Agritrop
Accueil

Automatic extraction of significant features from 3D point clouds by ellipsoidal skeleton. Applications in vision and geometrical characterization

Banegas Frédéric, Michelucci Dominique, Roelens Marc, Jaeger Marc. 1999. Automatic extraction of significant features from 3D point clouds by ellipsoidal skeleton. Applications in vision and geometrical characterization. In : Proceedings of the international conference on visual computing (ICVC 99) = [Actes de la conférence internationale sur le calcul visuel]. Mudur S.P. (ed.), Shikhare D. (ed.), Encarnacao J.L. (ed.), Rossignac J. (ed.); IFIP. Suisse : IFIP, 58-67. International Conference on Visual Computing (ICVC 99), Goa, Inde, 23 Février 1999/26 Février 1999.

Communication sans actes
Texte intégral non disponible.

Autre titre : Extraction automatique des éléments significatifs à partir de nuages de points 3D par squelette ellipsoidal. Applications dans le domaine de la vision et de la caractérisation géométrique

Résumé : We present a robust method for automatically constructing an ellipsoidal skeleton (e-skeleton) from a set of 3D points coming from segmented NMR or TDM images. To ensure steadiness and accuracy, all points of the objects are taken into account, including the inner ones. This skelelon will be essentially useful for object characterization, for comparisons between various measurements and as a basis for deformable models. It also provides good initial guess for surface reconstruction algorithms. On output of the entire process, we obtain an analytical description of the chosen entity, semantically zoomable (local features only or reconstructed surfaces), with any level of detail (LOD) by discretization step control in voxel or polygon format. This capability allows us to handle objects at interactive frame rates once the e-skeleton is computed. Each e-skeleton is stored as a multiscale CSG implicit tree. Applications cover a wide range in computer graphics, from CAD to medical imaging.

Mots-clés Agrovoc : imagerie, modèle mathématique, méthode statistique, os, sciences médicales, radiographie

Classification Agris : U10 - Informatique, mathématiques et statistiques

Auteurs et affiliations

  • Banegas Frédéric, CIRAD-AMIS-AMAP (FRA)
  • Michelucci Dominique
  • Roelens Marc
  • Jaeger Marc, CIRAD-AMIS-AMAP (FRA)

Autres liens de la publication

Source : Cirad - Agritrop (https://agritrop.cirad.fr/391936/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-04-11 ]