Durand Jean-Baptiste, Goncalves Paulo, Guédon Yann. 2004. Computational methods for hidden markov tree models : An application to wavelet trees. IEEE Transactions on Signal Processing, 52 (9) : 2551-2560.
Résumé : The hidden Markov tree models were introduced by Crouse et al. in 1998 for modeling nonindependent, non-Gaussian wavelet transform coefficients. In their paper, they developed the equivalent of the forward-backward algorithm for hidden Markov tree models and called it the "upward-downward algorithm." This algorithm is subject to the same numerical limitations as the forward-backward algorithm for hidden Markov chains (HMCs). In this paper, adapting the ideas of Devijver from 1985, we propose a new "upward-downward" algorithm, which is a true smoothing algorithm and is immune to numerical underflow. Furthermore, we propose a Viterbi-like algorithm for global restoration of the hidden state tree. The contribution of those algorithms as diagnosis tools is illustrated through the modeling of statistical dependencies between wavelet coefficients with a special emphasis on local regularity changes.
Mots-clés Agrovoc : arbre, méthode statistique, modèle mathématique, modèle de simulation
Mots-clés complémentaires : Algorithme
Classification Agris : U10 - Informatique, mathématiques et statistiques
K10 - Production forestière
Auteurs et affiliations
- Durand Jean-Baptiste, INRIA (FRA) ORCID: 0000-0001-6800-1438
- Goncalves Paulo, INRIA (FRA)
- Guédon Yann, CIRAD-AMIS-AMAP (FRA)
Autres liens de la publication
- Document en bibliothèque
- Localisation du document : CD_BR638 [(Bibliothèque de Lavalette)]
Source : Cirad - Agritrop (https://agritrop.cirad.fr/523821/)
[ Page générée et mise en cache le 2024-04-01 ]