduce the words
running, runs, and ran to their base form run. It improves the 
accuracy of similarity calculations by comparing lemmas rather 
than different word forms.

4. remove_punctuation(): this function removes punctuation 
from the variable descriptions and the corpus. By eliminat-
ing special characteristics such as periods, commas, and quo-
tation marks, we avoid unwanted interference during variable 
matching.

5. replace_synonyms(): to facilitate matching variables, this 
technique allows for the replacement of certain words with their 
synonyms via WordNet. For instance, the word level can be 
replaced with degree.

All the functions above were applied sequentially, with each func-
tion taking the output of the previous function to the corpus and the 
descriptions of both the source and the candidate variables. However, 
only the first three functions were used to preprocess the variable 
names. After explaining the data preprocessing, we detail each step of 
the MAEVa’s pipeline (Fig.  1) in the subsections below.

3.2. Matching variable names

Variable names are often acronyms and lack sufficient context, 
making them challenging to interpret using PLMs. Our intuition is that 
PLMs are capable of effectively embedding such variable names. For 
this reason, our innovation consists of extending existing PLMs with an 
external multi-head attention layer applied to their frozen embeddings. 
We compare the performance of this extended architecture with that 
of the original PLMs to evaluate their effectiveness in representing 
variable names. Additionally, string-based similarity measures are ef-
fective for tasks that do not require contextual understanding, such 
as spelling correction and duplicate detection. Given that our variable 
names are often acronyms and lack clear semantics and context, we 
included string-based similarity measures for comparison purposes.

Prior to similarity computation, we applied three preprocessing 
functions to the variable names, as discussed earlier. The processed 
names were then used as inputs for both string-based and corpus-based 
similarity measures, as described below.
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3.2.1. String-based similarity measures
We applied several widely-used string-based similarity measures 

from the literature, including the Jaro–Winkler similarity (Winkler, 
1990), the Sorensen–Dice index (Sorensen and Dice, 1948), and the 
Overlap Coefficient (Manning et al., 2008), to match variable names for 
comparison purposes. Each of these measures computes the similarity 
between a source variable name and all candidate variable names. The 
candidate names are then ranked in descending order of similarity for 
each source variable name.

3.2.2. Corpus-based similarity measures
We focused on PLMs within the corpus-based similarity methods. 

We selected three of the most widely used models in the literature:

• BERT (Devlin et al., 2018) is a bidirectional transformer-based 
model trained through self-supervised learning on two main ob-
jectives: Masked Language Modeling (MLM), where 15% of the 
input tokens are randomly masked and the model tries to pre-
dict them, and Next Sentence Prediction (NSP), which trains the 
model to determine whether a given sentence logically follows 
another.

• SBERT (Reimers and Gurevych, 2019) is a modification of BERT 
that enables efficient sentence-level embeddings by introducing 
a siamese network structure. It is fine-tuned using a contrastive 
objective so that semantically similar sentence pairs are mapped 
to nearby points in the embedding space, making it more effective 
for semantic similarity tasks.

• SimCSE (Gao et al., 2021) (Simple Contrastive Learning of Sen-
tence Embeddings) improves sentence representations by using 
contrastive learning on natural language inference data. It builds 
embeddings that distinguish between similar and dissimilar sen-
tences through dropout-based augmentation or supervised pair 
labeling, depending on the version (unsupervised or supervised).

For each of these models, we extracted the frozen embeddings of 
each variable name. These embeddings were then passed through an 
external multi-head attention layer to produce enhanced representa-
tions. The goal was to assess whether this attention-based extension 
could generate embeddings that more effectively represent our variable 
names. Cosine similarity was then computed between each source and 
candidate variable name based on these new embeddings, and the 
candidates were ranked from highest to lowest similarity for each 
source variable name.

3.3. Matching variable descriptions

The objective is to analyze the relevance and impact of various 
data collection techniques (snippet extraction, scientific articles) and 
prompt-based data augmentation on TF–IDF (Jones, 1972) for matching 
variable descriptions.

Data augmentation is a technique used in low-resource settings to 
generate diverse data from the original data without additional data 
collection. This task is often used to reduce overfitting. It has been 
applied in previous works, ranging from traditional methods (before 
the appearance of LLMs) to advanced ones (after the appearance of 
LLMs). The former includes, in a non-exhaustive list: (1) thesaurus-
based substitution (Zhang et al., 2015; Mueller and Thyagarajan, 2016), 
(2) MLM-based generation (Garg and Ramakrishnan, 2020), and (3) 
back-translation (Xie et al., 2020); for more details, see Chaudhary 
(2020), Feng et al. (2021). After the emergence of LLMs, they have been 
applied in several works for data augmentation. As mentioned in this 
survey (Chai et al., 2025), LLM-based data augmentation can be divided 
into (1) prompt-based, (2) retrieval-based, and (3) hybrid methods. Our 
work is cited under the prompt-based methods, where prompts are used 
to guide LLMs to generate more controlled data based on a given input 
(our descriptions). After explaining data augmentation, we will deal in 
the next Subsection with the details of how these corpora are obtained.
6

3.3.1. Corpora construction
• Articles: Fifteen representative English-language articles from the 
field of agroecology were selected by three experts, which we 
refer to as the Corpus (15 articles).

• Snippets: Refer to small portions of text or summaries extracted 
from a larger document or collection of documents. They are 
specifically designed to provide a quick overview or insight into 
the content, enabling users to understand the context without 
reading the entire document. Given that the descriptions are often 
brief, using snippets provides more detailed information than the 
variable descriptions do. In this work, we utilized the Custom 
Search JSON API provided by Google and the Bing Search v7 API 
provided by Microsoft. For each API, we input our source and 
candidate variable descriptions and receive a corpus containing 
snippets that provide concise summaries for each variable descrip-
tion. We refer to the corpus obtained via the Google API as the
Corpus (Google) and the corpus obtained via the Microsoft API as 
the Corpus (Microsoft).

• GPT-3.5 Turbo: We used the GPT-3.5 Turbo API with six
prompts, which are described below. Each prompt is used to 
generate a new contextualized description of each source and 
candidate variable on the basis of its original description. As 
output, each prompt generates a corpus that contains all the 
newly generated descriptions of both types of variables. We refer 
to the corpus obtained via the first prompt as Corpus (GPT-
prompt 1), the second as Corpus (GPT-prompt 2), and so on, with
Corpus (GPT-prompt 6) for the sixth prompt. Collectively, all these 
corpora are referred to as Corpus (GPT). The six prompts used in 
this work are listed below:

1. You are a farmer. You have knowledge about sugarcane 
culture and other relevant information. Always answer 
with the goal of describing [variable’s description] and use 
these descriptions as data for training TF–IDF. Provide the 
results in a complete paragraph, with a maximum of 500 
words.

2. You are a farmer with knowledge of sugarcane cultivation 
and other relevant information. Surround [variable’s de-
scription] with useful information to assist TF–IDF in better 
vectorizing it. Provide the results in a complete paragraph, 
with a maximum of 500 words.

3. You are a farmer. You have knowledge about sugarcane 
cultivation and other relevant information. Please pro-
vide with all the information you have about [variable’s 
description]. Keep in mind that I am a data scientist.

4. You are an agronomist working in sugarcane and other 
crops. Can you describe the variable [variable’s descrip-
tion] in a paragraph with a of maximum 500 words.

5. You are an agronomist working on sugarcane and other 
crops. Can you contextualize the variable [variable de-
scription] with relevant close terms in a paragraph with 
a of maximum 500 words for a good vectorization of the 
variable.

6. You are an agronomist working in sugarcane and other 
crops. Can you give 5 examples of 100-word snippets of 
text mentioning the variable [variable’s description].

The six prompts used to generate Corpus (GPT) were carefully 
designed to simulate realistic descriptions of variables from com-
plementary expert viewpoints. Specifically, Prompts 1–3 were 
crafted to emulate the language and perspective of a farmer, 
focusing on practical and observational insights, while Prompts 
4–6 simulate the more technical and structured descriptions ex-
pected from agronomists. This dual perspective is intentional: it 
enables the TF–IDF (Jones, 1972) model to capture both informal, 
real-world terminology and scientifically structured expressions. 
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Fig. 1. MAEVa Pipeline.
Prompts 1 and 2 explicitly request that the variable description 
be enriched with surrounding lexical context to improve TF–IDF 
vectorization. This aligns with prompt engineering principles for 
text augmentation used in information retrieval tasks (Liu et al., 
2023; Sun et al., 2023). Prompt 3 asks for exhaustive knowledge 
relevant to the variable, assuming a data scientist audience, en-
couraging the generation of rich but coherent content. Prompts 
4 and 5 simulate scientific communication, while Prompt 6 pro-
duces 5 × 100-word snippet-style descriptions inspired by search 
engine summaries, which are typically used in retrieval-based 
NLP applications.
We selected GPT-3.5 Turbo as the generation API due to its well-
documented ability to generate controllable, high-quality text. 
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The API’s balance between fluency, factuality, and style made it 
particularly suitable for our goal of generating multiple realistic, 
domain-relevant corpora. Moreover, the generation process was 
bounded using fixed word constraints-500 words for prompts 1–5 
and 100-word snippets for prompt 6-based on the belief that gen-
erating large volumes of text increases the risk of hallucinations, 
which can introduce noisy or irrelevant tokens. Therefore, we 
fixed the number of words in each prompt output to minimize 
this risk and ensure the quality and relevance of the generated 
content.

Table  3 presents the constructed corpora along with the number of 
words in each corpus.
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Table 3
Corpora constructed and the number of words in each corpus.
 Corpus name Word count 
 Corpus (15 articles) 1,037,564  
 Corpus (GPT-prompt 1) 96,755  
 Corpus (GPT-prompt 2) 102,296  
 Corpus (GPT-prompt 3) 83,709  
 Corpus (GPT-prompt 4) 110,933  
 Corpus (GPT-prompt 5) 101,953  
 Corpus (GPT-prompt 6) 58,109  
 Corpus (Microsoft) 110,958  
 Corpus (Google) 26,260  

3.3.2. Corpus-based similarity measures
To analyze the impact of different corpus construction techniques, 

as described in Section 3.3.1, on corpus-based methods, we selected 
TF–IDF due to its simplicity, despite its context-independence. Our 
objective is not to implement the most advanced state-of-the-art models 
for matching source and candidate descriptions, but rather to exam-
ine, in a straightforward manner, how various corpus construction 
strategies influence performance. To this end, we used TF–IDF to 
vectorize the source and candidate descriptions: (a) using each corpus 
individually, and (b) using different combinations of these corpora. 
Subsequently, cosine similarity was computed between each source 
description and all candidate descriptions, and the results were ranked 
in descending order of similarity.

3.4. Combination method

In Step 3 of our pipeline (Fig.  1), we combine the similarity scores 
obtained from name-based and description-based matching using a 
linear function to improve overall matching precision.

Let  = {Var1𝑠 ,… ,Var𝑁𝑠 } be the set of 𝑁 source variables and 
 = {Var1𝑐 ,… ,Var𝑀𝑐 } the set of 𝑀 candidate variables. For each pair 
(Var𝑖𝑠,Var

𝑗
𝑐 ), we compute the final matching score as: 

comb(Var𝑖𝑠,Var
𝑗
𝑐 ) = 𝛼⋅simdesc(Var𝑖𝑠,Var

𝑗
𝑐 )+(1−𝛼)⋅simname(Var𝑖𝑠,Var

𝑗
𝑐 ) (1)

where:

• simname(Var𝑖𝑠,Var
𝑗
𝑐 ) is the similarity score between variable

names.
• simdesc(Var𝑖𝑠,Var

𝑗
𝑐 ) is the similarity score between variable de-

scriptions.
• 𝛼 ∈ ]0, 1[ is a tunable weighting parameter that controls the 
contribution of each component.

This linear combination reflects the intuition that variable names 
and descriptions provide complementary signals. When 𝛼 approaches 
1, the method prioritizes description-based similarity; conversely, when 
𝛼 approaches 0, it favors name-based similarity. The parameter 𝛼 is 
sensitive to changes, and even slight variations can significantly impact 
the final ranking of candidates. Therefore, we empirically evaluate 
several values of 𝛼 to identify the most effective balance between the 
two components (Section 4.1).

In accordance with Fig.  1, the ranked results from name similarity 
(Step 1) are denoted as A, and those from description similarity (Step 2) 
are denoted as B. These ranked scores are linearly combined using Eq. 
(1) to produce the final ranking used in Step 3.

3.5. Evaluation method

To assess the overall effectiveness of our approach, we propose 
a voting-based evaluation strategy that leverages the complementary 
strengths of all our matching methods. Instead of relying solely on 
a single technique, we consider a match to be correct if it is suc-
cessfully retrieved by at least one of the following three approaches: 
8

(i) matching variable names, (ii) matching variable descriptions, or 
(iii) their linear combination. This strategy is designed to increase the 
likelihood of retrieving the correct candidate variable by leveraging 
the complementary signals from these three methods. Our objective is 
not to identify the best individual method, but rather to evaluate the 
collective performance of the ensemble, aiming to maximize matching 
coverage.

Let Var𝑖𝑠 denote the 𝑖th source variable, and let 𝑐𝑖 be the unique 
correct candidate match for Var𝑖𝑠 as specified in the ground truth. 
Let 𝑅(name)

𝑘 (𝑖), 𝑅(desc)
𝑘 (𝑖), and 𝑅(comb)

𝑘 (𝑖) denote the sets of the top-𝑘
candidate variables returned for Var𝑖𝑠 by the name-based, description-
based, and combination methods, respectively. The prediction for Var𝑖𝑠
is considered correct under the voting strategy if: 
𝑐𝑖 ∈ 𝑅(name)

𝑘 (𝑖) ∪ 𝑅(desc)
𝑘 (𝑖) ∪ 𝑅(comb)

𝑘 (𝑖) (2)

This evaluation strategy (Eq.  (2)) assumes the availability of a 
ground truth file specifying a unique correct match 𝑐𝑖 for each 𝑖th 
source variable Var𝑖𝑠. Without this information, the voting-based strat-
egy cannot be applied.

4. Experiments and discussion

After detailing our proposed MAEVa pipeline (Section 3), the meth-
ods used, and how they were applied in this study, we now present the 
results.

4.1. MAEVa parameters

We begin by describing the experimental setup. For methods requir-
ing parameter tuning, we explain how the optimal parameters were 
determined. While we conducted extensive experiments, we do not dis-
play all intermediate results. Instead, for each method with adjustable 
parameters, we report only the best-performing configuration. Below, 
we summarize each method, the optimal parameters identified, and the 
checkpoint used for each PLM.

• BERT-base (case-insensitive): We used the checkpoint
‘‘bert-base-uncased’’ from Hugging Face.11 We experi-
mented with different numbers of hidden layers (HLs), and the 
best results were achieved using 2 HLs.

• SBERT: We used the checkpoint ‘‘all-MiniLM-L6-v2’’
from Hugging Face.12

• SimCSE: We used the checkpoint 
‘‘sup-simcse-bert-base-uncased’’ from Hugging
Face.13

• Multi-head Attention: We initialized the weights using a uniform 
distribution in the range [−1, 1] and explored different numbers 
of attention heads to identify the most effective configuration. 
The best results were achieved using dropout regularization with 
a rate of 0.1 (DT=0.1), uniform weight initialization (UDW), 
and 256 attention heads (Hs). Furthermore, our code is fully 
reproducible.

• Combination Method: This method relies on a single weighting 
parameter, 𝛼, which controls the balance between name-based 
and description-based similarity. Given the sensitivity of this 
parameter, we selected the combination of BERT-base and TF–IDF 
applied on Corpus (GPT-prompt 1) as a reference configuration to 
determine the optimal value of 𝛼. We conducted an evaluation by 
varying 𝛼 from 0.01 to 0.99 with a step size of 0.01.
Fig.  2 shows the precision curves for each individual metric (P@1, 
P@3, P@5, P@10), annotated with the best-performing 𝛼 for 

11 https://huggingface.co/bert-base-uncased
12 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
13 https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased

https://huggingface.co/bert-base-uncased
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased
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Fig. 2. Impact of 𝛼 on Combination Performance.
Fig. 3. Impact of 𝛼 on Average Precision (All P@k Combined).
each. The optimal values lie within a narrow window around 
𝛼 = 0.25, with P@3 and P@5 achieving their maximum exactly at 
this point.
Fig.  3 presents the average precision computed across all P@k 
levels. Although the global maximum is reached at 𝛼 = 0.26
(66.97%), the score at 𝛼 = 0.25 (66.67%) is nearly identical, 
differing by only 0.3 percentage points. Furthermore, the curve is 
relatively flat in this region, indicating stability and robustness.
Based on these observations, we consistently adopt 𝛼 = 0.25 as 
the default setting in all combination-based methods.
9

Given that each source variable has exactly one correct candidate 
variable, we use precision at position 𝐾 (𝑃@𝐾) as our evaluation met-
ric. This metric measures the proportion of source variables for which 
the correct matching candidate appears within the top 𝐾 selections, 
divided by the total number of source variables. We use this evaluation 
metric to assess all our results.

4.2. Matching variable names results

As shown in Table  4, the results demonstrate that our core innova-
tion, extending the selected PLMs with an external multi-head attention 
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Table 4
Matching variable names results: Similarity was calculated between each of the 84 source variable names and each of the 170 candidate variable names. The 
results show the proportion of source variables for which the correct matching candidate variable appears within the top 𝐾 ∈ [1, 10] selected candidates, divided 
by the total number of source variables.
 Method P@1 P@3 P@5 P@10  
 Jaro–Winkler Similarity 8.33% 17.86% 22.62% 30.95%  
 Overlap Coefficient 8.33% 21.43% 32.14% 42.86%  
 Sorensen–Dice Index 2.38% 3.57% 3.57% 5.95%  
 BERT-base (2 HLs) + cosine similarity 11.90% 28.57% 36.90% 53.57%  
 BERT-base (2 HLs) + Multi-Head attention (256 Hs, DT=0.1 and UDW) + cosine similarity 20.24% 35.71% 41.67% 54.76% 
 SBERT + cosine similarity 9.52% 20.24% 23.81% 27.38%  
 SBERT + Multi-Head attention (256 Hs, DT=0.1 and UDW) + cosine similarity 11.90% 20.24% 27.38% 34.52%  
 SimCSE + cosine similarity 9.52% 10.71% 14.29% 21.43%  
 SimCSE + Multi-Head attention (256 Hs, DT=0.1 and UDW) + cosine similarity 8.33% 10.71% 16.67% 28.57%  
 HLs: Hidden Layers, Hs: Heads, DT: Dropout regularization, and UDW: Uniform Distribution of Weights
layer, leads to improved representations of variable names compared 
to the original models. This enhancement consistently increases preci-
sion across most evaluated values of 𝑘. The best overall performance 
was achieved by our extended BERT-base model, with improvements 
ranging from +1 to +8 percentage points over the original BERT-base. 
String-based similarity measures are effective for tasks that do not 
require contextual understanding, such as spelling correction and dupli-
cate detection. Given that our variable names are often acronyms and 
lack clear semantics, we included string-based similarity measures for 
comparison purposes. The results show that string-based methods can 
be competitive with PLMs such as SBERT and SimCSE. Although these 
methods were initially included for comparison purposes, we observed 
that their performance warrants further investigation. In particular, we 
aim to explore whether lexical overlap between source and candidate 
variable names may bias the results in favor of string-based similarity 
measures. To investigate this, we conducted a systematic analysis of 
lexical overlaps between each source variable name and all candidate 
names.

For each source variable name, we computed the number of over-
lapping tokens with each candidate name. The correct candidate match 
was identified based on the human annotation file. We then observed 
whether any incorrect candidate names shared an equal or greater 
number of overlapping tokens than the true match. A source variable 
was defined as biased if the number of incorrect candidates with higher 
or equal token overlap exceeded that of the correct match. Analysis 
shows that only 9 out of 84 source names (10.7%) were identified as 
lexically biased. In these cases, incorrect candidate names had equal 
or greater token-level overlap with the source than the ground truth 
match. Conversely, 75 source variables (89.3%) were not affected by 
such bias.

4.3. Matching variable description results

In Table  5, the results show that the performance is similar across 
all corpora generated via the GPT-3.5 Turbo API, as well as Microsoft 
snippets. The corpus composed of scientific articles selected by domain 
experts (i.e., Corpus (15 articles)) achieves the best results at P@3 
and P@5 and the google snippets (i.e., Corpus (Google)) achieved the 
best P@10. However, when these corpora are combined, the final 
performance remains the same.

To further assess the relevance and potential noise within each cor-
pus, we conducted a detailed domain keyword density analysis across 
all corpora used in our TF–IDF + Cosine similarity experiments. We 
defined a list of domain-specific keywords.14 and expressions frequently 
used in agroecology. Keywords were extracted from our variable de-
scriptions and supplemented by terms provided by an agroecology 
expert. The analysis revealed significant differences in keyword density 
across corpora, as shown in Fig.  4

14 https://github.com/OussamaMECHHOUR/MAEVa-v1.5/blob/main/
datasets/keywords/default_keywords.txt
10
Among the enriched corpora, Corpus (GPT-prompt 4), Corpus (GPT-
prompt 6), and hybrid corpora such as Corpus (GPT-prompt 6) + Corpus 
(Google) and Corpus (GPT-prompt 4) + Corpus (Google) also demonstrate 
relatively high keyword densities. This highlights that certain prompts 
and retrieval-based methods are able to generate domain-relevant con-
tent that complements the original descriptions. In contrast, corpora 
such as Corpus (GPT-prompt 1) and Corpus (GPT-prompt 2), despite 
providing contextualization, tend to contain more generic agricultural 
language with less dense domain vocabulary. This analysis provides 
lexical evidence that the enriched corpora are not only diverse in 
linguistic structure but also differ in domain specificity. By integrating 
multiple such corpora, we aimed to strike a balance between thematic 
relevance and textual variability to support more robust vectorization. 
Although there are differences in domain keyword density among the 
corpora, their performance results remain largely similar.

4.4. Combination method results

Table  6 presents the results of the combination method. The best 
results for P@1, P@3, and P@5 were obtained by combining BERT-
base with TF–IDF applied to the fusion of all corpora. The highest 
performance for P@10 was achieved by combining BERT-base with 
TF–IDF applied to Corpus (Google). Our objective was not to evalu-
ate all possible combinations of methods and corpora, but rather to 
focus on a subset of experiments and use the final line of Table  6 
for statistical significance analysis. This was done to assess whether 
the improvements observed with the combination method are indeed 
meaningful and not due to chance. We selected the last row for analysis 
because it represents the combination of the best-performing results for 
name matching-which includes our innovation of extending BERT-base 
with a multi-head attention layer, as highlighted in Table  4. Moreover, 
as shown in Table  5, all augmented corpora produced closely similar 
results in the TF–IDF experiments. Therefore, we selected the first 
prompt (i.e., Corpus (GPT-prompt 1)) as the representative corpus for 
this evaluation.

To assess whether the performance improvements of the Combina-
tion method are statistically significant, we conducted Wilcoxon signed-
rank tests (Wilcoxon, 1945), Friedman tests (Friedman, 1940), and Ne-
menyi post-hoc analyses (Nemenyi, 1963) on all experiments presented 
in Table  6, excluding string-based methods, which are included solely 
for comparison purposes. The full results of the Wilcoxon signed-rank 
tests and the Friedman tests followed by Nemenyi post-hoc analyses are 
provided in Appendix, in Tables  A.11 and A.12, respectively. In this 
subsection, we focus on the statistical analyses conducted on the final 
row of Table  6, which corresponds to the best-performing configuration 
in the final MAEVa results (Table  9). These tests compare the Combina-
tion method against two baselines: Name-based and Description-based 
similarity. We focus on these comparisons to validate whether the 
observed gains arise from a meaningful fusion of signals, rather than 
chance. We compared the Combination method separately against the 
Name-based and Description-based baselines across four evaluation 

https://github.com/OussamaMECHHOUR/MAEVa-v1.5/blob/main/datasets/keywords/default_keywords.txt
https://github.com/OussamaMECHHOUR/MAEVa-v1.5/blob/main/datasets/keywords/default_keywords.txt
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Table 5
Matching variable descriptions results: Similarity was calculated between each of the 84 source variable descriptions and each of the 170 candidate variable 
descriptions. The results show the proportion of source variables for which the correct matching candidate variable appears within the top 𝐾 ∈ [1, 10] selected 
candidates, divided by the total number of source variables.
 Method Corpus P@1 P@3 P@5 P@10  
 

TF-IDF + Cosine similarity

7 33.33% 42.86% 51.19% 60.71%  
 Corpus (15 articles) 35.71% 55.95% 63.10% 65.48%  
 Corpus (15 articles) + variable names and descriptions 36.90% 47.62% 59.52% 66.67%  
 Corpus (Google) + Corpus (Microsoft) + Corpus (GPT) 36.90% 47.62% 59.52% 66.67%  
 Corpus (Google) + Corpus (Microsoft) + Corpus (GPT) + Corpus 

(15 articles) + variable names and descriptions
36.90% 47.62% 59.52% 66.67%  

 Corpus (Google) 35.71% 48.81% 59.52% 67.86% 
 Corpus (Microsoft) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 1) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 2) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 3) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 4) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 5) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 6) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 1) + Corpus (Google) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 1) + Corpus (Microsoft) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 2) + Corpus (Microsoft) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 3) + Corpus (Google) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 3) + Corpus (Microsoft) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 4) + Corpus (Google) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 4) + Corpus (Microsoft) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 5) + Corpus (Google) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 5) + Corpus (Microsoft) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 6) + Corpus (Google) 36.90% 47.62% 59.52% 66.67%  
 Corpus (GPT-prompt 6) + Corpus (Microsoft) 36.90% 47.62% 59.52% 66.67%  
Fig. 4. Keyword density across all corpora used in matching variable descriptions.
11



O. Mechhour, S. Auzoux, C. Jonquet et al. Natural Language Processing Journal 13 (2025) 100180
Table 6
Results of the combination method. Similarity was calculated between each of the 84 source variable and each of the 170 candidate variable. The results show 
the proportion of source variables for which the correct matching candidate variable appears within the top 𝐾 ∈ [1, 10] selected candidates, divided by the total 
number of source variables.
 Corpus P@1 P@3 P@5 P@10 Matching names Matching descriptions 
 Corpus (Google) + Corpus (Microsoft) + Corpus 
(GPT)

30.95% 45.24% 55.95% 67.86% Jaro–Winkler Similarity TF–IDF + Cos  

 Corpus (Google) + Corpus (Microsoft) + Corpus 
(GPT)

38.10% 57.14% 64.29% 71.43% Overlap Coefficient TF–IDF + Cos  

 Corpus (Google) + Corpus (Microsoft) + Corpus 
(GPT)

50.00% 60.71% 65.48% 76.19% Sorensen–Dice Index TF–IDF + Cos  

 Corpus (Google) + Corpus (Microsoft) + Corpus 
(GPT)

53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  

 Corpus (Google) + Corpus (Microsoft) + Corpus 
(GPT) + Corpus (15 articles) + variable names and 
descriptions

54.76% 64.29% 70.24% 78.57% BERT-base (2 HL) + Cos TF–IDF + Cos  

 Corpus (Google) 54.76% 63.10% 70.24% 79.76% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (Microsoft) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 1) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 2) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 3) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 4) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 5) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 6) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 1) + Corpus (Google) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 1) + Corpus (Microsoft) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 2) + Corpus (Google) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 2) + Corpus (Microsoft) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 3) + Corpus (Google) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 3) + Corpus (Microsoft) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 4) + Corpus (Google) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 4) + Corpus (Microsoft) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 5) + Corpus (Google) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 5) + Corpus (Microsoft) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 6) + Corpus (Google) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 6) + Corpus (Microsoft) 53.57% 64.29% 70.24% 78.57% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 1) 32.14% 45.24% 51.19% 63.1% SBERT + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 1) 27.38% 40.48% 52.38% 59.52% SBERT + Multi-Head attention 

(256 Hs, DT=0.1 and UDW) + 
Cos

TF–IDF + Cos  

 Corpus (GPT-prompt 1) 38.1% 42.86% 46.43% 52.38% SimCSE + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 1) 38.1% 45.24% 48.81% 54.76% SimCSE + Multi-Head attention 

(256 Hs, DT=0.1 and UDW) + 
Cos

TF–IDF + Cos  

 Corpus (GPT-prompt 1) 46.43% 59.52% 64.29% 77.38% BERT-base (2 HLs) + Multi-Head 
attention (256 Hs, DT=0.1 and 
UDW) + Cos

TF–IDF + Cos  

 HLs: Hidden Layers, Hs: Heads, DT: Dropout regularization, UDW: Uniform Distribution of Weights and Cos: Cosine similarity
Table 7
Wilcoxon signed-rank test p-values comparing the Combination method against 
the Name-based and Description-based baselines, based on the last line of 
Table  6. Significant differences (𝑝 < 0.05) are highlighted in bold.
 P-value (Combination vs Name) P-value (Combination vs Description)
 P@1 P@3 P@5 P@10 P@1 P@3 P@5 P@10  
 0.000059 0.000407 0.000941 0.000074 0.059346 0.025347 0.317310 0.029049 

levels (P@1, P@3, P@5, P@10). Table  7 reports the p-values. Notably, 
the Combination method significantly outperforms the Name-based 
method at all P@k levels, and the Description-based method at P@3 
and P@10.

We also applied the Friedman test followed by the Nemenyi post-hoc 
test to assess ranking differences across all methods. Table  8 shows that 
the only statistically significant difference is between the Combination 
method and the Name-based method at P@1 (𝑝 = 0.029).

4.5. MAEVa pipeline results

In this subsection, we apply the voting-based method described in 
Section 3.5, which considers a match correct if at least one of the 
three methods (i.e., name matching, description matching, or combi-
nation method) correctly identifies the true candidate variable for a 
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Table 8
Nemenyi post-hoc test p-values comparing the Combination method against 
the Name-based and Description-based baselines, based on the last line of 
Table  6. Significant differences (𝑝 < 0.05) are highlighted in bold.
 P-value (Combination vs Name) P-value (Combination vs Description)
 P@1 P@3 P@5 P@10 P@1 P@3 P@5 P@10  
 0.0293 0.0538 0.0713 0.0713 0.6239 0.4788 0.8886 0.5506  

given source variable. Table  9 presents the results obtained using this 
evaluation strategy.

The best result at P@1 was achieved by combining BERT-base with 
TF–IDF applied to the fusion of all corpora and Corpus (Google). For all 
other P@k values, the highest performance was obtained by combining 
our key innovation-BERT-base extended with a multi-head attention 
layer-with TF–IDF applied to Corpus (GPT-prompt 1). In general, the fi-
nal MAEVa pipeline improved performance by more than 26 percentage 
points with respect to name matching, more than 16 percentage points 
over description matching, and more than 2 percentage points over 
the combination method alone across all P@k metrics. All MAEVa’s 
codes are available on GitHub and fully reproducible. Each code runs 
entirely on a CPU and produces complete results in less than 10 s, 
demonstrating the approach’s efficiency and suitability for real-world 
use cases.
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Table 9
MAEVa pipeline results. Similarity was calculated between each of the 84 source variable and each of the 170 candidate variable. The results show the proportion 
of source variables for which the correct matching candidate variable appears within the top 𝐾 ∈ [1, 10] selected candidates, divided by the total number of 
source variables.
 Corpus P@1 P@3 P@5 P@10 Matching names Matching descriptions 
 Corpus (Google) + Corpus (Microsoft) + Corpus 
(GPT)

41.66% 65.47% 71.42% 80.95% Jaro–Winkler Similarity TF–IDF + Cos  

 Corpus (Google) + Corpus (Microsoft) + Corpus 
(GPT)

51.19% 69.04% 73.80% 80.95% Overlap Coefficient TF–IDF + Cos  

 Corpus (Google) + Corpus (Microsoft) + Corpus 
(GPT)

58.33% 70.23% 76.19% 80.95% Sorensen–Dice Index TF–IDF + Cos  

 Corpus (Google) + Corpus (Microsoft) + Corpus 
(GPT)

59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  

 Corpus (Google) + Corpus (Microsoft) + Corpus 
(GPT) + Corpus (15 articles) + variable names and 
descriptions

60.71% 71.43% 77.38% 84.52% BERT-base (2 HL) + Cos TF–IDF + Cos  

 Corpus (Google) 60.71% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (Microsoft) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 2) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 3) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 4) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 5) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 6) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 1) + Corpus (Google) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 1) + Corpus (Microsoft) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 2) + Corpus (Google) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 2) + Corpus (Microsoft) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 3) + Corpus (Google) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 3) + Corpus (Microsoft) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 4) + Corpus (Google) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 4) + Corpus (Microsoft) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 5) + Corpus (Google) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 5) + Corpus (Microsoft) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 6) + Corpus (Google) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 6) + Corpus (Microsoft) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 1) 44.05% 55.95% 67.86% 79.76% SBERT + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 1) 45.24% 59.52% 75.00% 83.33% SBERT + Multi-Head attention 

(256 Hs, DT=0.1 and UDW) + 
Cos

TF–IDF + Cos  

 Corpus (GPT-prompt 1) 44.05% 53.57% 66.67% 76.19% SimCSE + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 1) 47.62% 55.95% 66.67% 78.57% SimCSE + + Multi-Head attention 

(256 Hs, DT=0.1 and UDW) + 
Cos

TF–IDF + Cos  

 Corpus (GPT-prompt 1) 59.52% 71.43% 77.38% 84.52% BERT-base (2 HLs) + Cos TF–IDF + Cos  
 Corpus (GPT-prompt 1) 57.14% 72.62% 79.76% 84.52% BERT-base (2 HLs) + Multi-Head 

attention (256 Hs, DT=0.1 and 
UDW) + Cos

TF-IDF + Cos  

 HLs: Hidden Layers, Hs: Heads, DT: Dropout regularization, UDW: Uniform Distribution of Weights and Cos: Cosine similarity
4.6. Error analysis

Although we obtained encouraging results, our methods still fail to 
correctly match a significant number of source variables. To analyze 
the reasons behind these errors, we focused on the 𝑃@10 metric. This 
means that we examined all source variables for which the correct 
candidate was not retrieved within the top 10 proposed candidates.

Across all our matching methods (i.e., matching names, matching 
descriptions, combination method) we observed that the mismatched 
candidate variables tended to be either semantically distant or semanti-
cally close to the source variable. In both cases, the candidate variables 
could share the same unit of measurement as the source or not. These 
combinations highlight two main sources of error: semantic mismatch 
and unit mismatch.

• Row 1 in Table  10 illustrates a case where the proposed candi-
date is semantically distant and does not share the same unit of 
measurement as the source variable.

• Row 2 shows a candidate that is semantically distant but shares 
the same unit of measurement as the source.
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• Row 3 presents a semantically close candidate15 which does not 
share the same unit.

• Row 4 provides an example where the candidate is semantically 
close and shares the same unit of measurement as the source.

• Rows 1–2 and 3–4 highlight that within the top 10 results, both 
types of errors-semantic and unit-based-can occur simultaneously 
for a single source variable.

These observations underline the importance of considering units 
of measurement alongside textual descriptions when matching variable 
descriptions. One possible improvement for future work is to apply a 
unit-of-measurement-based filtering mechanism, comparing source and 
candidate variables only when their units are dimensionally compati-
ble. This approach could simplify the matching task and increase the 
likelihood of correct matches. However, it also introduces a limita-
tion: Two variables may share the same unit but still be semantically 
unrelated.

15 These variables are semantically close because cane yield is a specific 
part of the total fresh biomass. Both are measured in fresh weight and refer 
to sugarcane productivity.
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Table 10
Examples illustrating various types of errors made by our methods (i.e., matching names, matching descriptions, combination 
method).
 Source Variables Candidate Variables
 Description Unit Description Unit  
 Weed coverage index over the trial % Height of the apex of the sugar stem sample cm  
 Weed coverage index over the trial % Soluble sugar concentration of the leaves %  
 Cane yield (in fresh machinable stem) t.ha−1 Total fresh biomass kg  
 Cane yield (in fresh machinable stem) t.ha−1 Aerial biomass of straws at harvest per unit area measured on the plot t.ha−1 
 . . . . . . . . . . . .  
To overcome this, we plan to explore a hybrid strategy that inte-
grates unit-based filtering with semantic similarity between descrip-
tions.

5. Discussion

Despite the promising results obtained by MAEVa, several limi-
tations remain that open up avenues for future research. First, the 
combination strategy employed is a simple linear fusion of name- and 
description-based similarity scores. While effective, it does not leverage 
more sophisticated fusion techniques such as trainable neural similarity 
functions or learning-to-rank models, which could dynamically assign 
weights to each component. Second, MAEVa does not yet incorpo-
rate external knowledge sources such as ontologies or thesauri. This 
limits its ability to capture deeper semantic relationships, particularly 
in cases where lexical similarity is low but conceptual similarity is 
high. To address this, we have initiated work on normalizing units 
of measurement using ontologies such as QUDT (Quantities, Units, 
Dimensions, and Types), TO (Plant Trait Ontology), PO (Plant On-
tology), UO (Units of measurement Ontology), and OM (Ontology of 
units of Measure). These resources provide structured semantic in-
formation (e.g., labels, URIs) that can be integrated as features to 
improve matching precision. In parallel, we aim to retrieve and exploit 
relevant ontologies and thesauri from AgroPortal (Jonquet et al., 2018). 
These semantic resources offer valuable domain knowledge that can 
support the adaptation of PLMs, such as RoBERTa (Liu et al., 2019), 
BERT (Devlin et al., 2018), and AgriBERT (Rezayi et al., 2022), as 
well as large language models (LLMs), including GPT-4 (OpenAI, 2023), 
LLaMA (Touvron et al., 2023), and Mistral (Jiang et al., 2023). Fur-
thermore, these resources can be incorporated into retrieval-augmented 
generation (RAG) pipelines (Lewis et al., 2020), allowing the system 
to retrieve domain-specific definitions, concept hierarchies, or stan-
dard descriptions for each variable prior to generation or comparison. 
This retrieved context could serve as a basis for generating enriched, 
semantically grounded, and domain-adapted representations, thereby 
enhancing matching precision.

Multilinguality is another important limitation of the current ap-
proach. Many agroecological datasets include variable names and de-
scriptions in multiple languages, which may reduce MAEVa’s general-
izability. In future work, we aim to incorporate multilingual modeling 
through token- or sentence-level language detection and apply cross-
lingual embeddings from models such as XLM-R (Conneau et al., 2020) 
or LaBSE (Feng et al., 2022) to align multilingual variables without 
requiring explicit translation.

Another important limitation concerns the size and characteristics 
of our evaluation dataset. The ground truth contains only 84 correct 
matched pairs between source and candidate variables. This is a typical 
constraint in the agroecological domain, where expert-annotated data 
is scarce and costly to produce. Based on the ground truth file, we have 
84 correct matches and 6,972 non-matching pairs, resulting in a highly 
imbalanced dataset. This imbalance makes it difficult to conduct fair 
comparisons with recent supervised or semi-supervised entity matching 
systems such as DeepMatcher (Xie et al., 2024) or Ditto Li et al. (2020), 
which generally require large and balanced datasets and are prone to 
overfitting in low-resource settings. To address these limitations, we 
14
plan to incorporate additional ground truth matchings from ongoing 
projects such as IntercropVALUES,16 and to explore data augmentation 
and rebalancing strategies in future work.

6. Conclusion and future work

In this work, we introduced a hybrid approach called Matching 
Agroecological Experiment Variables (MAEVa), designed to align source 
and candidate variables based on three components: their names, their 
descriptions, and the combination of both.

For matching variable names, our key innovation involved extend-
ing some PLMs (i.e., BERT-base, SBERT, SimCSE) by integrating an 
external multi-head attention layer on top of their frozen embeddings. 
This architectural extension improved the precision of name matching, 
outperforming the original PLMs across most P@k metrics.

For matching variable descriptions, our objective was to assess the 
relevance and impact of various data collection techniques (snippet 
extraction, scientific articles) and prompt-based data augmentation on 
TF–IDF. The results show that performance is relatively consistent 
across all GPT-3.5 Turbo-generated corpora and Microsoft snippets. The 
expert-curated article corpus achieved the best results at P@3 and P@5, 
while the Google snippets yielded the highest score at P@10. However, 
combining all corpora did not result in further performance gains. A 
detailed keyword density analysis confirmed that the corpora are not 
only diverse in linguistic structure but also relevant and aligned with 
the agroecological domain.

Our experiments highlight that although the combination method it-
self is not our innovation, the best results for P@1, P@3, and P@5 were 
obtained by combining BERT-base with TF–IDF applied to the fusion 
of all corpora. The highest performance at P@10 was achieved using 
the same combination, but with TF–IDF applied to Corpus (Google). 
These results demonstrate that the combination method consistently 
outperforms using variable names or descriptions alone. To assess 
whether the improvements from the Combination method were statisti-
cally significant, we conducted Wilcoxon signed-rank tests (Wilcoxon, 
1945), Friedman tests (Friedman, 1940), and Nemenyi post-hoc anal-
yses (Nemenyi, 1963). The combination method, which integrates our 
extended BERT-base model with multi-head attention for name match-
ing and TF–IDF using Corpus (GPT-prompt 1) for description matching, 
achieved statistically significant improvements over name matching 
alone at all P@k levels according to the Wilcoxon signed-rank test, and 
over description matching at P@3 and P@10 based on the Friedman 
test followed by the Nemenyi post-hoc test. Overall, the final MAEVa 
pipeline improved performance by more than 26 percentage points 
over name matching, more than 16 percentage points over description 
matching, and more than 2 percentage points over the combination 
method alone across all P@k metrics.

From a generative perspective, while we manually designed prompt 
strategies for GPT-3.5 to enrich sparse descriptions, future work could 
explore learning-based or adaptive prompt optimization. Recent studies 
have shown that prompts can be fine-tuned to improve downstream 

16 https://intercropvalues.eu/

https://intercropvalues.eu/


O. Mechhour, S. Auzoux, C. Jonquet et al. Natural Language Processing Journal 13 (2025) 100180
Table A.11
Wilcoxon signed-rank test p-values comparing the Combination method against the Name-based and Description-based baselines across all experiments. Significant 
differences (p < 0.05) are highlighted in bold.
 Combination Method Corpus P-value (combination vs name) P-value (combination vs description)
 Name Description p@1 p@3 p@5 p@10 p@1 p@3 p@5 p@10  
 BERT-base (2 HL) + Cos TF–IDF Corpus (Google) + Corpus (Microsoft) + 

Corpus (GPT)
𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (Google) + Corpus (Microsoft) + 
Corpus (GPT) + Corpus (15 articles) + 
variable names and descriptions

𝟓.𝟐𝟐 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0017 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (Google) 𝟓.𝟐𝟐 × 𝟏𝟎−𝟗 𝟏.𝟖𝟔 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 𝟓.𝟗𝟎 × 𝟏𝟎−𝟓 0.0010 0.0046 0.0125 0.0015  
 BERT-base (2 HL) + Cos TF–IDF Corpus (Microsoft) 𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  
 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 2) 𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  
 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 3) 𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  
 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 4) 𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  
 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 5) 𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  
 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 6) 𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  
 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 1) + Corpus 

(Google)
𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 1) + Corpus 
(Microsoft)

𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 2) + Corpus 
(Google)

𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 2) + Corpus 
(Microsoft)

𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 3) + Corpus 
(Google)

𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 3) + Corpus 
(Microsoft)

𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 4) + Corpus 
(Google)

𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 4) + Corpus 
(Microsoft)

𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 5) + Corpus 
(Google)

𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 5) + Corpus 
(Microsoft)

𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 6) + Corpus 
(Google)

𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 6) + Corpus 
(Microsoft)

𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  

 SBERT + Cos TF–IDF Corpus (GPT-prompt 1) 𝟑.𝟑𝟖 × 𝟏𝟎−𝟓 𝟒.𝟓𝟗 × 𝟏𝟎−𝟔 𝟏.𝟔𝟐 × 𝟏𝟎−𝟔 𝟏.𝟏𝟑 × 𝟏𝟎−𝟕 0.2850 0.6170 0.1266 0.5316  
 SBERT + Multi-Head attention 
(256 Hs, DT=0.1 and UDW) + 
Cos

TF–IDF Corpus (GPT-prompt 1) 𝟓.𝟗𝟎 × 𝟏𝟎−𝟓 0.0004 0.0009 𝟕.𝟒𝟑 × 𝟏𝟎−𝟓 0.0593 0.0253 0.3173 0.0290  

 SimCSE + Cos TF–IDF Corpus (GPT-prompt 1) 𝟐.𝟓𝟏 × 𝟏𝟎−𝟔 𝟏.𝟐𝟑 × 𝟏𝟎−𝟔 𝟐.𝟔𝟎 × 𝟏𝟎−𝟔 𝟐.𝟎𝟔 × 𝟏𝟎−𝟔 0.7388 0.2059 0.0076 0.0143  
 SimCSE + Multi-Head attention 
(256 Hs, DT=0.1 and UDW) + 
Cos

TF–IDF Corpus (GPT-prompt 1) 𝟏.𝟒𝟗 × 𝟏𝟎−𝟔 𝟒.𝟒𝟓 × 𝟏𝟎−𝟕 𝟓.𝟑𝟑 × 𝟏𝟎−𝟕 0.0001 0.7962 0.5637 0.0389 0.0253  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 1) 𝟖.𝟕𝟏 × 𝟏𝟎−𝟗 𝟏.𝟏𝟑 × 𝟏𝟎−𝟔 𝟑.𝟎𝟔 × 𝟏𝟎−𝟔 0.0001 0.0028 0.0009 0.0125 0.0015  
 BERT-base (2 HL) + Multi-Head 
attention (256 Hs, DT=0.1 and 
UDW) + Cos

TF–IDF Corpus (GPT-prompt 1) 𝟓.𝟗 × 𝟏𝟎−𝟓 0.0004 0.0009 𝟕.𝟒𝟑 × 𝟏𝟎−𝟓 0.0593 0.0253 0.3173 0.0290  

 HLs: Hidden Layers, Hs: Heads, DT: Dropout regularization, UDW: Uniform Distribution of Weights and Cos: Cosine similarity
task performance (Zhou et al., 2022). Adaptive prompting during infer-
ence could further enhance the quality and relevance of the generated 
corpora (Diao et al., 2023). All of these proposed developments, along 
with those outlined in the Discussion section, aim to make MAEVa 
more robust, multilingual, semantically informed, and adaptable to the 
complexities of real-world agroecological data integration. 
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Table A.12
Nemenyi post-hoc test p-values comparing the Combination method against the Name-based and Description-based baselines across all experiments. Significant 
differences (p < 0.05) are highlighted in bold.
 Combination Method Corpus P-value (combination vs name) P-value (combination vs description)
 Name Description p@1 p@3 p@5 p@10 p@1 p@3 p@5 p@10  
 BERT-base (2 HL) + Cos TF–IDF Corpus (Google) + Corpus (Microsoft) + 

Corpus (GPT)
0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4789  

 BERT-base (2 HL) + Cos TF–IDF Corpus (Google) + Corpus (Microsoft) + 
Corpus (GPT) + Corpus (15 articles) + 
variable names and descriptions

𝟗.𝟏𝟖 × 𝟏𝟎−𝟓 0.0015 0.0034 0.0400 0.1918 0.2370 0.5506 0.4789  

 BERT-base (2 HL) + Cos TF–IDF Corpus (Google) 𝟗.𝟏𝟖 × 𝟏𝟎−𝟓 0.0022 0.0034 0.0293 0.1530 0.3467 0.5506 0.4788  
 BERT-base (2 HL) + Cos TF–IDF Corpus (Microsoft) 0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  
 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 2) 0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  
 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 3) 0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  
 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 4) 0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  
 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 5) 0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  
 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 6) 0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  
 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 1) + Corpus 

(Google)
0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 1) + Corpus 
(Microsoft)

0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 2) + Corpus 
(Google)

0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 2) + Corpus 
(Microsoft)

0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 3) + Corpus 
(Google)

0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 3) + Corpus 
(Microsoft)

0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 4) + Corpus 
(Google)

0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 4) + Corpus 
(Microsoft)

0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 5) + Corpus 
(Google)

0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 5) + Corpus 
(Microsoft)

0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 6) + Corpus 
(Google)

0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 6) + Corpus 
(Microsoft)

0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  

 SBERT + Cos TF–IDF Corpus (GPT-prompt 1) 0.0713 0.0400 0.0212 0.0015 0.8886 0.9708 0.6967 0.9357  
 SBERT + Multi-Head attention 
(256 Hs, DT=0.1 and UDW) + 
Cos

TF–IDF Corpus (GPT-prompt 1) 0.0293 0.0538 0.0713 0.0713 0.6239 0.4788 0.8886 0.5506  

 SimCSE + Cos TF–IDF Corpus (GPT-prompt 1) 0.0151 0.0050 0.0050 0.0073 0.9926 0.8886 0.4104 0.3467  
 SimCSE + Multi-Head attention 
(256 Hs, DT=0.1 and UDW) + 
Cos

TF–IDF Corpus (GPT-prompt 1) 0.0106 0.0022 0.0050 0.0293 0.9926 0.9708 0.5506 0.4788  

 BERT-base (2 HL) + Cos TF–IDF Corpus (GPT-prompt 1) 0.0001 0.0015 0.0034 0.0400 0.2370 0.2370 0.5506 0.4788  
 BERT-base (2 HL) + Multi-Head 
attention (256 Hs, DT=0.1 and 
UDW) + Cos

TF–IDF Corpus (GPT-prompt 1) 0.0293 0.0538 0.0713 0.0713 0.6239 0.4788 0.8886 0.5506  

 HLs: Hidden Layers, Hs: Heads, DT: Dropout regularization, UDW: Uniform Distribution of Weights and Cos: Cosine similarity
Appendix. Statistical significance tests comparing the combina-
tion method separately to the name- and description-based base-
lines

Table  A.11 presents the Wilcoxon signed-rank test results for all 
experiments reported in Table  6, excluding the string-based methods, 
which were included only for comparison purposes.

The results in Table  A.11 show that the Combination method sig-
nificantly outperforms:

• the Name-based method at all P@k levels, regardless of the corpus 
or model used.

• the Description-based method at all P@k levels, except in the 
following cases:

– P@1 for SBERT and SimCSE (with and without the ex-
tended multi-head attention), and for BERT with extended 
multi-head attention;
16
– P@3 for SBERT without extended multi-head attention, and 
for SimCSE (with and without extended multi-head atten-
tion);

– P@5 for SBERT (with and without extended multi-head 
attention), and BERT with extended multi-head attention;

– P@10 for SBERT without extended multi-head attention.

Table  A.12 presents the Friedman test followed by the Nemenyi 
post-hoc test conducted on all experiments reported in Table  6, exclud-
ing the string-based methods, which were included only for comparison 
purposes.

The results in Table  A.12 show that the Combination method sig-
nificantly outperforms only the Name-based methods at all P@k levels, 
except in the following cases:

• P@1 for SBERT without extended multi-head attention;
• P@3, P@5, and P@10 for SBERT and BERT (with extended 
multi-head attention).
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