Guédon Yann. 2005. Hidden hybrid markov/semi-markov chains. Computational Statistics and Data Analysis, 49 (3) : 663-688.
Version publiée
- Anglais
Accès réservé aux personnels Cirad Utilisation soumise à autorisation de l'auteur ou du Cirad. document_526482.pdf Télécharger (337kB) |
Résumé : Models that combine Markovian states with implicit geometric state occupancy distributions and semi-Markovian states with explicit state occupancy distributions, are investigated. This type of model retains the flexibility of hidden semi-Markov chains for the modeling of short or medium size homogeneous zones along sequences but also enables the modeling of long zones with Markovian states. The forward-backward algorithm, which in particular enables to implement efficiently the E-step of the EM algorithm, and the Viterbi algorithm for the restoration of the most likely state sequence are derived. It is also shown that macro-states, i.e. series-parallel networks of states with common observation distribution, are not a valid alternative to semi-Markovian states but may be useful at a more macroscopic level to combine Markovian states with semi-Markovian states. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants.
Mots-clés Agrovoc : modèle mathématique, modèle de simulation, anatomie végétale, Prunus armeniaca, ramification, floraison, modèle végétal
Mots-clés complémentaires : Algorithme, Architecture végétale, Biomodélisation
Classification Agris : U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement
Champ stratégique Cirad : Axe 1 (2005-2013) - Intensification écologique
Auteurs et affiliations
- Guédon Yann, CIRAD-AMIS-AMAP (FRA)
Autres liens de la publication
Source : Cirad - Agritrop (https://agritrop.cirad.fr/526482/)
[ Page générée et mise en cache le 2024-01-28 ]