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A B S T R A C T   

Introduction: Psidium friedrichsthalianum fruits have in vitro antioxidant activity and their intake has been sug
gested to have potential health benefits; however, there is still no evidence on the potential in vivo effect of their 
consumption. 
Objective: We aim to study the effect of the oral administration of a P. friedrichsthalianum juice on the urinary 
metabolome of adult male Wistar rats. 
Methods: Acute and short-term interventions were carried out and urine sample metabolites were analyzed in a 
600 MHz NMR instrument with a NOESY-presat sequence.and post-treatment effects were identified by com
parison against control conditions. 
Results: Acute administration caused a decrease in the excretion of citrate and allantoin in the 0 to 6 h period 
and citrate and α-ketoglutarate in the 6 to 12 h period. Lactate and Krebs cycle intermediates showed reduced 
excretion in the 12 to 24 h period. Short-term administration (for 7 days) decreased the excretion of Krebs cycle 
intermediates together with lactate and allantoin. The effect was stronger after short-term administration sug
gesting a dose-dependent effect. 
Conclusion: P. friedrichsthalianum juice caused a change in rat excretion of energy metabolites, probably asso
ciated with an increase in aerobic metabolism, suggesting in vivo modulation of the redox balance.   

1. Introduction 

Epidemiological studies indicate that a high intake of fruits and 
vegetables correlates to a lower risk of developing chronic diseases 
[1,2], and a reduction in oxidative stress [3] and inflammation bio
markers [4]. Costa Rican guava (Psidium friedrichsthalianum is a Myr
taceae tree, naturally distributed from México to Panamá and Colombia 
that produces edible fruits with high organoleptic quality, which are 
commonly used for the production of juices [5] and fruit-based 

confectionaries [6]. 
P. friedrichsthalianum has been previously described as a source of 

compounds with in vitro antioxidant and anti-inflammatory activities in 
a model of pulmonary disease [6], therefore, there is an increased in
terest in the determination of the chemical composition of P. frie
drichsthalianum fruits and their biological effects [7]. However, there is 
still limited information regarding the potential physiological effect of 
its consumption [5,6] in contrast to Psidium guajava (common guava), a 
botanically-related species highly studied and commonly used as a food 
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source in several countries [8,9]. The common guava exhibits in vitro 
antioxidant activity [10] and has been suggested as a source of phy
tochemicals that may reduce glycemic, cholesterol and triglycerides 
levels [11]. 

P. friedrichsthalianum trees display a natural resistance to nematode- 
mediated root damage, a common challenge for commercial crops of P. 
guajava [12,13]. Then, due to agronomic advantages [12,13] and the 
potential role in health promotion suggested by in vitro analyses [6], we 
aimed to assess the in vivo biological effect of P. friedrichsthalianum 
fruits by examining the influence of its administration in the rat urinary 
metabolome, by using a 1H NMR-based non-targeted approach. 

The application of metabolomics to nutritional studies has been 
proposed as a valid approach to assess the high complexity of the in
teraction between an organism, its microbiome and the wide range of 
chemical compounds provided by the diet [14]. Urine is a valuable 
biofluid for metabolomic analysis since it can be collected in a non- 
invasive way [15,16] and requires minimal sample pre-treatment, 
which prevents changes in the metabolome [17]. Also, urine contains a 
wide diversity of metabolites (including xenobiotics) that are frequently 
present at higher concentrations, compared to blood or plasma [15]. 
Finally, as a concentrated excretion fluid, urine contains the phenoty
pical variations of different subjects [17]. Nuclear Magnetic Resonance 
(NMR) spectroscopy is considered a very valuable tool for nutritional 
assessment [18] by providing quantitative and reproducible measure
ments [19] using minimal sample pretreatment and generating data
bases with long term value [20]. 

Several pathologies are characterized by the accumulation of tissue 
alterations due to the presence of oxidative species because of un
balanced antioxidant regulatory systems [21,22]. Particularly, the 
regulation of elements involved in cellular energy metabolism has been 
reported to be affected by the mitochondrial redox status [23,24]. As a 
consequence, food phytochemicals that prevent the formation of cel
lular oxidative species, have been considered for the promotion of 
health and with several biological benefits [25]. 

It has been demonstrated that the administration of phytochemicals 
induces direct chemical scavenging activity of oxidative species and 
also regulates the expression of genes related to the antioxidant systems 
[25]. For instance, in biological systems, phytochemicals with in vitro 
antioxidant activity have been associated with the formation of reactive 
quinones, which interact with redox-sensitive species [25]. These mo
lecules participate in the formation of protein adducts [26,27] and the 
promotion of cross-linking reactions between thiol groups [27], two 
mechanisms that regulate redox-based cell signaling pathways [28]. 
However, in vivo studies are required since it has been shown that the 
scavenging capacity of phytochemicals could be involved in the pro
motion of both, antioxidant and/or pro-oxidant states, in cellular sys
tems [29]. 

Energy metabolism is a central element in cellular physiology and 
the evaluation of the role of the regulation of metabolic pathways and 
intermediaries involved in the energy supply of the cells has become a 
relevant topic in the investigation of the pathological processes of 
several diseases including cognitive disorders [30], cardiovascular 
diseases [31], diabetes [32] and tumorigenic processes [33]. 

This study was designed to provide some evidence of the potential 
effect of the administration of the antioxidant juice of this fruit, in the 
regulation of the metabolic balance of Wistar rats under normal food 
intake conditions. 

2. Material and methods 

2.1. Fruits and juice preparation 

P. friedrischsthalianum fresh fruits were acquired from the National 
Center for Food Supply and Distribution in Costa Rica (PIMA-CENADA, 
Barreal, Heredia, Costa Rica). Fruits were originally harvested at 
Santiago de Puriscal, (San José, Costa Rica) in optimal ripening 

conditions, according to traditional agronomic practices. P. frie
drischsthalianum fruits are traditionally consumed when naturally de
tach from the tree and when their color is from light green to yellow. 
Overripe fruits were eliminated by manual selection and the remaining 
fruits were washed and disinfected with a commercial solution of so
dium hypochlorite for food industry applications (100 ppm/10 min). 

Whole fruits were pulped through a 0.33 cm inner radius mesh 
using a semi-industrial pulper. The pulp was treated with a commercial 
pectinase kit (Pectinex® Ultra SP-L, Novozymes, Norway) at 37 °C 
(0.125 mL/kg fruit pulp) in a stainless-steel kettle to particle size re
duction and release of potentially bioactive compounds. After 60 min of 
enzymatic treatment, the pulp was filtered through a synthetic cloth for 
fiber removal using a hydraulic semi-industrial press. The obtained 
juice was transferred to plastic sterile recipients and kept at −80 °C 
protected from light exposure using aluminum foil. 

The content of humidity (AOAC 920.1512012), fiber (AOAC 
985.292012), simple carbohydrates (HPLC-RID Zorbax carbohydrate 
column), organic acid (HPLC-DAD), total polyphenols (Folin-Ciocalteu 
spectrophotometric assay), total vitamin C (C18, Reverse Phase HPLC- 
UV), as well as the acidity (AOAC 942.152012), pH (AOAC 
981.122012), Brix (AOAC 932.122012), and antioxidant capacity by 
ORAC test (Trolox equivalent activity measured by Fluorescence 
Spectroscopy), of the juice, were determined in a Certified External 
Independent Food Analysis Laboratory (CITA, Universidad de Costa 
Rica, San José, Costa Rica) according to validated methods (ISO- 
17025). 

2.2. Animal model 

Male, 52 days old Wistar rats (n = 8), obtained from the animal 
facility of Universidad de Costa Rica, were used. Animals included in 
the study were born on the same day from different mothers. Animal 
handling and all the experimental protocols were approved by the 
Institutional Committee for Use and Care of Laboratory Animals 
(CICUA, Universidad de Costa Rica, CICUA-024-015). 

Animals were acclimated into the experimental location and 
housing equipment, 5 days prior to intervention. During the whole 
experimental period, including allocation time in metabolic cages, an
imals had free access to a commercial diet (20% humidity; 21% protein; 
2% lipids; 21% starch; 72% total digestible fraction) and HCl-acidified 
tap water (pH = 2–3). Temperature (22.9  ±  1.0C) and relative hu
midity (73.1  ±  4.3%) in the room were constantly monitored during 
the study. Animals were located into social groups (groups of 4) in 
90 × 40 cm plastic cages, except during urine collection, when in
dividual rat metabolic cages (Tecniplast®) were used to allocate the 
animals. An automatized light/darkness cycle of 12 h (the light period 
from 6 a.m. to 6 p.m.) was used during the experimental protocol. Oral 
administration of samples (control and treatment conditions), for both 
acute and short-term administration, was performed using a metallic 
intra-gastric gavage (CRV FEEDING NDL 18GA 2IN 2/PK, Kent 
Scientific Corp, FNC-182) with a 5 mL sterile syringe. The administra
tion was performed daily at 8:00 a.m. Before the location of the animals 
in metabolic cages, the remaining content in the bladder of animals was 
eliminated by a gentle abdominal compression. 

Due to a problem with the water supply into the metabolic cage of 
one of the animals from the short-term administration experiment, its 
data was excluded from the analysis. 

Animals were monitored for symptoms of stress and/or discomfort 
during social and isolated allocations and their body weights were also 
measured during the experiments as an indicator of good health. Post- 
Morten general examination of the organs and tissues was performed by 
the main author of the study by evaluation of the macroscopic ap
pearance. These organs included skeletal muscle tissue, stomach, in
testines, esophagus, heart, liver and kidneys. 
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2.3. Acute administration protocol 

After the acclimatization period, animals (n = 8; BW 
248.1  ±  12.8 g) were orally administered with 1.0 mL of acidified 
water (pH 2–3) and immediately located in single metabolic cages. 
Control urine samples were individually collected in three time periods 
(0 to 6; 6 to 12; and 12 to 24 h, post-treatment). Afterward, animals 
were kept 6 days in social allocation. At day seven, animals (n = 8; BW 
of 290.6  ±  14.7 g) were orally administered with 1.0 mL of P. frie
drischtalianum juice (corresponding to a dose of 4 mL/kg BW) and im
mediately located in single metabolic cages. Urine samples from treated 
animals were individually collected in the same collection periods, as 
described previously. 

2.4. Short-term administration protocol 

Animals (n = 7; BW 266.3  ±  13.6 g) were placed individually in 
metabolic cages and control urine samples were collected during a 24 h 
period. Four days later, animals (n = 7; BW of 288.2  ±  14.1 g) were 
orally administered with 1.0 mL of P. friedrischtalianum juice (4 mL/kg 
BW), followed by daily doses of 0.5 mL of juice (2 mL/kg BW) during 
six consecutive days. After a washout period of 24 h to eliminate the 
acute effect of administration from the analysis, animals were placed 
individually in metabolic cages and urine samples were collected for 
24 h from treated animals. Urine from each independent animal was 
collected as a single sample during the whole 24 h-period. 

2.5. Sample preparation and 1H NMR determination 

Sample preparation was done according to previous protocols for 
metabolomics analyses of rat urine [34] with some modifications. Urine 
was centrifuged (14,000 RPM/ 5 min) to eliminate solid particles. Then, 
1.0 mL of urine were mixed with 0.5 mL of a 0.25 M phosphate buffer 
(pH = 7.4; 20% D2O; 1 mM TSP) containing 30 mM imidazole as in
ternal pH indicator and sodium azide as preservative [35,36]. The 
buffer solution was prepared using Na2HPO4 (Sigma-Aldrich, Lot # 
BCBP7328V, Purity > 99,0%), anhydrous NaH2PO4 (Sigma-Aldrich, 
Lot # BCBP38101V), sodium trimethylsilylpropionate (TSP) (Sigma- 
Aldrich, Lot # MBBB 0475 V, 98% deuterated atoms), deuterated water 
(Sigma-Aldrich USA, Lot # MKBV 2445 V, 99.9% deuterated atoms), 
imidazole (Sigma-Aldrich, Purity > 99,0%), sodium azide (Sigma-Al
drich, Purity > 99,0%) and LC-MS grade distilled water (Agua Optima® 
UHPLC-UV, Fisher Scientific USA, Lot # 145439). 

The urine-buffer mixture was then centrifuged (14,000 RPM/ 
10 min) and 0.150 mL of the supernatant were transferred to a 1.7 mm 
OD NMR tube (Bruker 1.7 mm capillary tube, 103.5 mm length, 0.20 
wall thickness, camber 60 μm). Samples were kept at 5 °C protected 
from light until analysis. Prior to analysis samples were left to warm up 
to 25 °C. 

All NMR experiments were recorded at 300.8 Kelvin using a Bruker 
600 MHz, Avance III (1H frequency: 600.13 MHz), equipped with a 
1.7 mm PATXI probe and running on Topspin 3.5pl7 (Bruker, 
Darmstadt, Germany). NOESY-presat (noesygppr1d) pulse sequence 
[37–39] was used with standardized and consistent pre-saturation 
protocols. Prior to measurements, temperature and 90° pulse were ca
librated. Typically, 128 scans per sample were recorded using the fol
lowing parameters: acquisition time was fixed to 3.389 s, relaxation 
delay D1 to 5.00 s and pulse width of 5.25 μs. The pre-saturation fre
quency was fixed to 4.685 ppm with a spectral width of 9590.8 Hz for a 
total acquisition size of 32 K data points and a spectral size of 64 K data 
points. 

2.6. Spectral Processing 

NMR spectra were analyzed using MestreNova 9.0.1 (MestreLab 
Research S.L., 2014) software. Each spectrum was manually handled 

using an exponential apodization of 0.3 Hz with 0.5 at the first point, 
which allowed a suitable balance of S/N ratio while retaining resolution 
and minimizing effects at the first point of the FID. A manual phase 
correction and an automatic correction of baseline (Whitaker softening) 
were also applied to each spectrum. After centering to TSP signal 
(δ = 0.00 ppm) a local alignment model was applied to all spectra 
excluding regions from δ = 8.1; to δ = 8.3 ppm and δ = 7.2 to 
δ = 7.3 ppm (Imidazole) due to its pH-dependent variation and regions 
from δ = 4.5 to δ = 6.0 ppm (water and urea signals) [38]. The rest of 
the spectrum (0.5 to 10.0 ppm) was divided into 0.02 ppm distance 
regions (bins). A tolerance level of 5% over the baseline and a nor
malization of the area under the curve using creatinine signal 
(δ = 4.05 ppm) as reference [40], was applied to the stalked spectrum. 
The normalization process was performed using the naturally occurring 
creatinine content of each sample. 

In situ pH was determined during NMR measurement using imida
zole signals as internal standard and calibrated with Chenomx NMR 
Suite 8.1 Software (Chemox Inc. Edmonton, Canada). The final pH in 
the NMR probe was determined by the specific chemical shift of imi
dazole signals (δ = 7.2 to δ = 7.3 ppm) for each sample. Identification 
of metabolites was performed by comparing suggested chemical struc
tures from Chenomx NMR Suite 8.1 database with data from HMDB 
database [41]. Further confirmation was performed by 1H; 13C NMR 
and two-dimensional NMR approaches (HMBC, HSQC, dqCOSY) (Sup
plementary data; TopSpin 4.0.7 (Bruker, Darmstadt) was used to plot 
these spectra). 

2.7. Statistical analysis 

For each bin of the spectrum, the normalized area under the curve 
was compared under control and treatment conditions. The average 
change of the normalized area under the curve between treatments (for 
each bin) was considered as a selection criterion for the determination 
of signals associated with metabolomic responses to the treatment. Each 
bin was later associated with specific NMR signals in the spectra, and 
the normalized area under the curve, for each selected signal (singlet, 
doublet, triplet, multiplet), was determined individually for each 
sample. 

For statistical analysis, the average value of the normalized area 
under the curve (for selected signals in treated and control group), were 
contrasted using a repeated-measures t-test with a significance value of 
0.05. Logarithmic (Log) transformation to the Treatment/Control (T/C) 
area ratio was applied. A positive value in Log T/C was considered an 
increased urinary concentration of the metabolite, while a negative 
value was associated with a decreased urinary concentration, relative to 
control conditions. Concentration changes for discriminant signals were 
later confirmed with a second approach using a Chenomx NMR Suite 
8.1 identification applying a t-test with a significance value of 0.05. 

3. Results and discussion 

3.1. General characteristics of the fruit samples 

A composition profile and antioxidant activity of the fruits are 
shown in Table 1. Interestingly, compared to common guava 
(pH 4.3–4.5; total acidity of 0.3 to 0.5 g citric acid /100 g) [42], P. 
friedrichsthalianum fruits show stronger acidity, which explains why its 
traditional juice is prepared using a double dilution in water and is 
sweetened with sugar or a substitute. However, no dilution or sugar was 
added to the juice tested in this study to keep the administered volume 
low and to prevent the incorporation of an additional energy source 
different from the one already provided by the food or the juice itself. 

3.2. General effects of the juice on the experimental animals 

Post-mortem examination of the organs from experimental rats did 
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not show any visible changes in macro-anatomical structures (muscles, 
stomach, intestines, esophagus, heart, liver and kidneys) compared to 
untreated animals in preliminary tests. According to behavioral and 
physical daily monitoring and animal growing curves, there was also no 
evidence of toxicity or adverse effects induced by juice administration 
during the whole experiment. The expected reduction in activity during 
isolation periods [43,44] was observed, both under control and treated 
conditions. 

Significant differences in urine volumes were found in the periods 
from 0 to 6 and 6 to 12 h of acute administration. As shown in Fig. 1A, 
higher urinary excretion in treated conditions was observed in the 0 to 
6 h period (p = .042), whereas higher excretion in control conditions 
was obtained in the period from 6 to 12 h (p = .018). No significant 
differences were observed in the period from 12 to 24 h (p = .462) or 
the average excretion volume of the whole experiment (p = .497). 
Urinary volumes at the 24 h-period after short-time administration 
showed no significant differences between treated and control samples 
(p = .274) (Fig. 1B). The data suggest an acute effect of P. frie
drichsthalianum administration on diuresis that should be further ad
dressed. 

The main metabolic pathways discussed in the present study are 
shown in Fig. 2. The interconnection of different metabolites will be 
discussed later in the text. The 1H NMR spectrum of a typical rat urine 
sample is shown in Figs. 3 and 4 for up- and downfield regions re
spectively. The main characteristic of urine samples is the broad signal 
at δ = 5.80 ppm, corresponding to urea. As can be seen, the NOESY- 
presat sequence was very successful in suppressing the water signal, 
without significantly altering the regions on both sides of the irradia
tion. The addition of imidazole was useful to determine the pH of each 

sample (see Fig. 4), the variations of which would have gone unnoticed. 
For future experiments, it is advisable to adjust the pH using a micro
electrode and adding base or acid as needed. Therefore, the use of 
phosphate buffer solution (pH 7.4) was not efficient to standardize the 
final pH of the samples for NMR determinations [34] causing undesir
able shifts in the 1H NMR spectra. On the other hand, addition to the 
prepared samples of a higher buffer proportion or any additional salty 
reagent would have resulted in poorer NMR measurements. 

Although individual manual supervision of the alignment was per
formed on each spectrum, the local alignment model still reflected 
slight variations in chemical shifts and limited multivariate analysis. 
However, when comparing the averages of the corresponding bins of 
controls and treatments, a general trend was observed and each con
tainer was associated with specific signals and compounds, which were 
identified using Chenomx, the Human Metabolome Database and con
firmed using 2D-NMR experiments. Since an NMR signal can be dis
tributed in one or more bins, the assessment of significant variations 
was evaluated by comparing the normalized area under the curve in its 
respective spectrum. The results of this analysis are summarized in  
Tables 2, 3 and 4. For acute and short-term administration, no parti
cular conclusion can be obtained from the variation in signals between 
the δ = 3.73–3.79 region, although they might be associated to car
bohydrate-related components. 

3.3. Acute administration scheme 

Statistically significant variations in the urinary metabolome after 
acute administration of P. friedrichsthalianum juice are shown in  
Table 2. For the samples collected in the period from 0 to 6 h, a sig
nificant reduction in the intensity of 1H NMR spectrum signals asso
ciated with citrate (p = .017 and 0.032) and allantoin (p = .006) and 
an increase in those related to taurine (p = .001), acetate (p = .036) 
and pantothenate (p = .001 and ≤ 0.001), was observed. For samples 
collected in the period from 6 to 12 h, a significant reduction in signals 
of citrate (p = .002), α-ketoglutarate (p  <  .001), and undertermined 
signals (p = .008), was observed. Additionally, a significant increase in 
urine concentration of taurine (p = .001), was detected. Samples 
comprising the period from 12 to 24 h showed a significant reduction in 
the signals corresponding to lactate (p = .004 and 0.002), acetate 
(p = .018), alanine (p = .050) and succinate (p = .011). 

Then, the acute effect of the administration of P. friedrichsthalianum 
juice mainly caused a reduction in urinary excretion of mediators of the 
energetic pathways (citrate, α-ketoglutarate and lactate) and allantoin, 
and a higher excretion of taurine. A reduction in the excretion of the 
intermediates of the Krebs cycle could suggest the utilization of these 
compounds in the oxidative energetic cell pathways (Fig. 2) and there is 
in vitro evidence of the regulation of oxidative metabolic processes by P. 
friedrichsthalianum fruit [6] and common guava [8]. In the specific case 

Table 1 
Composition, antioxidant activity and some properties of P. friedrichsthalianum 
juice used for acute and short-term administration experiments.     

Component Reported value (mean  ±  SD)  

Humidity (g/100 g) 89  ±  1 
Fiber (g/100 g) 0.68  ±  0.04 
Carbohydrates (g/100 g) Glucose 0.68  ±  0.06 

Fructose 1.1  ±  0.2 
Sucrose 2.6  ±  0.1 

Organic acids (g/100 g) Citric acid 2.06  ±  0.05 
Malic acid 0.155  ±  0.003 
Succinic acid 1.41  ±  0.04 

Acidity (g citric acid /100 g) 3.8  ±  0.1 
pH 2.84  ±  0.01 
Brix 10.490  ±  0.004 
Vitamin C (mg/100 g) 29.4  ±  0.6 
Total polyphenols (mg galic acid/100 g) 335  ±  7 
ORAC (μmol TE/100 g) 24,316  ±  14   

Fig. 1. Urinary excretion volumes of Wistar rats (Mean  ±  SD) after administration of P. friedrichsthalianum juice in (A) acute and (B) short-term schemes. Statistical 
analysis corresponds to a paired t-test comparison between control and experimental treatment conditions at the same collection time. Bars showing different letters 
correspond to statistical significance using an α of 0.05. (A) Higher urinary excretion in treated conditions was observed in the 0 to 6 h-period whereas higher urinary 
excretion in control conditions was obtained in the 6 to 12 h period (B) 24- after short -term administration showed no significant differences between treated and 
control samples. 
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of citrate, its excretion has been related to changes in urinary pH [45] 
and animal age [46] but no significant effect of those variables was 
considered to be related to our results since no significant differences in 
urinary pH between control and treated conditions were observed and 
same-age animals were used in these experiments. 

In agreement with our study, human ingestion of a polyphenol-rich 
extract from Hibiscus sabdariffa fruit calyces has been related to a re
duction in urinary excretion of some Krebs cycle intermediates (fuma
rate and malate) at the 3 h post-administration period [47]. On the 
other hand, it has been suggested that administration of quercetin is 
related with increased urinary excretion of Krebs cycle intermediates 
(citrate, α-ketoglutarate and succinate) during the first 12 h after the 
intervention, but with a reduced comparative urinary excretion during 
the period from 12 to 24 h after treatment. Quercetin administration is 
associated with reduced excretion of lactate [48] in concordance with 
results obtained with P.friedrichsthalianum juice in this acute interven
tion scheme. In agreement with our study, acute administration of re
sveratrol in a rat model has been related to reduced urinary excretion of 
α-ketoglutarate, nevertheless, the authors reported also a reduction in 
pantothenate excretion at a 24 h-collection period [49]. 

Pantothenate is a vitamin utilized for the synthesis of Coenzyme A, 
an essential cofactor in several metabolic reactions [50,51] such as the 
synthesis of Acetyl-CoA [52], the initial metabolite for the Krebs cycle 
in the process of oxidation of carbohydrates and/or fatty acids. 
Synthesis of Coenzyme A from pantothenate involves the activity of 
different isoforms of pantothenate kinases (PANK) [53–55]. The 

activity of relevant isoforms of PANK has been reported to be modu
lated by both endogenous intermediary metabolites involved in en
ergetic pathways [55–57] but also by xenobiotic compounds [54]. 
Plasma concentrations of pantothenate are reported to be increased in 
patients with deficient PANK2 activity [53], therefore reduced synth
esis of acetyl CoA could be related to higher plasmatic levels and 
consequently urinary excretion of pantothenate in animal models. 
Then, an increase in pantothenate excretion after administration of P. 
friedrichsthalianum juice suggests also a potential effect on intermediary 
metabolism that should be further analyzed. 

Even when traditionally, lactate has been described as the cytosolic 
end product of glycolysis in environments of low oxygen availability 
[58], there is also some evidence of aerobic oxidation of lactate in the 
mitochondrion in the presence of oxygen or when the respiratory chain 
is highly active [59]. Then, blood lactate accumulation could be the 
result of inhibition of the Krebs cycle and its absence could indicate 
aerobic metabolism is increased. The reduction in lactate excretion 
after acute administration of P. friedrichsthalianum juice would agree 
with the promotion of in vivo oxidative-mediated processes. 

Allantoin is an oxidative product of ureate [60], whose non-enzy
matic transformation has been suggested as a biomarker of in vivo 
oxidative distress [61]. Then, a reduction in allantoin excretion after 
administration of P. friedrichsthalianum juice suggests also a potential 
acute effect on the in vivo oxidative status, which correlates with the 
behavior observed for lactate and Krebs intermediates. In rodents, al
lantoin synthesis could be mediated by the action of the enzyme uricase 

Fig. 2. Krebs cycle and oxidative metabolism of energetic intermediates. Red arrows indicate a significant reduction in urinary metabolite concentration in Wistar 
rats after a short-term administration of P. friedrichsthalianum juice according to metabolomic data. Oral administration of P. friedrichsthalianum juice in a Wistar rat 
model causes changes in urine energetic intermediates, consistent with an in vivo increase in aerobic metabolism and antioxidant effects. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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[62], nevertheless, no significant variation of this variable is expected 
for this experiment, even when the promotion of uricase expression has 
been related to glucocorticoid activity and may be linked to housing 
stress [63]. 

Allocation in metabolic cages could induce moderate stress leading 
to some glucocorticoid secretion [64], but it was not considered a 

significant factor, having that an increase in allantoin excretion (instead 
of a reduction), would be expected associated to an increase in the al
location time. Allantoin excretion has also been related to protein 
synthesis and intake [65] but these factors are not taken into con
sideration in this study due to the use of (a) a standardized diet during 
the whole experiment and (b) a short-lasting model, where no 

Fig. 3. 1H NMR spectrum (600 MHz, Bruker H2O:D2O 8:2) from a Wistar rat urine sample (0.1 mL of sample in 0.05 mL of 0.25 M phosphate buffer containing 1 mM 
TSP, 30 mM imidazole and 3 mM of sodium azide) for the determination of the acute and short-term effect of P. friedrichsthalianum juice administration (aliphatic 
region δ = 0.80 to 4.50 ppm shown). 

Fig. 4. 1H NMR spectrum (600 MHz, Bruker H2O:D2O 8:2) from a Wistar rat urine sample (0.1 mL of sample in 0.05 mL of 0.25 M phosphate buffer containing 1 mM 
TSP, 30 mM imidazole and 3 mM of sodium azide) for the determination of the acute and short-term effect of P. friedrichsthalianum juice administration (downfield 
δ = 5.20 to 8.60 ppm shown). 
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significant changes in protein synthesis should be expected. 
After P. friedrichsthalianum juice acute administration, acetate ex

cretion shows a dual effect, increasing during the 0 to 6 h period and 
with a reduction in the late 12 to 24 h period, when compared to 
control conditions. Acetate is a plasma normal circulating compound 
[66] resulting from intestinal microbial metabolism of dietary com
pounds [67]. An increase in acetate concentration in plasma has been 
shown as a consequence of decreased aerobic oxidation in the mi
tochondria [67] and has been associated with an increase of plasma 
glucose in clinical diabetes [68]. Also, the utilization of plasma acetate 
by the brain has been reported in aerobic metabolic conditions [69]. In 
this scenario, the reduction of its excretion in the latest periods would 
suggest also the promotion of oxidative metabolism, while increasing in 
the first 6 h post-administration would represent the opposite effect. 

3.4. Short-term administration scheme 

Statistically significant variations in the urinary metabolome after 
short-term administration of P. friedrichsthalianum juice are shown in  
Table 3. P. friedrichsthalianum induced a significant reduction in 1H 
NMR signals associated with Krebs cycle intermediates (citrate 
(p  <  .001), succinate (p = .001), and α-ketoglutarate (p = .001)), 
together with lactate (p = .035), allantoin (p = .002), glycine 
(p = .001), benzoate (p = .004 and 0.009), and undetermined signals 
in the characteristic region of carbohydrates (p =.001). Also, a sig
nificant increase in urinary excretion of hippurate (p = .046) was ob
served after this intervention. In addition, Table 4 shows the change in 
ratios (treatment/control) for the creatinine-normalized concentration 
of urine metabolites by a second targeted approach, calculated using 
Chenomx Software. A significant reduction in lactate (p = .05), glycine 
(p = .02) and benzoate (p = .02) excretion was confirmed, whereas an 
increase in urine concentration of hippurate (p = .03) was observed as 
the result of this calculation. 

An eventual reduction in the urinary excretion of carbohydrates 
could be related to the promotion of energetic metabolism but also with 
a hypoglycemic effect in the animals during the experiment. Although 
there is no report of an effect of P.friedrichsthalianum juice in animals or 
due to human consumption on the glycemic values, the administration 
of the botanical related species P. guajava has been associated with a 
hypoglycemic effect [11]. 

As described previously, a reduction in the area of signals of Krebs 
cycle compounds [23,24], lactate [58,59] and allantoin [61] together 
with the observed reduction in signals among the region of the sugars, 
suggests a decrease in the excretion of energetic intermediates. This 
reduction could be a potential promotion of aerobic metabolism in
duced by the combination of P. friedrichsthalianum phytochemicals. 

Reduction in allantoin excretion was observed when rats were ad
ministered with curcumin extract from Curcuma longa for 25 days [70]. 
In a similar animal model, this plant induced a reduction in 2-ox
oglutarate (α-ketoglutarate) urinary excretion [71]. A 35 days-period 
intervention with cranberry in rat models, showed an increase in ur
inary citrate excretion [72]. As in the case of P. friedrichsthalianum 
fruits, C. longa [73] and cranberries [74] have been described as foods 
with in vitro antioxidant activity. 

Several phytochemicals have been involved in the modulation of the 
redox balance of cells by inducing direct scavenging activity or mod
ulation of signaling pathways [25]. Therefore, the observed variations 
in the excretion of metabolites in the acute intervention with P. frie
drichsthalianum juice suggest a possible fast inhibitory effect on certain 
enzymes and/or mediated by direct scavenging activity. On the other 
hand, the more stable patterns obtained during the short-term inter
vention scheme are probably related to an effect on the modulation of 
gene expression of endogenous regulatory systems such as those 
mediated by antioxidant enzymes. Also, a cellular response to phyto
chemical byproducts is possible and could explain the effects observed 
in these experiments [28]. 

Table 2 
Urine metabolomic changes determined after an acute administration of P. 
friedrichsthalianum juice in Wistar rats (Integration was done using MestreNova 
software).       

Collection Period Metabolite δ (ppm) P value Log T/C  

0–6 h Pantothenate d(0.90) .001 0.22 (↑) 
d(0.94)  <  .001 0.30 (↑) 

Acetate s(1.93) .036 0.11 (↑) 
Citrate d(2.71) .017 −0.08 (↓) 

d(2.56) .032 −0.06 (↓) 
α-ketoglutarate t(2.45) .142 −0.04 (↓) 

t(3.02) .076 −0.05 (↓) 
Taurine m(3.41) .001 0.11 (↑) 
Allantoin s(6.06) .006 −0.18 (↓) 

6–12 h Citrate d(2.56) .002 −0.12 (↓) 
d(2.71) .002 −0.13 (↓) 

α-ketoglutarate t(2.45)  <  .001 −0.09 (↓) 
t(3.02)  <  .001 −0.12 (↓) 

Taurine m(3.41) .001 0.14 (↑) 
Undetermined 3.73–3.79 .008 −0.11 (↓) 

12–24 h Lactate d (1.34) .004 −0.45 (↓) 
d(4.15) .002 −0.36 (↓) 

Alanine d(1.49) .050 −0.42 (↓) 
Acetate s (1.93) .018 −0.56 (↓) 
Succinate s(2.42) .011 −0.29 (↓) 

δ = Chemical shift in ppm (parts per million by frequency); s = singlet; 
d = doublet; t = triplet; m = multiplet; T/C = Treatment Area/Control Area 
ratio; (↑) = increased excretion; (↓) = decreased excretion; p = associated 
probability from repeated measurements t-test.  

Table 3 
Urine metabolomic changes determined after a short-term administration (for 
7 days) of P. friedrichsthalianum juice in Wistar rats (Integration was done using 
MestreNova software).      

Metabolite δ (ppm) P value Log T/C  

α-ketoglutarate t (2.45) .001 −0.12 (↓) 
t (3.01) .001 −0.12 (↓) 

Citrate d (2.55)  <  .001 −0.14 (↓) 
d (2.70)  <  .001 −0.14 (↓) 

Glycine s (3.57) .001 −0.32 (↓) 
Succinate s (2.41) .001 −0.16 (↓) 
Lactate d (1.34) .035 −0.46 (↓) 
Undetermined d (3.78) .001 −0.12 (↓) 
Allantoin s (5.40) .002 −0.07 (↓) 
Benzoate t (7.49) .004 −0.47 (↓) 

d (7.88) .009 −0.53 (↓) 
Hippurate d (7.84) .046 0.25 (↑) 

δ = Chemical shift in ppm (parts per million by frequency); s = singlet; 
d = doublet; t = triplet; m = multiplet; T/C = Treatment Area/Control Area 
ratio; (↑) = increased excretion; (↓) = decreased excretion; p = associated 
probability from repeated measurements t-test.  

Table 4 
Calculated concentration ratio (treatment/control) for creatinine-normalized 
excretion of urinary metabolites after a short-term administration of P. frie
drichsthalianum in Wistar rats (Integration was done using Chenomx software).      

Metabolite δ (ppm) P Ratio T/C  

Lactate d(1.34) .05 0.38 (↓) 
Glycine s(3.55) .02 0.38 (↓) 
Benzoate t(7.49) .02 0.35 (↓) 
Hippurate t(7.63) .03 1.81 (↑) 

δ = Chemical shift in ppm (parts per million by frequency); s = singlet; 
d = doublet; t = triplet; m = multiplet; T/C = Treatment Area/Control Area 
ratio; (↑) = increased excretion; (↓) = decreased excretion; p = associated 
probability from repeated measurements t-test.  
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P. friedrichsthalianum juice analysis showed in vitro antioxidant ac
tivity of 243.2 μmol TE/g (Table 1), which seems low compared to the 
values reported for other sources of dietary antioxidants, such as Ca
mellia sinensis green tea (13,609.7  ±  1301.3 μmol TE/g) [75], Eu
calyptus globulus leaves (284,614  ±  134 μmol TE/g) and coffee (Coffea 
arabica) beans (3511  ±  57 μmol TE/g) [76]. However our juice ac
tivity is close to the one observed for ginger rhizomes (Zingiber offici
nalis; 370  ±  28 μmol TE/g) [76], and higher than those reported for 
cherries (37.3–6.6 μmol TE/g) and blueberries (46.8–8.9 μmol TE/g) 
[77]. The antioxidant activity obtained for P. friedrichsthalianum juice 
supports previous results [6]. 

Regarding animal microbiota processing of plant components, hip
purate has been considered the main excretion metabolic product of the 
biotransformation of phytochemicals in mammals [78] and its bio
synthesis involves the hepatic condensation of glycine and benzoate 
[79]. Benzoate is one of the main microbial byproducts of a wide 
variety of chemical compounds from plant origin [80]. Increased hip
purate excretion has been reported after phytochemical and plant ex
tract ingestion in humans [81–84] and several animals [48,71,72]. 
However, no main changes in benzoate or glycine excretion have been 
reported in most of those intervention reports [48,71,81–84]. Cran
berry administration in rats for 35 day-periods, has been associated 
with increased hippurate and benzoyl-glucuronide urinary excretion 
and with a reduction in several phytochemical and metabolic by
products in the urine [72]. 

Considering that an increase in microbial degradation of phyto
chemicals has been related to augmented excretion of both, hippurate 
and benzoate [85], the observed higher urinary excretion of hippurate 
with a concomitant reduction in glycine and benzoate excretion may 
suggest an effect on the hepatic turnover of metabolic byproducts and 
not only an increase in phytochemical degradation. However, benzoyl- 
glucuronide in both rats and humans has been suggested to be a sec
ondary byproduct at high doses of benzoate (> 500 mg/kg) over the 
saturation threshold of glycine conjugation (> 120 mg benzoate/kg) 
[86]. In general, hippurate excretion has been associated mainly with 
microbial presence [87,88]. 

Whereas no significant differences in hippurate excretion during the 
acute intervention were observed, there were changes after P. frie
drichsthalianum juice short-term administration. This effect may not be 
only related to the metabolism of naturally occurring compounds from 
the juice, but probably also to the degradation of other phytochemicals 
presented in the food or even as the result of other normal liver de
toxification processes. For instance, effects have been reported in rats 
on the bioavailability of naturally-occurring plant compounds, such as 
those present in commercial diets for laboratory animals [89]. Also, an 
eventual effect of short-term administration on gut microbiota could be 
related to changes in hippurate excretion. Changes in gut microbiota 
have been previously reported after phytochemical-rich feeding trials in 
rodents [90]. 

The same commercial diet was provided to animals during both, 
acute and short-term administration of P. friedrichsthalianum. However, 
a time-dependent exposure to P. friedrichsthalianum could have a dif
ferential effect, either in the regulation of xenobiotic handling or mi
crobial transformation of phytochemicals present in the food or the 
juice itself as reported previously [89]. 

Chemical composition of P. friedrichsthalianum has shown the pre
sence of quercetin, ellagitannins, gallic acid derivatives and quercetin 
glucosides, among other phenolic compounds [7], therefore collection 
periods for acute intervention were defined according to previous ex
periences and similar studies. Quercetin administration has been pre
viously reported to be related to changes in urinary metabolome be
tween 0 and 12 h, with a recovery period between 12 and 24 h [48]. 
Tea catechins, on the other hand, are mainly excreted in human urine 
after 6 h of administration [91]. 

Cranberry juice administration in rats has been associated with in
creased urinary excretion of phytochemicals and metabolic byproducts 

in the period from 0 to 8 h after the intervention [72] while adminis
tration of resveratrol in rats is related with main changes in endogenous 
metabolome in the first 12 h after administration [49]. Based on that, 
collection periods longer than 24 h were not considered in this study. 
For short-term intervention, collection periods were defined according 
to previous experiences from our group, using other phytochemicals 
and/or plant extracts [89]. 

In summary, our results suggest that P. friedrichsthalianum combi
nation of phytochemicals could affect oxidative metabolism due to a 
modulation of redox balance in rats. Fig. 2 shows the interplay between 
ROS and the Krebs cycle, the regulation of the oxidative metabolism 
and our data from the short-term administration of P. frie
drichsthalianum juice. Whether the observed effect is associated with 
intact phytochemicals present in the juice or modulated by secondary 
metabolites derived from the metabolism of the rats or their microbiota 
should be addressed in future investigations to complement the data 
presented here. 

4. Conclusions 

Administration of P. friedrichsthalianum fruit pulp juice in Wistar 
rats induced changes in intermediates of energy metabolism in acute 
and short-term intervention experiments, suggesting a potential role of 
some phytochemicals in the regulation of the in vivo redox balance. The 
acute intervention was mainly related to a reduction in the excretion of 
energy intermediaries, however, metabolites with significant reduction 
varied in different collection periods. Citrate and allantoin showed re
duced excretion in the 0 to 6 h period while citrate and α-ketoglutarate 
were reduced in the 6 to 12 h period. Also, lactate and succinate 
showed reduced excretion in the 12 to 24 h period. Excretion of acetate 
increased in the 0 to 6 h but decreased in the 12 to 24 h period. 

The short-term intervention was also associated with a decreased 
excretion of intermediates citrate, lactate, allantoin, succinate and α- 
ketoglutarate. The existence of a stronger effect after short-term ad
ministration suggests a time/dose-dependent relation and metabolic 
responses to the juice components. In summary, this study presents in 
vivo evidence that suggests a potential role for P. friedrichsthalianum 
juice phytochemicals in metabolic and redox balance, as previously 
suggested by in vitro studies. 
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Appendix A. Supplementary data 

Supplementary data includes Two-dimensional NMR spectra to 
support the assignation of identified urinary metabolites. Two-dimen
sional spectra include HMBC, HSQC and dqCOSY. Supplementary 
data to this article can be found online at https://doi.org/10.1016/j. 
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