Zhan Z.G., De Reffye Philippe, Houllier François, Hu Bao-Gang.
2003. Fitting a functional-structural growth model with plant architectural data.
In : Plant growth modeling and applications. Proceedings PMA03 : The First International symposium on plant growth modeling, simulation, visualization and their applications, Beijing, China, October 13-16, 2003. Hu Bao-Gang (ed.), Jaeger Marc (ed.). Institut d'automatique-LIAMA, Chinese Agriculture University
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. ID_520435.pdf Télécharger (9MB) |
Résumé : GreenLab is a recurrent discrete-time functional-structural model of plant growth and architecture. A method is presented estimating its parameters: the model is fitted to plant morphological and architectural data observed at one point of time. Since GreenLab output variables (number, size and fresh mass of organs) implicitly and nonlinearly depend on the model parameters, the fitting problem is solved by minimizing a generalized least-squares criterion and by implementing an iterative procedure. Fitting is satisfactorily performed on unbranched plants (cotton, maize, sunflower) using real data. The method is extended to more complex plants (i.e. with branches): a preliminary test on a virtual tree shows that the fitting algorithm also applies to such structured plants.
Mots-clés Agrovoc : anatomie végétale, port de la plante, modèle de simulation, croissance, Gossypium, Zea mays, arbre, Helianthus annuus, modèle mathématique
Classification Agris : U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement
Auteurs et affiliations
- Zhan Z.G., Institut d'automatique (CHN)
- De Reffye Philippe, CIRAD-AMIS-AMAP (FRA)
- Houllier François, CIRAD-AMIS-AMAP (FRA)
- Hu Bao-Gang, Institut d'automatique (CHN)
Autres liens de la publication
Source : Cirad - Agritrop (https://agritrop.cirad.fr/520435/)
[ Page générée et mise en cache le 2024-01-28 ]