

L'organisme scientifique français spécialise en agronomie tropicale

Etude de la farine de coton par DSC : I - Influence de la teneur en eau et de la granulométrie des farines.

- F. Bonfils
- V. Vialettes
- C. Marquié

Avril 1999

TABLE DES MATIÈRES.

I - Introduction
II - Résultats obtenus. 4 II. 1 - Introduction. 4 II. 2 - Influence de la teneur en eau. 4 II. 2 - Influence de la granulométrie. 9
III - Conclusion. 12
IV - Références
Annexe 1 : Préparation des farines
Annexe 2 : Procédure utilisée en DSC (PROCDSC1)
Annexe 3 : Ensemble des résultats obtenus

I - Introduction.

L'Analyse Enthalpique Différentielle (AED), ou Differential Scanning Calorimetry (DSC), est la technique la plus courante pour l'analyse des transitions énergétiques dans un polymère. Elle permet de mesurer la chaleur dégagée, ou absorbée, lorsqu'un matériau subit un changement d'état physique ou chimique. On mesure alors le gradient de puissance électrique nécessaire pour maintenir l'échantillon et le témoin (référence) à la même température. Le système est dit à compensation de puissance.

Le phénomène de transition vitreuse est le principal changement d'état intervenant dans les polymères amorphes. Il correspond au passage d'un état liquide surfondu à un état vitreux lors du refroidissement dans la région de la température de transition vitreuse (T_g) . Bien que ce phénomène ne corresponde pas à une transition de phase au sens thermodynamique du terme [1], il se manifeste par une variation importanté des propriétés dimensionnelles, mécaniques, thermiques . . .

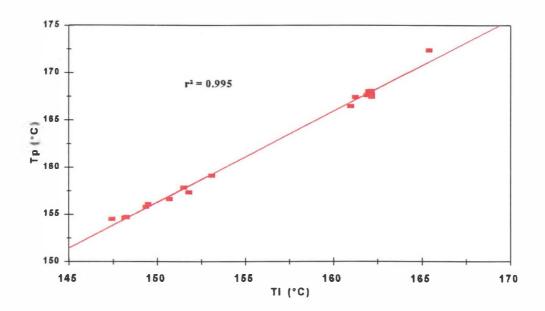
La DSC est également utilisée pour évaluer la cinétique de réticulation de différents systèmes comme la vulcanisation des élastomères [2, 3] ou la réticulation des résines phénol - formaldéhyde [4-5].

Cette technique est également utilisée pour l'étude des cinétiques de thermo-oxydation des polymères, l'efficacité des antioxydant, etc.

En ce qui concerne le domaine des protéines, la DSC est largement utilisée pour prédire la température de dénaturation [6-8], d'autres l'ont utilisée pour étudier l'effet plastifiant de l'eau sur la gélatine [9].

Les nombreuses opportunités de cette technique nous ont donc conduit à étudier le comportement thermique de la farine de graines de cotonnier par DSC. En effet, la valorisation de ce co-produit de la filière coton, pour la fabrication de matériaux biodégradables, implique une connaissance approfondie du comportement thermique du produit (Tg, température de dégradation, température de dénaturation, cinétique de réticulation).

Dans un premier temps, nous nous sommes intéressé à l'influence de la **teneur en eau**, et de la **granulométrie**, sur le comportement thermique d'échantillons conditionnés sous forme de farines issues de coton glanded et glandless (cf. Annexe 1). Trois paramètres ont donc été étudiés :


- 1 type de coton, 2 niveaux (glanded ou glandless),
- 2 la granulométrie, trois niveaux (d > 1 mm 0.35 < d < 1 mm d < 0.35 mm, cf. Annexe 1),
 - 3 teneur en eau de la farine, 2 niveaux (cf. Annexe 1).

La procédure utilisée en DSC est décrite dans l'annexe 2.

II - RÉSULTATS OBTENUS.

II. 1 - Introduction.

Il faut noter que les effets des deux facteurs étudiés (granulométrie et teneur en eau) n'ont été analysés que sur les variables : température du pic (T_p) et variation d'enthalpie ou aire (ΔH) . En effet, la T_p est parfaitement corrélée à la température d'induction ou onset (T_i) $(r^2 = 0.995$ pour glanded, cf. figure 1; $r^2 = 0.997$ pour glandless).

Figure 1 : Relation entre T_p et T_i pour la farine glanded : cas du pic 2.

II. 2 - Influence de la teneur en eau.

Dans les conditions d'analyse utilisées (cf. Annexe 2) les thermogrammes obtenus présentent 2 ou 3 pics (cf. figures 2 et 3) et une transition aux alentours de 100°C. Les valeurs caractéristiques de ces pics sont données dans les tableaux I et II. Les processus à l'origine de ces différentes transitions thermiques ne sont pas encore tous identifiés. Le premier pic, endothermique (pic 1), est probablement lié à la dénaturation [6-8]. En effet, ce pic n'est présent que sur le premier thermogramme (25°C à 100°C), il a disparu après ce premier traitement thermique. Le dernier pic, exothermique (pic 3), est certainement lié à la dégradation (oxydation), ou décomposition, de tout ou partie des constituants. Les phénomènes (chimique ou physique) à l'origine de la transition à 100°C et du pic 2 n'ont pas encore été élucidés.

Le premier pic, probablement lié à la dénaturation (??), est absent pour les teneurs faibles

en eau, ceci quelque soit le type de farine (glanded ou glandless). La teneur en eau semble également avoir une influence sur le deuxième pic. Ce point sera approfondi dans les études ultérieures car en valeurs numériques (variables quantitatives) les résultats obtenus montrent l'existence de deux populations (figure 4). Par contre, si l'on considère deux teneurs nominales en eau (variable quantitative), à savoir :

- HR1 = 2.6 % (DED11, DED12 et DED13),
- HR2 = 8% (DED14, DED15 et DED16),

une analyse de variance montre un effet très significatif de la teneur en eau sur certains résultats DSC, à savoir

- T_n du pic 2 pour les 2 farines (tableau III et IV),
- T_p du pic 3 pour les 2 farines.

En fait, les T_p diminuent quand la teneur en eau augmente.

En ce qui concernent les ΔH , les résultats obtenus présentent une dispersion très importante dans de nombreux cas (cf. Annexe 3). Une valeur semblant aberrante (répétition 1 du DED12) a été écartée avant de traiter les données. Pour les deux farines, la teneur en eau a une influence significative sur la ΔH . La variation d'enthalpie augmente avec la teneur en eau. Toutefois, l'homogénéité des variances est extrêmement limite pour les 2 populations d'échantillons de glandless (tableau V).

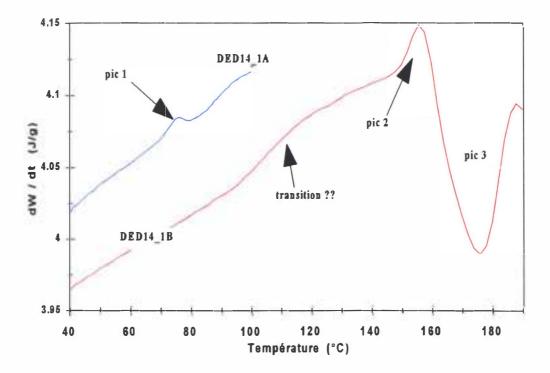


Figure 2: Thermogrammes obtenus pour la farine glanded.

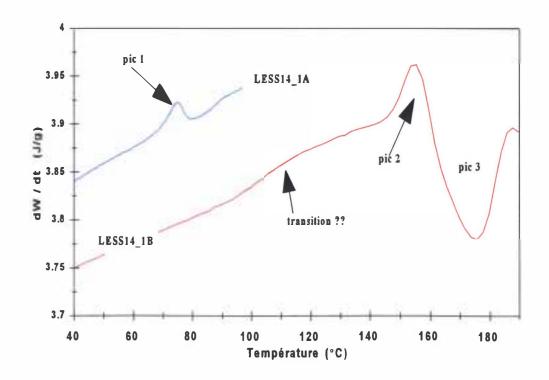
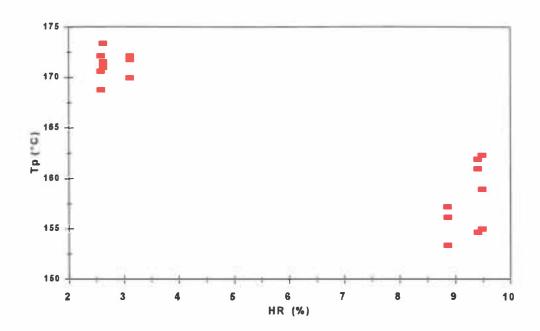



Figure 3: Thermogrammes obtenus pour la farine glandless.

<u>Figure 4</u>: Relation entre la T_p et la teneur en eau (valeurs numériques).

<u>Tableau I:</u> Température du pic (T_p) et température d'induction $(T_i, "onset")$ obtenues pour une farine glanded ou glandless.

		granulométrie	teneur	PIC	C 1	PIC	2	PIC	3
Echantillon	farine	(mm)	en eau (%)	T _p (°C)	T _i (°C)	T _p (°C)	T _i (°C)	T _p (°C)	T _i (°C)
DED11		d < 1	2.9	pas d	le pic	167.7 (0.6)	161.6 (0.6)	183.6 (0)	
DED12	glanded	0.35 < d < 1	2.7	pas d	le pic	169.2 (2.8)	162.8 (2.2)		
DED13		d < 0.35	2.4	pas d	le pic	167.2 (0.6)	161.7 (0.7)	184.6 (0.1)	
DED14		d < 1	7.8	74.3 (1)	68 (3)	156.7 (0.6)	150.6 (1.2)	175.7 (0.8)	160.7 (0.5)
DED15		0.35 < d < 1	8.2	pas de pic		154.6 (0.1)	147.9 (0.4)	172.5 (0.6)	159.1 (0.3)
DED16		d < 0.35	7.9	73.4 (1.4)	64.2 (4.4)	157.6 (1.7)	151.3 (1.9)	175.5 (1.9)	161.6 (1.5)
LESS11		d < 1	2.6	pas d	pas de pic		164 (1.5)	184.7 (1.2)	
LESS12		0.35 < d < 1	2.6	pas o	le pic	172 (1.2)	165.1 (0.9)		
LESS13	alandlass	d < 0.35	3.1	pas o	le pic	171.3 (1.2)	164.8 (1)	184.5 (1.1)	
LESS14	glandless	d < 1	9.4	73.9 (1.3)	66.1 (1.4)	159.2 (3.9)	152.2 (4.7)	178.4 (3.2)	165.1 (5)
LESS15		0.35 < d < 1	8.9	74.9 (0.6)	68.4 (1.4)	155.6 (2)	147 (2)	175.3 (0.6)	
LESS16		d < 0.35	9.5	74.3 (1.6)	66.7 (2.6)	158.8 (3.6)	151.2 (3.9)	175.6 (2.4)	162.2 (2.6)

N. B.: Les valeurs données entre parenthèses correspondent à l'écart type sur 3 répétitions.

Tableau II : Variations d'enthalpie (ΔH) relatives aux transitions observées pour une farine glanded ou glandless.

		granulométrie	teneur	PIC 1	PIC 2	PIC 3
Echantillon	farine	(mm)	en eau (%)	ΔH (J/g)	ΔH (J/g)	ΔH (J/g)
DED11		d < 1	2.9	pas de pic	0.912 (0.21)	pic incomplet
DED12		0.35 < d < 1	2.7	pas de pic	1.44 (0.8)	pic incomplet
DED13	glanded	d < 0.35	2.4	pas de pic	0.83 (0.07)	pic incomplet
DED14		d < 1	7.8	0.306 (0.076)	1.23 (0.33)	-10.47 (0.23)
DED15		0.35 < d < 1	8.2	pas de pic	1.473 (0.124)	- 6.26 (0.76)
DED16		d < 0.35	7.9	0.438 (0.151)	1.353 (0.171)	- 10.64 (0.95)
LESS11		d < 1	2.6	pas de pic	2.043 (0.146)	pic incomplet
LESS12		0.35 < d < 1	2.6	pas de pic	2.244 (0.182)	pic incomplet
LESS13	alandlass	d < 0.35	3.1	pas de pic	1.585 (0.269)	pic incomplet
LESS14	glandless	d < 1	9.4	0.979 (0.08)	2.288 (0.616)	- 9.04 (3.37)
LESS15		0.35 < d < 1 8.9		0.377 (0.037)	2.959 (0.262)	pic incomplet
LESS16		d < 0.35	9.5	1.319 (0.186)	3.032 (0.381)	- 11.3 (0.39)

N. B.: Les valeurs données entre parenthèses correspondent à l'écart type sur 3 répétitions.

Tableau III: Résultats obtenus pour l'analyse de variance T_p - HR (pic 2) dans le cas de la farine glanded.

Assur	Assuming equal variances : $F = 1,10 - F_{th}(17,17) = 2,27 (P:0,05)$									
Source	DF	Sum of Squares	Mean Square	F Ratio						
Model 1		631.85385	631.854	237.8260						
Error	16	42.50864	2.657	Prob>F						
C Total	17	674.36249	39.668	< 0.0001						

Tableau IV: Résultats obtenus pour l'analyse de variance T_p - HR (pic 2) dans le cas de la farine glandless.

homo	homogénéité des variances : $F = 5,96 - F_{th}(17,17) = 2,27 (P:0,05)$									
Source	DF	Sum of Squares	Mean Square	F Ratio						
Model 1		808.83761	808.838	125.6496						
Error	16	102.99598	6.437	Prob>F						
C Total	17	911.83358	53.637	< 0.0001						

Tableau V : Résultats obtenus pour l'analyse de variance ΔH - HR (pic 2) dans le cas de la farine glandless.

Assu	Assuming equal variances : $F = 2,35 - F_{th}(16,16) = 2,33 \text{ (P : 0,05)}$								
Source	DF	Sum of Squares	Mean Square	F Ratio					
Model 1		2.8952201	2.89522	14.8000					
Error	16	3.1299704	0.19562	Prob>F					
C Total	17	6.0251905	0.35442	0.0014					

II. 2 - Influence de la granulométrie.

Les résultats obtenus ne permettent pas de trancher quant à un effet significatif ou pas de la granulométrie. En effet, cet effet n'est significatif que pour la famille DED14/DED15/DED16 (tableau VI), pour les autres il ne l'est pas (tableau VI et VII). Toutefois, certaines réserves doivent être émise quant à la non signification de l'effet granulométrie. D'une part, dans le cas de la farine glanded les variances ne sont pas toujours homogènes (cf. figure 5). D'autre part, les résultats pour la farine glandless présentent une variabilité beaucoup plus importante que pour ceux obtenus avec la glanded (cf. figure 6), ce qui pourrait expliquer le fait que l'effet granulométrie ne soit pas mis en évidence pour la farine glandless. A priori, il est étonnant d'observer une variabilité plus importante pour la farine glandless.

Il serait préférable, avant de trancher, de répéter cette étude avec un nombre de répétition plus grand (5 ou 6).

En règle générale, il semblerait que la répétabilité la meilleure soit pour la farine de granulométrie intermédiaire (0.35 < d < 1 mm).

<u>Tableau VI :</u> Résultats obtenus pour l'analyse de variance T_p - granulométrie (pic 2) dans le cas de la farine glanded.

Source	DF	Sum of Squares	Mean Square	F Ratio					
	DED	11 - DED12 - DED13 (exe	pté DED12_1)						
Model	2	1.1179908	0.558995	3.3929					
Error	5 0.8237672		0.164753	Prob>F					
C Total	7	1.9417580	0.277394	0.1172					
	DED14 - DED15 - DED16								
Model	2	13.894324	6.94716	6.5292					
Error	6	6.384109	1.06402	Prob>F					
C Total	8	20.278434	2.53480	0.0312					

Tableau VII : Résultats obtenus pour l'analyse de variance T_p - granulométrie (pic 2) dans le cas de la farine glandless.

Source	DF	Sum of Squares	Mean Square	F Ratio	
	24	LESS 11 - LESS 12 - LE	ESS13		
Model	2	3.153506	1.57675	0.8127	
Error 6		11.640800	1.94013	Prob>F	
C Total 8		14.794306 1.84929		0.4872	
		LESS14 - LESS15 - LE	ESS16		
Model	2	23.416915	11.7085	1.0845	
Error 6		64.779440	10.7966	Prob>F	
C Total	8	88.196355	11.0245	0.3962	

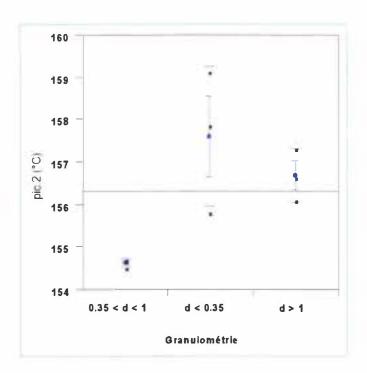
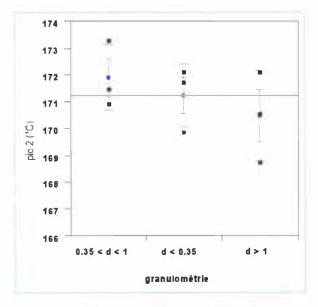
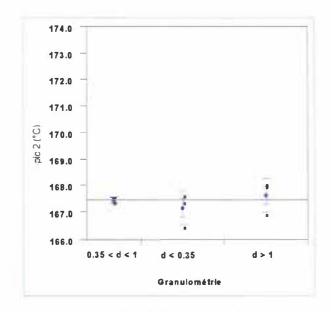




Figure 5 : Représentation schématique de la variabilité des T_p pour les échantillons DED14 (d>1), DED15 et DED16 (d<0.35).

LESS11 - LESS12 - LESS13

DED11 - DED12 - DED13

Figure 6: Représentation schématique de la variabilité des T_p pour 1 série d'échantillons de glanded (DED11, DED12 et DED13) et 1 série d'échantillons de glandless (LESS11, LESS12 et LESS13).

III - CONCLUSION.

Parmi les deux facteurs étudiés, la teneur en eau a un effet très significatif sur les résultats obtenus, en ce qui concerne la granulométrie, il semble préférable d'étudier à nouveau ce facteur avec un nombre plus grand de répétitions avant de pouvoir trancher.

Quand la teneur en eau augmente dans la farine, les températures des pics 2 et 3 diminuent et les ΔH augmentent.

Les processus à l'origine de ces différentes transitions thermiques ne sont pas encore tous identifiés. Le premier pic (endothermique) est probablement lié à la dénaturation [9-10] en effet, lors de la deuxième montée en température ce pic n'existe plus. Le dernier pic (exothermique) est très probablement lié à la dégradation (oxydation) de tout ou partie des constituants. Les phénomènes (chimique ou physique) à l'origine de la transition à 100°C et du pic 2 n'ont pas encore été élucidés.

Il faut noter que la répétabilité sur la mesure des ΔH est souvent très mauvaise, pour des raisons non identifiées pour le moment.

IV - RÉFÉRENCES.

- [1] E. J. Donth, Relaxations and thermodynamics in polymers glass transition. Akademei Verlag GbmH, Berlin (1992).
- [2] S. H. Chough et D. H Chang, J. Appl. Polym. Sci., 61, 449 (1996).
- [3] D. W. Brazier et N. V. Schwartz, Thermochimica Acta, 39, 7 (1980).
- [4] BD Park, B Riedl, EW Hsu et J Shields, *Polymer*, 40, 1689 (1998).
- [5] K. C. Cheng, K. C. Lia, W. Y. Chiu, J. Appl. Polym. Sci., 71, 721 (1999).
- [6] S. Kitamura et J. Sturtevant, *Biochemistry*, 28, 3788 (1989).
- [7] M. Otamari, P. Adlercreutz et B. Mattiasson, *Biotechnology and bioengineering*, 44, 73 (1994).
- [8] A. Ginsburg et M. Zolkiewski, *Biochemistry*, 30, 9421 (1991).
- [9] P. I. A. Sobral, F. C. Menegalli, S. Guilbert, *Workshop on biopolymer Science : Food and non food applications*, 28 30 septembre 1998, Montpellier.

Annexe 1 : Préparation des farines

Les farines utilisées ont été préparées en broyant des amandes au moulin à café. Les farines obtenues ont été filtrées sur 2 tamis en série de porosité d'1 mm et 0,35 mm. Trois fractions ont été ainsi obtenues :

- fraction 1: d > 1 mm,
- fraction 2 : 0.35 < d < 1 mm,
- fraction 3 : d < 0.35 mm,

Les 3 fractions ont été séparées en 2 lots qui ont été conditionnés pendant 15 jours :

- dans un dessiccateur sur P₂O₅,
- dans le laboratoire n° HR = 65 % T° = 21°C.

Les teneurs en eau des farines ont été déterminées selon la procédure habituelle utilisée au laboratoire.

Annexe 2 : Procédure utilisée en DSC (PROCDSC1)

- L'appareillage utilisé est la DSC-7 de Perkin Elmer.
- 1) Chaque matin la stabilité de la ligne de base est vérifiée.
- 2) On procède à un tirage aléatoire pour l'ordre de passage de chaque échantillon.
- 2) Peser précisément environ 15 mg de farine dans la capsule DSC, celle-ci est ensuite scellée.
- 3) Placer la capsule DSC dans la four échantillon, le four référence renferme une capsule vide est réaliser une première rampe de 25°C à 100°C à raison de 10°C/min (indice "A" dans le nom de l'échantillon). On laisse le four revenir à 25°C et on réalise une deuxième rampe de 25°C à 190°C à raison de 10°C/min (indice "B" dans le nom de l'échantillon).
- 4) Le thermogramme est ensuite normalisé et on procède aux calculs des T_p , T_i et ΔH .

Annexe 3 : Ensemble des résultats obtenus

échantillon LESS11 LESS11_1 LESS11_2 LESS11_3	date analyse 08/02/99 09/02/99 12/02/99	masse (mg) 15.32 15.98 15.79 moyenne é. t.	HR (%) 2.57 2.57 2.57	granulo d < 1 mm	pic 1 (°C) pas de pas de pas de	onset 1 (°C) pic pic pic	aire 1 J/g	pic 2 (°C) 170.6 168.774 172.154 170.51	onset 2 (°C) 164.02 162.49 165.459 163.99 1.5	aire 2 J/g 2.087 2.152 1.891 2.04 0.136	pic 3 (°C) Tp > Tp >	onset 3 (°C) 190°C 190°C 190°C	aire 3 J/g
		C. V.						1.0	0.9	6.6			
échantillon LESS12	date analyse	masse (mg)	HR (%)	granulo	pic 1 (°C)	onset 1 (°C)	aire 1 J/g	pic 2 (°C)	onset 2 (°C)	aire 2 J/g	pic 3 (°C)	onset 3 (°C)	aire 3 J/g
LESS12_1 LESS12_2 LESS12_3	08/02/99 10/02/99 10/02/99	16.29 mg 16.66 mg 16.19 mg	2.61	0.315 < d < 1 mm	pas de pas de pas de	pic pic pic		173.358 171.528 170.987 171.96 1.2 0.7	166.12 164.489 164.594 165.07 0.9 0.6	2.175 2.451 2.107 2.24 0.182 8.1	Tp > Tp > Tp >	190°C 190°C 190°C	
échantillon LESS13 LESS13_1 LESS13_2 LESS13_3		masse (mg) 15.54 mg 15.67 mg 16.15 mg	3.1	granulo d < 0.315 mm	pic 1 (°C) pas de pas de pas de	onset 1 (°C) pic pic pic	aire 1 J/g	pic 2 (°C) 171.787 169.936 172.155 171.3 1.2 0.7	onset 2 (°C) 164.949 163.69 165.741 164.8 1.0 0.6	aire 2 J/g 1.863 1.325 1.566 1.585 0.269 17.0	pic 3 (°C) 184.954 183.299 185.284 184.5 1.1 0.6	onset 3 (°C)	aire 3 J/g

échantillon LESS14	date analyse	masse (mg)	HR (%)	granulo	pic 1 (°C)	onset 1 (°C)	aire 1 J/g	pic 2 (°C)	onset 2 (°C)	aire 2 J/g	pic 3 (°C)	onset 3 (°C)	aire 3 J/g
	_	•					_						_
LESS14_1	08/02/99	14.64 mg		d < 1 mm	74.772	67.684	0.910	154.704		2.953	175.118	159.99	-11.823
LESS14_2	10/02/99	14.87 mg			72.398	65.395	0.960	161.892	155.09	2.174	181.454		-5.289
LESS14_3	11/02/99	16.19 mg	9.4		74.643	65.239	1.068	161	154.739	1.737	178.671	165.459	-9.992
		moyenne			73.9	66.1	0.979	159.2	152.2	2.3	178.4	165.1	-9.035
		é. t.			1.3	1.4	0.081	3.9	4.692	0.6	3.2	5.0	3.371
		C. V.			1.8	2.1	8.246	2.5	3.1	26.9	1.8	3.0	-37.3
échantillon	date	masse	HR	granulo	pic 1	onset 1	aire 1	pic 2	onset 2	aire 2	pic 3	onset 3	aire 3
LESS15	analyse	(mg)	(%)		(°C)	(°C)	J/g	(°C)	(°C)	J/g	(°C)	(°C)	J/g
LESS15 1	08/02/99	15.42 ma	8.86	0.315 < d < 1 mm	74.544	67.4	0.403	153.392	145.597	3.200	175.853		
LESS15 2	09/02/99	16.57 mg			75.347	69.408	0.350	156.163	148.375	2.997	174.664		
LESS15_3		15.84 mg			70.011	00.100	0.000	157.184	140.51	2.680	175.446		
LL0013_0	12/02/00	moyenne	0.00		74.9	68.4	0.377	155.6	144.8	2.959	175.3		
		é. t.			0.6	1.4	0.037	2.0	4.0	0.262	0.6		
											0.3		
		C. V.			8.0	2.1	9.954	1.3	2.8	8.9	0.3		
échantillon	date	masse	HR	granulo	pic 1	onset 1	aire 1	pic 2	onset 2	aire 2	pic 3	onset 3	aire 3
LESS16	analyse	(mg)	(%)		(°C)	(°C)	J/g	(°C)	(°C)	J/g	(°C)	(°C)	J/g
LESS16 1	08/02/99	15.80 mg		d < 0.315 mm	75.106	69.026	1.130	155.034	147.215	3.108	173.972	160.33	-11.026
LESS16 2	11/02/99	0		u	72.449	63.937	1.501	162.289	155.09	2.618	110.012	100.00	11.020
_	12/02/99	•			75.207	67.245	1.327	158.964		3.369	177.316	164.003	-11.572
LESS16_3	12/02/99	•	9.40										
		moyenne			74.3	66.7	1.319	158.8	151.2	3.032	175.6	162.2	-11.299
		é. t.			1.6	2.6	0.186	3.6	3.9	0.381	2.4	2.6	0.386
		C. V.			2.1	3.9	14.069	2.3	2.6	12.6	1.3	1.6	-3.4

échantillon date masse HR granulo pic 1 onset 1 aire 1 pic 2 onset 2 aire 2 pic 3 onset 3 aire	échantillon	date	masse	HR	granulo	pic 1	onset 1	aire 1	pic 2	onset 2	aire 2	pic 3	onset 3	aire
--	-------------	------	-------	----	---------	-------	---------	--------	-------	---------	--------	-------	---------	------

DED11_1 DED11_2 DED11_3	analyse 08/02/99 11/02/99 12/02/99	(mg) 15.32 mg 16.28 mg 15.06 mg moyenne é. t. C. V.	2.86	d < 1 mm	(°C) pas de pas de pas de	(°C) pic pic pic	J/g	(°C) 168.07 168.091 168.091 168.1 0.0	(°C) 161.966 162.127 162.127 162.1 0.0	J/g 1.032 0.991 0.991 0.991 0.000 0.0	(°C) 183.649	(°C)	J/g
échantillon DED12 DED12_1 DED12_2 DED12_3	date analyse 09/02/99 10/02/99 11/02/99	masse (mg) 16.84 mg 14.67 mg 16.57 mg é. t. C. V.	2.65	granulo 0.315 < d < 1 mm	pic 1 (°C) pas de pas de pas de	onset 1 (°C) pic pic pic	aire 1 J/g	pic 2 (°C) 172.408 167.449 167.664 167.6 0.2 0.1	onset 2 (°C) 165.364 161.232 161.868 161.6 0.4 0.3	aire 2 J/g 2.377 0.931 1.005 0.968 0.052 5.4	pic 3 (°C) Tp > Tp > Tp >	onset 3 (°C) 190°C 190°C	aire 3 J/g
échantillon DED13 DED13_1 DED13_2 DED13_3	date analyse 09/02/99 09/02/99 12/02/99	masse (mg) 14.28 mg 16.11 mg 14.15 mg	2.36	granulo d < 0.315 mm	pic 1 (°C) pas de pas de pas de	onset 1 (°C) pic pic pic	aire 1 J/g	pic 2 (°C) 172.408 167.449 167.664 167.6 0.2 0.1	onset 2 (°C) 165.364 161.232 161.868 161.6 0.4 0.3	aire 2 J/g 2.377 0.931 1.005 0.968 0.052 5.4	pic 3 (°C) 184.602 184.504 184.739 184.6 0.1	onset 3 (°C)	aire 3 J/g
échantillon DED14	date analyse	masse (mg)	HR (%)	granulo	pic 1 (°C)	onset 1 (°C)	aire 1 J/g	pic 2 (°C)	onset 2 (°C)	aire 2 J/g	pic 3 (°C)	onset 3 (°C)	aire 3 J/g

DED14_1 DED14_2 DED14_3	08/02/99 10/02/99 11/02/99	14.75 mg 14.87 mg 15.61 mg moyenne é. t. C. V.	7.83	d < 1 mm	75.171 73.123 74.527 74.3 1.0 1.4	68.933 64.612 70.411 68.0 3.0 4.4	0.232 0.383 0.303 0.306 0.076 24.7	156.088 157.348 156.63 156.7 0.6 0.4	149.467 151.779 150.662 150.6 1.2 0.8	1.572 0.914 1.214 1.233 0.329 26.7	175.433 176.56 175.012 175.7 0.8 0.5	160.484 161.313 160.421 160.7 0.5 0.3	
échantillon DED15	date analyse	masse (mg)	HR (%)	granulo	pic 1 (°C)	onset 1	aire 1	pic 2 (°C)	onset 2 (°C)	aire 2	pic 3 (°C)	onset 3	aire 3
DED15_1A DED15_2A DED15_3A	11/02/99	16.62 mg 16.89 mg 14.15 mg	8.23	0.315 < d < 1 mm	pas de pas de pas de	pic pic pic		154.519 154.711 154.681	147.421 148.248 148.133	1.600 1.352 1.466	172.689 171.808 173.006	159.409 158.917 158.905	-5.433 -6.434 -6.914
D_D10_0/(12/02/00	moyenne é. t.	0.20		pus de	pio		154.6 0.1	147.9 0.4	1.473 0.124	172.5 0.6	159.1 0.3	-6.260 0.756
échantillon	date	C. V.	HR	granulo	pic 1	onset 1	aire 1	0.1 pic 2	0.3 onset 2	8.4 aire 2	0.4 pic 3	0.2 onset 3	-12.1 aire 3
DED16 DED16_1 DED16_2	analyse 08/02/99 09/02/99	(mg) 16.41 mg 15.98 mg	(%) 7.9 7.9	d < 0.315 mm	(°C) 74.691 72.053	(°C) 68.24 64.836	J / g 0.264 0.514	(°C) 155.825 159.129	(°C) 149.342 153.079	J/g 1.462 1.156	(°C) 173.323 176.771	(°C) 159.981 162.88	J/g -10.008 -10.178
DED16_3	12/02/99	14015 mg moyenne			73.586 73.4	59.567 64.2	0.535 0.438	157.875 157.6	151.473 151.3	1.441 1.353	176.51 175.5	161.953 161.6	-11.732 -10.639
		é. t. C. V.			1.3 1.8	4.4 6.8	0.151 34.4	1.7 1.1	1.9 1.2	0.171 12.6	1.9 1.1	1.5 0.9	0.950 -8.9